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Abstract

In this extended abstract the research developed on the feasibility of implementation of an Incremental Non-linear Dynamic
Inversion (INDI) control for quadrotor control is divided into four main topics. First, a background study on the state of
the art for linear and non-linear adaptive controllers is given, to provide a review foundation and to motivate the study of
this Incremental controller. Secondly, a detailed study about quadrotor modelling is presented, where an audition to how
previous research modelled different quadrotors, leading to a reasoned choice of quadrotor helicopter model. Thirdly, the
attitude and position controller are deduced, investigated and implemented in simulation. The attitude controller has an
INDI inner loop that aims to cancel the non-linearities and couplings of the system and a linear derivative and proportional
outer loop to control the attitude. The position controller uses a similar architecture but also combines a Pseudo Control
Hedging Algorithm that aims to increase the performance of the controller by changing the reference provided when certain
saturations are reached. Lastly, the results obtained with the implemented controllers are compared with the results from a
linear controller (Proportional/Incremental/Derivative) and a NDI controller, developed in a similar simulation in previous
work. This comparison is not only performed for usual flight conditions, but also for flight conditions with faults in the
actuators, changes of mass and with other different disturbances, where the advantage of the use of an INDI controller is

expected to be more evident.

I. INTRODUCTION

Quadcopters are nowadays a global phenomenon.
They are used in a large number of applications, from
mapping to agriculture, through the media indus-
try and other recreational activities. Quadcopters or
quadrotor helicopters are also used in more critical
applications such as search and rescue, infrastructure
inspections or even as a tool in medical emergency.
Such critical applications may force the equipment to
perform aggressive manoeuvres indoors and outdoors.
Increasing the risk of physical damages or other fail-
ures to occur. Either while flying over a crowd or while
doing a critical task, the robustness and the consistency
of the behaviour of a quadrotor is critical to the safety
of the bystanders and the equipment itself.

This project consists in the study and application of the
previously developed Incremental Nonlinear Dynamic
Inversion Control [2, 6, 1, 7] to a quadrotor platform.
The goal of this project is to study the specific way
failures or time-varying model uncertainties influence
the quadrotor behaviour and its control, and how it
is possible to use an Incremental Nonlinear dynamic
Inversion in the development of a controller.

While performing aggressive manoeuvres a nonlinear
controller is essential to allow the quadcopter to have a
large flight envelope. For some applications a reliable
controller is critical to save lives (as for the TUDelft

Ambulance Drone) and avoid damaging equipment or
people (as for quadcopters flying over crowds).
Several linear and nonlinear adaptive controllers were
developed to solve model uncertainties while perform-
ing aggressive manoeuvres, usually by means of an
online identification. Adaptive neural networks [4] or
adaptive NDI [5] are examples of such controllers.

II. ApoPTED MODEL

The Bebop drone quadrotor was divided into four
parts: Engine Dynamics, Propellers Model, Quadrotor
Dynamics and Quadrotor Kinematics. as seen in the
block diagram shown in figure 1. The inertial reference
frame (E) was defined as a North-East-Down (NED)
where the two first axes (x and y) are aligned with the
meridian and parallel lines, respectively, and the last
axis (z) is pointing down to the center of the earth. The
body reference frame (B) chosen follows the conven-
tional plus configuration, represented in figure 2, with
the body axes are aligned with the quadrotor rods. The
body reference frame leads to the adoption of equation
1 for the angular dynamics of the quadrotor, where I
is the inertia matrix defined in 2 and [ is the distance
between the center of the propeller and the axis of
rotation, that for plus configuration is equal to the size
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Figure 1: Block diagram of the Quadrotor Model adopted.

Figure 2: A plus (+) reference frame with the simpli-
fied of the quadrotor adopted in grey.

of the rod, and assumed to be 12.6 cm.
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Where w is the angular rate in the body frame, w
is the angular acceleration in the body frame, F; is the
total force produced by all the propellers, F; is the force
produced by rotor i and T; is the torque produced by
rotor i withi =1, ...,4.
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where m is the total mass of the quadrotor, I is the
inertial matrix and P is the position of the center

of mass. The transformation between between both
referential frames can be done by a rotation as: xp =

Rxg and xg = R~ 'xg, where R is defined in 3:
R =

c(1)c(3)
[c(l s(3)
1)

—S

With the Euler angles 6 = (1,2,3) = (61, 6,,63) as pitch,
roll and yaw angles, and c, s represent the cosine and
sine respectively.

