Independent Events

Two definitions of independence

- Def. 1
- Two events, A and B are said to be independent if $\quad \mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$
- Def. 2
- Two events, A and B are said to be independent if $\quad \mathrm{P}(A / B)=\mathrm{P}(A)$
- Note that they are algebraically equivalent

$$
P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B)}{P(B)}
$$

Intuitive meaning of independence

- $\mathrm{P}(A / B)=\mathrm{P}(A)$
- Knowledge of B is irrelevant to A
- P (Thunder/lightning) $\neq \mathrm{P}$ (Thunder)
- $P($ Face coin1/Face coin2)= $P($ Face coin1)
- Sample space of A does not change if B has happened.
- For instance a sample space generated by the cartesian product of two sets.

$$
\begin{aligned}
& \Omega_{1}=\left\{A_{1}, A_{2}, \cdots A_{n}\right\} \\
& \Omega_{2}=\left\{B_{1}, B_{2}, \cdots B_{m}\right\} \\
& \Omega=\Omega_{1} \times \Omega_{2} \\
& \Omega=\left\{A_{1} B_{1}, A_{1} B_{2}, \cdots A_{1} B_{m}, \cdots A_{n} B_{m}\right\}
\end{aligned}
$$

Intuitive meaning of independence

- Sample space of A does not change if B has happened.
- Sample space generated by the cartesian product of two sets.

$$
\begin{array}{ccc}
\Omega_{1} & & \Omega_{2} \\
\hline & & \\
& & \\
A_{1} & & B_{1} \\
A_{2} & & B_{2} \\
\vdots & \times & \vdots \\
A_{n} & & B_{m}
\end{array}
$$

$\Omega=\Omega_{1} \times \Omega_{2}$ $\mathrm{P}(A / B)=\mathrm{P}(A)$ $\mathrm{P}(A \cap B)=\mathrm{P}(A)$ $A_{1} B_{1}$ $\mathrm{p}\left(A_{1}\right)=\frac{1}{n}$	
$A_{1} B_{2}$	$\mathrm{p}\left(A_{1} B_{1}\right)=\frac{1}{n m}$
\vdots	$\mathrm{p}\left(B_{1}\right)=\frac{1}{m}$
$A_{1} B_{m}$	$\mathrm{p}\left(A_{1} / B_{1}\right)=\frac{1}{n}$
$A_{2} B_{1}$	

$$
\mathrm{P}(A / B)=\mathrm{P}(A)
$$

$$
\Omega=\Omega_{1} \times \Omega_{2}
$$

$$
\begin{gathered}
A_{1} B_{1} \\
A_{1} B_{2} \\
\vdots
\end{gathered}
$$

$$
\begin{aligned}
& A_{1} B_{m} \\
& A_{2} B_{1} \longleftarrow \\
& \vdots
\end{aligned}
$$

Explaination of dependent events by means of the sample space

- Sample space of A does change if B has happened. Eliminate possibilities

Ω_{1}	Ω_{2}	$\Omega_{\text {New }}$	$\begin{aligned} & \mathrm{P}(A / B) \neq \mathrm{P}(A) \\ & \mathrm{P}(A \cap B) \neq \mathrm{P}(A) \mathrm{P}(B) \end{aligned}$
$\begin{gathered} A_{1} \\ A_{2} \\ \vdots \\ A_{n} \end{gathered}$	$\begin{gathered} \\ \\ B_{1} \\ B_{2} \\ \times \quad \vdots \\ \\ \\ B_{m} \end{gathered}$	$\begin{gathered} A A_{1} B_{1} \\ A_{1} B_{2} \\ \vdots \\ A_{1} B_{m} \\ A_{2} B_{1} \\ \vdots \\ A_{n} B_{m} \end{gathered}$	$\begin{aligned} \mathrm{p}\left(A_{1}\right) & =\frac{1}{n} \\ \mathrm{p}\left(A_{1} B_{1}\right) & =\frac{1}{n m-1} \\ \mathrm{p}\left(B_{1}\right) & =\frac{1}{m} \\ \mathrm{p}\left(A_{1} / B_{1}\right) & =\frac{m}{n m-1} \end{aligned}$

Explaination of dependent events by means of the sample space

- Sample space of A does change if B has happened.
- Eliminated possibilities
- Preferencial Attatchment

Model 1 of the problem
A1=Rain,A2=Sun
shine
Model ${ }^{B 1}=$ Th Thnderoblem
A1=Rain,A2=Sun shine
B1=Dressed with a rain coat

Intuitive meaning of independence

Another case: Proportion of the sample space of A does not change if B has happened

