Increasing Internal Reliability with Smart Asset IoT Technology...

and making/saving money doing it...

Gilbert Meyer-Gauen

Director of Asset Management National Oilwell Varco

November 19th, 2017

internet of manufacturing. #IoTMan

Overview

- Company/Industry Introduction
- Core Maintenance Principles in our Industry:
 - Reliability Centered Maintenance (RCM)
 - ISO 14224
- Predictive Maintenance via NOV Max™
- NOV's Internal Maintenance Software Stack
- Lessons Learned

Who Are We?

 Leader in the Design, Manufacture, Sale and Service of Oil Field Equipment

Established: 1841

NYSE: NOV

Employees: 36,000

Revenue (2016): \$7.25B

• 178 Manufacturing Facilities Worldwide:

We Power the Industry that Powers the World

Not Just The Oilfield...

• We solve really big problems

Scientists want to be first to drill into the Earth's mantle

By Ben Westcott and Junko Ogura, CNN

① Updated 1251 GMT (2051 HKT) April 14, 2017

Journey to the Earth's mantle The Chiku Ocean 4 km Ocean floor/ 6 km Earth's crust Mantle 1 km

Drilling Equipment:

Drining Equipment:	
Туре	Model
Drilling Control System	NOV Hitec DCIS
Drawworks	NOV EH-V-5000
Traveling Block	NOV Hydralift HTB1380
Top Drive	NOV Hydralift HPS 1000 2E AC
Rotary Table	NOV Varco BJ RST 60-1/2
Pipe Racking System	NOV Hydralift Hydra Racker IV
Hydraulic Roughneck	NOV Hydralift HRN-166
Pipe Transfer System	NOV Hydralift 3-1/2" to 30" pipe, SWL 20 ton
Riser Transfer System	NOV Hydralift 90' riser & slip joint, SWL 45 ton
Coring Winch	NOV Dual Drum 19mm x 10,000 m.
Mud Pump	NOV 14-P-220
Heave Compensator	NOV Hydralift CMC1000-25
Riser Tensioners	NOV Hydralift N-line direct acting tensioner
Lower Marine Riser Package	NOV Shaffer Dual Annular

Source: http://edition.cnn.com/2017/04/07/asia/japan-drill-mantle/index.html

Challenges We And Our Customers Face

- Extremely remote locations
- Extremely rugged (rough neck proof)
- Low connectivity
- Extremely expensive when things break
 - Antonov AN 124 rented to fly equipment
- Technology averse (unless it turns to the right!)

Tried and failed a few times... no trust it will work!

Core Maintenance Principles

- Reliability-Centered Maintenance (RCM)
- ISO 14224:

 Petroleum, petrochemical and natural gas industries Collection and exchange of reliability and maintenance data for equipment

Reliability-Centered Maintenance (RCM)

- First used by Boeing during the design of the 747
- Since then adapted widely by many industries, incl. aerospace, wind power, mining, and oil and gas production

Source: RCM Principles Provide Predictive Asset Maintenance Benefits, Cost Savings - Frank Breland, et al. (2010) - IADC/SPE 128865

ISO 14224 - Taxonomy

Example:

Petroleum

Upstream (E&P)

Drilling Rig

Offshore Platform

Compression

Pump

Lubrication

Gearbox

Bearing

Predictive Maintenance via NOV Max™

Analytics augments our products

Example: Offshore BOP Monitoring

- Large structure used to seal, control and monitor wells to prevent blowouts
- Chosen because of its high criticality and available data:
 - 15 years of data
 - 5 years of detailed maintenance history
 - 8 BOPs
- Focus on pressure regulator failures:

Condition-Based Maintenance

NOV Access Customer Portal

We Sell Great Products, So Why Not Use Them Ourselves?

Overview of NOV's Maintenance Software Stack

Asset Information Management System (AIMS)

Condition Monitoring Work Order

N● | Total Cost of Ownership

Division: Cost Center/Zone: Grant Prideco

District: Equipment Number: North America

Include Children Equipment:

Yes

From:

N/A

To:

era er

N/A

IN/A

Equipment Details:

Equipment #:

Description:

Zone:

Serial Number:

Current Operating Status: In Full Service

Install Date/Creation Date: 1/8/2013

Current Age In Months: 57
Estimated Total Life In Months: 0

Remaining Life In Months: 0

of Work Orders: 8

 Labor Hours:
 1938.30

 Labor Cost:
 \$28,620.00

 Additional Cost:
 \$372,370.41

Parts Cost: \$0.00 Inventory Costs: \$3,977.52

Miscellaneous:

Contacts Cost: \$0.00

Direct Purchase Costs: \$1,569,425.12

Direct Parts Cost: \$0.00
Direct Third Party Costs: \$0.00

Summary:

Cost Incurred So Far: \$2,208,715.71

Average Monthly Operating Cost: \$11,215.62

Estimated Cost Over Life: \$1,569,425.12

Estimated Cost Over Remaining Life: N/A

Unplanned Work Order:

of Work Orders: 321

Labor Hours: 2816.07

Labor Cost: \$22,779.99

Additional Cost: \$2,101.89

Parts Cost: \$0.00

Inventory Costs: \$4,957.92

Downtime Hours: 720.26

Downtime Costs: \$204,482.86

Planned vs. Unplanned Maintenance

OEE

Orange - Mazak FCA750PY-N3B

Orange Overview

Day-Driven vs. Usage-Driven Maintenance Study

0K

1M Routine

500Hr Routine

Day-Driven vs. Usage-Driven Maintenance

Lessons Learned

- Prepare your machines for IoT now (e.g. network ports or wireless networks)
- Always get your corporate network security team involved whenever you connect equipment to your company network
- Develop/Buy/Rent computerized maintenance management system (CMMS) to log maintenance and failure data
- Perform FMECAs on your most critical equipment
- Try to store any type of data from your machines that you can get; for new machine purchases, check whether they support MTConnect for easy data access
- Switch to usage-driven maintenance
- Never Settle!

Lessons Learned

- Uptime and reliability is fun
- Plants want to be cool
- Technology exists
- Show them the money!!!
- We have no more excuses:

Questions?

