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Abstract—Wi-Fi based localization has proven to be a com-
pelling alternative to GPS for mobile devices. But Wi-Fi scanning
consumes a large amount of energy on smartphones because
they perform full scans, i.e. all the channels in their band(s)
are visited. This inefficient behavior greatly reduces battery life,
raising the threshold for user acceptance. We propose a novel,
incremental approach that reduces the energy consumption of
Wi-Fi localization by scanning just a few selected channels. We
evaluate our incremental scanning approach on eight Android
devices using traces from five test subjects. Our results show
that, compared to full scans, incremental scanning can reduce the
energy consumption between 20.64% and 57.79%. The modern
smartphones included in our study all show an energy reduction
of at least 40%.

I. INTRODUCTION
Our work aims at reducing the energy consumption of Wi-

Fi scanning, a popular localization alternative to GPS in urban
areas. In Wi-Fi scanning, a list of access points and their corre-
sponding signal strengths serves as a fingerprint that uniquely
identifies the user’s location. Commercial services exist that
translate the scan results into geographical coordinates, such
as Google’s geolocation service [1], and Skyhook [2]. The
accuracy of the final positions approaches that of GPS in
urban environments, and Wi-Fi scanning has the advantage
that it also works indoors. The problem with current Wi-Fi
scanning algorithms is that they are designed to discover all
nearby access points (APs), and as a consequence employ
an exhaustive search of all available channels. Until recently,
smartphones have had 11-13 channels in the 2.4 GHz spectrum
available to them, but with the introduction of 802.11 a/b/g/n
chipsets that add support for the 5 GHz band the total has
increased to 32, significantly raising the energy cost of AP
discovery. In the context of localization, the requirement that a
scan must find all nearby APs can be relaxed to finding enough
APs for a good location estimate. Discovering this sufficient
subset usually does not require all channels to be included in
the scan. The task of an energy-efficient Wi-Fi localization
scanning algorithm therefore is to discover ‘enough’ access
points while minimizing the number of channels scanned.

In this work we propose incremental scanning, a novel
scanning technique that reduces the energy consumption of Wi-
Fi localization by scanning the available channels one-by-one
and terminating early once a sufficient subset of APs has been
discovered. We identify three mechanisms that help achieve
this goal. First, we show that there is a certain number of
access points beyond which adding more does not significantly
improve localization accuracy, which means that a scan may be
terminated early as soon as this critical mass has been reached.
Second, from our experiments we found that approximately

three-fourths of all access points reside on just three channels,
and that scanning the channels in order of popularity greatly
speeds up the discovery process. Third, mobility studies have
shown that users stay in the same location 89 % of the time [3].
We found that scanning a small number of channels (i.e. one or
two) is enough to determine that the user has not moved since
the previous scan. The results of our user-study in Section IV
show that the three mechanisms underlying the incremental
scanning policy only trade off a bit of accuracy for a serious
reduction in energy consumption.

II. SCANNING COST
When Wi-Fi scanning is used as a localization primitive an

exhaustive scan is often wasteful as a subset of the available
channel spectrum yields sufficient information. In this section
we show the inefficiency of full Wi-Fi scanning and investigate
the potential for energy savings due to incremental scanning.

Our analysis includes eight Android smartphones intro-
duced between 2008 and 2012. Table I lists the devices
included in our study. The devices span five years, four
vendors, five different Wi-Fi chipsets, and seven SoCs (System
on Chip). Note that this list includes the HTC Dream, which
has been used extensively in earlier work, and is known under
multiple monikers, including the ‘Android Dev Phone’ (ADP)
and G1.

A. Implementing Incremental Scanning
Since Android’s Java API does not provide a means to

selectively scan a subset of the available Wi-Fi channels, our
first challenge was to implement selective scanning on the
eight Android devices we work with. This is a non-trivial task
given the variety of OS versions, Wi-Fi chipsets, and CPU
architectures in our device pool. Changing the API directly
would essentially result in a fork of the platform, requiring
custom OS builds for each of the eight target devices, and
breaking compatibility. Moreover, this would be much harder
to reproduce. Instead, we have opted for a workaround that
modifies only a single binary that can be built for each of the
target devices with relative ease.