The engined dynamics has a very important role on
the quadrotor performance and was considered as a

first order filter with a cutting frequency of around
50Hz:

_ 1
T 14Ts

H(s) (4)

The propellers model follows the quadratic rela-
tion between the propeller rotation speed and the
Thrust/Torque produced:

Ti(Q) = K, OF + K1, Q; + K,
Tz(Q) = T;K¢

©)
(6)

with the coefficients for this relation (Kr,, Kt,, K1, and
Kz) found with a parameter estimation described in
section III, as in [5]. The kinematics equation, uses the
Euler angles, and determines the relation between the
angular body rates and the Euler rates, as defined in
equation 7. This component mainly aims to define the
relation between the movement in the body reference
frame to the inertial reference frame, obtaining the
Euler rates from the body rates.

gEarth = ](G)Wbody 7)
®)
Where | can be defined as:
1 sin(6;)tan(6;) cos(6;)tan(6;)
j= |0 cos(6y) — sin(6y) )
0 sin(6y) cos(6)
cos(6) cos(6)

It would be relatively easy to use a standard quater-
nion kinematics equation, this would produce the clear
advantage of the elimination of the singularity around
0 = £90°.

The dynamics of the quadrotor can be described as:

F=mV
lecdh—i—whxlwb

(10)
(11

Where the momentum equation was already described



in 1, and the linear dynamics can be described in:
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In equation 12, Fr represents the total force applied by
the actuators, Fj,, is the aerodynamic drag described
in 13, g is the acceleration of gravity, usually defined
as 9.80665m /s, [# i z]L is the linear acceleration
vector defined in the NED frame, R(6) is the rotational
matrix shown in equation 3, m = 0.400kg is the
quadrotor mass and Fr is the sum of the thrust
produced by all the motors.

E drag = w (13)
The choice of the drag coefficient is intimately related
with the shape of the quadrotor, the total area perpen-
dicular to the speed and square of the relative air speed.
Here for the y and z body axes a coefficient (here de-
fined as K,44) usually associated with a cylinder was
assumed, while for the aerodynamic drag along x a
more rounded shape was assumed. These assumptions
make this drag model very rough.

I. Simulation model

In the Bebop Drone, there are three main sensors avail-
able that are relevant for the implementation: a 3-axes
rate gyroscope, a 3-axes accelerometer and a motor
rotation speed sensor. Additionally, there are other
sensors available that won’t be taken into considera-
tion during the simulation but that are used in the sys-
tem. This simulation runs with a sampling frequency
of 512Hz which is the sampling frequency available
on-board of the Bebop Drone. Furthermore, this model
also includes the addition of signal noise in the three
measurements considered, as well as an atmospheric
disturbance input simulating wind.

III. IDENTIFICATION AND PARAMETER

ESTIMATION

The thrust coefficients parameter identification was
performed with a static test that aimed to identify the
relation between the propellers rotational speed with
the thrust produced by the four propellers. To perform
this test, the quadrotor was firmly assembled upside
down on a scale, with approximately 40cm separation
between the scale and the propellers to minimize the ef-
fect of the ground on the measurements. An increasing
sequence of propellers speed was given to the quadro-
tor while the values of the weight presented in the

scale were registered.

With the rotational propeller speed and thrust data
it was possible to perform a quadratic regression to
obtain the parameters for the the second order de-
gree polynomial of the form T(Q) = Kr,0* + K, Q +
Kr,. In figure 4 it is possible to visualize the ob-
tained quadratic line fitted to the available data. This
quadratic regression resulted in the values Ky, =
7.088706 x 10" Ns? K, = —0.002282787Ns Kr, =
0.08001036N. During the experiment the maximum
rotation speed was requested to the engines, approx-
imately 180Hz, this was considered, the maximum
achievable propellers speed. This constraint was taken
into consideration during the implementation of the
simulation and resulted in the maximum thrust of
approximately 1.96N per rotor.