- Note: the condition is algebraic, not physical

$$
\begin{aligned}
& P\left(S_{1}\right)=1 / 2 \\
& P\left(S_{2}\right)=5 / 12
\end{aligned}
$$

$$
P\left(S l w / S_{1}\right)=P(S l w)
$$

$P\left(S l w / S_{1}\right)=\frac{1}{3}=\frac{P\left(S l w \cap S_{1}\right)}{P\left(S_{1}\right)}$
$P\left(S l w / S_{2}\right)=\frac{2}{5}=\frac{P\left(S l w \cap S_{2}\right)}{P\left(S_{2}\right)}$

$P(S l w)=P\left(S_{2}\right) P\left(S l w / S_{2}\right)+P\left(S_{1}\right) P\left(S l w / S_{1}\right)$
$P(S l w)=\frac{1}{2} \frac{1}{3}+\frac{5}{12} \frac{2}{5}=\frac{1}{3}$

Independence by inclusion

Operations

Implication \rightarrow Inclusion $\quad \rightarrow \quad$ Condition

- Preposition
- If it rains, l'll bring the umbrella
- Sets
- $\mathrm{A}=\{$ It rains $\}, \mathrm{B}=\{$ Bring umbrella\}

$$
B \subset A
$$

- Probabilities
$-P(B / A)=P(B)$
$-P(B /$ Not $A)=\varnothing$
Propositions \rightarrow Relations between objects \rightarrow Numbers $_{8}$

Intuitive meaning of independence

- Proportion of the sample space of A does not change if B has happened
- Note: the condition is algebraic, not physical $\mathrm{P}(\Omega)=$ Total Area $=1$
$\mathrm{P}(A)=\frac{\text { Yellow Area }}{\text { Total Area }}$
$\mathrm{P}(B)=\frac{\text { Blue Area }}{\text { Total Area }}$
$\mathrm{P}(A / B)=\frac{\text { Green Area }}{\text { Blue Area }}=\frac{\text { Yellow Area }}{\text { Total Area }}$
$\mathrm{P}(A / B)=\mathrm{P}(A)$

Application to Scale Free objects

- Application to fractal images and objects. - Sierpinski triangle

http://en.wikipedia.org/wiki/Sierpinski_triangle
$\mathrm{P}(A / B)=\mathrm{P}(A)$

Application to Scale Free objects

- Application to fractal images and objects.

http://en.wikipedia.org/wiki/Fractals

Application to Scale Free objects

- Application to internet traffic.
$A=\{q \%$ change in the traffic $\}$
$B_{0}=\{$ time scale: month $\}$
$B_{1}=\{$ time scale: day $\}$ $B_{2}=\{$ time scale: hour $\}$ $B_{3}=\{$ time scale: seconds $\}$
$\forall \mathrm{i}, \mathrm{j}$
$\mathrm{P}(A)=\mathrm{P}\left(A / B_{i}\right)$
$\mathrm{P}\left(A / B_{j}\right)=\mathrm{P}\left(A / B_{i}\right)$

Application to Scale Free objects

- Flips of coins. 10.000 vs. 1.000 .000
$\Omega_{1}=$ \{set of all possible results in 10.000 flips of a coin $\}$
$\Omega_{2}=\{$ set of all possible results in 1.000 .000 flips of a coin $\}$
$A=\{$ Fraction of Time one player is winning $\}$
$B=\{$ Scale of the experiment $\}$

$$
\mathrm{p}(A)=\mathrm{p}(A / B)
$$

Application to Scale Free objects

- One way of creating Scale free objects, is by means of an exponencial grow

Application to Scale Free objects

Prefencial connexions (road to the nearest neighbour) vs. indifferent conexions (can fly anywhere)

$\Omega_{1}=\left\{A_{1}, A_{2}, \cdots A_{n}\right\}$
$\Omega_{2}=\left\{B_{1}, B_{2}, \cdots B_{m}\right\}$
$\Omega=\Omega_{1} \times \Omega_{2}$
$\Omega=\left\{A_{1} B_{1}, A_{1} B_{2}, \cdots A_{1} B_{m}, \cdots A_{n} B_{m}\right.$

$\Omega_{1}=\left\{A_{1}, A_{2}, \cdots A_{n}\right\}$
$\Omega_{2}=\left\{B_{1}, B_{2}, \cdots B_{m}\right\}$
$\Omega=\Omega_{1} \times \Omega_{2}$
$\Omega=\left\{A_{1} B_{1}, A_{1} B_{2}, \cdots A_{1} B_{m}, \cdots A_{n} B_{m}\right.$

Taken from:
The architecture of complexity:
From the topology of the www to the
cell's genetic network

Similarities between natural graphs

- Semantic map vs. Physical connections in internet

Examples of Scale Free in biology

Broccoli

Eucalyptus Tree

Relation between independence and disjoint condition

- Independence does not imply disjointness
- Condition of indepence $P(A \cap B)=P(A) P(B)$
- Condition of disjointness $\quad A \cap B=0$
- In probabilities means:

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& P(A \cup B)=P(A)+P(B)
\end{aligned}
$$

- What does $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)=0$ mean?