Current architecture. Figure 1 shows the components in-
volved with Wi-Fi scanning. The wpa supplicant is a standard
Linux process responsible for discovery of, and authentication
with access points. Android applications interact with the
supplicant through the WifiManager class in the Android
API, which in turn communicates with the supplicant over a
socket. The supplicant contains a common core and one or
more drivers that implement various protocols for talking to
kernel drivers such as wext (wireless extensions), its modern
replacement nl80211, or in the case of the HTC Dream



Fig. 1. The Android Wi-Fi stack. The Android application (top) interacts
with the supplicant over a socket. The supplicant in turn talks to the Wi-Fi
chipset driver.

and Hero, a custom driver specifically designed for the Texas
Instruments WL1251 chipset (tiwlan).

The problem. An application starts a scan by calling the
WifiManager.startScan method. An event is fired upon
completion of the scan, at which time the application can
retrieve the scan result from the WifiManager class. Chipset
firmware, kernel drivers, supplicant drivers, and the supplicant
itself all have support for scanning a given list of channels
rather than the full spectrum. However, as the startScan
method itself takes no arguments, there is currently no way to
submit such as list from a Java application.

Our solution. Luckily, the WifiManager class does
expose internal state of the supplicant that can be exploited
for this purpose, which is the list of known access points. In
our workaround, the list of channels that need to be scanned
is encoded in a specially crafted SSID of a fictional access
point. For example, if the application needs to scan channels
1, 6, and 11, it will create an AP with the SSID ‘@16B‘. We
modified the supplicant so that when it receives a scan request,
it will first iterate over the list of known access points, decode a
channel list if one is found, and pass it down into the supplicant
driver. The HTC Dream and Hero require extra attention, since
they use an older version of the supplicant, where the driver
abstraction does not allow for a channel list to be passed from
the common code into the supplicant driver. These devices use
a custom supplicant driver, tiwlan, which we modified in a
similar fashion.

Our solution has the advantage of being contained in a
single Linux binary, wpa_supplicant, which can be built
for a given target architecture and Android version, and pushed
to a device once root access has been obtained. In the interest
of reproducibility, we have made our code and compiled
binaries available to the research community [4].

B. Energy Consumption
With our modified supplicant we were able to measure the

power consumption of partial scans on eight Android devices,
using a Monsoon Power Monitor [5]. We developed an app
that runs in the background and wakes up the phone once
every ten seconds, performs a given task, and then goes back
to sleep. In this way we measure the total cost of a given task,

TABLE I. OVERVIEW OF THE SMARTPHONES USED IN OUR ANALYSIS.

Device CPU Year 5 GHz
HTC Dream (G1, ADP) Qualcomm 528MHz MSM7201A 2008 N
HTC Hero (G2) 528MHz Qualcomm MSM7200A 2009 N
Sony Ericsson Xperia X8 600MHz Qualcomm MSM7227 2010 N
Samsung Galaxy S 1 GHz Samsung Exynos 3 2010 N
Samsung Galaxy Nexus 1.2 GHz TI OMAP 4460 2011 N
Samsung Galaxy S2 2x1.2 GHz Samsung Exynos 4 2011 Y
Samsung Galaxy S3 Mini 2x1.2 GHz ST-Ericsson U8420 2012 Y
HTC OneX+ 4+1x1.5 GHz NVidia Tegra 3 2012 Y

including the energy spent waking up from suspend, keeping
the processor awake, and going back to suspend. We measured
the consumption of four different operations: 1) performing
a normal (full) access point scan, 2) scanning only a single
channel, 3) sampling the accelerometer for five seconds, and 4)
waking up the device and going back to suspend immediately
without performing any task. During these experiments the
phones were in airplane mode with Wi-Fi enabled, and set to
the European Wi-Fi region.

Accelerometer sampling was measured as well because
much previous work has focused on detecting mobility to
avoid scanning when the user is passive [6]–[10]. In these
approaches, the accelerometer is sampled for some seconds
to detect user inactivity, in which case Wi-Fi scanning is
suppressed. SensLoc [8] proposes sampling for five seconds,
while EEMSS [7] samples for six. We conservatively chose the
most energy efficient configuration of the two, sampling for 5
seconds at the lowest sampling rate provided by each phone.
Finally, the cost of waking up the processor is studied because
suspend mode is the default state of a smartphone, and coming
out of- and going back to suspend introduces an overhead that
presents a lower bound on the cost of any kind of periodic
sensing task running in the background. Finally, we measured
the cost of scanning a single channel to obtain a lower bound
on the cost of incremental Wi-Fi scanning. The results are
shown in Figure 2. There are large variations among different
devices, both in terms of total cost of each of the operations,
but also in their composition. These substantial differences
in Wi-Fi scanning cost and CPU overhead illustrate that
evaluating energy saving strategies requires thorough analysis
across a range of devices. In the next subsections we analyze
in detail the impact of these energy consumption patterns. For
now it is important to note that on all platforms there is a
significant energy gap between a full- and a single-channel
scan, i.e. a large potential to benefit from incremental scans.

