Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13

DOI 10.1186/513673-016-0067-0

® Human-centric Computing
and Information Sciences

RESEARCH Open Access

Incremental stages of a semantic

@ CrossMark

framework for automating the changes on long
term composed services

M. Thirumaran and G. Gayathry Brendha’

*Correspondence:
gayathry.brendha@gmail.com
Department of Computer
Science and Engineering,
Pondicherry Engineering
College, Puducherry 605014,
India

@ Springer Open

Abstract

Enterprises enhance their business on the web with the help of web services. This
enhancement is achieved by composing the pre-existing services, so that they will be
able to provide solutions for the problems on the web. Due to rapid development in
technology, the need for making changes in the composed services by the respective
analysts becomes an essential task. Thus, the change management process becomes
a challenging area in web service. Although, the existing solutions use ontology for
change management, they have been designed majorly for IT developers rather than
analyst. Therefore, we concentrate on providing a change management framework
that will make use of an enriched ontology set and semantic reasoner for implement-
ing the changes by the analyst itself. The semantic reasoner component parses the
change request from the analysts and determines the possibility for making the
change. The framework represents the implemented changes in the form of a S-BPEL
notation (Semantic BPEL) which is then converted to their corresponding BPEL nota-
tions by a BPEL constructor so that they can be deployed in the run time environment
for composing the services.

Keywords: Web services, Change management framework, Semantic reasoner,
Ontology, S-BPEL, BPEL

Background

Problem

Service oriented computing helps in outsourcing the business functionalities from web
service providers, so that these functionalities can be composed by service composi-
tion to create solutions for problems occurring over the web. A composed Web service
is therefore an on-demand and dynamic collaboration between autonomous Web ser-
vices that collectively provide a value added service [1]. The composed services are of
two types: Short term and Long term composed services (LCS) [2]. The collaboration
among the LCS will be for a longer duration, on the other hand the collaboration among
the services in short term composed services are dissolved when the requirements are
met [3]. Changes in web services usually occur due to various factors like rapid techno-
logical development, new requirements from the end-users [4], complaints, to improve
the enterprise business standards so that it compete with other business enterprises etc.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-016-0067-0&domain=pdf

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 2 of 26

Therefore, providing a framework that will help the analyst to make the changes is of
prime importance. These changes are classified into two types: top- down and bottom-
up [1]. The changes arising from the enterprise owners refer to top-down changes and
those arising from the outsourced providers refer to bottom-up changes. Our frame-
work is designed to work out the problems that may arise in top-down changes.

Motivation
Service oriented applications may undergo frequent changes due to the regularly chang-
ing [5]. As a result, it is important to make changes in the member services and also in
the manner in which the services are co-operated with each other. In general, Change
management refers to the task of addressing changes in a timely, planned and systematic
manner [6]. But, this task is difficult because the XML representation of Web services
guarantees syntactic interoperability but it is unable to semantically describe services
[7, 8], in addition, during such change requirements, the analyst must also ensure that
various factors like the relationship between the existing services after the change, the
correctness of the corresponding services involved in the change etc. are also preserved.
Secondly, to implement the changes IT professionals were required as the analyst could
not perform the changes, this increased the cost and time for the enterprises because the
existing frameworks were designed for IT people. Further in the existing systems, there
was no guarantee on the success of the requested change before its implementation. i.e.
the result of the change (success or failure) and also the impact that will be caused on the
value added services will be revealed only after the changes has been implemented in the
service level. Due to this, establishing the consistency within a service and between the
services will introduce high cost to the enterprises.

Thus, all the above stated challenges motivated us to create a framework that will assist
the analyst to govern the incoming change requests successfully.

Solution
This research provides a solution for the analysts to perform the changes by himself
without any assistance from the IT professionals. To achieve this goal, our framework
uses an enriched ontology set which contains information regarding the relationship
between the services, properties concerned with each service etc. It resolves ambigu-
ous description of service functionality and external interface. It also reduces human
intervention while integrating services in service-oriented architecture (SOA) [9]. Since,
the ontology furnishes the framework with sufficient information based on the change
request from the analyst; the process of deciding on implementing the changes becomes
an easier task. The framework is designed with special components like: Semantic rea-
soner and Semantic analyser. The semantic analyser will parse the change expression
and determine the possibility for making the change. The possibility for the change is
decided with the help of the semantic reasoner which uses the semantic rules to provide
the appropriate information to the analyser during the decision making process. Our
framework is supported with number of important components like:

Enriched ontology set—our framework leverages the web services to a higher level
by representing them using ontology like OWL [10]. Unlike the existing frameworks
that use ontology only for retrieving domain information, our framework represents

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 3 of 26

the services in terms of its relationship between services etc. As a result, the reasoning
capacity of the framework is increased which increases the success rate of implementing
the changes.

Semantic analyser—we use an analyser to determine the possibility of executing the
changes before they are implemented at the service level. The information for this deter-
mination is obtained from the semantic reasoner component.

Semantic reasoner—this component is the heart of our framework, it contains the
semantic rules that will be used by the semantic analyser to gather information for mak-
ing decision on the feasibility of making the changes. The reasoner is also powered by
the change impact analysis, which has the capability to forecast the condition of the SOE
when the requested change is performed.

Semantic schema generator—once the change is found to be plausible, we verify the
changes in a semantic schema generator rather than implementing the changes directly
in the service level. The component makes use of push down automata (PDA) and finite
state machine (FSM). If the changes implemented at semantic schema level are found to
be satisfactory to the analyst, he can proceed for implementing at the service level.

Scenario for explaining the framework

Our semantic change management framework is analysed by considering three domains:
travel agency, banking and telecom domain. The travel agency has three operations:
Booking a flight ticket, booking a cab and then a hotel.

This section provides a detail description about the semantic change management
framework [11] by considering the travel agency scenario. Let us consider an analyst
maintaining a travel agency which consists of sequence of services like book airline,
book hotel. Each of these services has their corresponding rules and policies that are
indicated as R11, R12, p1 and p2.

A person who needs to avail these services has to first login by providing his creden-
tials like personal information, travel details such as departure date etc. All these infor-
mation are expected to be in a secure form for which the agency provides a policy for
encryption. After providing the details he is directed to book his air ticket and also his
corresponding hotel services. The details of his hotel booking are sent back to the cus-
tomer in hashed form. The operations getting the personal information, booking flight
and cab should be performed sequentially only, i.e. these operations can be performed
only one after another, whereas the other operations such as hotel booking and register-
ing for weather services can be performed in a parallel manner.

