

Indoor Navigation System for Handheld Devices

A Major Qualifying Project Report

Submitted to the faculty

of the

Worcester Polytechnic Institute

Worcester, Massachusetts, USA

In partial fulfillment of the requirements of the

Degree of Bachelor of Science

on this day of October 22, 2009

by

Manh Hung V. Le

Dimitris Saragas

Nathan Webb

Advisor __________________________ Advisor __________________________

Professor Alexander Wyglinski Professor Richard Vaz

i

Abstract

This report details the development of an indoor navigation system on a web-enabled smartphone.

Research of previous work in the field preceded the development of a new approach that uses data

from the device’s wireless adapter, accelerometer, and compass to determine user position. A routing

algorithm calculates the optimal path from user position to destination. Testing verified that two meter

accuracy, sufficient for navigation, was achieved. This technique shows promise for future handheld

indoor navigation systems that can be used in malls, museums, hospitals, and college campuses.

ii

Acknowledgements

We would like to sincerely thank the individuals who guided us through our Major Qualifying Project and

who made our experience a memorable one.

We would like to thank our project sponsors, Dr. Sean Mcgrath and Dr. Michael Barry, for providing us

with the necessary information and resources to complete our project.

We would also like to thank our advisors, Professor Richard Vaz and Professor Alexander Wyglinski for

their continuous help and support throughout the project.

iii

Executive Summary

Dashboard mounted GPS receivers and online mapping services have replaced paper maps and atlases

in modern society. Contrasting these advances in automobile navigation, wall mounted maps and signs

continue to be the primary reference for indoor navigation in hospitals, universities, shopping malls, and

other large structures. In this project the development, implementation, and testing of a smartphone-

based indoor navigation system are described.

The HTC Hero was selected as the development platform for this project. Reasons for its selection

include the open-source nature of the Google Android operating system, the large number of sensors

built in to the phone, and the high computational power of the device. Apple iPhone OS was also

considered.

Three primary objectives were identified that summarize the challenges faced in this project. First, the

device must be capable of determining its location in the building. Second, it must be capable of

determining the optimal route to a destination. Third, an intuitive user interface must provide the user

with access to these features.

Numerous candidate positioning techniques and technologies were considered for meeting the first

objective. The decision was made to implement an integrated positioning system making use of multiple

sources of information common to modern smartphones. Signal strength measurements from the

device’s wireless adapter are used to estimate position based on the known locations of wireless access

points. The method used is similar to the calibration-heavy technique of location fingerprinting, but a

pre-generated wireless propagation model is used to alleviate the calibration requirement.

Measurements of acceleration and orientation from the device’s accelerometer and magnetic compass

are used to repeatedly approximate the device’s motion. These sources of information are combined

with information from past sample periods to continually estimate the user location.

To overcome the challenge of determining an optimal path to the user’s destination, the rooms and

hallways of the building were represented as graphical nodes and branches. Many common routing

algorithms were considered for use in determining the best path to the user’s destination in the defined

graph. Dijkstra’s algorithm was chosen for its low computational complexity, its guarantee of

determining the optimal path, and its potential for efficient handling of sparse graphs.

iv

The user interface was developed using the Google Android software development kit and provides the

user with the ability to determine their location, select a destination from a database of people and

places, and follow the route that the phone determines.

Device testing showed that the three primary objectives were accomplished. The integrated positioning

techniques achieved an average deviation between estimated positions and the user’s path of less than

two meters. Matching these position estimates to known paths and locations in the building further

increased the accuracy. Additionally, the location database and routing algorithm accomplished the

objective of optimal routing. A user interface was constructed that allowed access to these functions.

Contributions made through the completion of this project include the use of an integrated propagation

model to simulate wireless propagation and hence negate the need for data collection in a WiFi-

fingerprinting like system. Also, a statistical method was developed for estimating position based on

successive, unreliable, measurements from WiFi positioning and inertial navigation sensors. The

development of these techniques made possible an innovative approach to the challenge of indoor

positioning and navigation that is less difficult to implement and is compatible with existing handheld

devices.

Future directions for research in this area were identified. These include development of an application

that automates conversion of map images into wireless propagation information, incorporation of a

more robust propagation model, and automated accessing of map files hosted on local or remote

servers. Progress in these three areas is deemed necessary for a handheld device application to greatly

improve upon current techniques for indoor navigation.

v

Table of Contents

Abstract ... i

Acknowledgements .. ii

Executive Summary ... iii

Table of Contents.. v

Table of Figures.. ix

Table of Tables ... xi

1 Introduction .. 1

2 Background Research .. 4

2.1 Potential Technologies .. 4

2.1.1 Satellites... 4

2.1.2 Cellular Communication Network ... 5

2.1.3 WiFi .. 5

2.1.4 Bluetooth ... 6

2.1.5 Infrared .. 7

2.1.6 Ultra Wide Band ... 7

2.1.7 Potential Technology Summary .. 9

2.2 Positioning Techniques ... 10

2.2.1 Cell of Origin ... 10

2.2.2 Angle of Arrival ... 10

2.2.3 Angle Difference of Arrival .. 11

2.2.4 Time of Arrival .. 12

2.2.5 Time Difference of Arrival ... 13

2.2.6 Triangulation .. 14

2.2.7 Location Fingerprinting ... 14

2.2.8 Positioning Technique Summary ... 15

2.3 Indoor Propagation Models .. 16

2.3.1 Free Space Model ... 16

2.3.2 One Slope Model .. 16

2.3.3 Multi-Wall Model ... 17

vi

2.3.4 The New Empirical Model ... 18

2.3.5 Modeling Multipath Effects .. 21

2.3.6 Propagation Model Summary ... 22

2.4 Inertial Navigation System .. 23

2.4.1 Dead Reckoning .. 24

2.4.2 Map Matching .. 24

2.5 Mapping Techniques ... 27

2.5.1 Mapping Information Formats .. 27

2.5.2 Map Creation Techniques ... 28

2.5.3 Graphing Representation .. 28

2.5.4 Routing Algorithm .. 28

2.6 Mobile Platforms .. 37

2.6.1 Apple iPhone OS ... 37

2.6.2 Google Android .. 38

2.6.3 Mobile Platform Summary .. 39

2.7 Chapter Summary ... 41

3 Project Overview and Design .. 42

3.1 Goal .. 42

3.2 Objectives ... 42

3.3 Design Requirements .. 43

3.4 Design ... 44

3.5 Positioning Techniques ... 45

3.6 Mobile Platform .. 46

3.7 Summary .. 46

4 Positioning .. 48

4.1 WiFi Positioning .. 48

4.1.1 Propagation Model ... 48

4.1.2 Accuracy Assessment and Calibration ... 49

4.1.3 Location Search Algorithm .. 52

4.2 Inertial Navigation System .. 55

vii

4.2.1 Calibration .. 56

4.2.2 Alignment ... 58

4.2.3 Initial Value .. 61

4.2.4 Evaluation .. 61

4.3 Combining Outputs of WiFi and Inertial Systems ... 63

4.3.1 Inertial Navigation Likelihood Function ... 63

4.3.2 Combining INS Likelihood Function with Previous Position Estimate 65

4.3.3 Combining INS-updated Position and WiFi Position Estimate .. 66

4.4 Summary .. 66

5 Navigation ... 68

5.1 Graphing ... 68

5.2 Routing Algorithm ... 69

5.3 Map Matching .. 69

5.4 Summary .. 71

6 Prototype Implementation ... 72

6.1 Android Platform Architecture .. 72

6.2 Software System Design .. 72

6.2.1 Threading and Synchronization ... 73

6.2.2 Source Code Structure .. 75

6.3 Functional Blocks .. 77

6.3.1 Inertial Navigation System .. 77

6.3.2 WiFi Positioning .. 78

6.3.3 Positioning Fusion .. 79

6.3.4 Database .. 79

6.3.5 Routing ... 79

6.4 Graphical User Interface ... 83

6.4.1 Directory .. 85

6.4.2 Routing ... 86

6.4.3 Map View ... 88

6.5 Summary .. 89

viii

7 Testing and Results ... 90

7.1 Inertial Navigation System Testing .. 90

7.1.1 Quantitative Inertial Navigation System Testing.. 90

7.1.2 Qualitative Inertial Navigation System Testing .. 93

7.2 WiFi Positioning System Testing .. 94

7.3 Integrated Positioning System Testing... 95

7.4 Summary .. 96

8 Conclusion ... 97

9 Recommendations .. 99

9.1 Future Directions .. 99

9.2 Opportunity Analysis... 99

Bibliography.. 100

Appendices ... 102

Appendix A: MATLAB Propagation Simulation.. 102

Propagation Modeling Function ... 102

Supporting Functions ... 107

Appendix B: HTC Android Application Source Code .. 114

Activity .. 114

Map ... 127

Positioning ... 151

View .. 169

Utilities .. 174

Appendix C: Database files... 182

Nodes.txt ... 182

Edges.txt .. 184

Walls.txt .. 186

ix

Table of Figures

Figure 2-1: Time of Arrival 12

Figure 2-2: Time Difference of Arrival 13

Figure 2-3: Triangulation 14

Figure 2-4: Angle Dependence of Propagation Model: Non-normal Paths Experience Greater Loss 18

Figure 2-5: Partial Obstruction of First Fresnel Zone by Floor and Ceiling 20

Figure 2-6: Simple Diffraction Diagram 22

Figure 2-7: Integration Drift 23

Figure 2-8: Using map matching to estimate the position of the device 25

Figure 2-9: This picture shows possible errors in a map matching algorithm 26

Figure 2-10: Dijkstra’s Diagram at Time 0 after Initialization 29

Figure 2-11: Dijkstra's Diagram Starting from Node 1 30

Figure 2-12: Dijkstra's Diagram when Node 2 is optimized 31

Figure 2-13: Dijkstra's Diagram when Node 4 is optimized 32

Figure 2-14: Dijkstra's Diagram when Node 3 is optimized 32

Figure 2-15: Dijkstra's Diagram when Node 5 is optimized 33

Figure 2-16: Dijkstra's Diagram when the Destination Node is optimized 34

Figure 2-17: The four platform software layers of the iPhone OS (from [20]) 37

Figure 2-18: Google Android Operating System Architecture Framework (from [21]) 39

Figure 2-19: Consumer Popularity of Mobile Platform in July 2009 40

Figure 2-20: Developer Popularity of Mobile Platform in July 2009 41

Figure 3-1: System Design Block Diagram 44

Figure 4-1: Propagation Model Software Flowchart 49

Figure 4-2: Accuracy Testing Points 50

Figure 4-3: Test Results Showing Moderate Correlation between Measured and Predicted Values 50

Figure 4-4: Test Results Showing Strong Correlation between Measured and Predicted Values 51

