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Independent Events
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Two definitions of independence

• Def.1 
– Two events, A and B are said to be 

independent if

• Def. 2
– Two events, A and B are said to be 

independent if

• Note that they are algebraically equivalent
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Intuitive meaning of independence

•
– Knowledge of B is irrelevant to A

• P(Thunder/lightning) ≠P(Thunder)
• P(Face coin1/Face coin2)= P(Face coin1)

– Sample space of A does not change if B has happened.
• For instance a sample space generated by the 

cartesian product of two sets. 
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Intuitive meaning of independence
• Sample space of A does not change if B has 

happened.
– Sample space generated by the cartesian product of two 

sets. ( ) ( )P / PA B A=
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Explaination of dependent events 
by means of the sample space

• Sample space of A does change if B has 
happened.  Eliminate possibilities
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Explaination of dependent events 
by means of the sample space

• Sample space of A does change if B has 
happened.  
– Eliminated possibilities
– Preferencial Attatchment
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A1=Rain,A2=Sun 
shine
B1=ThunderModel 2 of the problem
A1=Rain,A2=Sun shine
B1=Dressed  with a rain coat
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Intuitive meaning of independence
• Another case: Proportion of the sample space of 

A does not change if B has happened
• Note: the condition is algebraic, not  physical
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Independence by inclusion

• Preposition
– If it rains, I’ll bring the umbrella

• Sets
– A={It rains}, B={Bring umbrella}

• Probabilities
– P(B/A)=P(B)
– P(B/Not A)=

Operations
Implication Inclusion Condition→ →

Propositions Relations between objects Numbers→ →
∅

A

BB A⊂
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Application to Scale Free objects
• Application to fractal images and objects.

– Sierpinski triangle
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Application to Scale Free objects
• Application to fractal images and objects.
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Application to Scale Free objects
• Application to internet traffic.
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Application to Scale Free objects
• Flips of coins. 10.000 vs. 1.000.000
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Application to Scale Free objects

• One way of creating Scale free objects, is 
by means of an exponencial grow
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Application to Scale Free objects

Taken from:

The architecture of complexity: 
From the topology of the www to the
cell's genetic network

Albert-László Barabási

P(k)  ~ k-γ
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Similarities between natural graphs

• Semantic map vs. Physical connections in 
internet

http://rdfweb.org/2002/02/foafpath/
The architecture of complexity: 
From the topology of the www to the
cell's genetic network

Albert-László Barabási
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Examples of Scale Free in biology

Broccoli Eucalyptus Tree
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Relation between independence
and disjoint condition

• Independence does not imply disjointness
– Condition of indepence
– Condition of disjointness

• In probabilities means:

• What does                                   mean?( ) ( ) ( )P =P P 0A B A B∩ =
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Relation between independence 
and disjoint condition

• What does                                   mean?
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Probability of the intersection of a 
set of independent events.

• Probability of the union of independent 
events

• Formally the union of all the elements, 
consists on the event:  
– E={Simultaneously  of the elements of the set 

appear}

• Note:
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When intersection of sets corresonds to 
multiplication of probabilities?
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Probability of getting at least one 
event of a set of independent events 
• Probability of the union of independent 

events
• Formally the union of all the elements, 

consists on the event:  
– E={At least one of the elements of the set 

appear}
– E={Not a single element of the set appears }

• Which is equivalent to 
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Probability of getting at least one 
event of a set of independent events 
• Probability of the union of independent 

events
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Example 1

• A web page has two kind links. {A,B}
• M different users  select randomly and 

independently of each other one of the 
links.

• What is the probability that at a link of kind 
A is visited least once?

– For instance: Web based bookshop that also 
has CD, DVD, second hand books.
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Example 1

• A web page has two kind links. {A,B}
• Sample space of the links

• Possible choises of the M users
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Example 1

• Probability of a given selection:

• What is the probability that at a link of kind 
A is visited least once?
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Example 1
• What is the probability that at a link of kind 

A is visited least once?
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Example 2

• Another way of deriving the formula:

• Throw a coin N times, what is the 
probability that heads occur on at least 
one trial?
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Example 2

• Throw a coin N times, what is the probability 
that heads occur on at least one trial?
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Example 2

• P({then anything else})?
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Example 2

• Applications of the formula:

• Carl Sagan an the probability of inteligent 
life in our galaxy

• Saddam’s ‘Plebicito’ with a 99.9% of 
approval

• Other ‘plebicito’s’ and elections
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