C. Active State
The localization problem is usually divided into two states:

passive, in which a user is not changing location, and active,
when the user is mobile. This is because in the passive state
the information gathered from the surrounding access points
does not change significantly, and much work has focused on
detecting user inactivity, e.g. using motion sensors, for the
purpose of saving energy by suppressing Wi-Fi scanning. First,
we focus on analyzing the impact of incremental scanning in
the active state.

The de-facto approach during the active state is to perform
periodic, full access point scans to obtain as much information
about the user location as possible. However, as we will show
in Section III-D, it is often possible to scan fewer channels
while still obtaining a good location fix. The difference be-
tween a full- and single channel scan is the maximum reduction
in energy that can be obtained in this way. Figure 2 shows
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Fig. 2. Median power consumption of scanning and accelerometer sampling on various smartphones. For the Galaxy S2 and S3Mini, and the HTC OneX+ we
also measured the cost of scanning the 2.4 GHz band only, which is shown as an annotation on the normal scanning cost.

that the potential savings vary from device to device, between
26.12 % on the X8, and 63.84 % on the GS3 Mini. From these
numbers we can identify two trends. First, CPU overhead has
increased significantly since the HTC Dream and HTC Hero
devices on which much of the related work was evaluated. This
can be seen by the increase in wake-up overhead, as well as
the increased cost of accelerometer sampling. Scanning fewer
channels reduces not only the cost of the Wi-Fi chip itself,
but also the time the CPU has to be awake while waiting
for the result. Second, newer devices such as the GS2, GS3
Mini, and HTC One X+ support the 802.11 a/b/g/n standard,
which includes the 5 GHz band1. These devices include many
more channels in a full scan, increasing its cost relative to a
single-channel scan. The three devices that support the 5 GHz
band, all present a potential energy savings of more than 50 %.
Figure 3 illustrates in more detail the difference between a full-
and single-channel scan on the dual-band GS2 phone. Note
the long duration of the full scan as it visits the 32 available
channels, as well as the large wake-up and suspend overhead,
which dominates the cost of a single scan.

D. Passive State
In the passive state, we found that first-generation devices

(HTC Dream and Hero) –on which the accelerometer sup-
pression work has been evaluated in the past– provides good
savings for accelerometer sampling over Wi-Fi scanning. This
is not necessarily true for newer devices. In particular, on the
X8 and Galaxy S the cost of these operations is actually higher
by 18.35 % and 21.13 % respectively, confirming the findings
in [11]. This is because modern processors often have a larger
energy overhead. This point is illustrated in Figure 4, which
compares five seconds of accelerometer sampling on the GS2
and HTC Hero, devices that represent the extreme ends of the
spectrum in our test. Note that the Exynos 4 chip in the GS2
requires a considerable amount of energy to come out of- and
go back to the suspend state. Moreover, while the HTC Hero
consumes hardly any energy idling in between samples, the
GS2 shows a constant CPU overhead.

On more recent phones that are capable of using the 5 GHz
spectrum, full scans are so costly that accelerometer sampling
is again beneficial. But, as we will show in Section IV, scan-
ning only one or two channels is usually enough to determine
that a user has not moved, which brings energy consumption

1The Galaxy Nexus also supports a/b/g/n, but we were unable to make this
device operate on the 5 GHz band. We attribute this to a bug in the firmware.
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Fig. 3. Comparison of a full scan (top) and a single-channel scan (bottom)
on the Samsung Galaxy S2 smartphone.
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Fig. 4. Comparison of accelerometer sampling between the Samsung Galaxy
S2 (top) and HTC Hero (bottom) smartphones.

during the passive state very close to that of single-channel
scan. On all devices except the HTC Hero this operation
consumes much less energy than accelerometer sampling,
which motivates us to abandon this technique altogether and
focus on methods that rely solely on Wi-Fi scanning.