Related work

The change management framework [12, 13] discussed by Akram et al. combines the
ordinary and re-configurable petrinets to deal with the incoming bottom up change
requests. Algorithms called change detection, change management and change reaction
algorithms are executed on these petrinets to maintain the workflow of the services. The
changes implemented are not verified and further the construction of petrinets becomes
challenging when the number of services to be included increases. The same author
in the architecture described in [1] uses request brokers for performing the requested
change. The ontology used is a domain ontology which is used by the request brokers

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 4 of 26

to decompose the request, select the appropriate services, invoke the selected services,
perform the changes and finally to provide the results to the user. Allocating an instance
of the broker to each user becomes an overhead in this architecture. The change man-
agement framework by Xumin Liu [2] deals with top down changes. The change to be
made is first observed in the schema graph, a graph derived from the ontological repre-
sentation. After successful verification the change is implemented at the instance level.
Although semantics has been considered, it deals only with single requests at a time and
the essence of ontology used for the purpose of change management is also very lim-
ited. Xumin Liu along with Bouguettaya try to automate the process of making top down
changes by proposing a change management framework which has two components
called change model and change reaction. The work of change model is to specify the
requested top-down changes, while the goal of change reaction is to enact the changes.
Apostolou et al. [6] present an ontology-based approach where systematic response of
e-Government systems is obtained to by applying formal methods. They have claimed
that such a synthesis of systematic response to changes with knowledge to deal with
them has a positive impact on the change management process.

Aissi et al. [14] has used ontologies for developing the SLOAP recommendation sys-
tem (SLOAP) to enhance the exploration in spatial data warehouse (SLOAP) by means
of querying the warehouse. The dimension, measure, attributes of the data warehouse
are represented as concepts in the ontology. The similarity between the queries is deter-
mined by minimum number of edges [15] which separate the query references in the
ontology which is called the Rada distance. The queries are then analysed and candidate
queries are determined by ranking method which are recommended to other similar
users who will approach the warehouse in the future. Rafiei and Kardan [16] help to find
experts in online communities based on content analysis and social network analysis.
The content analysis uses concept maps a kind of knowledge representation to find the
semantic similarities between two words by taking into consideration the meaning of
the words. Though this approach was found to be very useful for our change manage-
ment framework, this cannot be used as concept map creation requires high expertise
about the domain. The Table 1 discusses the advantages of our framework over the exist-
ing change management framework. The above change management works require IT
professionals to perform the requested change. Due to this the cost and time spent for
these people increases. Our work aims in creating an environment to make the changes
by the analyst itself without the involvement of the IT people. Further, the possibility of
making a successful change is not verified before it is being implemented at the service
level. Therefore, our framework uses a parsing technique to determine the possibility of
making the change so that the burden at the analyst side is reduced. Finally, the observed
change management frameworks use petrinets which has many disadvantages like petri-
nets can be represented only as tasks and are useful for change management scenario
where the changes are made by the IT developers. But in our framework we use FSM
which are designed in terms of states and actions, as result all the services are repre-
sented in terms of states so that the exact state in which the requested change has to be
incorporated can be easily known by the analyst. Since petrinets are complex structures
they require higher memory capacity for its storage due to which there is high degree for
reaching undesirable states.

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 5 of 26

Table 1 Comparison of existing change management frameworks

Feature Existing frameworks Semantic change Reason/component
management framework contributing

Memory usage High Low

Prior determination for No Yes Semantic parsing
implementing changes

Automatic verificationand ~ No Yes Finite state machine
validation

Probability to reach correct Low High Push down automata
states

Professionals involved in Developers Analyst, developers Semantic information from
enacting the changes ontology

Information provided in the Domain Functionality of the
ontology services

Information about the No Yes Representing ontology in
relationship between terms of functionality of
the functionality of the the services
services

Rule/policy level informa- No Yes Representing ontology in
tion about the services terms of functionality of

the services

Prior determination on the No Yes Change impact analyser
impact caused by the component
requested change

Capacity of the framework ~ No Yes Semantic reasoner compo-
to provide reasons in case nent
of failures

Possibility to determine the No Yes Push down automata

exact position for suc-
cessful implementation of
change

Semantic web service change management framework

Figure 1 represents the stages and the components of our framework. The framework
is powered by three main components: Enriched ontology set, semantic analyser and
semantic reasoner. We will discuss in detail about these components in the forth coming
sections.

Tentatives

The framework requires some initial processes to be performed on the change request,
so that it can be processed by the framework. These are achieved by the following
components:

Request analyser

Initially, the change request from the analyst is screened to determine the domain and
also the context of the change. This information is retrieved from the service repository
where the concrete web services are stored.

LCS grammar

The service repository contains information about individual services and also about the
value added services. To make the process of parsing easier, we represent each LCS in
terms of grammar symbols. An LCS in general is represented as:

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13

— \
Change

Request

rd ~
7 N
g | Request Analyser | Enriched Ontology Set
g 7 ‘
E
>
g
=l I Domain Context |
3 + L+ Service Repository

A

Service + Context

Enriched

Ontology

@ Semantic Analyser
§ 4 A
2
)
>
g Parsing LCS
gé‘ Algorithm Grammar
«»
PDA
y
7 | Semantic Reasoner |
5 7'}
2
=2
e
2 Change SDT P
E' Impact Engine
3 Analyser
)

|

Q Semantic Schema Code | FSM Graph |

:Eb- Generator B 1

Q

& S-BPEL

g :

g& | BPEL Constructor |

E \ y;

N _7
BPEL
L 4V . Service
| Compilation and Runtime Environment I—. e
Fig. 1 Stages of a semantic change management framework

L — {S1, 0,82, 0....5,}, (1)
S1 — {op1[R/P], O, op2[R/P],......... opn[R/P])
Sn — {op1[R/P], O, op2[R/P],......... opn[R/P] (3)

tions that make up the individual services, [R/P] is the rules and policies that have to be
followed while considering the operations and O represents the pattern (Sequential or
parallel) in which they are co-operated.

S, represent the services present in the LCS, op;......op, are the opera-

Page 6 of 26

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 7 of 26

Enriched ontology set

To increase the reasoning capacity of our framework, we build an enriched ontology set.
The other frameworks use only domain information for making the changes, whereas
our framework represents the functionality of the services. As a result, the exact posi-
tion [rule, policy or operational level] where the change has to be implemented can be
easily identified by the analyst.

Semantic analyser

The semantic analyser helps to determine the feasibility of the requested change. This
feasibility is achieved by parsing the change request with the help of the LCS grammar
and the SDT engine of the semantic reasoner which will be elaborated later in this sec-
tion. The parsing can be: Top- down parsing, Bottom-up parsing or workflow verifica-
tion. If the change request is to form a new LCS or a new set of value added service
or to add a new service in the existing composition, then we use top-down parsing. In
top-down parsing the existing individual services for composing a new LCS are selected
based on the information provided by the LCS grammar and enriched ontology set.
The selected services are then parsed to determine the rules and policies that has to be
included while composing the services. If the request is for making changes in the exist-
ing composition like adding a new service, removing a service or rule or policy from the
composition, then we use bottom-up parsing. This parser makes use of the SDT engine
where the semantic rules about the LCS grammar are stored.

