Independent Events



Two definitions of independence

e Def.l
— Two events, A and B are said to be
iIndependent if P(AC B)=P(A)P(B)
e Def. 2
— Two events, A and B are said to be
iIndependent if p(A/ B) — p(A)
* Note that they are algebraically equivalent

P(AC B) _ P(A)P(B)
P(B)  P(B)

P(A/B) =



Intuitive meaning of independence

° P(A/ B) = P(A)
— Knowledge of B is irrelevant to A
e P(Thunder/lightning) * P(Thunder)
* P(Face coinl/Face coin2)= P(Face coinl)
— Sample space of A does not change if B has happened.

* For instance a sample space generated by the
cartesian product of two sets.

W ={A, A, A}
W, ={B,,B,,--B,}
W=W," W,

W={AB,AB,,--AB,, - A B} 3



Intuitive meaning of independence
« Sample space of A does not change if B has

happened.
— Sample space generated by the cartesian product of twe
sets. P(A/B)=P(A)
W, W, W=W," W, P(AC B)=P(A)P(B)
1
@ P(A) :E
1

AL Bl AI,BZ p(ALBl) -
A 5, ‘ 1

: : AB_ p(B,) = =

. AB 1
A, B_ : P(A/B) :ﬁ

ABn, 4




Explaination of dependent events

by means of the sample space

o Sample space of A does change if B has
happened. Eliminate possibilities

P(A/B)#P(A)
W, W, Wiew P(AC B)ZP(A)P(B)
1
- p(Al) _El
A B, A5, p(AB)=———
A B, : nrln- 1
A 5 z p(A/B)=—

AB;,

nm- 1



Explaination of dependent events

by means of the sample space
o Sample space of A does change if B has

happened " Model 1 of the problem

— Eliminated possibilities A&_:Rai”’AZZSU”
_ shine

— Preferencial Attatchment Mod B TP Foblem

Al=Rain,A2=Sun shine
Bl1=Dressed with a rain coat

Wl WZ WNeN
1
sE> — AT,
B AB, B = 1
A Bl : P(AB,) = ———
A, ? ' 1
: ; Aj;%;< p(B,) = —
. A 4—- m
1 m
A, B, : P(A /By) = ——

nm-1

AI"] Bm

P(A/B)#P(A)
P(AC B)~P(A)P(B)




Intuitive meaning of independence

 Another case: Proportion of the sample space of
A does not change if B has happened
* Note: the condition is algebraic, not physical

P(S)=1/2 )
P(S,) =5/12 P(Sw/S,) = P(Sw)
p(ew/s,) = 2= PIEWES) @5} ;
5  P(S)
P(Sw) =P(S,)P(Sw/S,) + P(S)P(Sw/S)
11 52 1
P(SwW) ===+—===

23 125 3 7



Independence by Inclusion
Operations

Implication ® Inclusion ® Condition

* Preposition
— If it rains, I'll bring the umbrella
e Sets
A

— A={lt rains}, B={Bring umbrella}

* Probabilities
— P(B/A)=P(B)
— P(B/Not A)= /E
Propositions® Relations between objects® Numbers



Intuitive meaning of independence

 Proportion of the sample space of A

does not change if B has happened
* Note: the condition is algebraic, not physical
P(W)=Total Area=1
P(A) _ Yellow Area
Total Area
P(B) _ Blue Area
Total Area

Green Area: Yellow Area
Blue Area  Total Area

P(A/B)=P(A) 0

P(A/B)=




Application to Scale Free objects

« Application to fractal images and objects.

— Slerpinski triangle

AAAAL

P(W =Totd Area=1
P( _YelowArea
 Total Area
_ BlueArea
P(B)  Toa Area
P( A B) _ Grem Area:YeIIaNArea
BlueArea Tota Area
D A/ R\ =pP[ A
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Application to Scale Free objects

« Application to fractal images and objects.