E. Energy Model
In this paper we evaluate a scanning algorithm that breaks

off early when a certain amount of information has been
discovered. To this end, we construct a power model Edscan(n)
for each device d that tell us how much energy is consumed
by scanning n channels. Our measurements showed that the
scanning cost Edscan(n) is linear with the number of scanned
channels n. This trend allows us to construct energy models
for each of the devices by interpolating between the cost of
a single-channel scan and that of a full scan. A special case
is needed to account for the devices that support 5 GHz. For
a fair comparison with 2.4 GHz devices and because our data
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Fig. 7. Pareto front for our hysteresis classifier,
as computed on our data set.

set does not contain access points in the newly operational
5 GHz band, we conservatively assume that when the 2.4 GHz
needs to be fully scanned (n = 13), then a full sweep of
the 5 GHz band is needed too. This is modeled by “jumping”
immediately to the full cost of scanning both spectra, as laid
out in the following model:

Edscan(n) =

{
Edsingle + (n− 1) ∗ E

d
full,2.4−E

d
single

12 if n ≤ 12

Edfull if n = 13

Edscan(n) includes the wake-up and suspend overhead on
device d, Edfull is the cost of a full scan (2.4 and 5 GHz bands),
Edfull,2.4 is the cost of scanning the entire 2.4 GHz band and
Edsingle is the cost of scanning a single channel (the wake
up and suspend overhead are included in this variable). The
potential benefit of incremental scanning on Wi-Fi localization
depends on two factors: the gap between a full and a single
scan (Edfull−Edsingle), and the number of channels used (n−
1). Thus far, we have shown that the gap between full and
single scans is long and worth exploring. Next, we explain the
methods by which we minimize the number of channel scans.

III. INCREMENTAL SCANNING
We exploit three properties to reduce the number of

scanned channels, while maintaining high localization accu-
racy: 1) a diminishing return in information from access
points, 2) channel popularity, and 3) scan similarity during
user inactivity. Since much of our analysis is data-driven, we
will first describe the data set we collected; we will then
discuss each of the above mentioned properties; and finally,
we incorporate all our insights into our incremental scanning
algorithm.

A. Data Collection
We collected Wi-Fi access point (AP) scans and GPS

location data from various urban locations in the Netherlands,
Germany, Denmark, and Switzerland. The collection process
was carried out by members of our research group, who were
supplied with an Android smartphone and were instructed
to manually annotate their activity (passive, walking, driving,
etc.) through an on-screen interface. The goal was to get data
both on localization accuracy as a function of AP-density, as
well as to obtain ground truth about user activity.

Our data collection software issued a Wi-Fi scan every two
seconds and recorded the MAC address, channel, SSID, and
signal strength of each access point found. Each scan result is
annotated with two latitude, longitude pairs; the most recent

GPS location at the time the scan was started (if available),
and a location estimate provided by Google’s geolocation
service [1] (obtained post-facto).

B. Diminishing Returns
In Wi-Fi localization, access points are used as anchors

to estimate the position of a user. In many anchor-based
localization systems, it is known that every extra access point
leads to diminishing returns in localization accuracy. This
general trend holds for anchor-based systems ranging from
simple centroid techniques [12] to more complex geometric
methods [13]. Hence, the first question we have to ask is:
how many access points α are needed to achieve most of the
accuracy of Wi-Fi localization?

We investigate α by converting access point scans from
our data set into geographical coordinates using Google’s
geolocation service [1]. We first removed duplicate locations
recorded during inactive sessions to avoid skewing results,
and selected only the first α APs for each scan. We then
computed the distance between the localization result and
the GPS coordinates that were collected alongside the Wi-
Fi scanning data. Note that GPS does not constitute absolute
ground truth, and itself is subject to localization error, but we
believe it is a good approach for comparing relative results of
different values of α.

Figure 5 shows the 85th, 90th, and 95th percentiles of
distance from the baseline (GPS). Note that this is not a
generalizable result since the localization service depends on a
database that is trained by user-submitted data, and thus subject
to constant change. Moreover, performance may differ from
location to location. However, it is clear that there is little
improvement beyond α = 15. In other words, scanning can be
safely broken off early once 15 access points have been found.