If the request if for adding a new individual service to the already existing services,
then the analyser will parse the change request and forecast the services that has to
be preceded and succeeded after the new service that has to be added. Similarly, if the
request is for removing a service or rule or policy, the parser based on the information
provided by the SDT will forecast the services, rules or policies that will be affected due
to the removal. Based on this forecasted result, the analyst can decide on whether to
remove the service or not. For e.g. Consider an enterprise for travel LCS has four ser-
vices as: get_userdetails, bk_fight, bk_cab and sms_initimation, if the analyst attempts
to delete the get_userdetails, then the parser with the help of the information provided
in the SDT will forecast and suggest that the service must not be deleted. For this pur-
pose, the analyser will first generate the list of item sets, this item set will retrieve the
semantic information for each grammar symbol from the already existing SDT. After the
completion of item set generation, a parsing table is computed which tells the semantic
references for each grammar symbol. Finally, parsing is performed, which uses the infor-
mation from the item set generation and parsing table and determines the feasibility for
implementing the change.

If the change request is to verify its workflow, then the composition based operator
precedence parser is used. Based on the context and change operators appearing in the
change request, the services that can be executed in sequential, parallel, conditional etc.
are determined. The determined set of services is compared with the change request,
if the services in the determined set and the request are found to appear in the same
order, then we determine that the workflow for the request is valid. For instance consider
our running example where the change request is: 1 + e 4+ c* s [+: sequential opera-
tor, *: parallel operator]. Here, “1” refers to get_userdet, “e” refers to an airline service,

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 8 of 26

“t” to an hotel service, “s” to the sms service. According to the scenario, first an airline
service has to be executed, then a cab service, the third in the workflow can be a hotel
or sms service or both, this implies that the airline and cab service has to be executed
one after other. i.e. in a sequence, whereas the hotel and sms services can be executed in
parallel. Although there are two sequential operators in the request we have considered,
the get_userdet have to be executed first, this order in which they have to be executed
will be dictated by the parser. For this purpose based on the context of the request, the
appropriate information from the ontology is used to determines the precedence for
each operator, following this precedence table is constructed which is referred by the
parser to verify the workflow.

Semantic reasoner
The semantic reasoner is built up of two components: semantic description engine and

the change impact analyser.

Semantic description engine The semantic reasoner with the fetch the semantic infor-
mation from the enriched ontology set to create rules for each existing LCS. These rules
will be represented in terms of grammar notations discussed in “LCS grammar” section.
The rules provide information about the rules, policies, relationship with the other ser-
vices for each symbol of the change request. Since the semantic information are written
in the form of rules, for each change request, instead of searching the entire the ontology
for the relevant information, the information for the appropriate LCS is alone searched,
thereby reducing the search space for the change request. The rules in the SDT are used
by the parsers viz. top-down, bottom-up and operator precedence parsers for dictating
about the feasibility of the change request.

Change impact analyser Before any change is to be executed, the change impact ana-
lyser will check the incident storage database to determine whether the requested change
has been recorded previously, if a similar change has already been executed, then the
impact caused by those changes are studied before the analyst proceeds to implement
the changes. For the current request, the threshold estimation, similar change requests
pattern, impact value estimation are calculated and then compared with the estimations
that were made on pre-occurred services. The purpose of this comparison is to assure risk
free implementation of the change request. For e.g. if the enterprise wants a change to be
made immediately, then the analyst cannot wait till the IT team completes the change,
therefore, there arises a need to implement the changes by himself. In this case, the ana-
lyst without knowing the impact that would be caused on the LCS by the change cannot
proceed to execute the changes directly on the service logic, because executing an incor-
rect change on the LCS would make the changed LCS to behave in an undesired manner.
Therefore, it is necessary that the analyst gains detail knowledge about the impact so that
he can assure a risk-free incorporation of the changes in the LCS. If there are no pre-
occurred services, then that new incident is stored in the database.

Semantic schema generator For each LCS a corresponding PDA is constructed, a PDA’s

schema in general will consist of the input state, a stack and the output state. In our

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 9 of 26

case, the input state will be a service/rule/policy, the stack symbol will consists of the
hidden factors and the output state consists of the service/rule/policy which we want to
be changed. When any changes are made in this schema, it will be reflected in the PDA
structure of the LCS. Therefore, the changes that have been decided for execution can be
verified using this PDA before they are being implemented at the service level. In our run-
ning example, consider the analyst wants to replace the existing airline service to another
service due to QoS constraints [17, 18], then the PDA schema can be represented as” e,
[response time], j’; where, “e” is the emirates service and “j” is the jet services. When the
change has found to be feasible by the parser, then it is implemented at the schema of the
PDA. If the change is found be satisfactory and found that the correct behaviour of the
LCS is maintained, then it can be proceeded for executing at the service level.

The changes in the service level are implemented with the help of the Finite State
Machine (FSM), the FSM will maintain the event and the state information of each cor-
responding services involved in the change management process until the entire change
enactment process is completed. The state information for managing the changes is
obtained from the ontology. The event in our case refers to the action that is involved
in invoking a particular service. Since the services are represented in terms of states. i.e.
rule, policy, the exact position where the change has to be implemented is easily identi-
fied by the analyst. Thus from this FSM, a schema code is generated for each change and
stored. The schema code at this stage will be in the form of S-BPEL since it also contains
the semantic information. Since the state information is maintained at each stage, if the
analyst wants to refer the process that was involved for a particular change, then the
FSM states that were involved in the corresponding change process can be referred.

BPEL constructor
Since, the outcome of the Schema code generator is in the form of a S-BPEL notations, it
cannot be directly executed on an run time [19] environment directly as the system can-
not interpret the semantic symbols directly. Therefore, we use a BPEL constructor which
converts the S-BPEL notations to the BPEL symbols.

After the conversion, these constructors can be used to directly deploy them in an run
time environment or they can also be used to combine the changed LCS with other ser-
vices and enable them to share data.

Experiment methodology
This section provides a detailed discussion on the implementation of PDA and the

parsers.

Push down automata
Our change management framework uses the PDA for verifying the possibility of mak-
ing the changes. The PDA implementation for our running example is indicated in Fig. 2.
The Table 2 represents the LCS grammar for the travel scenario discussed in “Solution”
section.

The services involved in the change enactment process are taken as states. The input
symbol will be the actual service that is in composition, the constraint factor is the con-
dition that has to be satisfied for choosing the alternate service instead of the actual

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13

Here,

[Si/con/Sg]

qo0,q1, q2 ,q3, 94 » g5, g6 - Services
S1, Sa, Sg- Actual service existing in the LCS
con - Constraint factor.