IV. FunNpAMENTALS OF INDI

A critical advantage of INDI is the fact that only a small
portion of the model (control derivatives)[6] is required
for the design of the model, and even this small portion
does not critically affect the control performance, reduc-
ing the importance of possible discrepancies between
the real model and the identified one. The Incremental
Nonlinear Dynamic Inversion (INDI) controller can be
derived from a general nonlinear system:

x=f(x,u)

Taking a Taylor series expansion the system can be
linearised at the current time step:

of (x,u)

(14)

i 2 f(xo,up) + =7 (x —xo)
X=Xo,U=1Up
of (x,u)
+ (u —up)
au X=Xo,U=Ug

~ %o + F(xq, ug)(x — x0) + G(xq, 1g) (1 — 1g) (15)

Simplifying equation 15 by the application of the time
scale principle when the system sample rate is consid-
ered to be high, the variation x — x¢ can be neglected
when compared with the rest of the system, resulting
in the following by using the incremental form:
X ~ %o+ G(xp,ug)Au (16)
An NDI controller can then be designed in the incre-
mental form by solving in relation to Au equation 16,
and where ¥ is assumed to be the virtual control vari-
able v:
Au = G(x,up) " H(v — %) (17)
Where x is assumed to be measurable and the control
matrix G(xo, 19) contains the relation to the specified
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Figure 3: Block diagram of the Quadrotor Model implemented in simulink.
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Figure 4: Quadratic regression line fit and data

controller, the real control inputs need to be updated
by increments as Unew = Ucurrent + Ati. When applying
the resulting controller to the original system, eq. 16,
the following is obtained:
X o~ X0+G(Xo,MQ)G(Xo,Mo)_l(V—Xo) (18)
>~y
In figure 5 the usual architecture that was explained in

this section is presented in a block diagram, shown in
figure 5. The advantages of INDI are clear in equation
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Virtual Input, INDI

Linear
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_.|

Figure 5: General block diagram of an INDI controller.

17, by using the angular acceleration measurements
all uncertainties that do not depend on the input are
eliminated. The dynamic inversion is considerably sim-
plified by including in the measurements the uncertain
components. Recalling the system in its incremental
form presented in equation 16, it is possible to rewrite

it when uncertainties exist in both the inertia and con-
trol matrices in equation 19.

x = %o + G(xp,ug)Au + AG(x)Au 19)

Applying the INDI developed for the incremental
model to the uncertain system shown in equation 19,
results in the closed loop system:
i = %o + G(xo, 19) G (x0, g) ~ [v — Xo]

+AG(x)G(xo, u9) ' [v — %o

= %o+ I[v — %] + AG(x)G(xg, up) L [v — %]

= v+ AG(x)G(xq, up) v

— AG(x)G(xo, 19) 0

)
X

(20)

Assuming that the sensor provides ideal measure-
ments, the difference between new and current angular
acceleration is very small for a high sample rate, re-
sulting in Xy ~ X, this allows to rewrite equation 20
as:

X = v+ AG(x)G(x,up) v

—AG(x)G(x,up) 1% (21)

Equation 21 can be rearranged into equation 22 in
order to conclude that x = v.

i= [1+ AG(x)G(x, uo)*l] o

{I + AG(x)G(x, uo)_l} v

=v (22)
This is an interesting result that shows that even with
uncertainties in the control matrix, with a high sample

rate, the INDI controller is robust.

V. SENSOR NOISE, DELAY AND SAMPLING
FREQUENCY

The angular acceleration measurements are a critical
issue in the design of an INDI controller. Usually,
the angular acceleration is not measured directly, its
sensors are not widely available, specially for small



unmaned aircrafts.

This results in the need of using indirectly obtained
angular accelerations. The process of differentiation
of the velocity amplifies the noise of the measurement,
resulting in an angular acceleration measurement with
amplified noise[3]. Consequentially, this indirectly
obtained angular acceleration measurement does not
agree with the assumptions of perfect measurements
and ideal sensors made until now.