C. Channel Popularity
Given that only 15 access points are needed to reach

a high localization accuracy, we now need to identify the
channels with the highest density of access points. This will
allow us to discover α access points more quickly and thus
break off scanning earlier. Although access points may be
configured to reside on any given channel, due to co-channel
interference, channels 1, 6, and 11 are generally favored by
system administrators and set as factory defaults. Figure 6
shows the popularity of the various Wi-Fi channels as found
in our dataset2. For example, in a location with 20 access

2Data was collected with phones capable of using the 2.4 GHz spectrum
only, so that 5 GHz access points are not included in out dataset.
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points within range (a very likely event nowadays), scanning
three channels would be sufficient to reach the 15-AP mark.
In general, channel popularity can differ from place to place,
and is not known beforehand. But this problem can be easily
solved by keeping track of the recent scanning history and use
it to continuously update the ranking of channel popularity.

D. Scan Similarity
When a person is not changing locations (passive state),

consecutive scans yield similar results. This effect brings sig-
nificant gains to incremental scanning because upon detecting
that the first scanned channels have similar access points, the
scan can terminate early. Our last goal is therefore to identify
passive states as early as possible. Previous studies have used
scan similarity to identify a person’s mobility [8,14,15]. We
enhance the mobility detection process of these studies by
using a hysteresis margin.

The single threshold approach. In the above mentioned
studies, the well-known Tanimoto coefficient is used to com-
pare the similarity of consecutive scans:

T (~f1, ~f2) =
~f1 · ~f2

‖~f1‖2 + ‖~f2‖2 − ~f1 · ~f2

where ~f1, ~f2 are vectors capturing the signal strength of access
points in two consecutive scans. If an access point is found in
only one scan, the corresponding entry in the other vector is
set to zero. A value of one indicates perfect similarity, zero
represents total dissimilarity. Figure 8 shows the Tanimoto
coefficient for a user that is alternately walking (low similarity)
and stationary (high-similarity). In [8], an empirically derived
threshold of γ=0.7 is proposed to distinguish the two states.

When analyzing our data set we found that the single
threshold approach leads to significant overlap between the
active and passive states, resulting in misclassification and
missed opportunities for energy savings. For example, in
Figure 8, a threshold of 0.7 would lead to several inactive
periods being marked as active.

Our hysteresis margin approach. To improve the stability
and accuracy of the existing method, we use a hysteresis
margin with upper and lower thresholds 0 ≤ β ≤ 1 and
0 ≤ γ ≤ 1, respectively. We determine these thresholds
empirically using a two step process. First, we derive a Pareto
front, and then identify the best thresholds for our point of
interest in the Pareto front.

Figure 7 shows the ROC-diagram of our classifier, obtained
from an exhaustive search of the parameter space. We specify
two performance metrics: the true positive rate (TPR), the ratio
of samples correctly identified as passive, out of all samples
labeled passive; and the false positive rate (FPR), the ratio
of samples incorrectly labeled as passive, out of all samples

TABLE II. CLASSIFIER PERFORMANCE NUMBERS. THE ’TRAINED
FPR’ COLUMN INDICATES THE MAXIMUM FPR FOR WHICH THE

CLASSIFIER WAS TRAINED. THE OTHER COLUMNS SHOW THE ACTUAL
RATES ACHIEVED ON THE TEST DATA.

Trained FPR β γ Achieved TPR Achieved FPR
0.03 0.910 0.859 0.5943 0.0373
0.04 0.847 0.805 0.7521 0.0458
0.05 0.825 0.619 0.8130 0.0552
0.06 0.788 0.563 0.8625 0.0640
0.07 0.758 0.533 0.8867 0.0770
0.08 0.727 0.518 0.8995 0.0839
0.09 0.718 0.475 0.9062 0.0908
0.10 0.705 0.444 0.9165 0.1082

labeled active. These metrics represent a tradeoff between
information and energy. Minimizing the FPR minimizes in-
formation loss because a scan will not be terminated early
if a user is active (moving). Maximizing the TPR minimizes
energy consumption because we can exit the scan earlier.