[Si/con/S]

Fig. 2 PDA implementation example

Table 2 LCS grammar for travel agency scenario

Grammar Explanation Current composition Change request

L — (51.52).((S3.54)*S5) ST =login (op1/0p2)/((op3/op4)*op6)
S1— OP1 S2 = book flight ticket

S2 — OP2 S3 = book cab

S3 — OP3 S4 = book hotel

S4 — OP4 S5 = weather services (op1/0p2)/((op3/op4)*op5)

S5 — OP5 OP1 = get_credentials

S6 — OP6 OP2 = get_cust details

OP3 = get_flightdetails
OP4 = get_returndate
OP5 = get_temperature

service. This alternate service is selected from the list of reference services. The service

that is found to satisfy the given constraint is chosen based on the information provided

from the ontology for the given constraint.

For our travel scenario, if the analyst decides to replace the existing hotel service say

Oberoi with Taj due some QoS constraints, then according to the PDA the actual service

will be the Oberoi and the reference service will be the other hotel services. The services
that are found to satisfy the given QoS (say availability 99.9 %) will be decided from the
information stored in the ontology. The PDA schema for this case will be:

< Ob, avail (99 %), Ta >— < O, avail (99 %), [Ta, Ro, Ac, Ch, Ob, Me]| > 4)

< Ob, avail (99 %), Ta >— < O, avail (99 %), [Ta, Ro, Ac] >

< Ob, avail (99 %), Ta >— < O, avail (99 %), [Ta] >

(&)

(6)

In the above schema, the input state is the Ob [Oberoi service], the constraint factor

is the condition, i.e. the replacing service should provide its service always, the output

service is the required alternate service that has to be replaced.

Page 10 of 26

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 11 of 26

Initially, the stack consists of all the available hotel services from the reference set,
next time when the push down automata reads the constraint, it refers the ontology
and fetches only those services that satisfy the given required constraint, this set is then
checked to determine if the output service requested by the analyst is present, if it is pre-
sent then it actual service is replaced by the existing service.

Workflow parser for the scenario

This section discusses in detail about the rules that have to be followed for constructing
a dynamic precedence table followed by the operator precedence parsing algorithm that
is being used for determining the flow in which the request has to be performed.

Rules to construct the precedence table
First, the terminals and non-terminals of the extracted grammar as well as the change
request expression are identified.

Non-terminals are the services considered while the terminals are the operations that
form a service of the grammar. The composition operators specify the way in which the
services have to be performed. Some of the composition operators are listed below in
Table 3.

After the terminals and non-terminals are identified, the precedence table is con-
structed. Consider the symbols of the LCS grammar as o, {3, the following are the rules to
construct the precedence table:

1. If the symbols encountered are non-terminals, then the relationship between the
symbols o and P is determined with the help of ontology and the non-terminal which
is independent is given higher precedence. Eg: if § has higher precedence then the
rule is written as B > a.

2. If the considered non-terminals («, B) are dependent on another set of non-terminals
say (v,0) then both the pairs of non-terminals are given equal precedence (a = f).

3. If the encountered symbols («,) are both terminals, then their corresponding non-
terminal (based on the context) is determined. Then the rule 1 is applied.

4. If a is a non-terminal and P is a terminal then, corresponding non-terminal of B is
determined and then rule 1 is applied. If the non-terminal of p is found to be a, then
a is given the higher precedence.

5. If « and B are both composition operators then, the context is retrieved from the
ontology based on is follows relationship.

6. If a is a composition operator and P is a non-terminal, then a check is made to deter-
mine if § is dependent on any of the other terminals (or) not. If B is independent,

Table 3 Composition operators and their purpose

Operator Purpose
/ Sequential execution
* Parallel execution

I Concurrent execution
<> Conditional execution

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 12 of 26

then it is given the higher precedence else the composition operator is given a higher
precedence.

7. If a is a composition operator and { is a terminal, then the non-terminal related to
and based on the context, is determined, say y. A check is made to determine if y is
dependent on any of the other terminals (or) not. If y is independent, then it is given
the higher precedence else the composition operator is given a higher precedence.

Algorithm for composition based operator precedence parsing

After the construction of a dynamic precedence table (M), we then make use of opera-
tor precedence parsing to determine the flow in which the requested change has to be
performed (Fig. 3).

The change request in the form of an expression is provided as an input to the parser
by the analyst. Based on the dynamic operator precedence table, the precedence of the
operators involved in the change expression are verified. If the first symbol is found to
have an higher precedence, then it is pushed on the stack, otherwise a reduce operation
is performed with the help of the productions in the LCS grammar. Figure 4 depicts the
algorithm in the flow chart representation.

Precedence table formulation for travel scenario

The precedence table (Table 4) for the above grammar is formulated dynamically with
the help of the rules provided in the above section. From the Table 4, initially the encoun-
tered symbols i.e. are both non-terminals and are also same, therefore no composition is
possible. Next, the encountered symbols are again non-terminals, as a result Rule 1 is
applied and we find that S1 holds higher preference when compared to S2. When sym-
bols S1 (a) and OP1 () are encountered, based on rule 4 we find the corresponding non-
terminal of OP1 which is S1, then from rule 1 we determine that S1 has precedence,
therefore its corresponding terminal OP1 will get higher preference when compared to
S2. For cases where both are composition operators (/,*), from rule 6, the relationship “is

Algorithm Composition based Operator Precedence Parsing (ce, M)
Input: A change expression (ce) and a precedence table (M).

Output: order for executing ce.

Begin

set input (i) to point to the first symbol of ce$

if $ is present as the stack top and the symbol pointed by i is also $

Return

else begin

let o be the symbol present on the stack top and B be the symbol pointed by i
if oo <. B or oo = Bthen

push B onto the stack and advance i to the next symbol in ce

end if

else if o.> 3 then

perform reduce operation by replacing the symbol on the stack with its corresponding terminal production
Repeat

pop the stack

until

there are no more elements in the stack

End

Fig. 3 Algorithm for composition based operator precedence parsing

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 13 of 26

A change expression
(ce) and a precedencg
v

set input (i) to point to
the first symbol of ce$

Is $ present as
the stack top

and the symbol
ointed by i is,

let o be the symbol present on the stack
top and B be the symbol pointed by i

N
o<.por °
Yes o=
Yo

Yes e l
push B onto the stack and advance perform reduce operation by replacing
i to the next symbol in ce the symbol on the stack with its

A 4 \4 A 4

\ A

order for executing

End

Fig. 4 Algorithm for composition based operator precedence parsing

Table 4 Precedence table for the change request in the travel scenario

Services Services Operators Compo-
sition
opera-
tors

S1 S2 S3 sS4 S5 OP1 OP2 OP3 OP4 OP5 / *

ST - > > > > > > > > >
S2 <. - > < > > > > > >
S3 <. <. - = <. <. > = > > >
S4 <. <. < - > > <. = > > > >
S5 <. <. = - <. <. < <. > > >
/ <. > > > <. > > > > = >
* <. <. <. < <. <. < <. > <. =

follows” from the ontology is retrieved which states that sequential operator (/) must be
given the higher priority. Similarly, by applying the appropriate rules discussed in previ-
ous section, precedence for the encountered grammar symbols is determined.