As the INDI controller decouples the states of the sys-
tem it is possible to address the filtering problem by
considering simple signal filtering. A compromise be-
tween delay and noise with a low pass filter needs to
be found. The development of INDI also assumed that
the sampling rate was high in order to allow some
simplifications to take place. The model implemented
is inspired on a quadrotor that has a sampling rate of
512Hz, which was considered high and allowed for the
assumptions to be considered valid.

VI. AtTiTUDE CONTROLLER

From now on we will take our state as x4 that in-
cludes 0 and w as can be seen in 23, where 0; , 3 are
the Euler angles (pitch, roll and yaw) and w; o 3 are the
body rotational speed around Xgng, Yang and zgng body
axes.

61
) (O]
_ 8] _ |03 _ |
Xang = |:w:| = w1 u= o (23)
wy Oy
w3

Where ), represents the rotational speed of the pro-
pellers of the quadrotor.

Since the control variable that we are aiming to con-
trol is the Euler angles, we can define 6 as our output
variable and later as control variable, as seen in 24.

Y= 0= Hxang = [I3><3 03><3] Xang (24)

I. INDI Loop

The goal of the attitude loop is to control the Euler
angles. The direct relation between input and output
variables was determined by executing the second or-
der derivative of the control variable vector, as the first
order time derivative of the control variable vector does
not contain the control input u, as can be seen:

dl B dHxang

dt dt

= Hxgng = H {]((Zj)w] =J(0)w (25)

where a short notation was used: ¢(), s() and #() rep-
resenting cos(), sin() and tan() respectively:

Py d(e)w)
dar? dt
4 1 s(01)t(62) c(0)H02)] [wy
= 0 c(6) =5(01) | |wy| | tang (26)
dxang 0 s(01) c(61) w
c(62) c(62) 3

It is then clear that in this case the input explicitly ap-
pears in the expression. From this point it is possible
to deduce the INDI controller for the complete system
by performing a Taylor expansion in the current time
step. This expansion will provide the linearised rela-
tion between the speed of the propellers and the Euler
angles.

V= f(xungr“) (27)

Of (Xgpo, U
gy~ f(xlmgor uO) + % (xang - xang0)+
ang Xangg Mo
Of (Xano, U
+ M (u _ uO) (28)
ou Xangg 0

The linearisation shown in 28, assumes f(Xang,, Uo) =
¥ang, as the angular acceleration measurement in the
previous time step. With a very small sampling time,
and considering that the actuator dynamics is faster
than the other dynamics of the system, it is possible to
assume that (x,mg — xmgﬂ) ~ 0 when compared with
(u — up). The assumption that the actuator dynamics
is faster than the system dynamics is quite bold in a
quadrotor system, especially because the quadrotor
system dynamics is primarily dependent on the actua-
tors dynamics. The simplified expression that will be
later used to obtain the control law can be seen as:

i =~ o + G(Xang,, to) Au (29)
where matrix G(Xang,, o) is simply the derivative in
order of the control inputs of the system, resulting in:

G(xang()/ 1‘0) =

, O34 ,
3 K
FTon 0 1305 0
=](6) oF, 3 (30)
“Keath Keath —Keatt Koo |1, o
Where aag] = (2K, Q) + K4,), to complete the deduc-

tion of the control law from equation 29, one just has
to solve in order of the incremental input. One can
then obtain the input for the system with the simple
relation Au = (u — ug), where u is the previous input.
The state that includes the control of the total force
produced by the system was not yet considered. This
means that the control law will have to consider Tr as
a control variable. Resulting in a new control law that



was obtained from:

w1 IF; —IF

wy| g IF, — IFy -1 [w X Iw] 31)
wz|  awd | T+ -1y | O

Fr F+Fh+FK+E

where I;,,4 is a newly defined 4 x 4 matrix, as seen in
32.