Figure 4-5: Example Signal Strength Variation 52

Figure 4-6: Received Signal Strength with PDF 54

Figure 4-7: Sample Likelihood Plot (Single WAP) 54

Figure 4-8: Sample Likelihood Plot (Multiple WAPs) 55

Figure 4-9: An inertial navigation system design 55

Figure 4-10: The Earth’s coordination system in three dimensions 59

x

Figure 4-11: Motion Detection from Inertial Navigation System 62

Figure 4-12: Sample INS Likelihood Distribution 65

Figure 4-13: Example Positioning Functionality 67

Figure 5-1: The graph of the 2nd floor of Engineering Research Building 70

Figure 5-2: Map Matching Algorithm example 71

Figure 6-1: Application Software General Functional Blocks 73

Figure 6-2: Application Main Threads and Functions 74

Figure 6-3: Threads & Static Memories Dependencies 75

Figure 6-4: Application Source Code Structure 76

Figure 6-5: Inertial Navigation System Software Flowchart 78

Figure 6-6: Non-optimized Dijkstra Software Flow Chart 80

Figure 6-7: Optimized Dijkstra with Fibonacci Heap Software Flow Chart 82

Figure 6-8: HTC Hero Physical I/O Device for User Interaction 83

Figure 6-9: Application Home Screen 84

Figure 6-10: Application State Map 84

Figure 6-11: Directory View Home Screen and is expanded view 85

Figure 6-12: Direction Pop Up Menu & View Menu Option 86

Figure 6-13: Linking from the Directory screen to Get Direction screen 87

Figure 6-14: Auto-complete feature in Routing GUI 87

Figure 6-15: Map View screen with and without route directions 88

Figure 6-16: Finding the current position of the user and display it on the screen 89

Figure 7-1: INS Test Locations 91

Figure 7-2: Quad-Directional INS Test Results for Standing and Walking Trials 91

Figure 7-3: Direction-Normalized INS Test Results for Standing and Walking Cases 92

Figure 7-4: Histograms of Radial and Angular Data from INS Testing 93

Figure 7-5: Instantaneous WiFi Positioning Plot 94

Figure 7-6: HTC Position Estimates 95

Figure 7-7: Nodes and Links for Map Matching 96

Figure 7-8: Map Matched Position Estimates 96

xi

Table of Tables

Table 2-1: Common RSSI to RSS conversions [10] 6

Table 2-2: Pros and cons of the possible reference signals 9

Table 2-3: Pros and cons of each positioning technique 15

Table 2-4: One Slope Model Exponent Values [7] 17

Table 2-5: Breakpoint Distances for Common Frequencies 20

Table 2-6: Diffraction Coefficients [16] 21

Table 2-7: Pros and cons of each propagation model 22

Table 2-8: Pros and cons of each possible routing algorithm 36

Table 2-9: Pros and cons of each mobile platform 41

Table 3-1: The design requirements include four subsystems and their descriptions 43

Table 3-2: The HTC Hero specification sheet [23] 47

Table 4-1: The accelerometer output in the three positions 57

Table 4-2: A sample of the compass’ output 58

1

1 Introduction

Technological advances within the past decade have caused a surge in the proliferation of personal

locating technologies. Early consumer grade locating systems manifested as Global Position System

(GPS) receivers fit for mounting on automobiles, aircraft, and watercraft. As computing and

communication technologies have advanced, companies including Garmin Ltd., TomTom International,

and Magellan Navigation Inc. have offered systems with increased usability and functionality. Current

systems on the dashboard mounted, handheld, and wristwatch scales provide users the ability to

determine their current location and find their way to their destination. Today’s advanced systems use

measurements of signals from GPS, cellular communication towers, and wireless internet (WiFi) access

points to locate the user.

Internet enabled mobile devices are becoming ubiquitous in the personal and business marketplaces.

Integration of locating technologies into these smartphones has made the use of handheld devices that

are dedicated to positioning obsolete. The availability of powerful communication and computing

systems on the handheld scale has created many opportunities for readdressing problems that have

historically been solved in other ways.

One such problem is indoor navigation. The signals used by outdoor locating technologies are often

inadequate in this setting. Systems that rely on the use of cellular communication signals or

identification of nearby WiFi access points do not provide sufficient accuracy to discriminate between

the individual rooms of a building. GPS based systems can achieve sufficient accuracy, but are unreliable

indoors due to signal interference caused by walls, floors, furniture, and other objects. Due to these

limitations, navigation inside unfamiliar buildings is still accomplished by studying large maps posted in

building lobbies and common areas. If created, a system capable of locating a person and directing

them to their destination would be more convenient and would provide functionality that a static wall

map cannot.

Research into indoor positioning systems has identified some possible technologies, but none of these

has been developed and distributed to consumers. One possibility is to install transmitters in the

building to reproduce GPS signals. Implementation of this approach, called Pseudolite GPS, can yield

high accuracy [1]. An alternate approach is to install electromagnetic reference beacons within the

building that can be used to triangulate a devices position. This approach has been tested using a

2

variety of reference signals; Ultra-Wideband [2], Bluetooth [3], and Radio Frequency [4] are among the

most common. WiFi access point fingerprinting is a third approach. It is desirable because it does not

necessitate the installation of additional transmitters; it makes use of existing WiFi access points [5].

Though there is no hardware installation requirement, implementing a WiFi fingerprinting based system

requires the user to characterize their indoor environment by taking myriad measurements throughout

the structure. It was determined that an indoor location system based on any of these techniques was

feasible, but they present implementation and compatibility challenges that make them unfit for use in

an ubiquitous handheld device based system.

In this project, an indoor navigation system that provides positioning and navigation capabilities is

proposed and tested. The hardware installation requirement is alleviated through the use of existing

WiFi access points and through the integration of the final software application with a popular

smartphone. While previous systems that make use of WiFi access points require a lengthy period of

data collection and calibration, this system does not. Data on the positions of walls and WiFi access

points in the building is used to simulate WiFi fingerprint data without a time-consuming measurement

requirement.

The WiFi positioning capability is augmented through the use of two other sensors common to

smartphones: an inertial sensor typically used to characterize phone motion, and a magnetic sensor that

acts as the phones compass in traditional navigation applications. Taken together, these sensors can be

used to form a rudimentary inertial navigation system (INS) that estimates the nature and direction of a

user’s motion. Tracking a moving user’s location in the building is better accomplished by combining

this information with the output of the WiFi positioning system.

In addition to the positioning subsystem, a database and a navigation system are implemented to

increase system usability. The database allows the user to search a directory of people and places

within the building. The navigation subsystem informs the user of the optimal route to their

destination. These system components form a software application that is accessible through an

intuitive user interface.

Through completion of this project, contributions have been made to the indoor positioning knowledge

base. An integrated propagation model was used to simulate wireless propagation and negate the need

for data collection in a WiFi-fingerprinting like system. Also, a statistical method was developed for

estimating position based on successive, unreliable, measurements from WiFi positioning and inertial

3

navigation sensors. The development of these techniques made possible an innovative approach to the

challenge of indoor navigation.

The remainder of this report is structured to first provide the reader with background information

(Chapter 2) in the relevant areas of wireless positioning technologies, common positioning techniques,

WiFi propagation, mapping, INS, navigation, and smartphone platforms. Chapter 3 contains an overview

of the project including goals, and objectives. It also details the design choices and system architecture,

as well as the design requirements that led to them. Chapters 4, 5, and 6 are detailed descriptions of

the positioning, navigation, and software application, respectively. Chapter 7 describes system testing.

Chapter 8 contains conclusions drawn about the process used and result reached, with regards to the

design choices made, as well as the overall system. Chapter 9 contains recommendations for future

work, as well as an analysis of opportunities to apply knowledge gained through designing this system.

Following the body of the report, appendices contain relevant information that was either unnecessary

or too large to include in the main text.

4

2 Background Research

The proliferation of mobile devices and the growing demand for location aware systems that filter

information based on current device location have led to an increase in research and product

development in this field [4]. However, most efforts have focused on the usability aspect of the

problem and have failed to develop innovative techniques that address the essential challenge of this

problem: the positioning technique itself. This section describes various techniques for positioning and

navigation that have been researched before and are applicable to this project.

2.1 Potential Technologies

The follow section describes reference signals considered for use in this system.

2.1.1 Satellites

Satellite navigation systems provide geo-spatial positioning with global coverage. Currently there are

several global navigation satellite systems dedicated to civil positioning including the US NAVSTAR

Global Positioning System (GPS), the Russian GLONASS, and the European Union’s Galileo [6]. The

advantage of satellite systems is that receivers can determine latitude, longitude, and altitude to a high

degree of accuracy. However, line of sight (LOS) is required for the functioning of these systems. This

leads to an inability to use these systems for an indoor environment where the LOS is blocked by walls

and roofs.

GPS is a semi-accurate global positioning and navigating system for outdoor applications [7]. The GPS

system consists of 24 satellites equally spaced in six orbital planes 20,200 km above the Earth [8]. The

accuracy of GPS devices is consistently improving but is still in the range of 5-6 meters in open space. A

GPS device cannot be used for an indoor environment because the LOS is blocked.

Methods have been developed to overcome the LOS requirement of GPS by setting up pseudolite

systems that imitate GPS satellites by sending GPS-like correction signals to receiver within the building.

A system has been developed by the Seoul National University GPS Lab, which achieves sub-centimeter

accuracy for indoor GPS navigation system [1]. This system has a convergence time of under 0.1

seconds, which helps to increase the responsiveness for a mobile user. This system uses pseudolites and

a reference station to assist a GPS mobile vehicle in an indoor environment. The pseudolites have a

fixed position and use an inverse carrier phase differential GPS to calculate the mobile user’s position.

The reference station is also fixed and transmits carrier phase correction to the mobile user. The system

5

faces several challenges including serious multipath propagation errors and strict pseudolite

synchronization requirements. The multipath propagation is addressed through the use of a pulse

scheme. Using a center pseudolite solves the synchronization problem. The prototype has achieved

0.14 cm static error and 0.79 cm dynamic error. However, this system is very financially costly to

implement, due to the requirement for a large number of pseudolites.

Assisted GPS (A-GPS) is primarily used in cellular phones [7]. The A-GPS method uses assistance from a

third party service provider, such as a cell phone network, to assist the mobile device by instructing it to

search for particular satellite. Also, data from the device itself is used to perform positioning calculations

that might not otherwise be possible due to limited computational power. A-GPS is useful when some

satellite signals are weak or unavailable. The cell tower provides information that assists the GPS

receiver. When using A-GPS, accuracy is typically around 10-20 meters but suffers similar indoor

limitations to standalone GPS [7].

2.1.2 Cellular Communication Network

A Cellular Communication Network is a system that allows mobile phones to communicate with each

other. This system uses large cell towers to wirelessly connect mobile devices. The range of cellular

communication networks depends on the density of large buildings, trees and other possible

obstructions. Maximum range for a cell tower is 35 kilometers in an open rural area [9]. This method is

a basic technique using Cell-ID, also called Cell of Origin, to provide location services for cell phone users

[8]. This method is based on the capability of the network to estimate the position of a cell phone by

identifying the cell tower that the device is using at a specific time. The advantage of this technique is

its ubiquitous distribution, easy implementation and the fact that all mobile cell phones support it. The

accuracy of this technique is very low due to the fact that cell towers can support ranges of 35

kilometers or more. In urban environments cell towers are distributed more densely.

2.1.3 WiFi

Wireless Fidelity (WiFi) is the common nickname for the IEEE 802.11 standard. Wireless connectivity is

more prevalent than ever in our everyday lives. Each wireless router broadcasts a signal that is received

by devices in the area. Wireless devices have the capability to measure the strength of this signal. This

strength is converted to a number, known as received signal strength indicator (RSSI). A user’s device

can detect the RSSI and MAC address of multiple routers at one time.

6

RSSI is a dimensionless metric that is used by systems to compare the strength of signals from multiple

access points. There is no standard conversion between RSSI and the actual received signal strength

(RSS); many manufacturers have their own conversion schemes. Important characteristics of RSSI to RSS

conversions include: The maximum and minimum RSSI values (dimensionless integers), the maximum

and minimum RSS values that can be represented (dBm), and the resolution of the conversion (value in

dBm represented by one RSSI unit). Table 2-1 includes these quantities for common manufacturers.