Composition based operator precedence parsing for travel scenario

After the precedence table has been formulated, parsing is performed which will be done
by the composition precedence evaluator component of our framework by following the
algorithm in Fig. 5. The parsing for the change request of our scenario is indicated in
Table 5.

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 14 of 26

Initially a $ symbol is added in the stack and at the end of the input i.e. the change
expression. The algorithm in Fig. 5 is applied where first the $ and the first symbol of
the change expression (opl) is compared, as a result opl is given a higher preference.
Based on the obtained results, a service composition tree as shown in Fig. 6 is com-
posed whose leaves consist of services and the nodes consist of the service composition
operator.

Therefore it is move to the stack, according to the algorithm in Fig. 5 if the element on
the stack top is a non-terminal it is reduced to its corresponding terminal S1, now the
top element on the stack which is $ and the next input composition operator are com-
pared, thus op2 is given the higher importance and pushed to the stack which is followed

by the reduce operation to S2.

Similarly, we parse all the symbols of the input till the $ symbol is reached. Finally, all

the stack elements are popped from the stack, to obtain the order in which the services

have to be executed.

Fig. 5 Service composition tree for travel scenario

Table 5 Composition based operator precedence parsing

Stack Precedence Input

S <. opl.0p2.0p3.0p4*op6S
Sop1 > op2.0p3.0p4*op6S
$S1 <. op2.0p3.0p4*op6S
$S1 > op2.0p3.0p4*op6$
$S1.0p2 <. op3.op4*op6s
$51.52 <. op3.0p4*op6S
$51.52. > op3.0p4*op6s
$51.52.0p3 > op4*op6S
$51.52.53 <. op4*op6s$
$51.52.53.0p4 > *op6S

$51.52.53.54 <. *op6S
$51.52.53.54* > op6$
$51.52.53.54%0p6 > $

§51.52.53.54*S6 > $

Final composition expression $51.52.53.54*S65

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 15 of 26

LCS Size Vs Change Reaction Time(CT-Addition)
25

24

23

22 P e e A g

21 e

20

Change Reaction Time(ms)

LCS Size

- -# - - Exisitng Frameworks =~ —#— SCMF

Fig. 6 LCS size vs change reaction time for addition operation for existing frameworks and SCMF

Metrics

Our Change Management Framework is developed with help of software development
environments like Netbeans and a tool called Protégé. Protégé is an ontology tool which
has a graphical interface helping us to create ontology. Once the ontology has been cre-
ated, a corresponding owl file for the created ontology will be generated, which is used
for inferring information from the ontology. Similarly, Netbeans is an IDE that provides
an environment to develop and deploy the services required for our LCS. The informa-
tion from the ontology can be inferred with the Jena API, which is a Java library that can
be added in the Netbeans environment to perform the information retrieval from the
ontology.

The proposed change management framework is designed in such a way that it pro-
vides higher accuracy, level of knowledge gained, high precision and degree of automa-
tion. The change management framework also has reduced risk and change reaction
time. Accuracy of our framework is a measure of the extent to which the decisions made
by the framework have been made successfully and cautiously. Level of knowledge is the
number of nodes traversed by the system in the ontology to obtain the necessary infor-

mation for implementing the requested change.

L) o

Accuracy = TC

i=1

where SC; = Number of successful changes, TC;, = Total number of change requests
arrived, O’ = Number of entities that are referred from ontology to satisfy the change,
O = Total number of entities present in the ontology.

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 16 of 26

n
Level of Knowledge gained = Z 2x L)} —1 (8)
SCiz1

where L, = Number of leaf nodes visited, Sc; = Number of successful changes.

Degree of automation is the extent to which the framework is capable of making the
decisions regarding the requested change without the manual interruption. This is cal-
culated with the help of the PDA and the ontology, i.e. the number of scenarios that
use ontology among the total number of scenarios for performing the requested change
will be used to determine the degree of automation. The correctness of the system is the
measure of the extent to which the change is performed exactly as per the analyst needs.
This is measured with the number of valid and invalid nodes in the PDA.

Degree of Automation = Z { |:SC N <g>} } 9)

i=1

where SC = Number of successful changes, O’ = Number of entities that are referred
from ontology to satisfy the change, O = Total number of entities present in the

ontology.

Correctness = [Z {—-(bp +ir+nr)+df +¢f + con} x 100 (10)

i=1

where, = = Negation, bp = Break point, Ir = Invalid reference, Nr = Null reference,
Df = Data flow, Con = Constraint.

Precision and recall is calculated with the help of the ontological information. Preci-
sion is the number of ontological functions that have been returned by the system to
implement the requested change from the total number of ontological functions present
in the ontology. Recall is the number of ontological functions that are found to be rel-
evant for implementing the change but has not been returned by the system. Although,
all the information stored in the ontology is targeted to provide clear information about
the services, sometimes there are chances that some information may lead the analyst to
ambiguity.

g)

Precision = =—— 11
S&x) (an
where, f(x) = Total number of functions that were returned (both relevant and irrele-
vant), g(x) = Number of relevant functions from f(x).

gx)

Recall = e + /)

(12)
where f(x) = Total number of functions that were returned (both relevant and irrele-
vant), g(x) = Number of relevant functions from f(x), g'(x) = Number of relevant func-

tions but not returned by the system.

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 17 of 26

The risk involved in implementing the requested change for our system is calculated
by the ontology and the parser, i.e. the number of ontological functions returned by the
system that may be lead to ambiguity in incorporating the requested change when con-
sidered. The Table 4 discusses the metrics and their corresponding formulae.

Risk => 1— {sc,- N (g)} (13)

i=1

where SC; = Number of successful changes, O’ = Number of entities that are referred
from ontology to satisfy the change, O = Total number of entities present in the
ontology.

We also calculate the time taken for processing the entire change request with the help
of ontology and the parser. The formula for the change reaction time is given below,

n
Change Reaction Time = Z QP + OF (14)
i=1

where QP = Time taken for query processing, OF = Time taken to refer the ontology.

Experimental results
The analytical results of the change reaction time with respect to LCS size and change
size are depicted with the following graphs. LCS size is the number of member services
that are involved in the composition. For e.g.: in our travel scenario the LCS size is three
(air, cab, hotel or weather services). The comparison of the LCS size and change reaction
time for the change type addition and deletion is shown in Figs. 7 and 8.