Selecting an appropriate operating point depends on how
much information loss the application allows. For example, if
an information loss of 5 % is acceptable, the optimal parameter
set is the one that maximizes TPR while achieving an FPR of
≤ 0.05. In this paper we assume that the application tolerates
a small amount of information loss in exchange for energy
savings. Table II shows the results for various points in the
Pareto front. We trained β and γ by exhaustively searching
the parameter space (Trained TPR), and then we used ten-
fold cross validation to obtain the “Achieved” TPR and FPR.
Training for an FPR of 5 % yields a good balance: with only
5.52 % information loss the classifier is able to save energy
by breaking early 81.3 % of the time. The parameter set that
achieves these results is β = 0.825 and γ = 0.619.

It is important to note that the average of β and γ (0.72) is
close to the empirical threshold of 0.7 found in an independent
study performed on different cities [8]. We conjecture that this
occurs because the probabilistic distribution of access points
follows a similar pattern in areas with comparable penetration
of wireless internet access points.

E. Algorithm
Algorithm 1 merges the ideas from the previous sections

in a simple scanning algorithm. The algorithm iterates over
all channels in the channelSequence list, a global variable
that is initialized to include all available channels. At the end
of the scan, the channel sequence is updated such that the
most populated channel appears at the front of the list (line
12, channel popularity property). This ensures that the most
populated channels are scanned first in the next round, thus
helping the algorithm to terminate earlier. The result variable
maintains the set of all APs discovered during the current scan,
including details such as MAC address, SSID, and signal level.
The scan method scans a single channel and returns a set
of discovered APs. The algorithm breaks off scanning when
α access points have been discovered (line 5: diminishing
returns property) or the scan result is sufficiently similar to
the previous one (line 8: scan similarity property).

The similar method implements our hysteresis-based clas-
sifier. Note that when computing the Tanimoto coefficient
between two scan results only the channels included in both
scans are taken into account. For example, when comparing
a full scan result to a single channel scan result, only the
APs found on the channel that was scanned in the latter scan
are used. Otherwise the large number of missing APs would



Algorithm 1 Incremental Scanning Algorithm.
1: function INCREMENTALSCAN
2: result← {}
3: for each channel ∈ channelSequence do
4: result← result ∪ scan(channel)

. Break if α APs have been found
5: if |result| ≥ α then
6: break
7: end if

. Break if the user is in the same location
8: if similar(result, previous) then
9: break

10: end if
11: end for

. Prefer popular channels
12: channelSequence← sortChannels(result)
13: previous← result
14: return result
15: end function

drive the Tanimoto coefficient down and cause the algorithm
to misclassify the user state as active.

IV. EVALUATION
Our evaluation is divided into two parts: the effectiveness

of our algorithm in breaking off early from full scans, and the
amount of energy saved on different platforms.

Insight 1: most of the savings of incremental scanning are
obtained in the passive state, where less than two channels
need to be scanned. Incremental scanning saves energy in
areas of high AP density and during periods of user inactivity.
This means that the performance of our system depends on
the environment and daily rhythm of the user. To evaluate the
real-world performance of incremental scanning we collected a
second dataset from five users who live in Delft, a middle-sized
city in The Netherlands. They volunteered to run a scanning
application that took a full access point scan every 30 seconds
for a full month as they went about their normal lives.

Figure 9 shows the complementary CDF of access-point
density for each user. There are strong differences between
users. For example, User 2 lives in the city center surrounded
by many small apartments, whereas User 1 lives in the spacious
suburbs. Therefore User 2’s smartphone will have many more
opportunities to break off a scan early, compared to User 1.

We applied Algorithm 1 to the user data off-line with α =
15, and with β = 0.825 and γ = 0.619 (c.f. Table II). Table III
shows that between 80 % and 90 % of the time the users are
passive, and in this state fewer than two channel scans are
required on average. When a user is active, an early break
off is obtained between 1.89 % and 9 % of the time with 4-6
channel scans.

Insight 2: depending on the platform, incremental scan-
ning could save between 20.64 % and 57.79 % of energy used
for Wi-Fi scanning. To quantify the energy savings on all the
<user, platform> tuples (40 combinations), we fed the scan
results of the five users (Table III) to the energy models derived
in Section II-E. Figure 10 shows the results. On devices that
support the 2.4 GHz spectrum only, energy savings are roughly
between 20-35 % depending on the device and user. On more
modern devices, such as the Samsung Galaxy S2 and HTC One
X+, savings are between 40-55 % largely because a full scan
encompasses many more channels and thus consumes much
more energy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

C
o
m

p
l.
 C

u
m

. 
P

ro
b
a
b
ili

ty

Access Point Count

User 1
User 2
User 3
User 4
User 5

Fig. 9. Complementary cumulative probability (tail distribution) of access
point density found in our user study data.