= 3 et 1y o Bt
£ e SREL S
:-. j e T e
] iy
i X % g1

http://en.wikipedia.org/wiki/Fractals

P(W =Tod Area=1
Ydlow Area
P(A) - Total Area
Blue Area
B)=
P( ) Tod Area

P( A B) _ Gremn Area:YdIowArea
BueArea Tod Area

P(A/B)=P(A 11




Application to Scale Free objects

e Application to internet traffic.

Poisson  Measured

http://classes. yale.edu/fractals/Panorama/ManuFractals/Internet/Internet4.html




Application to Scale Free objects
e Flips of coins. 10.000 vs. 1.000.000

W, ={set of all possible resultsin 10.000 flips of acoin}
W, ={set of &l possible results in1.000.000 flips of acoin}
A={Fraction of Time one player iswinning}

B ={Scale of the experiment}

p(A) = p(A/B)
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Application to Scale Free objects

 One way of creating Scale free objects, is
by means of an exponencial grow
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Application to Scale Free objects

Prefencial connexions (road to the nearest neighbour) vs.
indifferent conexions (can fly anywhere)

W, ={A A, A
W, ={By,B,,"-- B}

¥ INLF e 2 ) 1 W:VV1, W2
e o “‘:'1“"1.1“7z .Er:"‘"" ; <> 1 w= |
N, Ef_? L A A BV N W-{ﬁBl,ﬁBz,--°§5m,--~ﬂBm,
- L T W, =
[ PR ke T A A A
_ ’ W, :{Bl’BZ’”'Bm}
:“-?13-- . ‘xe‘\\n ' W: VVZI., W2
| W={AB,AB,AB, - AB,

Taken from:

The architecture of complexity:
From the topology of the www to the 15
cell's genetic network



Similarities between natural graphs

e Semantic map vs. Physical connections in
internet — T

The architecture of complexity:
From the topology of the www to the http://rdfweb.org/2002/02/foafpath/
cell's genetic network

Albert-Lasz|6 Barabasi



Examples of Scale Free In biology

Encarta Encydopedia, F:j-:h:
Kolar fAnimals Animals "

PEncarta Eril.‘gp'l:h;l:h-' i W
i Wright/Oxford Sdentific Film

Broccoli Eucalyptus Tree
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Relation between independence
and disjoint condition
* Independence does not imply disjointness
— Condition of indepence P(ACB)=P(A)P(B)

— Condition of disjointness ACB=0
* In probabilities means:

P(AE B) = P(A) + P(B) - @

P(AE B) = P(A) + P(B)

« What does P(ACB)=P(A)P(B)=0 mean?

18



Relation between independence
and disjoint condition

» What does P(AC B)=P(A)P(B)=0 mean?

—

_ P(AE B)=P(A)+ P(B)- P(AC B)
Eliminated
possibilities
- W, W, W=W,” W,
Preferencial — )
Attatchment P(A) = Hl
< & > AP P(AB,) = ——
odel 1 of the problem A, B, : ?m
Al=Rain,A2=Sun shine : ’ ; AB,. p(B,) = —
B1=Thunder ' AB, +— m 1
odel 2 of the problem _ A, B, : p(A /B,) = —
Al=Rain,A2=Sun shine AB 19
Bl=Dressed with a rain coat "




Probabillity of the intersection of a
set of iIndependent events.

* Probability of the union of independent
events \={a A, . A}

* Formally the union of all the elements,
consists on the event:

— E={Simultaneously of the elements of the set
appear}

P(ACA,CCA)=OP(A)

e Note:

Propositions ® Relations between objects® Numbers
20



When intersection of sets corresonds to
multiplication of probabillities?