From these graphs it is evident that the time taken to implement a change request at
the service level is found to lesser in our framework for both the cases (CT-Addition and
CT-Deletion) than the existing framework. The change reaction time is also compared

against the change size; change size is the number of member services in which changes

LCS Size Vs Change Reaction Time (CT-Deletion)

10
Zz 9
g :
2 : Pk >
E 4 *
=
: 4./I///.
g0 =
b
g 5
)
= 4
=
o 3
2 ' | | |
2 3) :
LCS Size

---&--- Existing Frameworks =~ —#— SCMF
Fig. 7 LCS size vs change reaction time for deletion operation for existing frameworks and SCMF

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 18 of 26

a Change Size Vs Change Reaction b Change Size Vs Change Reaction
Time(Add Separately) Time (Add Together)
140
Z 120 60
g 100 - " - 50 ——
= 80 —==% -=® e 2 -
& [— 40 —o=
T 60 —a——8— e S I —
£ 40 g 30 -7 —
§ 20 20 A_l;“"d./
% 0 10
& 1 2 3 4 5
g Change Size 0
s g 1 2 3 4 5
- -& - Exisiting Frameworks =~ —#— SCMF - -& - Exisiting Frameworks —#— SCMF
Fig. 8 Change size vs change reaction time for adding a Services separately and b Services together

have to be made to obtain the requested change. The changes can be separate or as a
group mode.

In group, the changes are performed together, whereas in group mode the changes are
made one after another separately. These are represented graphically in Figs. 9 and 10
respectively.

The correctness of our semantic change management framework is calibrated with the
help of the PDA for both successful and failure cases and is indicated in Table 6.

Table 6 consists of the number nodes in the PDA, number of valid nodes among
them and number of invalid nodes among them. The lesser the number of invalid nodes
greater are the chances for having a successful change request. The Accuracy of the sys-
tem is depicted in Fig. 10, where the accuracy is compared with the LCS size, the num-
ber of change requests.

The degree of automation for our framework is elaborated in Table 7. Scenario in the
figure refers to each activity that contributes to a change management event. For e.g.: if
the analyst wants to replace an existing service in a LCS by another service, then first the
analyst has to get the related services from ontology, choose one among the extracted
service, verify them logically and along with the change operators with the PDA and
workflow parser, and then finally commit the change if the results of the semantic

))) b Change Size Vs Change Reaction
Change Size Vs Change Reaction Time Time (Delete Together)
(Delete Separately)
20
50 2 18
=z 45 ~® g 16
g 40 = T 14
T 35 = § 12
E 230 - =10
=) %(5) — g g _-o--[--e--_o
£ 15 1w i ¢ +_—'\>l\‘;‘
o] 10 +—g=—=—11
g 1 ® 2 2
& 0 g 0
Eo 1 2 3 4 5 g 1 2 3 4 5
] Change Size ® Change Size
)
- -# - - Exisisting Frameworks =~ —#— SCMF - -# - - Exisiting Frameworks —#— SCMF
Fig. 9 Change size vs change reaction time for deletion of a Services separately and b Services together

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 19 of 26

a Accuracy b Accuracy
99 A—
99 &
o8 1 [] 98 {—4d S ——p
~ 97 L e T~
S S 96 .
< 96 = \\
295 g9 *
£ o4 5 %4
S 93 »> g 93
<9 <9
91 91
90 90
25 50 75 100 2 3 4 5
No of Change Request LCS Size
—&— Exisiting Frameworks ~—#&— SCMF —&— Exisisting Frameworks ~—#&— SCMF
Fig. 10 Comparison of accuracy with a Number of change requests and b LCS size between existing frame-
works and SCMF

Table 6 Correctness of the semantic framework for successful and failure cases

C-ID C-Type (CT) Constraint Status (ST) No. No.of valid No.ofinva- Reaching
(con) of nodes nodes lid nodes final state

1 New Qos Success (S) 5 5 0 1

2 New Qos Success (F) 7 5 0 1

3 New Functionality ~ Failure 5 3 2 0

4 New Functionality = Success 7 7 0 1

5 New Functionality ~ Success 5 5 0 1

6 New Qos Failure 5 4 1 0

7 New Functionality Failure 5 3 2 0

8 Change exist- Rule Success 7 7 0 1
ing

9 Change exist- Rule Success 5 5 0 1
ing

10 Change exist- Rule Failure 5 3 2 0
ing

1 Change exist- Rule Failure 3 3 0 1
ing

12 Change exist- Policy Failure 4 3 2 0
ing

13 Change exist- Policy Success 7 7 0 1
ing

14 Change exist- Policy Success 5 5 0 1
ing

15 Change exist- Policy Success 3 3 0 1
ing

16 Change exist- Policy Success 4 4 0 1
ing

17 Removal Policy Success 4 4 0 1

18 Removal Policy Failure 7 5 2 0

19 Removal Rule Success 5 5 0 1

20 Removal Rule Failure 7 6 1 0

21 Removal Policy Failure 5 3 2 0

22 Removal Policy Success 5 5 0 1

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 20 of 26

Table 7 Degree of automation for the semantic framework for successful and failure cases

C-ID C-Type(CT) Constraint Status (ST) No. of No. of No. of Reaching
(con) scenarios scenarios ontological final state
using entities

ontology triggered

1 New Qos Success (S) 8 6 5 1

2 New Qos Success (F) 7 5 5 1

3 New Functionality Failure 8 6 4 0

4 New Functionality =~ Success 8 6 6 1

5 New Functionality = Success 8 6 5 1

6 New Qos Failure 8 6 2 0

7 New Functionality Failure 8 6 1 0

8 Change exist- Rule Success 6 4 3 1
ing

9 Change exist- Rule Success 6 4 2 1
ing

10 Change exist- Rule Failure 6 4 1 0
ing

11 Change exist- Rule Failure 6 3 3 1
ing

12 Change exist- Policy Failure 6 3 2 0
ing

13 Change exist- Policy Success 6 5 4 1
ing

14 Change exist- Policy Success 6 5 3 1
ing

15 Change exist- Policy Success 6 4 4 1
ing

16 Change exist- Policy Success 6 5 4 1
ing

17 Removal Policy Success 4 3 3 1

18 Removal Policy Failure 4 3 1 0

19 Removal Rule Success 4 3 2 1

20 Removal Rule Failure 4 3 1 0

21 Removal Policy Failure 4 3 1 1

22 Removal Policy Success 4 3 3 1

analyser are positive. In this, each step is called as scenarios as each of them play a sig-
nificant role in the process of implementing the incoming change requests. Since our
framework is semantically driven, the number of scenarios that extract information from
the ontology should be high and should be retrieved automatically by the framework
without analyst’s interruption.

All the ontological entities triggered by the system may not be useful for implementing
the requested change. Therefore, the Level of Knowledge gained is the number of enti-
ties that were used for achieving the requested change is depicted in Table 8. For e.g. The
C-ID 1 may have a total of five ontological entities triggered, but it is not necessary that
all the five will provide the required information. Thus, the number of entities that pro-
vided the useful information is called the level of ontology.