TABLE III. EARLY-BREAKING OPPORTUNITIES DURING OUR
ONE-MONTH USER STUDY.

Full Scan |scan| ≥ α Passive
Percentage Percentage Channels Percentage Channels

User 1 18.45 % 2.18 % 5.67 79.37 % 1.18
User 2 6.78 % 9.00 % 4.65 84.22 % 1.44
User 3 6.13 % 4.68 % 4.40 89.19 % 1.70
User 4 12.19 % 7.97 % 4.71 79.84 % 1.33
User 5 14.33 % 1.89 % 5.52 83.78 % 1.46

V. RELATED WORK
A number of techniques have been proposed to reduce the

cost of location sensing in smartphones, many of which are
applicable to Wi-Fi scanning. For example, in many multi-
sensor localization systems, motion sensors are used to detect
when a user is not moving, so as to avoid energy-costly oper-
ations like Wi-Fi scanning or GPS [6]–[10,16]. This technique
is known as accelerometer suppression or sensor replacement.
Some of these systems, notably EEMSS [7], SensLoc [8], and
WiFiSense [16] achieve further energy savings by duty cycling
the accelerometer. However, these systems have been evaluated
on only two different devices, the Nokia N95 introduced in
2007 ([6,7,10]) and the HTC G1 released in 2008 ([8,9,16]).
We have shown in Section II, that the cost of accelerometer
sampling on more modern devices from 2010 and onward is
much higher, mainly due to an increased CPU overhead. As a
result, accelerometer suppression is not competitive compared
to scanning only a few channels during user inactivity. This
was verified by [11], which evaluated the accelerometer sup-
pression technique from SensLoc on an HTC Desire (2010)
and found an energy consumption increase of 6 % over the
‘always scan’ baseline.

Another approach to reduce the energy consumption of
localization systems is to exploit the relatively low entropy
of human mobility [17], and try to predict when a user is
about to move. For example, EnLoc [18] learns user behavior
patterns and schedules location sensing in such a way as
to maximize the localization accuracy for a given energy
budget. SmartDC [14] models the problem of scheduling
sensing moments as a Markov decision process. We consider
this class of work to be complementary to ours. When the
mobility predictor indicates an active state, our algorithm can
provide Wi-Fi location information at low cost. In case of
falsely predicting mobility when the user is actually idle, our
algorithm could detect the stationarity condition at a very
low energy cost and provide this information to the predictor
engine to enhance its accuracy.

Partial scanning has been used to reduce the scanning delay
during hand-off in mobile Wi-Fi [19]–[21]. Kim et al. [19]
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Fig. 10. Projected power consumption of incremental scanning computed from real-world user study data.

use a neighbor graph to construct a set of possible next APs
and optimizes the scanning procedure and selectively scans
only the channels where these are located. A channel mask is
used in [20] to scan only those channels that contained APs
on the previous scan, plus the popular channels 1,6, and 11.
Cabernet [21] proposes a custom scanning algorithm designed
to quickly locate open access points for use in vehicular
wireless networks. The system scans continuously, visiting
popular channels more often than less popular ones to improve
the chance of discovering an open AP. We also leverage the
lower energy cost of employing selective scanning but for Wi-
Fi localization instead of hand-offs, which considers some
fundamentally different properties such as the diminishing
returns effect.

VI. CONCLUSIONS
In this paper we presented incremental scanning, a novel

approach for reducing the energy cost of Wi-Fi based localiza-
tion. We use three techniques to reduce the number of scanned
channels. First, we have shown that Wi-Fi localization services
are subject to diminishing returns, and that discovering 15
access points is sufficient for an accurate fix. Second, the
majority of APs reside on a small number of ‘popular’ chan-
nels, and scanning these channels first increases the chances
of finding the fifteen APs early. Third, human beings are
typically stationary 89 % of the time, in which case scanning
only a small number of channels (typically 1-2) is enough
to determine that the user has not moved. We constructed an
energy model for eight devices, and computed projected power
consumption based on traces from five users collected over
a one-month period. This analysis shows that energy savings
depend on both device and user behavior, and ranges between
20.64 % and 52.19 % on b/g/n devices, and between 41.76 %
and 57.79 % on modern a/g/b/n devices.
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