Ly 0 0 O
lo 1, 0 0

Iquad - 0 0 L, 0 (32)
0 0 0 1

For implementation purposes this control change was
implemented by simply changing the previously men-
tioned control law 29 in matrix G to also consider the
recent addition. This way the new control law will be
the same:

AM = ungd(xangol uo)il (qullad - xoquad) (33)

where cvgy00 = [61x3 Fr|T is the virtual control vector
and X0pu0d = (00, .5 FTO}T is the measurement of the
angular acceleration and Fr. In this last measurement,
T, is not obtained directly but relies on the model
that relates the propeller speed to the thrust produced.
And the new matrix Ggyqq(Xang,, o) is defined as seen

in 34, with Gfme(uo) = [2Kt2010 + Ktl ZKtZQZO +

Ky, 2Ky, O3, + Ky, 2K, Q4 + Ky |-
_ [ G(xangy, o)
unud(xﬂ”SO'uO) - |: Gforce(uO) G

The controller obtained is therefore a non-linear con-
troller that is slightly less dependent on the model, but
that is built upon sound angular acceleration measure-
ments that cannot be obtained directly. Even though
the controller does not depend on part of the model,
it is verifiable that the part of the controller that is
neglected only slightly influences the quadrotor be-
haviour and therefore the advantage gained by dis-
regarding the slower dynamics of the model is not
critically meaningful.

II. Attitude Loop

With the correct cancelling of the non-linearities and
the possible decoupling between states, it is feasible
to implement two additional linear proportional loops
to control the Euler rates and the Euler angles sequen-
tially. The overall attitude controller block diagram
can be visualized in figure 6. As it is noticeable in
figure 7, the total force does not require any additional
loop to be controlled. The gains for the proportional
loop where chosen sequentially, first tuning the gain

id(m 9

Quadcopter Model do

Attitude Controller
D

Qprop
- @
6 I 6
Differentiator| Filter
[4 0 .
Filter

Figure 6: Block diagram of the attitude controller with
filters.

Attitude Controller

INDI

Q.

Figure 7: Block diagram of the attitude controller de-
tail.

for a Euler rate controller and only afterwards the sec-
ond loop was implemented, followed by the tuning
of the second gain related with the attitude controller.
The filters chosen had a cutting frequency of 50Hz
and a damping ratio of 5, as explained above these
parameters were shared among all the filters.

II1.

With the controller implemented the doublet response
for a Euler angle reference is shown in figure 8.

Results
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Figure 8: Attitude response to a doublet on the attitude
reference.

When requesting very steep pitch or roll angles it is
clear that some coupling occurs between the states, as



for example near second 4. In this situation, the noise
and delay are not a critical factor. The reason behind
the coupling seen in figure 8 is actuators saturation.

VII. PositioN CONTROLLER

The proposed position controller follows a similar idea
as the one developed for the attitude control. The
first control layer will make use of the Incremental
Non-linear Dynamic Inversion technique, this time
to cancel the non-linearities associated to the linear
dynamics system. This proposed controller also in-
cludes a Pseudo Control Hedging to shape the input
requested to the controller, taking into consideration
the limitations of the system.

It is possible to notice a direct relation between both
the Euler angles in matrix R and Fr and the angular ac-
celerations that are the states that need to be controlled
at this stage. The virtual control variables chosen for
the position INDI controller are defined as v in 35 and
include the linear accelerations and the input of the
system will be the pitch and roll angle, that together
compose the tilt angle, and the total force but does not
include the yaw angle.

i 0
v=li| u=|6 (35)
|, FT

The approximated system, after performing the Taylor
expansion and disregarding the slower dynamics of
the system, will result in the system presented in:

v = %o + Gouter AU (36)

Where matrix G,y can be defined as the derivative in
order to the input variables, 61 and 6, and TF as:

a b d
Gouter = |e f h (37)
kI o

with each element specified ahead due to space man-
agement issues:

a = Fr,(cos(61) cos(6) cos(63))

b = Fr,(—sin(6;) sin(6;) cos(63) + cos(6,) sin(63))
d = sin(6) cos(0;) cos(63) + sin(6,) sin(03);

e = Fr,(cos(6;) sin(63) cos(61))

f = Fr,(—sin(6;) sin(6,) sin(63) — cos(6) cos(63))
h = — cos(63) sin(6,) + sin(63) sin (1) cos(67)

k = Fr, cos(6;) sin(67)

I = Fr,(—sin(6;) cos(61))

0 = cos(60y) cos(67)

The control law obtained by solving to the incremental
input is partially dependent on the defined model, but
does not depend neither on the earth acceleration nor
the aerodynamic drag:

AU = Go_ulter (V - Vearth) (38)
Ucurrent = uprevious +AU (39)

I. Results

A doublet response for a reference of linear acceler-
ations of the system is presented in figure 9, where
it is possible to verify a very satisfactory results that
shows us that indeed the non-linearities of the system
are correctly cancelled. There is very clear couplings
between the horizontal accelerations and the vertical
accelerations. The couplings mentioned before can be
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Figure 9: Linear acceleration response for a doublet in
the linear acceleration reference.
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traced back to the angular references given from the
outer loop to the attitude controller. The attitude an-
gles required to achieve a requested acceleration are
very steep and therefore the maximum thrust is not
enough to maintain the vertical acceleration to the ref-
erenced value. This can be verified in figure 10, where
the attitude requested by the outer loop is shown as a
reference with the attitude response.

II. Pseudo Control Hedging (PCH)

Due to the incremental nature of the controller and the
two additional linear PD an P gains it is possible for the
controller to request a roll or pitch angle bigger than
90° . For this reason a saturation of £80° was included
in the reference provided for the pitch and roll angle.
The reach of the saturations might affect controllability
because discontinuities violate the dynamic inversion
requirements, reinforcing the need to find a policy to
avoid saturations.
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PCH modifies the virtual control, providing a pre-
adaptation of the control reference before it is provided
to the INDI controller. PCH can be divided into two
main parts, a part that includes the reference model
(RM), a first order filter that will cut-off frequencies that
are physically infeasible, as seen in the block diagram
presented in figure 11. The second part of the PCH

Reference Model

Vhedged

ve +

VUChedged,

\J

Saturation

Figure 11: Reference model block diagram.

algorithm consists on the estimation of how much
the plant did not move due to the limitations of the
attitude dynamics, or as seen from the outer loop, the
actuators that are not considered in the controller. This
estimation of the PCH will limit the requested virtual
control in the reference model, once the saturations no
longer occur the attenuation on the commands is no
longer active. For the INDI controller the PCH assumes
the form of vj4q.q as seen in equation 40, depending
on the same matrix as the outer INDI control loop,
where the virtual control is the linear acceleration and
the inputs are the Euler angles.

Vhedged =V — U=
=0 + & (x0) (Ureg — Uo)] — [0 + g(x0) (U — Up)]
=g(x0) (Ureq — U) (40)

In the block diagram presented in figure 12 it is possi-
ble to verify the framework were the PCH algorithm is
included, receiving both the attitude angles required
and the current angular state of the system, and provid-
ing the Vg4 to be considered in the reference model.

" ol Attitude controller 2wl
i Position Controller Orea,. and 0 Linear Dynamics
’_> Fr,., Angular Dynamics
Qprop
b Filter }—]
<—I i,
Vhedged
PCH 7
i i

Filter

Figure 12: Block diagram including the Pseudo Control
Hedging blocks.

II1.

With the INDI controller of the outer loop it is possible
to control the linear acceleration of the quadrotor. By
adding two linear outer loops to control the velocity
and position, results in the controller shown in the
block diagram presented in figure 13. The linear gains

Position controller

Position Controller

Vhedged Vhedged

6 62 Frll,,

INDL,

Figure 13: Block diagram of the position INDI con-
troller.

shown were obtained, once again by first analysing the
speed controller and tuning its gains. And only after
that addressing the proportional gain for the position
€error.

IV. Results

After implementing the two additional outer loops that
aim to sequentially control the linear speed and the lin-
ear position it is possible to obtain a position response
while providing a position reference, as seen in figure
14. The position response obtained is quite satisfiable
as allows the quadrotor to quickly change its position.
The coupling between the horizontal and vertical move-
ment is very noticeable in figure 14 where the altitude
decreases around 1 meter when the quadrotor changes
its position from x = Om to x = 10m. Again due to
the very steep roll and pitch angles required to the
system.
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Figure 14: Position response of the quadrotor to the
reference provided.

VIII. Resurts AND COMPARISONS

The position controller will be qualitatively compared
with two other controllers implemented in literature. In
table 2 a summary of the simulation results presented
in ?? and the simulation results obtained by the INDI
controller implemented are shown. This simulation
consisted in a position step response, with a reference
change of 2 meters in the horizontal axes. This results,
for the INDI controller, on an temporary increase of
the tilt angle to 30°.