Precision and recall for the successful and failure cases is shown by the graphs depicted
in Fig. 11. From the graphs, it can be concluded that the precision for the existing frame-
work is lower when compared to the precision of the semantic framework, this implies

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13

Table 8 Level of knowledge gained by the semantic framework for successful and failure

cases
C-ID C-Type Constraint Status No. of No. of No. of No. of Reaching
(CT) (con) (ST) scenarios scenarios ontological required final state
using entities ontological
ontology triggered entities
1 New Qos Success (S) 8 6 5 5 1
2 New Qos Success (F) 7 5 5 5 1
3 New Functional- Failure 8 6 4 1 0
ity
4 New Functional- Success 8 6 6 5 1
ity
5 New Functional- Success 8 6 5 5 1
ity
6 New Qos Failure 8 6 2 1
New Functional- Failure 8 6 1 1
ity
8 Change Rule Success 6 4 3 3 1
existing
9 Change Rule Success 6 4 2 2 1
existing
10 Change Rule Failure 6 4 1 1 0
existing
11 Change Rule Failure 6 3 3 3 1
existing
12 Change Policy Failure 6 3 2 1 0
existing
13 Change Policy Success 6 5 4 4 1
existing
14 Change Policy Success 6 5 3 3 1
existing
15 Change Policy Success 6 4 4 4 1
existing
16 Change Policy Success 6 5 4 4 1
existing
17 Removal Policy Success 4 3 3 3 1
18 Removal Policy Failure 4 3 1 0 0
19 Removal Rule Success 4 3 2 2 1
20 Removal Rule Failure 4 3 1 1 0
21 Removal Policy Failure 4 3 1 0 1
22 Removal Policy Success 4 3 3 3 1

that the number of ontological functions found useful for a change was higher than the
human computed functions (Figs. 12, 13).

The difference between the proposed framework and existing frameworks

In the existing work Fig. 14, initially the change request is implemented at the schema
level and then at the instance level. Schema level verification is performed on a schema
graph [20] which consists of abstract services as nodes and relationship between each
of these services as edges. Since the schema level consists only of abstract services, any
errors or misleading activities which will lead to incompleteness of the schema graph
can be identified. To perform the changes, the existing system uses two supporting com-
ponents called, ontology providers and web service providers. The ontology provider is

Page 21 of 26

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13

a Precision

0.7
0.6 -

0.4 -

Precision

0.3

0.1 -

2 3 4
LCS Size

M Exisiting Frameworks @ SCMF

b Recall
0.35 -

0.25 -+

0.2 4

0.1 +

0.05 -~

2 3 4 5
LCS Size

M Exisisting Frmaeworks @SCMF

Fig. 11 Comparison of precision (a) and recall (b) between existing frameworks and SCMF

12 4

Risk(%)

o N = a 0o
1

Risk

LCS Size

M Existing Frameworks ® SCMF

Fig. 12 Comparison of risk between existing frameworks and SCMF

100

90

80

70

60

metric (%) 50
40

M Existing Frameworks

30
20

E SCMF

10

Correctness

Degree of
Automation

Level of Risk
Knowledge
gained

Change metrics
Fig. 13 Overall comparison of the metrics between existing frameworks and SCMF

Page 22 of 26

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 23 of 26

[Class]

Level of ontology _—-
_Subclass

representation
_’IRelationshipI

g Graph Schema Graph

omain
Ontology

Input

| EXISTING SYSTEM |

Purpose -
onty 1 fPupes

retrieval

Fig. 14 System block diagram for existing frameworks

a component that provides and maintains the set of ontologies for each of the web ser-
vices. The web service provider is a component that provides services (business func-
tionalities), from these providers certain numbers of services are selected to form an
LCS instance so that they can in composition provide solutions to various web based
applications.

In our proposed work Fig. 15, we aim to develop a Framework, which gives importance
to create an enriched ontology. The ontology that been created will be able to represent
the services in terms of class, subclass, instances, relationship and also the functional-
ity of the services. The ontology is used to store information about the functionality of
the services, the rules used in the services and relationship between the individual and
among services. The functionality of the services represent the services at functional and
object level. The API apart from extracting the ontological information is also capable
of inferring new knowledge with the help of the axioms and rules in the ontology. In
the existing framework, the ontology is used only for retrieving domain knowledge [21],
therefore only the class and sub-class features of the ontology have been used, whereas
in our proposed framework, we use class, sub-class, relationship, object property, data
property and instances features of the ontology have been used to represent the func-
tional and non-functional aspect of our framework. To perform automatic verification

Query
Expression
1

e B o]
m m ut Level of

Level of

| Policg i*‘ Ontology ontology .| Data
| Relationship I' f Property

PROPOSED Object

SYSTEM Property
Inferring new l

knowledge .
[~ Purpose Techniques GLphl_’ Graph

of API -

| Retrieval I“
I Parsing | |Reasoning|

Fig. 15 System block diagram for proposed frameworks

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 24 of 26

and validation of the changes before its implementation at the service level, the semantic
framework uses the PDA graph and the parsers to obtain the necessary information.

Discussion
This section deals with the conclusion and the future enhancements that can be added to
make the process of change management more flexible to the analyst.

In this paper we concentrated on providing a change management framework that
would make use of an enriched ontology set and semantic reasoner for implementing
the changes by the analyst itself. The semantic reasoner component parses the change
request from the analysts and determines the possibility for making the change. The
framework represents the implemented changes in the form of a S-BPEL notation
(Semantic BPEL) which is then converted to their corresponding BPEL notations by a
BPEL constructor so that they can be deployed in the run time environment for compos-
ing the services.

Thus one prime future goal can be to extend the framework so that it can handle mul-
tiple change requests at a time. In our framework, implementing the requested changes
in the service level is done by the analyst directly on the schema; instead the framework
can be enhanced in such a way that it provides a GUI interface for making the changes at
the schema level so that the burden at the analyst side will be reduced further.

Conclusions

The Semantic Reasoner based change management framework contributes the following
points and thus manages the evolving changes in the LCS. The research has the follow-
ing salient features:

+ DPresents a parsing methodology to determine the possibility of implementing the
requested change before it is being implemented at the service level with the help of
the workflow parsing mechanism.

+ Maintains the state information of the services involved in change enactment by the
PDA methodology. This methodology is also responsible for automatic validation of
the requested change.

+ DPresents a framework where the functionality of the services is also included in the
ontology so that the more information about the services is provided to the analyst
during the change enactment.

+ The framework not only makes it possible for the analyst to perform the requested
change, but also facilitates the analyst to compose services from the scratch without
any ambiguity with the help of the information provided in the ontology, PDA and
parser.

+ Presents an environment for the analysts to implement the changes so that the cost
and time spent on the IT professionals for making the changes is reduced.