Table 2-1: Common RSSI to RSS conversions [10]

Manufacturer RSSI Min RSSI Max RSS Min RSS Max Resolution

Atheros 0 60 -95dBm -35dBm 1dBm

Symbol 0 31 -100dBm -50dBm 10dBm

Cisco 0 100 -113dBm -10dBm 1dBm

The method of conversion is different for each of the manufactures included in Table 2-1. To map an

Atheros RSSI value to the associated RSS range, a subtraction of 95 from the RSSI value must be carried

out. The Symbol conversion maps ranges of RSSI values to specific RSS values. For example, Symbol RSSI

values between 21 and 26 all map to -60dBm. The Cisco conversion is carried out using a table that maps

each RSSI value to a specific RSS value. For example, the Cisco RSSI value 35 maps to -77dBm. The

Atheros and Cisco WiFi adapters are desirable in applications where accuracy of RSS measurements is

important due to the higher resolution of the conversions used by these manufacturers. WiFi devices

such as laptops and smartphones typically perform this conversion automatically in order to provide

signal strength information to applications running on the device [10].

An advantage of WiFi is that wireless networks are universal. They exist in population-dense areas and

are continuously spreading outward. This causes WiFi based systems to have a lower cost of

implementation.

2.1.4 Bluetooth

Bluetooth is a wireless communication method used by two devices over short distances. Bluetooth is

the IEEE 802.15 standard and is similar to WiFi. Maximum distance for Bluetooth communication is up

to 100 meters for a class 1 Bluetooth set [11]. The devices can send a maximum of 3Mb/s.

Implementation can be highly expensive.

7

2.1.5 Infrared

Infrared (IR) wireless networking was a pioneer technology in the field of indoor positioning [4].

However, this system has faced several fundamental problems. The primary challenge is the limited

range of an IR network. Also, Infrared does not have any method for providing data networking

services.

An early implementation of an IR technique is the Active Badge System. This is a remote positioning

system in which the location of a person is determined from the unique IR signal emitted every ten

seconds by a badge they are wearing. The signals are captured by sensors placed at various locations

inside a building and relay information to a central location manager system. The accuracy achieved

from this system is fairly high in indoor environments. However, the system suffers from several

limitations such as the sensor installation cost due to the limited range of IR, maintenance cost, and the

receiver’s sensitivity to sunlight, which often occurs in rooms with windows.

2.1.6 Ultra Wide Band

Ultra-wideband (UWB) signals used for positioning are receiving increased attention recently due to

their capability of providing centimeter accurate positioning information [2]. UWB advantages include

low power density and wide bandwidth, which increases the reliability. The use of a wide range of

frequency components increases the probability that a signal will go around an obstacle, offering higher

resolution. Also, the system is subject to less interference from other radio frequencies that are in use in

the area. The nature of the UWB signal allows the time delay approach to provide higher accuracy than

signal strength or directional approaches because the accuracy of time delay positioning is inversly

proportional to the effective bandwidth of the signals. This is shown in the formulas given below.

The accuracy of the signal strength measurement is based on Cramér-Rao Lower Bound (CRLB) for

distance estimates as follows:

. (1)

In the formula, is the signal strength accuracy; d is the distance between the two nodes; is

the path loss factor; is the standard deviation of the zero mean Gaussian random variable

representing the log-normal channel shadowing effect. The formula for the accuracy of time delay

8

measurements of a single path, additive, white, Gaussian noise (AWGN) channel shows that the

accuracy depends directly on the effective signal bandwidth β of the transmitted UWB signal, namely:

 (2)

In the formula, is the signal strength accuracy; c is the speed of light; SNR is signal-to-noise

ratio; and β is the effective (or root mean square) signal bandwidth. The financial implementation cost

includes a sufficient network of UWB stations in order to perform positioning techniques.

9

2.1.7 Potential Technology Summary

A summary of the pros and cons of each potential technology is detailed in Table 2-2.

Table 2-2: Pros and cons of the possible reference signals

Potential

Technologies

Pros Cons

GPS

 Moderate to high outdoor

accuracy

 High availability

 Low to minimal indoor

accuracy

A-GPS Moderate outdoor accuracy Minimal indoor accuracy

Pseudolite GPS
 High indoor and outdoor

accuracy

 Very expensive

equipment

Cell Tower Long range

 Highly inaccurate for

both indoors and

outdoors

WiFi

 Readily available throughout

most buildings

 Minimal costs for

implementation

 Medium range

 Network strength can

vary due to multipath

propagation

Bluetooth
 Low power

 Low financial cost

 Moderate to low range

 High cost of

implementation

Infrared Moderate to high accuracy

 High costs for

implementation

 Sunlight can affect

outcome

 Low range

UWB

 High accuracy

 Low power density

 Wide bandwidth

 High cost for

implementation

 Not commonly used

10

2.2 Positioning Techniques

In order to navigate within a building, one must first determine one’s current location. In this section,

multiple positioning techniques are described. Two factors of particular importance in the consideration

of positioning techniques are accuracy and convergence time. These factors should be for the case in

which the device determining the position is stationary and for the case in which the device is moving.

There are two different methods for implementing a positioning system: self and remote positioning [8].

In self-positioning, the physical location is self-determined by the user’s device using transmitted signals

from terrestrial or satellite beacons. The location is known by the user and can be used by applications

and services operating on the user’s mobile device. In remote positioning, the location is determined at

the server side using signals emitted from the user device. The location is then either used by the server

in a tracking software system, or transmitted back to the device through a data transfer method.

The performance of a positioning and navigation system is typically rated on four different aspects that

civil aviation authorities have defined for their systems: accuracy, integrity, availability and continuity

[12]. These parameters focus on addressing the service quality for the mobile user including navigation

service and coverage area. The accuracy of a system is a measure of the probability that the user

experiences an error at a location and at a given time. The integrity of a system is a measure of the

probability that the accuracy error is within a specified limit. The availability of a system is a measure of

its capability to meet accuracy and integrity requirements simultaneously. The continuity of a system is

a measure of the minimum time interval for which the service is available to the user. These concepts

will be used later to evaluate the quality of service of the system created in this project. The errors and

capabilities of this system will be analyzed and stated explicitly.

2.2.1 Cell of Origin

Cell-of-origin systems use information from cellular information towers to inform a user of their

approximate location [7]. COO determines the Cell tower to which the user is closest. Cell sizes can

range from hundreds of meters to dozens of kilometers [9]. While directionality and timing

measurements can be used to improve accuracy, indoor accuracy remains in the hundreds of meters at

best.

2.2.2 Angle of Arrival

Angle of arrival (AOA) is a remote positioning method that makes use of multiple base stations to

approximate a user’s location [7]. In an AOA remote positioning system, two base stations of known

11

position and orientation must determine the angle at which the signal from the user arrived. The angle

is determined by steering a directional antenna beam until the maximum signal strength acquired or its

coherent phase is detected. The position is determined by the intersection of the locus of each of base

station AOA measurement, which is a straight line. If the user and the base stations are not coplanar

then three-dimensional directional antennas are required. The use of more base stations than required

can greatly improve accuracy. The overall accuracy of the system depends on signal propagation, the

accuracy of the directional antennas used and the distance from the antennas to the device.

2.2.3 Angle Difference of Arrival

Angle difference of arrival (ADOA) is a self-positioning method that makes use of multiple base stations

to approximate a user’s location [13]. In an ADOA positioning system a device equipped with a

directional antenna must determine the relative angle at which signals from three base stations of

known location arrived. The requirement for an additional base station develops due to the unknown

orientation of the user. If the user and the base stations are not coplanar then three-dimensional

directional antennas are required. Otherwise, two-dimensional arrays are sufficient. The use of more

base stations than required can greatly improve accuracy. The overall accuracy of the system depends

on signal propagation and the accuracy of the directional antennas used.

12

2.2.4 Time of Arrival

Time of Arrival (TOA) is a method of positioning that uses a form of triangulation to determine the user’s

location [7]. The distance is derived from the absolute time of travel of a wave between a transmitter

and a receiver. To perform triangulation, the distance to each of three base stations of known position

is determined (Figure 2-1). In a synchronous system, the propagation time can be directly converted to

distance but requires the receiver to know the exact time of transmission. In an asynchronous system, a

send and receive protocol that converts round trip time into distance must be used. With three

distances known, a triangulation can be used to solve for the position. Accuracy is subject to

propagation delay errors and the accuracy of timing measurements.

Figure 2-1: Time of Arrival

13

2.2.5 Time Difference of Arrival

Time difference of arrival (TDOA) is similar to TOA. TDOA requires synchronous base stations but does

not require synchronicity between base station and user [7]. Additionally, the user is not required to be

able to transmit to the base stations. The position is determined from the intersection of the locus of

the time difference of arrival at the receiver, which is hyperbolic in a two-dimensional plane and

hyperboloid in three-dimensional space. A TDOA system requires a number of base stations that is one

greater than the number of dimensions. Accuracy is similar to TOA subjected to the time of arrival

measurement and the time synchronization between base stations in the system.

Figure 2-2: Time Difference of Arrival

14

2.2.6 Triangulation

In an environment with known propagation losses, signal strength can be directly converted to distance

[7]. In free space, signal strength varies with the inverse of the square of the distance from transmitter

to receiver. To accurately convert to distance in a real setting, factors such as antenna gains and

interference from objects in the signal path must be accounted for. This method’s accuracy depends on

the accuracy with which the propagation losses can be estimated. It is also simple to implement.

Figure 2-3: Triangulation

2.2.7 Location Fingerprinting

Location fingerprinting is a positioning technique that compares measured RSSI data to a database of

expected values to estimate location [5]. Typically, measurements are taken in an arbitrary grid pattern

around the building. A multiple matrix correlation algorithm can be used to search this database for the

best match, thus giving a position estimate. This method is highly accurate but takes a long time to

implement.

15

2.2.8 Positioning Technique Summary

A summary of the pros and cons of each positioning technique is detailed in Table 2-3.

Table 2-3: Pros and cons of each positioning technique

Positioning Technique Pros Cons

Cell of Origin
 Base stations exist (cell
towers)

 Base stations never move
 Highly inaccurate

Angle of Arrival Moderate accuracy with
appropriate hardware

 Requires directional
antenna(s)

 Requires knowledge of
orientation

Angle Difference of Arrival Doesn’t require knowledge of
orientation

 Requires and additional base
station

Time of Arrival Moderate indoor performance

 Base stations must be
synchronized

 Low overall accuracy

Time Difference of Arrival Moderate indoor performance Low overall accuracy

Triangulation Very simple
 Requires determination of

angles

Location Fingerprinting High accuracy
 High calibration time

requirement

16

2.3 Indoor Propagation Models

To accurately determine an indoor location using wireless signals as references, an accurate model of

signal propagation is necessary. Received signal strengths are affected by walls, people, furniture, and

other objects, as well as multipath phenomenon. To accurately simulate these effects, multiple models

are considered.

2.3.1 Free Space Model

In free space, received signal power is inversely proportional to the square of the distance from source

to transmitter. Received power and distance vary according to the relation:

. (3)

In signal propagation it is often useful to consider the path loss between two points. This quantity is

typically represented in decibels () and is defined as the logarithm of the quantity received power

(divided by transmitted power (), as follows:

. (4)

In order to represent path loss as a function of a distance () from the transmitter, power at a reference

distance () from the transmitter is used as follows:

. (5)

Using this model, free space propagation loss can be determined when only the distance from the

transmitter and the propagation loss at a reference distance from the transmitter are known.