Relation between independence and disjoint condition

- What does $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)=0$ mean?

Counted
B

Eliminated possibilities Preferencial Attatchment

A1=Rain,A2=Sun shine B1=Thunder
odel 2 of the problem
A1=Rain,A2=Sun shine
$\mathrm{B} 1=$ Dressed with a rain coat

$$
\left\{\begin{array}{cc|cc}
\Omega_{1} & \Omega_{2} & \Omega_{1}=\Omega_{1} \times \Omega_{2} & \\
& & & \\
& & B_{1} & A_{1} B_{1} \longleftarrow
\end{array}\right) \mathrm{p}\left(A_{1}\right)=\frac{1}{n}
$$

Probability of the intersection of a set of independent events.

- Probability of the union of independent events $\Omega=\left\{A_{1}, A_{2}, \cdots A_{n}\right\}$
- Formally the union of all the elements, consists on the event:
- $\mathrm{E}=\{$ Simultaneously of the elements of the set appear\}
- Note:

$$
P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=\prod_{i=1}^{n} P\left(A_{i}\right)
$$

Propositions \rightarrow Relations between objects \rightarrow Numbers

When intersection of sets corresonds to multiplication of probabilities?

$$
P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=\prod_{i=1}^{n} P\left(A_{i}\right)
$$

Propositions \rightarrow Relations between objects \rightarrow Numbers

$$
\begin{aligned}
& \text { Logic }=\{O R, \text { AND,NOT,IMPLICATION }\} \\
& \text { Sets }=\{\text { UNION_INTERSECTION, COMPLEMENT,INCLUSION }\} \\
& \text { Sets }=\{\text { SUM, MULTIPLICATION,CONDITIONING }(p(. /))\}
\end{aligned}
$$

Probability of getting at least one

 event of a set of independent events- Probability of the union of independent events $\Omega=\left\{A_{1}, A_{2}, \cdots A_{n}\right\}$
- Formally the union of all the elements, consists on the event:
$-E=\{$ At least one of the elements of the set appear\}
$-\overline{\mathrm{E}}=\{$ Not a single element of the set appears $\}$
- Which is equivalent to $E=\{\Omega-\bar{E}\}$

Probability of getting at least one

 event of a set of independent events- Probability of the union of independent events $\Omega=\left\{A_{1}, A_{2}, \cdots A_{n}\right\}$

$$
\begin{aligned}
& \mathrm{E}=\bigcup_{i=1}^{n} A_{i} \quad \quad \mathrm{E}=\{\text { At least one of the elements of the set appear. }\} \\
& \overline{\mathrm{E}}=\bigcap_{i=1}^{n}\left(\Omega-A_{i}\right) \quad \overline{\mathrm{E}=\{\text { Not a single element of the set appears }\}} \\
& \mathrm{E}=\Omega-\bigcap_{i=1}^{n}\left(\Omega-A_{i}\right) \\
& \mathrm{P}(E)=\mathrm{P}\left(\Omega-\bigcap_{i=1}^{n}\left(\Omega-A_{i}\right)\right)=1-\mathrm{P}\left(\bigcap_{i=1}^{n}\left(\Omega-A_{i}\right)\right)= \\
& \mathrm{P}(E)=1-\prod_{\prod}^{n}\left[1-\mathrm{P}\left(A_{i}\right)\right]
\end{aligned}
$$

Example 1

- A web page has two kind links. $\{\mathrm{A}, \mathrm{B}\}$
- M different users select randomly and independently of each other one of the links.
- What is the probability that at a link of kind A is visited least once?
- For instance: Web based bookshop that also has CD, DVD, second hand books.