In the proposed framework, semantic information about the services like relationship
among the services, operations and rules present in a service etc. has been incorporated
with the help of ontology so that it can be used by the analyst during the change man-
agement process. Correct workflow among the services during composition is verified

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13 Page 25 of 26

by using composition based operator precedence parser. Initially, the parser will gener-
ate a precedence table dynamically and then this table is used to ensure that the correct
workflow is maintained among the services when the change is applied. Therefore, the
main goal of our work is to (i) to ensure correct flow is maintained during the composi-
tion of services during the change management process. (ii) to reduce the burden at the
analyst side by creating a framework that is semantically driven by an enriched ontol-
ogy so that the changes are performed by the analyst itself without depending on the IT
developers. Due to the enriched ontology, the number of bugs that may arise during the
implementation of the change can be greatly reduced; it also brings clarity in the work-
flow and subsequently brings process clarity.

In the semantic framework, as the size of the LCS increases, the accuracy of the
semantic framework is found to be increased. Similarly, the correctness of the system in
terms of extracting the most relevant information for incorporating the changes is also
found to be high. In the proposed work, the retrieval of the required information is done
automatically by the system thereby the degree of automation is also increased subse-
quently. The number of ontological functions (Precision) for implementing the changes
is more than the number of relevant functions left by the system (Recall).

Future enhancement

Change management is a wide area of research that requires more novel techniques and
approaches to meet the arising business needs. Although, the proposed change manage-
ment framework is capable of deciding the feasibility of the incoming request before-
hand with the help of PDA and parser, the framework can handle only one request at
a time. Thus one prime future goal can be to extend the framework so that it can han-
dle multiple change requests at a time. In our framework, implementing the requested
changes in the service level is done by the analyst directly on the schema; instead the
framework can be enhanced in such a way that it provides a GUI interface for making
the changes at the schema level so that the burden at the analyst side will be reduced fur-
ther. Further our framework is designed focusing on the analyst; it can also be extended
to include the involvement of the end users.

Authors’ contributions
MT is the brain of this manuscript who has provided the idea for this work. BG was responsible for drafting this manu-
script technically. Both authors read and approved the final manuscript.

Acknowledgements

I would express my heart filled gratitude to my family for their constant support to finish this paper, | would be failing in
my duty if | don't acknowledge my uncle who provided me with reference papers that made the literature extract of my
paper.

Competing interests
The authors declare that they have no competing interests.

Received: 27 July 2015 Accepted: 27 May 2016
Published online: 10 August 2016

References

1. Liu X, Bouguettaya A, Wu J, Zhou L (2010) Ev-LCS: a system for the evolution of long-term composed services. IEEE
Transact Serv Comput 5(2):102-115

2. Liu X, Bouguettaya A (2007) Managing top-down changes in service-oriented enterprises. InICWS 1072-1079

Thirumaran and Brendha Hum. Cent. Comput. Inf. Sci. (2016) 6:13

20.

21.

Kanimozhi M (2014) Enhancing change management in long term composed services. Int J Innov Res Sci Eng
Technol 3(3):10698-10704

Mastroianni C, Papuzzo G (2014) A self-organizing P2P framework for collective service discovery. J Netw Comput
Appl 39:214-222

Han SN, Lee GM, Crespi N (2013) Semantic context-aware service composition for building automation system. I[EEE
Transact Ind Inf 5(2):752-761

Apostolou D, Mentzas G, Stojanovic L, Thoenssen B, Lobo TP (2010) A collaborative decision framework for manag-
ing changes in e-Government services. J Gov Inf Q 28(1):101-116

Paliwal AV, Shafig B, Vaidya J, Xiong H, Adam N (2012) Semantics-based automated service discovery. IEEE Transact
Serv Comput 5(2):260-275

Meditskos G, Bassiliades N (2010) Structural and role-oriented web service discovery with taxonomies in OWL-S.
IEEE Transact Serv Comput 5(2):278-290

Albukhitan' S, Alnazer A, Helmy T (2016) Semanitc annotation of arabic web resources using semanitc web services.
Porc Comput Sci 83:504-511

Hatzi O, Vrakas D, Nikolaidou M, Bassiliades N, Anagnostopoulos D, Vlahavas | (2012) An integrated approach to
automated semantic web service composition through planning. IEEE Transact Serv Comput 5(3):319-332

Liu X, Akram S, Bouguettaya A (2011) Semantic support for change management. In: Liu X, Akram S, Bouguettaya A
(eds) Change management for semantic web services, 1st edn. Springer, New York, pp 19-30

Cheng J, Liu C, Zhou M, Zeng Q, Yla-Jaaski A (2014) Automatic composition of semantic web services based on
fuzzy predicate petri nets. IEEE Transact Automation Sci Eng 12(2):680-689

Akram MS, Medjahed B, Bouguettaya A (2003) Supporting dynamic changes to in web service environments.
Springer, Berlin, pp 319-334. ISBN 978-3-540-20681-1

Aissi S, Gouider MS, Sboui T, Said LB (2015) A spatial data warehouse recommendation approach: conceptual frame-
work and experimental evaluation. Hum Cent Comput Inf Sci 5(1):1-8

Farrag TA, Saleh Al, Ali HA (2013) Semantic web services matchmaking: semantic distance-based approach. J Com-
put Electr Eng 39(2):497-511

Rafiei M, Kardan AA (2015) A novel method for expert finding in online communities based on concept map and
PageRank. Hum Cent Comput Inf Sci 5(1):1-18

Lin SY, Lai CH, Wu CH, Lo CC (2014) A trustworthy QoS based collaborative filtering approach for web service discov-
ery. J Syst Softw 93:217-228

Dasgupta S, Aroor A, Shen F, Lee Y (2014) SMARTSPACE: multiagent based distributed, platform for semantic service
discovery. IEEE Transact Syst Man Cybern Syst 44(7):805-821

Parejo JA, Segura S, Fernandez P, Ruiz-Cortés A (2014) QoS-aware web services composition using GRASP with path
relinking. J Expert Syst Appl 41(9):4211-4223

Akram S, Bouguettaya A, Liu X, Haller A, Rosenberg F (2010) A change management framework for service oriented
enterprises. Int J Next Gener Comput 1(1):1

Ding LY, Zhong BT, Wu S, Luo HB (2016) Construction risk knowledge management in BIM using ontology and
semanitc web technology. Saf Sci 87:202-213

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

Page 26 of 26

	Incremental stages of a semantic framework for automating the changes on long term composed services
	Abstract
	Background
	Problem
	Motivation
	Solution
	Scenario for explaining the framework

	Related work
	Semantic web service change management framework
	Tentatives
	Request analyser
	LCS grammar
	Enriched ontology set
	Semantic analyser
	Semantic reasoner
	Semantic description engine
	Change impact analyser
	Semantic schema generator

	BPEL constructor

	Experiment methodology
	Push down automata
	Workflow parser for the scenario
	Rules to construct the precedence table
	Algorithm for composition based operator precedence parsing
	Precedence table formulation for travel scenario
	Composition based operator precedence parsing for travel scenario

	Metrics
	Experimental results
	The difference between the proposed framework and existing frameworks

	Discussion
	Conclusions
	Future enhancement

	Authors’ contributions
	References