2.3.2 One Slope Model

The one slope model is based on the free space model, but attempts to take into account non-free space

environments [7]. The formula for the one slope model is:

. (6)

The quantity ‘ ’ is the path-loss exponent and is varied depending on the environment. This value is

lower than 2 in environments that exhibit less loss than free space, and is higher than 2 in environments

with more loss than free space. Table 2-4 shows typical values used for various environments.

17

Table 2-4: One Slope Model Exponent Values [7]

Environment Path-loss exponent

Free Space 2.0

Urban Area Cellular 2.7 – 4.0

Shadowed Urban Cellular 3.0 – 5.0

In-Building Line of Sight 1.6 – 1.8

In-Factory Line of Sight 1.6 – 2.0

In-Building One-Floor non-Line of Sight 2.0 – 4.0

Obstructed In-Building 4.0 – 6.0

Obstructed In-Factory 2.0 – 3.0

While this model is adaptable to various environments, its primary limitation is that it treats buildings as

if they are homogenous structures. In reality buildings consist of mostly free space with localized

distortions caused by walls, floors, furniture, and other objects.

2.3.3 Multi-Wall Model

A model that attempts to account for the heterogeneous make-up of buildings is a multi-wall model

[14]. The model accounts for free space losses, wall losses, and floor losses, represented by:

 (7)

In this model, the path-loss exponent (), distance from transmitter to receiver (), a reference distance

(), the number of walls intersected by the path (), the number of floors intersected by the path (),

an array of wall attenuation factors (), and an array of floor attenuation factors (). The

attenuation factor for a floor or wall is a measure, in decibels, of the path loss incurred by a signal that

passes through that surface.

This model is an improvement over the one slope model in that it distinguishes between indoor free

space and solid objects. Further complexities can be added to better model indoor propagation.

18

2.3.4 The New Empirical Model

Cheung et al. have proposed a model that takes into account angles of incidence on walls and floors, as

well as a commonly observed break point phenomenon [14]. The reasons for these additions are

further explained in sections 2.3.4.1 and 2.3.4.2. In the model:

, (8)

there are two path-loss exponents () and (). The first exponent models losses at distances (d)

between the reference distance (d1) and the break point distance (). The second exponent models

losses at distances (d) greater than the breakpoint distance. As in the multi-wall model, other included

terms are: the number of walls intersected by the path (), the number of floors intersected by the path

(), an array of wall attenuation factors (), and an array of floor attenuation factors (). The

angles and are angles of incidence between the propagation path and the surfaces it passes

through.

2.3.4.1 Angle Dependence of Propagation Model

In the multiwall model [14], the arguments of the summation terms are divided by a trigonometric

function. This term accounts for the change in interference for paths that are not normal to the wall or

floor. As seen in Figure 2-4, the left arrow, which represents a perpendicular path, passes through a wall

in a shorter distance than the right arrow, which represents a non-perpendicular path. This is clear in

the figure, in which the red path section is longer than the blue path section.

Figure 2-4: Angle Dependence of Propagation Model: Non-normal Paths Experience Greater Loss

19

2.3.4.2 Break Point Phenomenon

The break point concept incorporated into the new empirical model hinges on the concept of Fresnel

zones [14]. To develop the concept of Fresnel zones, first consider the straight line path TR between a

transmitter T and a receiver R. Next consider a plane P that intersects and is perpendicular to TR. Next,

in plane P, construct a circle C with its center at the intersection of P and TR. Any path TCR that passes

from point T to a point on C, and then from a point on C to point R is longer than the straight line path

TR. The path-length difference between TR and TCR increases from zero to infinity as the radius of C is

increased. There then exists for any signal frequency a family of circles with the property that the path

TCR is an odd multiple of radians out of phase with the straight-line path (for example: , , , and so

forth). It is clear that the radius of varies according to the location of plane P along path TR. Each circle

will have its greatest radius at the midpoint of TR. It can be shown that the set of each circle C, one

located at each of the infinite set of locations of P between T and R, defines an ellipsoid of revolution E

with foci at T and R. It is clear that as there is a set of concentric circles in each plane, there is also a set

of concentric ellipsoids. The region within the smallest ellipsoid and the regions that lay between each

consecutive pair of ellipsoids are called Fresnel zones and are denoted F1, F2, F3, and so forth.

Contributions from signals passing through successive Fresnel zones are in phase opposition due to the

difference in path lengths. Signals passing through odd Fresnel zones are between and radians out

of phase with the path TR and so contribute constructive interference. Signals passing through even

Fresnel zones are between and radians out of phase with the path TR and so contribute destructive

interference. Signal density is greatest near the straight line path, so interference with lower numbered

Fresnel zones causes greater effects. Interference with the zone F1 can lead to path losses far greater

than those experienced in free space. For this reason, it is desirable to keep the first Fresnel zone free

of obstruction in radio communication systems [15].

In the case of indoor propagation, line-of-sight paths between transmitter and receiver often do not

exist. While it is impractical to calculate the impact of all obstacles on the infinite number of Fresnel

zones, a common simplification in indoor settings is to determine the distance between transmitter and

receiver at which the floor and ceiling begin to obstruct the first Fresnel zone. An example of this

situation is illustrated in Figure 2-5.

20

Figure 2-5: Partial Obstruction of First Fresnel Zone by Floor and Ceiling

The radius of the first Fresnel zone for a receiver that is distance from a transmitter transmitting

with wavelength is defined by:

 , (9)

where , , and are expressed in meters. It follows that the distance at which the Fresnel zone F1 is

first obstructed by a floor-ceiling pair with separation is:

 . (10)

This value is referred to as the break-point distance because path losses will increase past this range. In

the New Empirical model referenced in Section 2.3.4, this is the reason for the difference between path

loss exponents and . Table 2-5 gives example distance at which this obstruction occurs in a

building with three meter ceilings for common communication frequencies.

Table 2-5: Breakpoint Distances for Common Frequencies

Transmission Frequency Transmission Wavelength Calculated Break-Point Distance

800MHz 0.375m 24m

2.4GHz 0.125m 72m

5.0GHz 0.060m 150m

21

As can be seen in Table 2-5, the breakpoint is typically distant at high frequencies when the floor-ceiling

separation limits the Fresnel zone’s major diameter. Other limitations, most notably widths of hallways,

can cause the observed breakpoint distance to be smaller than the calculated distance.

2.3.5 Modeling Multipath Effects

In non free-space environments, paths other than the direct path from transmitter to receiver must be

considered. Though the breakpoint phenomenon discussed in Section Paths that include reflection and

diffraction can often increase or decreases the signal strength at a point.

In a typical indoor setting there exist many corners and edges that can contribute to diffraction. To

model this phenomenon in simulations, the diffracted path is usually divided into sections. As in:

, (11)

separate terms are used for propagation from source to edge, diffraction at the edge, and propagation

from edge to destination. The quantities and are the distance from the

signal source to the edge at which diffraction will occur and the distance from that edge to the signal

destination, respectively.

Table 2-6: Diffraction Coefficients [16]

Diffraction Coefficient Formula

Sommerfield – perpendicular

Sommerfield – parallel

Felsen Absorber

KED Screen

The new empirical model presented above is well suited to calculate the first and third terms, but

additional calculation is necessary to simulate diffraction at the edge. This is accomplished through the

use of a diffraction coefficient term (above) that models the diffraction phenomenon. (The

term coefficient is used because absolute path loss is in fact the product of the three terms above; the

22

terms are summed in decibel notation.) Four common diffraction coefficient formulas are displayed in

Table 2-6.

These equations for diffraction coefficients are functions of the angle between the incident signal and

the wall and the angle between the screen and the signal path to the destination taken as seen in

Figure 2-6.

Figure 2-6: Simple Diffraction Diagram

2.3.6 Propagation Model Summary

A summary of the pros and cons of each propagation model is detailed in Table 2-7.

Table 2-7: Pros and cons of each propagation model

Propagation Model Pros Cons

Free Space Model Computationally simple
 Ignores surrounding

environment

One Slope Model
 Computationally simple
 Differentiates between

indoor and free space

 Treats surrounding
environment as
homogenous

Multi-Wall Model Accounts for walls and
floors and free space

 Ignores multipath effects
and angle dependencies

New Empirical Model
 More accurate than Multi-

Wall model

 Models breakpoint

 Computational cost

 No diffraction or
reflection modeled

Use of Diffraction

Coefficients
 Models diffraction around

corners

 No diffraction modeled

 Very high computational
cost

23

2.4 Inertial Navigation System

An Inertial Navigation System (INS) is a navigation system that estimates the devices current position

relative to the initial position by incorporating the acceleration, velocity, direction and initial position.

An INS system typically needs an accelerometer to measure motion, a gyroscope or similar sensing

devices to measure direction, and a computer to perform calculations. The position relative to initial

position can be calculated from the accelerometer measurements, which provides movement

information relative to a previous location. With the accelerometer alone, the system could detect

relative motion. The use of additional hardware such as a compass is necessary to tell the direction of

movement.

The output of the accelerometer is a measure of the acceleration in three dimensions; the velocity in an

inertial reference frame can be calculated by integrating the inertial acceleration over time. Then the

position can be deduced by integrating the velocity.

The INS is usually subjected to “integration drift,” which is the error in measurement of acceleration and

angular velocity. Since these errors are integrated each iteration, they will be compounded into greater

inaccuracy over time. Therefore, INS is often used to supplement another navigation system to provide

a higher degree of accuracy. An example of integration drift is seen in Figure 2-7. The red bars denote

individual errors.

Figure 2-7: Integration Drift

0

5

10

15

20

25

30

35

40

0 10 20 30 40

Integration Drift Example

Estimated Position Actual Position

24

2.4.1 Dead Reckoning

Dead Reckoning (DR) is the process used to estimate the position of an object relative to an initial

position, by calculating the current position from the estimated velocity, travel time and direction

course. Modern inertial navigation systems depend on DR in many applications, especially automated

vehicle applications.

A disadvantage of dead reckoning is that the errors could be potentially large due to its cumulative

nature. The reason is that the new position is estimated only from the knowledge of a correct previous

position; therefore any probability of error will grow exponentially over time. Another challenge of this

approach is that while it is used widely for inertial navigation systems, implementation on personal

device is difficult due to the low quality sensors available [12]. The sensor noise will blur the signal and

increase the potential error.

A method developed by the Geodetic Engineering Laboratory of EPFL utilizes a low cost inertial system

that detects human steps and identifies the step length based on biomechanical characteristic of the

step. The type of step can depend on different factors such as gender, age, height and weight of the

person. Their model is constructed and tested with blind people whose steps vary greatly depending on

familiarity with the area.

2.4.2 Map Matching

Map matching is a method for merging data from signal positioning and the digital map network to

estimate the location of the mobile object that best matches the digital map. The reason that such

techniques are necessary is that the location acquired from positioning techniques is subject to errors.

Map matching is often helpful when the position is expected to be on a certain path, such as in the

problem of tracking a moving vehicle on the route of GPS device.

Figure 2-8 provides a general system block diagram of a map matching process. The inputs of the

process are a digital map and positioning data. The digital map data is not a graphical picture

representation of an area but often in the form of a list of polylines in a graph [17]. The positioning

estimates are often not on the polyline provided, but scattered due to errors in the positioning system.

The map matching process will produce outputs that lay on the polyline. An example output is a GPS

device in a driving vehicle that matches the position of the car to the nearest road.