Example 1

- A web page has two kind links. $\{\mathrm{A}, \mathrm{B}\}$
- Sample space of the links

$$
\begin{array}{ll}
\Omega_{1}=\left\{A_{1}, A_{2}, \cdots A_{n}\right\} & P(A)=\frac{n}{n+m} \\
\Omega_{2}=\left\{B_{1}, B_{2}, \cdots B_{m}\right\} & P(B)=\frac{m}{n+m}
\end{array}
$$

- Possible choises of the M users

Possible of choices $=\left(\left\{A_{i_{1}}\right.\right.$ OR $\left.B_{j_{1}}\right\},\left\{A_{i_{2}}\right.$ OR $\left.B_{j_{2}}\right\}, \cdots\left\{A_{i_{M}}\right.$ OR $\left.\left.B_{j_{M}}\right\}\right)$ Number of choices $=2 \times 2 \times \cdots 2=2$

Example 1

- Probability of a given selection:

$$
\begin{gathered}
P\left(\left\{A_{i^{\prime}} A N D A_{i_{2}} A N D B_{i_{1}} \cdots A_{i_{L}} A N D B_{j_{n-L}}\right\}\right)=\left(\frac{n}{n+m}\right)^{L}\left(\frac{m}{n+m}\right)^{n-L} \\
P(B)=\frac{n}{n+m}
\end{gathered}
$$

- What is the probability that at a link of kind A is visited least once?

$$
P(\{\text { At least an } \mathrm{A}\})=1-P(\{\text { All } \mathrm{B}\})=1-\left(\frac{m}{n+m}\right)^{M}
$$

Example 1

- What is the probability that at a link of kind A is visited least once $?_{P((A \operatorname{Ateastan} A))=1-P((A A / B \mid))=1-\left(\frac{m}{n+m}\right)}$

$\begin{aligned} & P(A)=\frac{n}{n+m} \\ & P(B)=\frac{m}{n+m} \end{aligned}$	M	$m=2 \quad n=3$	$P(A)=$	0,6
	1	0,4	$P(B)=$	0,4
	2	0,64		
	3	0,784		
	4	0,8704		
	5	0,92224		
	6	0,953344		

\boldsymbol{M}	$\boldsymbol{m}=\mathbf{1 0} \boldsymbol{n = 3}$	$\mathbf{P}(\mathbf{A})=$	$\mathbf{0 , 8}$
1	0,16666667	$\mathbf{P}(\mathbf{B})=$	$\mathbf{0 , 2}$
2	0,30555556		
3	0,4212963		
4	0,51774691		
5	0,59812243		
6	0,66510202		
7	0,72091835		
8	0,76743196		
9	0,8061933		
10	0,83849442		

Example 2

- Another way of deriving the formula:

$$
P(\{\text { At least an } \mathrm{A}\})=1-P(\{\text { All } \mathrm{B}\})=1-\left(\frac{m}{n+m}\right)^{M}
$$

- Throw a coin N times, what is the probability that heads occur on at least one trial?
$P(\{$ Heads at least in one trial $\})=p+q^{2} p+q^{3} p \cdots+q^{M-1} p=p \frac{1-q^{M}}{1-q}=1-q^{M}$ How?

Example 2

- Throw a coin N times, what is the probability that heads occur on at least one trial?
$A_{i}=\{$ First Head occurs in the trial number i $\}$
$A_{i}=\{(i-1$ Tails followed by a Head $) \cup($ then anything else $)\}$
$P\left(A_{i}\right)=q^{i-1} p+P(\{$ then anything else $\})=q^{i-1} p$
$P(\{$ Heads at least in one trial $\})=P\left(A_{1} \cup A_{2} \cdots \cup A_{M}\right)=\sum_{i=1}^{M} A_{i}$
$P(\{$ Heads at least in one trial $\})=p+q^{2} p+q^{3} p \cdots+q^{M-1} p=p \frac{1-q^{M}}{1-q}=1-q^{M}$

Example 2

- $\mathrm{P}(\{$ then anything else\})?

Case of 3
$P(\{$ then anything else $\})=p p p+p p q+p q p+q p p+q q p+q p q+p q q+q q q$
$(a+b)^{3}=1 a^{3}+3 a^{2} b+3 a b^{2}+b^{3}=\binom{3}{0} a^{3}+\binom{3}{1} a^{2} b+\binom{3}{2} a b^{2}+\binom{3}{3} b^{3}$ $\{a a b, a b a, b a a\}$

$$
(p+q)^{n}=1
$$

Example 2

- Applications of the formula:

$$
P(\{\mathrm{At} \mathrm{leastan} \mathrm{~A}\})=1-P(\{\mathrm{~A} l \mathrm{~B}\})=1-\left(\frac{m}{n+m}\right)^{n}
$$

- Carl Sagan an the probability of inteligent life in our galaxy
- Saddam's 'Plebicito' with a 99.9% of approval
- Other 'plebicito’s' and elections