P(AGA,CCA)=O P(A)

Propositions® Relations between objects® Numbers

Logic = {OR,NOT IMPLICATION}

" INTERSECTION) COMPLEMENT, INCLUSION}
‘MULTIPLICATION,CONDITIONING (p(..))}

21



Probabillity of getting at least one

event of a set of iIndependent events

Probability of the union of independent
events W={A,A,--A}
Formally the union of all the elements,

consists on the event:

— E={At least one of the elements of the set
appear}
— E={Not a single element of the set appears }

» Which is equivalent to e ={w- E}

22



Probabillity of getting at least one

event of a set of iIndependent events

Probability of the union of independent
events W={A,A,--A}

E={At least one of the elements of the set appear.}

E: __1(W-A) E:{Not a single element of the set appears }
E=W-C(WA)

_ (\/\/—A)gzl- Pgizl(WA)g:
P(E):]_- Fn) é]-'P(A)I:‘JI 23



Example 1

A web page has two kind links. {A,B}

M different users select randomly and
iIndependently of each other one of the
links.

 What is the probabillity that at a link of kind
A Is visited least once?

— For instance: Web based bookshop that also
has CD, DVD, second hand books.

24



Example 1

A web page has two kind links. {A,B}
o Sample space of the links

n

W ={A, A, A} P

W, ={B,,B,,--B} P(B):n:_nm

 Possible choises of the M users
Possble of choices =({A ORB, }.{A ORB, },---{A ORB, })

Number of choices = 2 ’ 2 BT 2 =2
25




Example 1

* Probabillity of a given selection:

M-L
e N oaem 0
P AND AND B. --- ANDB -
(LA, AND A, LA, e s
n+m
m
n+m

 What is the probabillity that at a link of kind
A Is visited least once?

P(A) =

P(B) =

P({Atleastan A}) =1- P({All B}) =1- &M 2
én+mg
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b(A) = —
n+m

>(B) = — "
n+m

Example 1

 What is the probability that at a link of kind
A Is visited

east once? P({Atleastan A}) =1- P({ All B}) =1-

M

m=10 n=3

P(A)=

0,8

0,16666667

P(B)=

0,2

0,30555556

0,4212963

0,51774691

0,59812243

0,66510202

0,72091835

0,76743196

Ol |II Nl | AW [IN]|PF

0,8061933

=
o

0,83849442

M m=2 n=3 | P(A)= | 0,6
1 0,4 | PB)= | 0,4
2 0,64
3 0,784
4 0,8704
5 0,92224
6 0,953344
m=2 n=3
5 1.2
g 1 =
S < o8 — -
@ T )
o £ 06
= % 04 1+ =
o) 0,2
[e]
i 0
1 2 3 4

0,8

0,6

04

0,2

& m ¢
En+mg

27



Example 2

« Another way of deriving the formula:

e m C_')M
P({Atleastan A}) =1- P({All B}) =1- gn+mg

 Throw a coin N times, what is the
probabllity that heads occur on at least
one trial?

P({Headsat leastin onetrial}) = p+q°p+q°p---+g" 'p= pl'

How?

28



Example 2

 Throw a coin N times, what is the probability
that heads occur on at least one trial?

A ={First Head occursin thetrial number i}
A ={(i - 1Tailsfollowed by aHead) E (then anything else)}
?
/ :
P(A)=q""p+P({thenanythingelsgf) = q"*p
M
P({Headsat leastinonetrid}) =P(AE A,--E A, )=8 A

=1

M

P({Headsat leastin onetrial}) = p+g’p+q°p---+q" *p= pli_qq



Example 2

* P({then anything else})?

Caseof 3
P({then anything else}) = ppp +(ppa + pap +gppP)+ qgp +gpg + pad +qaq
aB6 .. &8O B0 30
(a+b)’ @ 3ab® +b® = g :a3+§ :a2b+§ 2+§ gb?’
25 3y

{aab, aba, baa]

(p+q)" =

30



Example 2

Applications of the formula:

P({Atleastan A}) =1- P{All B}) =1- & 0

eﬂ+mfa

Carl Sagan an the probabillity of inteligent
life in our galaxy

Saddam’s ‘Plebicito’ with a 99.9% of
approval

Other ‘plebicito’s’ and elections
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