25

Figure 2-8: Using map matching to estimate the position of the device

There are two forms of map matching algorithms: online and offline. The online map matching

algorithm deals with situations in which only current and past data available to estimate the position

similar to the GPS device in a car. The offline map-matching algorithm is used when there is some or all

future data is available, such as a recorded track of a moving object.

The process of matching often involves three different phases: nomination, selection and calculation. In

the nomination phase, with the given positioning data, the algorithm will choose all the potential

polylines in the graph that the position could be on. The criterion for choosing a polyline is the normal

distance between the point and the polyline. If the distance is within the considered threshold, the

polyline will be chosen for the next step. The purpose of the nomination is to filter out all the polylines

that are too far away and unlikely to be the correct one. In the selection phase, a best polyline will be

chosen from the set of polylines filtered in the previous phase. This is the important part of the

algorithm to determine which one is the correct polyline. The criteria to consider can include last

positions, last correct polylines, estimation of future position, normal distance between the points and

the line. After a polyline is chosen, in the last phase, calculation, the estimated position on the polyline

of the point is computed and is given as the output of the process.

The error that is often exhibited in the map matching algorithm, specifically with online map matching,

is when the position is close to an intersection where the chosen polyline based on shortest distance

method may not be the correct polyline to map the mobile object to. This type of error is illustrated in

the Figure 2-9.

26

Figure 2-9: This picture shows possible errors in a map matching algorithm

In Figure 2-9, the green points represent the actual positioning data recorded from time zero from left

to right. The red point is the positioning data recorded that has received an incorrect map matching

estimation. The lines are the polylines in the graph that fall within the threshold range. The green line is

the polyline that has been chosen for previous positions. In this case, the map matching algorithm

mistakes the black line as the closest polyline to the red point. This would not be considered an error if

we do not know the next point, which for illustration purpose, is shown as the point on the right side of

the black line. When the position is close to an intersection, it will create an ambiguous situation where

the object could go straight or make a turn at the intersection. No correct position can be determined,

given the limited information available to the online map matching method for use in guaranteeing

which line the point should be on. However, for offline map matching with the information of future

points, we can safely deduct that the red point should be on the green line despite a closer distance to

the black line. Offline algorithm can provide a better estimation when future information is considered

with correction by combining previous and future matched points. This problem is inherent within

online map matching and can only be solved in offline map matching. A possible solution is to trade off

the responsiveness of the system with additional delay when considering future information, which can

minimize the error.

Yin and Wolfson propose a weighted-based offline map-matching algorithm [18]. Their approach is to

find the matched route so that the total distance between the matched route and real trajectory route

is the smallest. The weight is assigned to each edge on the graph using a 3 dimensional model by

combining two dimensional coordinates and time. The weight is be the integral of Euclidean distance

27

between the trajectory route and the matched route for the sub trajectory route during the interval

from ti to tj, divided by | tj - ti |.

There is a lot of research about map matching for navigation on roads with GPS. However, there is

limited research of the applicability of that algorithm for indoor navigation. These two environments

share the same nature. Therefore it is possible to use a similar approach for map matching in outdoor

environments and indoor navigation.

2.5 Mapping Techniques

Mapping a building involves gathering information that describes the building’s layout and converting

this information into a form that is usable by other processes. Types of data typically extracted include:

 The location and size of walls, hallways, doors, floors, staircases, elevators, windows, etc.

 Position of the map relative to other locations (latitude and longitude, elevation, floor number,

orientation)

The navigation process finds the shortest path from the current location determined by positioning

techniques to a desired destination within an unfamiliar area.

2.5.1 Mapping Information Formats

There are currently two common formats for building mapping information:

 Two-dimensional map images are often posted to provide aid in navigation or to show fire

escape routes. The appearance of these maps varies depending on the software used to create

them or applicable building standards. The information that can be gathered from a map image

is primarily the floor plan of a building. The scale and coordination are generally not present,

but can be found in more technical maps such as printed blueprints.

 Three-dimensional building models are available for structures constructed recently that were

designed with 3-D modeling utilities. This form of building mapping stores much more

information than the two dimensional images. Scale, Height, and connections to other floors

are all available. These models do not provide information regarding the location and

orientation of the building. The primary limitation of this file format as a resource is that it is

available for few buildings.

28

2.5.2 Map Creation Techniques

To make map images or models useful in software applications they are often converted into a new data

structure, which provides the necessary information in an accessible format. There are four aspects of

spatial relationship that a map data structure often needs to represent: connectivity, proximity,

intersection and membership. Different map data structures may focus on some aspects more than

others. In one example a map creation process was used to convert to a data structure composed of

points, arcs and polylines that represent different objects like rooms, doors, corridors, and stairs [12]. If

the raw data is a CAD file, the process is simpler because the structure has already been decomposed

into simple elements. Less complex processing techniques are necessary. If the map layout is in an

image format such as .jpg, .png, or .pdf the process of converting from raw data to a primitive data

structure requires the use of image processing techniques including object recognition and data

filtering. If a lower quality format is obtained (i.e. a photograph) further steps to correct skewed

perspectives or discoloring could be necessary.

2.5.3 Graphing Representation

In order to perform graphing algorithms to determine the shortest path between two locations, it is

necessary to convert the representation of a map data structure from layout with walls, halls, and doors

structure into nodes and links. In graphing representation, rooms, intersections, staircases, elevators

and other building units will be represented by nodes while the hallway will be represented by links that

connect between nodes. A node will also carry information related to the location including

coordination, and a link to a software database so that a user can get more information about the

person which the room belongs to. A link between two nodes represents an existing path in the building

where a person can walk between two locations directly. The assignment of the nodes is constructed so

that every link must be a straight line and represents the actual direct line of sight path. Curves and

turns will be represented by more than one link. The reason for this design is for the algorithm to

perform effectively. More information can be found in the system design chapter.

2.5.4 Routing Algorithm

Routing techniques use algorithms that find the shortest path between two locations. Typically a link

relationship between nodes in a graph will be represented by a two dimensional matrix. The

relationship between nodes is the weight or the cost of traveling from one to the other such as distance,

time, or degree of convenience. The relationship can also be represented by a list of edges. The choice

of data structure will affect the size of the database as well as the performance of the algorithm. Some

29

common algorithms are Dijkstra, Ford-Bellman, and A* [7]. The description of each algorithm will be

discussed in the following sub-sections.

2.5.4.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is one of the most used routing algorithms. The Dutch scientist Edsger Dijkstra

invented the algorithm in 1959 [19]. This algorithm is suitable for problems dealing with a single source

node and one or more destination nodes. The algorithm works by advancing a single node at a time,

starting from the source node. At each step during the loop, the algorithm chooses a node that has the

minimum cost from the source node. This node has been visited from the source and has not yet been

optimized. This node is then marked as optimized and the cost to all the adjacent nodes will be

evaluated. The Dijkstra algorithm is mathematically proven to find the shortest path. The optimized

cost to the destination is found once the algorithm reaches the destination nodes. The path can be

deduced inversely by creating a tracking array. A set of illustrations of the Dijkstra algorithm will show

how the algorithm finds shortest paths in a set of six nodes from node 1 to node 6.

Figure 2-10: Dijkstra’s Diagram at Time 0 after Initialization

In Figure 2-10, the number on the edge represents the cost to travel through that edge. The number

adjacent to each node represents the total cost to travel from the source node to this node. Typically,

this data will be store in a linear one-dimensional array. Initially, the cost of travelling to any nodes

except the source will be given value of infinity. The infinite cost represents that no path has been

30

found to travel from the source node to this node. The cost of travelling from the source to source,

intuitively, equals 0.

Figure 2-11: Dijkstra's Diagram Starting from Node 1

The algorithm begins its loop by choosing the node, which currently has the smallest cost; in this case

this is node 1 with cost 0. The node being evaluated is marked in red. When a node is optimized, it

means that its cost will be final and cannot be smaller. Then, the cost to all the nodes adjacent to node

1 and not yet optimized will be compared with the cost of going through node 1 and using the edge

between 1 and that node. In this case, since the cost to travel to node 2 and node 4 is infinite, it will be

updated to 2, and 4, respectively. The cost to node 2 is 2 because it has to travel through node 1 with

cost 0 added with the cost of the edge connecting node 1 and node 2, which is 2. The blue arrow

represents the tracking path and will be used after the algorithm finishes, in order to form the path. This

is represented in Figure 2-11.

31

Figure 2-12: Dijkstra's Diagram when Node 2 is optimized

Next the minimum cost node, which is node 2, is evaluated. Note that node 1 is marked brown meaning

that it has been optimized and will not be updated anymore. Nodes adjacent to node 2 are then

evaluated, including node 4, node 3, and node 5. The cost to node 4 was 4 in the previous step with the

path directly from source. However, when we evaluate node 2, the cost to node 4 through node 2 is

smaller than its current cost. Therefore, its value will be updated as 3, with the blue arrow now pointing

to node 2 showing the path direction as shown in Figure 2-12.

32

Figure 2-13: Dijkstra's Diagram when Node 4 is optimized

Then in the next step, node 4 is evaluated and marked as optimized. The current cost to node 3 and

node 5 is less than travelling through node 4. Therefore, nothing is updated as seen in Figure 2-13.

Figure 2-14: Dijkstra's Diagram when Node 3 is optimized

33

The next step is to evaluate node 3. In Figure 2-14, a path has been found to the destination node,

which has a cost of 13 and passes through nodes 2 and 3. However, this is not the final cost because the

destination node has not yet been optimized. It means there might be another path, which has a

smaller cost.

Figure 2-15: Dijkstra's Diagram when Node 5 is optimized

In this step, node 5 is evaluated and a smaller path to the destination is found with cost of 12. The cost

to destination is then updated and points through node 5. The illustration of this step can be seen in

Figure 2-15.

In the end, the destination is evaluated and optimized. Its final cost has the value 12 and is the smallest

possible path to travel from the source to destination. Using the tracking arrows, one can form the path

to the destination through node 2 and node 5 as shown in Figure 2-16.

The most important aspect of Dijkstra’s algorithm is that it chooses the smallest cost node at the

beginning of each loop. Thus, the algorithm can be verified by proving that at each loop, the minimum

cost node is indeed optimized. By postulating that there exists a different path with a smaller cost from

the source to this minimum node, this path then has to pass one of any other remaining nodes.

However, by choosing the minimum node, it indicates that the cost to all other nodes must be larger,

34

thus adding the edge only increases the total cost and can never be smaller. This proves the

impossibility of this postulation, thus the cost to the minimum node is final and optimized.

Figure 2-16: Dijkstra's Diagram when the Destination Node is optimized

The complexity of the algorithm, or the computational cost, is O(N*N), with N is the total number of

nodes in the graph. This can be improved by implementing a minimum heap in the database to optimize

the process of finding the minimum cost node. There are two ways of implementing a heap: binary

heap or Fibonacci heap. Both data structures can reduce the average computational cost of the

algorithm to O(NlogN).

The only disadvantage of this algorithm is that the complexity is proportional to the number of nodes.

Therefore, in a large graph, which involves a large number of nodes, the algorithm requires a lot of

computational capability to find the result within the required responsiveness rate. Another

disadvantage is its incapability of working with graphs that have negative edge weights. These edges

make the algorithm go through an infinite loop that can exist around the negative edge to infinitely

make the cost smaller. As an example, the negative weight could exist in graph representing the

monetary cost of choosing the best route where positive edge means losing money and negative edge

means gaining money.