Controller I. Pos.(m) F Pos.(m) Rising Time(s)
PID [8] [0,0,2] 2,2,2] ~ 2.5

NDI [8] [0,0,2] 2,2,2] ~ 2

INDI [0,0,2] [2,2,2] 2.25

Table 1: Position Tracking performance comparison
table.

It is not possible to clearly show the benefits of using
a non-linear controller. Because the task executed is
not the ideal, as it does not require for large attitude
angles to be maintained for a large period of time.

IX. RoBUSTNESS TESTS

Aggressive manoeuvring and fault tolerance are not
usually studied in simultaneous. The literature [5]
focusses in aggressive manoeuvring while [8] the focus
is the study of the influence of actuator faults in the
performance of the system. The second reference will
now serve as a reference for the influence of actuator
faults in controller performance.

I. Actuator effectiveness

The most influential components of the quadrotor
model are its actuators, therefore it is important to
study the influence actuator faults in the performance.
While executing the same task, one of the rotors suffers
a decrease of its effectiveness around second 2. The
results of these simulations, are presented in figure 15
where it is possible to verify the increasing effects of
the actuator effectiveness loss in the maximum devia-
tion from the position hold reference and the increased
difficulty to perform the tracking task. In figure 15
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Figure 15: Control performance comparison between
NDI and INDI attitude controllers.

it is possible to verify the different effects of different
changes on the actuator effectiveness.

Controllers 1. Pos.(m) Final Pos.(m) Rising Time(s)
PID [8] [0,0,2] NA inf.

NDI [8] [0,0,2] NA inf.

PID* [8] [0,0,2] [2,2,2] ~ 2.5

NDI* [8] [0,0,2] [2,2,2] ~~ 2

INDI [0,0,2] [2,2,2] 2.25

Table 2: Control performance comparison table with
a 50% fault in engine 1, at t = 2s. *-indicates that a
limitation of the reference provided to the system was
included.

As seen in table 2 both PID and NDI controllers
benefit from the limitations in the attitude reference,
limiting the aggressive manoeuvres to keep flying.
The INDI controller, also as seen in figure 15, is able to
maintain the quadrotor flying while performing some
degree of aggressive manoeuvres, being dependent
and limited by the actuator saturations.



II.

Mass changes are very common to occur in a very wide
range of applications. All require a controller that is
able to sustain mass changes and continues to operate
normally, making the study of how a mass variation
influences the performance of the system without any
tuning interesting and useful.
The same task was executed when a certain mass was
added to the system in its CG. Figure 16 shows the
results for different mass additions to the CG, here
displayed in percentage of the initial quadrotor total
mass.

The most noticeable effects are verified in the altitude
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Figure 16: Comparison between different mass in-
creases at second 2, when the different loads are ap-
plied directly in the center of gravity.

change when the load is applied and in the increased
number of oscillations when the step input is provided
to the system and the increased loss of altitude when
the quadrotor aims to follow the horizontal position
reference.

X. CONCLUSIONS

The main goal of this project was to achieve a complete
quadrotor controller with the use INDI control theory
that showed improvements with the control of a time
varying quadrotor model. This goal can be considered
convincingly achieved specially after comparing the
results obtained with the performance of other con-
trollers in the same situations.

Overall the research developed can be considered suc-
cessful as the majority of the research questions were
answered with conclusions founded on the research.
The robustness tests and the comparisons with other
controllers also implemented in simulation in previ-
ous research allowed to take conclusions about the ad-
vantages and drawbacks of the use of an Incremental
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Non-Linear Dynamic Inversion in a quadrotor system.
There are a lot of subjects related with this topic that
are currently being investigated, making this a quite
interesting, innovative and dynamic topic, and there is
still some improvements and future work to be devel-
oped in this topic, with the goal of making quadrotors
a more reliable, versatile, safe and robust tool for the
increasing number of their critical applications.

These tasks include the use of quaternions in the kine-
matics equation, improve the robustness by using an
online identification method and improve actuator sat-
uration management.
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