35

2.5.4.2 Bellman-Ford Algorithm

The Bellman-Ford algorithm is specifically designed to solve the problem of finding the shortest path in a

graph containing negative weight edges [7]. It addresses the incapability of Dijkstra to work with

negative edges by adding a protection that prevents the path from passing through a negative cycle.

Instead of choosing the minimum cost node at each loop and updating all of its adjacent nodes as in

Dijkstra’s algorithm, the Bellman-Ford algorithm updates all possible edges existing in the graph. This

prevents the algorithm from choosing the same minimum node infinitely. The amount of updating time

in the algorithm is equivalent to the maximum length of the shortest path to be considered. By

updating n times, which is the number of the vertices in the graph, the algorithm can find the optimal

solution. While the Bellman-Ford algorithm can work with weighted graphs, its running time is worse

than the Dijkstra algorithm because it has to update all possible edges in the graph instead of just edges

adjacent to the minimum cost node. Therefore, it increases the total complexity of the algorithm to

O(N3). Because of its high complexity, Bellman-Ford should only be used when the graph contains

negative weight edges.

2.5.4.3 A* Algorithm

The A*, or A star, algorithm is a different algorithm to solve the problem of finding the shortest path

between two nodes in a graph [7]. Similar in concept to Dijkstra’s algorithm, it finds the shortest path

by advancing one node at a time from the source. The difference between the A* algorithm and Dijkstra

algorithm is in its shortest path formula and its updating process. Instead of updating all the adjacent

nodes, the A* algorithm only updates nodes that have not been visited before with an optimistic hope

that this is the shortest path because it comes from the shortest “estimated path”. The shortest path in

the A* at each step is not absolute. Instead it is a sum of the absolute path from the source to the node

and a heuristic estimation of the distance from this node to the destination. The optimal performance

of the A* algorithm depends on the heuristic model. The heuristic estimation has to be reasonable, and

should not overestimate the distance between the node and the destination. The heuristic formula of

the distance between the node and the destination must satisfy the condition that there is no path in

the graph that could be smaller than the heuristic estimation. However it should not overestimate the

distance by assigning a very small value, which affects the process of choosing the minimum node. For

example, a good heuristic model can be developed when the graph is in Earth coordinates. The heuristic

model can be natively computed as the Euclidean distance between two coordinates. Although the A*

algorithm provides a lower complexity cost than Dijkstra algorithm, the solution determined by this

36

algorithm is not optimal mathematically, which means the solution is not verified to be the best

solution.

2.5.4.4 Routing Algorithm Summary

A summary of the pros and cons of each routing algorithm is detailed in Table 2-8.

Table 2-8: Pros and cons of each possible routing algorithm

Routing Algorithm Pros Cons

Dijkstra’s High speed
 Optimal

 Doesn’t work with
negative weights graph

Bellman-Ford Optimal
 Work with negative weight

 Low Speed

A* Highest speed Not always optimal

37

2.6 Mobile Platforms

A mobile platform is a portable device, typically a mobile phone or a smart phone, on which a user can

perform different functionalities such as cellular networking and Internet access. There are more and

more new functions that are being added to the current generation of mobile device to increase their

functionality and productivity.

There are currently three popular basic platforms that are implemented directly or developed by other

higher platforms: Symbian, UNIX, and Windows. Among these platforms, only UNIX is an open source

platform. Symbian and Windows are licensed by Nokia Inc. and Microsoft Inc., respectively. For the

scope of our project, we are going to look at platforms based on UNIX operating systems because of its

open source nature and its large development community. Two platforms we are considering are

iPhone OS from Apple Inc. and Android from Google Inc.

For each platform, Software Developer Kits (SDKs) are provided by the platform producer to help third

party developers create applications for use on their mobile platform. To protect the closed source of

the structure of the operating system, the developer is able to access different functionalities of the

operating system through Application Programming Interfaces (APIs).

2.6.1 Apple iPhone OS

The iPhone OS is one of the leading operating systems for mobile platform products on the market. It is

developed by Apple Inc. and is currently available on two sets of devices of apple: the iPhone and the

iPod touch. The platform is based on an open source UNIX platform called Darwin. However, the

platform itself is not an open source project and is licensed by Apple Inc. The framework of the platform

includes 4 different layers as illustrated in Figure 2-17.

Figure 2-17: The four platform software layers of the iPhone OS (from [20])

38

Developers program applications on iPhone OS platform through the SDK released by Apple Inc. that is

run on Xcode IDE in Mac OSX. The programming language used by this platform is Objective-C. The

application can then be distributed through an open market called the App Store, which is managed by

Apple Inc. Since opening, over 40 million applications have been made available in diversified

categories. There have been over 2 billion downloads, currently the largest application market for

mobile devices.

The advantage of the iPhone OS platform is its available open source libraries of existing applications,

which act as references for developers. The APIs themselves are well structured and easy to use, which

makes the complexity of implementing an application fairly low.

The disadvantage of this platform is its software layer structure, which does not allow multiple

applications to share resources. Its API for hardware components, while easily accessible, does not

provide advanced information regarding the hardware layer or access to the raw data from the sensors.

The WiFi chip is an example in which the published API does not allow developer to extract raw signal

data including the received signal strength and the source’s physical address. While the newest version

of the platform, 3.0, has been updated with new APIs that allow developers to access new tools in the

service layer (e.g. push notification service for communication between the software layer and the

cocoa layer), it still fails to provide the developer with full access to the hardware layer.

2.6.2 Google Android

Android is an open source mobile operating system that has been made available on numerous devices

over the past few years. It is developed and managed by Google Inc. There are currently several devices

running Android OS, most notably the HTC Magic, HTC Dream and most recently the HTC Hero. Android

is a Linux based OS and incorporates a Java environment platform. Therefore, developers work with

Java to develop applications on this platform. These applications then can be published on a similar

market to Apple App Store, which is the Android Market. The market size is relatively small compared

with the App Store market.

The Android operating system is running on a Java virtual environment based on a Linux system. The

Android architecture framework is illustrated in Figure 2-18.

39

Figure 2-18: Google Android Operating System Architecture Framework (from [21])

The advantage of Android is that it is open source and it provides full accessibility to many hardware

layers. Moreover, the operating system structure allows developer to easily access the core services of

the platform as well as channel information between applications, which is not possible under the

iPhone OS platform.

The disadvantage of this platform is that there are currently not many users as well as few developers.

This limits the potential for implementation on a larger scale. However, the platform is expected to gain

popularity in the near future as more mobile devices are currently being developed for this platform.

2.6.3 Mobile Platform Summary

Consumer popularity indicates how many available devices on the market are using each platform. This

is important because it affects how well the final application can reach customers and how easily it can

be implemented and distributed. According to an industry study in June 2009 by Flurry Inc. (Figure

2-19), the consumer usage for the mobile platform is [22]:

40

Figure 2-19: Consumer Popularity of Mobile Platform in July 2009

While it is clearly shows that the iPhone is the leader in terms of popularity and Android’s share is

relatively small, we should be aware that the Android is still new to the market, and one year younger

than the iPhone, with its first product released November 2008.

Developer popularity indicates the number of developers that are currently researching and developing

applications for each platform. While this does not contribute to the end usage side, it directly affects

our application because of the open source nature of Google Android, where developers could share

resources and experiences. Higher the developer popularity indicates faster implementation potential.

It also shows that it is more likely that future improvement could occur.

As seen in Figure 2-20, the 22% share of developers who use Android indicates that while this platform

is relatively new, there are more developers seeing the potential performance of this platform. It

indicates that new mobile devices will be improved to exploit the potential of this platform.

iPhone
91%

Android
7%

Others
2%

41

Figure 2-20: Developer Popularity of Mobile Platform in July 2009

The overall summary of the pros and cons for each mobile platform researched is in Table 2-9.

Table 2-9: Pros and cons of each mobile platform

Mobile Platforms Pros Cons

iPhone OS
 Available on very specific and

superior devices

 Larger amount of users

 WiFi signal access API is
not given to the public

Google Android

 Open source code readily
available

 Developer prefer for ease of
use

 All API’s are available

 Available of many
phones with less
functionality

2.7 Chapter Summary

The main purpose of this chapter is to lay out all the possible technologies available for indoor

navigation. Knowledge of the different available technologies is important to make informed decisions

regarding which methods will be used for the application. From the possible reference signals to the

mobile platform that this application will be implemented on, all possibilities were researched and

summarized throughout this chapter. Final decisions will be made in the design portion of this project.

iPhone
74%

Android
22%

Others
4%

42

3 Project Overview and Design

This chapter presents the project overview, which contains the goals and objectives of the project, as

well as the general design of the system.

3.1 Goal

The main goal of this system is to facilitate indoor navigation for able-bodied and impaired persons. In

the intended application, handheld devices will be given the capability to guide a person along the most

desirable path to their selected destination. The system will be easy to implement in buildings that have

existing wireless connectivity.

3.2 Objectives

To function as intended, the system must meet three primary objectives:

 The device must be able to accurately determine its location in a building

 The device must guide a user along an optimal path to their destination

 The device must have an intuitive user interface

These objectives will be accomplished through the design and integration of a number of subsystems.

The first objective is to be able to locate the handheld device in a building. The device should be able to

use signal strength measurements of the available wireless networks to accurately locate itself in a

building. The device should be able to look up its exact location in relation to the map according to the

wireless propagation model.

The second objective is to use routing algorithms to be able to lead the user to their final destination by

finding the shortest possible route and leading the user along it. Finding the optimal algorithm for

determining the correct path with a minimum requirement for computing resources is necessary.

The third and final objective is to create a user interface that is intuitive. The user should be able to look

up a desired destination and the device should be able to show the user a route to it. A database of

possible destinations should be provided. In the building that we will be testing this application in, the

device should support searching of the database by multiple parameters.

43

3.3 Design Requirements

The design includes five subsystems. These systems and their responsibilities are summarized in Table

3-1.

Table 3-1: The design requirements include four subsystems and their descriptions

Positioning Locate the user in the building.

Navigation Determine optimal route to destination.

Mapping Matching the estimated position to the map.

User Interface Allow user access to all provided functionality.

Location Database Directory of people and places (possible destinations) in the building.

Each subsystem has its own specific requirements. The positioning system shall only make use of

technologies that exist in current web enabled phones. Restricting this subsystem to the hardware in the

phone and not adding any external hardware will allow for an easier distribution of the final application.

This system shall also make use of reference signals typically found in building types for which the

system is intended. This allows for a convenient and inexpensive installation. Determining the location

of the device should be done in a timely manner and should be sufficiently accurate to place the user in

the correct room. If the device cannot accurately determine the user location within a timely manner

then the positioning aspect of the application is rendered useless. The final requirement for the

positioning system is that is does not place an excessive load on the computing resources of the device.

The navigation subsystem shall be able to direct the user from their current location to their destination

along an ideal path. The device shall navigate using a building graph of simplified nodes and links. The

nodes will be placed at entrances, exits, in front of points of interests and inside each room. The final

navigational requirement is that it also does not require excessive computational power to function.

The mapping subsystem shall map the estimated position onto the actual floor plan of the building. It

shall do this in a manner that maximizes the likelihood of correctly determining the user’s position.

The user interface (UI) shall operate on a typical handheld smartphone. The UI handles the interaction

between the user and the application. The interaction should be make intuitive use of available input

methods. The UI should also avoid any unnecessary complexities that would require excessive time to

learn how to use the system. It should also be able to inform the user of their current location as well as

44

the direction they are facing and the direction to their destination. The user interface shall also allow the

user to select a destination from directories of people and places in the building. Finally, the UI should

be able to display the locations and routes on a 2-D map.

The final subsystem, the location database, shall have a known location for all of its entries. It shall also

be searchable by names of people or places. Being able to search either the room number or person you

maximize the usability of the application.

3.4 Design

The system consists of five sub-systems as illustrated in Figure 3-1, the block diagram below. Shown

within each subsystem are its important components.

Figure 3-1: System Design Block Diagram

45

The database block takes information about the local environment and provides it in a format that can

be used by other subsystems. The map floor plan is used to create the building walls structure that is

necessary for creation of the propagation model. The map floor plan is also used to create a graph

system to use in the routing algorithm.

Displaying the information including the map of the building, current location and the directions to get

to the destination is in the User Interface subsystem. It also handles interactions between the user and

the system. The database and user interface subsystem will be mention in Chapter 6.

The hardware layer consists of sensors in the HTC Hero. These include: the WiFi chipset, the

accelerometer and the magnetic compass. Raw data from these sensors is converted into useful

information, and processed by the positioning subsystem.

In the positioning layer, two methods are used in conjunction with one another in order to determine

the devices position: WiFi positioning and the Inertial Navigation System (INS). The WiFi positioning

system correlates measured WiFi signal strengths to a pre-generated database of simulated signal

strengths values for WAPs that are known to be in the area. The database is generated using a simulated

propagation model that models the signal strength from the building structure and the location of the

Wireless Access Points inside the building. The INS method determines the relative change in position by

accumulating measurements of the devices motion. Information from these two systems is combined in

order to provide an accurate approximation of the devices position. This information is then matched to

the map of the building in order to facilitate calculation of a route to the user’s final destination. The

positioning subsystem is described in Chapter 4. The Navigation and mapping subsystem, which handles

routing algorithm and map matching algorithm are described in Chapter 5.

3.5 Positioning Techniques

Following consideration of the positioning techniques identified during background research and of the

capabilities of handheld devices, the choice was made to use a combination of two techniques to

determine position.

An RF positioning technique similar to location fingerprinting will be used to determine location based

on received signal strengths from WAPs in the building. This system will use a propagation model to

create a database of simulate RSSI fingerprints. The use of a model makes the large amount of empirical

data typically associated with fingerprinting unnecessary.

46

An Inertial navigation system will be used to detect changes in position. By measuring the devices

acceleration and orientation in three dimensions, an estimate of changes in velocity and displacement

can be obtained. This type of positioning system relies on periodic updates of absolute position in order

to correct errors that accumulate in its estimate of relative position.

3.6 Mobile Platform

Of the two platforms that we have considered, Apple iPhone OS and Google Android, each has strengths

in different areas. While each area is weighted differently according to the scope of our research and its

importance to the final application, we must choose the best possible platform.

The most important factor is the technical specifications. The platform must have the capabilities

required for our application. The platform must support accessibility to the hardware that is used for

our project such as the WiFi hardware chipset and the accelerometer. Also, the accuracy of the chipset

and the sample rate are big contributing factor.

The overall usage of each platform is also an important factor. As seen in Figure 2-19 the consumer

popularity is extremely high for the Apple iPhone while the Google Android is significantly lower.

However, in Figure 2-20 it is seen that the developer popularity has a much larger proportion, even

though it is not close to the majority, which shows a potential for future growth.

The biggest drawback that makes the iPhone platform undesirable is that the iPhone API’s do not

provide full accessibility to the WiFi chipset to return the raw data of a wireless scan including the

Received Signal Strength Indicator (RSSI). This immediately makes the iPhone platform unusable for the

scope of our project. However, if future iPhone OS support this requirement, it would be another

option that should be fully explored to migrate the system from Android to the iPhone OS due to the

large market share and developers.

Therefore, the Android is the platform chosen for our project. We chose the newest mobile device

running Android to implement our prototype: the HTC Hero. The HTC Hero is developed by HTC Inc. and

runs Android as its core operating system with additional functionality. The specifications of the HTC

Hero are shown in Table 3-2 below.

3.7 Summary

Three primary objectives were identified that the system must meet; it must locate the user, determine

a route to the user’s destination, and interface with the user in an intuitive way. To meet these

47

objectives, a plan for the system architecture was developed and requirements were written for each

subsystem. The detailed requirements were used as criteria to choose from the possible potential

positioning and technologies and devices identified in Chapter 2. The positioning system will be a

combination of an RF system that uses existing WiFi access points and an inertial navigation system

based on the mobile device’s accelerometer and compass. The device to be used is the HTC Hero, a

smartphone that uses the Google Android platform.

Table 3-2: The HTC Hero specification sheet [23]

Processor Qualcomm® MSM7200A™, 528 MHz

Operating System Android™

Memory
ROM: 512 MB
RAM: 288 MB

Dimensions
(LxWxT)

112 x 56.2 x 14.35 mm (4.41 x 2.21 x 0.57 inches)

Weight 135 grams (4.76 ounces) with battery

Display 3.2-inch TFT-LCD touch-sensitive screen with 320x480 HVGA resolution

Network

HSPA/WCDMA:
• 900/2100 MHz
• Up to 2 Mbps up-link and 7.2 Mbps down-link speeds
Quad-band GSM/GPRS/EDGE:
• 850/900/1800/1900 MHz

Device Control Trackball with Enter button
GPS Internal GPS antenna

Connectivity

Bluetooth® 2.0 with Enhanced Data Rate and A2DP for wireless headsets
WiFi®: IEEE 802.11 b/g
HTC ExtUSB™ (11-pin mini-USB 2.0 and audio jack in one)
3.5 mm audio jack

Camera 5.0 megapixel color camera with auto focus
Audio formats MP3, AAC(AAC, AAC+, AAC-LC), AMR-NB, WAV, MIDI ,WMA 9

Video formats MPEG-4, H.263, H.264 and Windows Media® Video 9

Battery

Rechargeable Lithium-ion battery with 1350 mAh capacity
• Up to 420 minutes talk time for WCDMA
• Up to 470 minutes talk time for GSM
• Up to 750 hours standby time for WCDMA
• Up to 440 hours standby time for GSM

Expansion Slot microSD™ memory card (SD 2.0 compatible)

AC Adapter
Voltage range/frequency: 100 ~ 240V AC, 50/60 Hz
DC output: 5V and 1A

Special Features
G-sensor
Digital Compass

48

4 Positioning

The capability to determine a user’s position within a building is a necessary part of a navigation system.

The system described in this project uses measurements from WiFi, magnetic, and acceleration sensors

to estimate the user’s position. In this chapter the WiFi positioning subsystem is presented first,

followed by the inertial navigation system consisting of the acceleration and magnetic sensors. The last

section describes the technique that is used to combine the information from these two systems in

order to produce a continuous position estimate.

4.1 WiFi Positioning

The WiFi positioning system consists of two primary subsystems, the propagation model and the

location search algorithm. The propagation model is run on a computer and is used to pre-generate an

estimate of wireless signal strengths at each location. The location search algorithm combines

information from all detected wireless access points in order to determine the likelihood of the device

receiving a set of measurements at various locations in the building. This search function is

implemented on the mobile device.

4.1.1 Propagation Model

From the list of potential propagation models identified in Section 2.3, the pros and cons of each were

weighed and it was determined that the New Empirical model [14] would be used in combination with

the KED Screen diffraction model [16]. Due to the fact that propagation simulations are carried out in

advance, the high computational costs of the New Empirical model were deemed to be acceptable. For

an explanation of these models, consult Section 2.3.

The mathematical propagation and diffraction models were used to create a propagation simulation in

MATLAB. As inputs, this simulation requires a list of wall elements that define the building layout, as

well as the location and power of a wireless access point. The output is a .txt file that is transferred to

the HTC hero. To accelerate computations, the calculations were carried out using array operations

available in MATLAB. Figure 4-1 shows a top level flowchart of the simulation. Operations highlighted in

blue are array operations that would typically be implemented as loops in other programming

languages. The lowest blue operation is a loop in which each execution consists of a set of array

operations. With the propagation losses simulated, the estimate of received signal strength can be

49

calculated by subtracting the propagation loss from the transmit power. This simulation is carried out

for each wireless access point in the building model.

The simulation is carried out at a resolution that is four times higher than the output resolution in order

to smooth out any localized disturbances. The last step before exporting the table of results is to down

sample the table by a factor of four. After this step, each point of the output is the average of the

surrounding points. The MATLAB simulation function and all supporting functions can be found in

Appendix A:

Figure 4-1: Propagation Model Software Flowchart

4.1.2 Accuracy Assessment and Calibration

The next step was to test the accuracy of the model and to calibrate it. We decided to test the accuracy

by picking specific points on the floor in a grid like pattern. The grid can be seen in Figure 4-2. Points in

rooms to which we did not have access were not sampled.

50

Figure 4-2: Accuracy Testing Points

4.1.2.1 Single WAP Laptop-Based Propagation Model Test

The first test was conducted using a laptop to test RSSI values at each location. The first test yielded the

following results.

Figure 4-3: Test Results Showing Moderate Correlation between Measured and Predicted Values

The results show an R2 value of .725, which can be interpreted as a moderate correlation between

predicted and measured values. Using this information, unknown transmit powers of the WAPs were

determined.

y = 1.1034x - 6.9612
R² = 0.7246

40

50

60

70

80

90

100

40 50 60 70 80 90 100

P
re

d
ic

te
d

 V
a

lu
e

Measured Value

Propagation Model Accuracy

51

4.1.2.2 Single WAP HTC Hero-Based Propagation Model Test

Test two was carried out using the HTC Hero to sample the data at each point. A program was created

that sampled available wireless networks for a 20 seconds period. The sampled values were then

averaged and plotted against the propagation model. This information was used to adapt the

propagation model to account for differences between wireless signal strength measurements from the

HTC Hero used for this test, and the Laptop Wireless card measurements used in the previous test.

Figure 4-4 shows the results of the this test.

Figure 4-4: Test Results Showing Strong Correlation between Measured and Predicted Values

The results of test 2 show a higher association between the measured and predicted values. The

coefficient of determination is .847, which indicates that the predicted values are closer to the actual

values than in the last test.

4.1.2.3 Multiple WAP HTC Hero-Based Propagation Model Test

The test consisted of adding four more routers throughout the floor and to use the same method to test

accuracy and to calibrate as we did for the first router. The routers were spread in a manner to allow

maximum coverage of all areas. Transmit powers of the new routers were determined. We then

sampled ten points and wrote down the coordinates and ran the simulation on a computer to find out

y = 1.0067x + 0.2467
R² = 0.8467

40

50

60

70

80

90

100

40 50 60 70 80 90 100

P
re

d
ic

te
d

 V
a

lu
e

Measured Value

Propagation Model Accuracy

52

where the model thought the mobile device was at the time. The results varied throughout the test.

Some of the samples pinpointed the device within a meter or two where as some of them were off by as

much as ten meters.

The main problem that we had was that the samples sometimes missed a router that was right next to it

giving the computer false knowledge of its whereabouts. This was found to be a problem with the

routers being used. These errors stopped occurring once the access points were replaced.

4.1.3 Location Search Algorithm

An algorithm was created to combine the outputs of the propagation model and the measurements

from the device’s WiFi adapter in order to determine the user’s most likely position. While differences

between the simulation and actual measurements contribute unavoidable errors to this sub-system,

additional variability exists due to the inconsistent nature of WiFi signal strengths. Consecutive

measurements taken by a stationary device vary about an average value; it is this average value that the

propagation simulation attempted to determine. An example of this phenomenon is shown in Figure

4-5.

Figure 4-5: Example Signal Strength Variation

53

To accurately determine the user’s most likely location, this phenomenon must be understood and

accounted for. To this end, the statistical properties of the data were considered and a Gaussian

probability density function with the same mean and standard deviation as the measured data was

adopted. The PDF is of the form

, (12)

in which is the average signal strength value at the location and is the standard deviation of the

measured values. In this application, the coefficient term can be dropped due to the fact that a scalar

multiplication of the entire distribution will have no effect on the location of the maximum or its value

relative to other positions. The distribution becomes

. (13)

An example likelihood function, having the same average and standard deviation as the data in Figure

4-5, is shown overlain on the histogram in Figure 4-6.

For the purpose of matching measured signal strengths to simulated values, the PDF at each point has

its average () taken from the propagation simulation and standard deviation () taken from measured

data. The average standard deviation of the data collected from the multiple points sampled was 3.87

dBm. Though values varied from this mean, there was insufficient correlation between the standard

deviation and any other parameter to invalidate the use of this value as the standard deviation for all

samples. The average value of 3.87 dBm was adopted as the standard deviation for all PDFs. The

likelihood of the user being at point , given received signal strength from the -th WAP is given

by

, (14)

 in which is the array of predicted signal strength values for the -th WAP outputted by the

propagation model and is the predicted signal strength value at point .

54

Figure 4-6: Received Signal Strength with PDF

Carrying out this calculation for a single WAP typically does not yield a localized result but rather yields a

large area in which the signal strength measurement would have a high likelihood of occurring. An

example that exhibits this property is plotted in Figure 4-7.

Figure 4-7: Sample Likelihood Plot (Single WAP)

As with most positioning systems, to achieve a more deterministic solution, additional references are

considered. In this RF positioning subsystem, the additional references are additional WAPs.

55

Mathematically, the likelihood of -tuple of received signal strengths through from WAPs

occurring at point is given by:

. (15)

 is the three dimensional array created by the combination of all . This function has non-

negligible values only in places where all received signal strengths are likely. As an example, Figure 4-8

is a plot of a for which . Measurements from three additional WAPs reduce the locus of

likely locations to a single region.

Figure 4-8: Sample Likelihood Plot (Multiple WAPs)

In a solely RF positioning system, the point with the highest likelihood would be the best estimate of the

users location. In this system, the additional information from inertial navigation and map matching

subsystems will be used to improve this estimate.

4.2 Inertial Navigation System

The inertial navigation system computes a new position relative to an initial reference position. It uses

data from the motion sensors to detect movement. An inertial navigation system design involves four

different phases: calibration, alignment, state initialization, and current state evaluation.

Figure 4-9: An inertial navigation system design

56

1. Calibration: This stage provides coefficients for use in the interpretation of the raw motion

sensor output.

2. Alignment: This stage provides the axis and orientation to interpret the calibrated data in

relation to the Earths coordination.

3. State Initialization: This stage provides the initial position and velocity, which it gets from

another reference positioning method.

4. Current State Evaluation: This stage computes the position relative to the reference position.

4.2.1 Calibration

The HTC Hero sensors, including the accelerometer and the digital compass, need to be calibrated to

correct errors before the data is processed in the alignment phase. The accelerometer chip, built-in to

the HTC Hero, is the Bosch Sensortec’s 3-axis BMA150 and the digital compass is the Asahi Kasei's

AK8973. Before calibrating the sensor data from the phone, we performed several tests to analyze the

accuracy of the sensor.

The testing software module, implemented in java on the Android operating system, takes samples from

the accelerometer and the digital compass at the fastest rate allowed by Android, which is

approximately 10 – 20 milliseconds per sample. The accelerometer measures the acceleration in three

axes in m/s2. The axes output of the accelerometer is relative to the phone’s orientation and will be

referred to as “the device’s coordination system.” The output of the accelerometer is such that when

the device is free falling in a vacuum, the chip will not detect any force exerted on the device, which will

produce zeros for all three outputs.

We calibrated the device’s accelerometer by placing it still on a horizontal plane parallel to the Earth’s

surface. In this case the device is only subjected to the gravity of the Earth, which is approximately

9.807 m/s2 in the z-axis of the device’s coordination system.

When the device is lying flat, the accelerations in three axes of the device should be:

 (16)

The g in the formula is the gravity of the Earth. Therefore, we use this assumption to calibrate by setting

a coefficient offset:

57

 (17)

The vector (xm, ym, zm) in the formula is the measured acceleration vector and (xc, yc, zc) is the calibrated

coefficient vector. The calibrated vector (xdev, ydev, zdev) from the calibration phase will be used in the

alignment phase.

 (18)

In order to test the accuracy of the accelerometer chip, we use the phone to measure the actual Earth

gravity. When the phone is still, the only force that affects the accelerometer is gravity. We place the

phone in three different positions to record the acceleration output of the phone. The three different

positions are:

1. The phone lies completely flat on the table

2. The phone stands on near vertical axis leaning on a book

3. The phone stands with an arbitrary angle and stays immobilized with help of several other

items.

At each position, our program, written in java, records the acceleration. We use average sample rates of

approximately 47 ms per sample. Each sample set is recorded for duration of 20 seconds. Results are

included in Table 4-1.

Table 4-1: The accelerometer output in the three positions

Position Statistic
Accelerometer

Magnitude
Ax Ay Az

1
Average -0.31236855 -0.70494934 10.46527763 10.49369185

Deviation 0.02445959 0.01980075 0.03095749 0.03068212

2
Average -0.36517628 8.82101065 2.55547908 9.19103835

Deviation 0.02369843 0.02055669 0.02421173 0.02091790

3
Average -4.22720968 3.80310372 8.40355694 10.14662886

Deviation 0.02097433 0.02820921 0.03097450 0.02798884

58

The phone is immobilized in order to prevent any force other than gravity from affecting the output.

The average deviation of the sensor’s output in three axes is 0.025 m/s2. The average magnitude of the

three sample sets is 9.944 m/s2, which is approximately the Earth’s gravity of 9.807 m/s2. However, the

standard deviation for the magnitude is 0.25 m/s2, which is 10 times greater than the deviation of the

sensors output. We also note that 0.025 m/s2, or 25 mm/s2 error for a sample rate of 20 ms could result

in 1.25 meters in error every second. We will come back to this inaccuracy in later phase when we

discuss alignment.

The magnetic field is measured by the digital compass chip inside the phone. It measures the strength

of the magnetic field in the environment in micro teslas. The field varies from 30 µT (0.3 gauss) around

the equator to approximately 60 µT near the north and south poles. The magnetic field in the University

of Limerick is around 47 µT. The sample data of the magnetic chip is taken at sample rate of 11 ms per

sample and for 20 seconds.

Table 4-2: A sample of the compass’ output

Statistic
Digital Compass

Magnitude
Cx Cy Cz

Average -14.41580608 14.22877223 -42.45410212 47.04223499

Deviation 0.40497709 0.43293224 0.45442992 0.45834675

The first thing that we observe is that the standard deviation of the magnetic chip is relatively high at

0.431. The standard deviation of the magnetic chips, 0.431 µT, is equivalent to around 1-5% of the axis

value, and could potentially produce large error.

4.2.2 Alignment

After the calibration phase, the output of the accelerometer is in the device’s coordination system.

With these outputs, we can only calculate distance, not displacement. In order to work in the Earth’s

coordination system, we need to convert this output. To rotate the device’s current coordination

system to the Earth coordination system, we need to calculate a rotation matrix. The rotation matrix is

calculated from the output of the accelerometer and the magnetic chip when the device is held still.

When the device is not moving then it knows that the only force is gravity and how the gravity is

distributed through the three axes of the device. This allows us to rotate the coordination in 3

dimensions so that the gravity is only pointing to one axis. After rotating the axis so that the z axis is

59

pointing to the sky, we then incorporate the magnetic output to calculate rotation in the x and y axes.

This also assumes that only the Earth’s magnetic field is affecting the device, which means that there are

no other magnetic devices such as electrical wires or magnets nearby. If this assumption is true then we

can rotate the current rotation matrix so that y-axis is pointing north and the x-axis is pointing east. This

coordination system is illustrated in Figure 4-10.

Figure 4-10: The Earth’s coordination system in three dimensions

The most important factor that contributes to an accurate rotation matrix is the input gravity from the

accelerometer and the input geomagnetic field from the magnetic chip. The accuracy of the inputs

determines accuracy of the output of our alignment phase. This process is continuous, which means

that the device must compute a new rotation matrix whenever the phone is changing position.

Therefore, whenever the device is rotated, the system needs a new Earth’s gravity measurement and

new Earth’s magnetic field associated with the new position in order to compute a new rotation matrix.

If the device is being held perfectly still, we can easily compute the rotation matrix with high accuracy.

However, when a person is holding the phone, there will be a slight shaking from the hand of the person

which adds acceleration to the output of the accelerometer other than just the Earth’s gravity.

The method we used to detect whether the current acceleration consists of only gravity is by comparing

the magnitude of the total calibrated acceleration at the current moment with the Earth’s gravitational

magnitude, which is 9.807 m/s2. If this magnitude is within our error threshold of ±1 m/s2, the Earth’s

gravity associated with current position is recorded. Besides the error that could result from the sensor

itself, there is another problem that could potentially occur. If the person is moving at a rate such that

60

the magnitude of total moving acceleration is offset in such a way that is in the gravity threshold then

the system will mistake the acceleration as gravity, which then creates an inaccurate rotation matrix.

The digital compass output data is filtered in a similar manner to filter out all the magnetic field data

that is distorted by nearby magnets. The threshold value that we used is ± 3µT from the value of

geomagnetic field that we recorded for University of Limerick, which is 47 µT.

With the gravity and geomagnetic vectors measured in the phone coordinate system, the rotation

matrix can be computed. The gravity vector g and geomagnetic vector e are first normalized as follows:

 , (19)

and

 . (20)

And then we compute the horizontal vector H and momentum vector M from the normalized gravity

and geomagnetic vectors, as follows:

 , (21)

and

 . (22)

Finally, the rotation matrix is composed of three vectors g, m and h as follows:

 . (23)

The heading of the device in the Earth’s coordinate system can also be computed from the rotation

matrix as follows:

61

 . (24)

4.2.3 Initial Value

The output of the inertial navigation system is the displacement from a reference point. Therefore, an

initial position is needed to make use of this output. The initial position makes a fundamental difference

in accuracy of the whole system from the beginning. Therefore, an accurate initial position is necessary.

This position is provided from the WiFi positioning system.

4.2.4 Evaluation

Knowing the initial value, the next position will be calculated by applying Newton’s second law of

motion. There are three different methods that were tested for determining an accurate displacement:

 Integration of acceleration outputs with respect to time to compute the velocity and the

distance moved.

 Using acceleration output to detect pedestrian step occurrence and the step length to find the

distance moved.

 Using accelerations output to detect current motion status of the user and apply standard

walking velocity to find the distance moved.

The first method of calculating the displacement from the current location is by integrating the

acceleration output over time. Using discrete integration, the velocity is computed by integrating the

acceleration over the time difference every time a sample is recorded. Then, the velocity can be

integrated one more time to compute the displacement. However, this method has been determined to

provide the least accurate displacement among the three methods. The reason is due to hardware

limitation of the HTC Hero. The accelerometer is not accurate enough to provide data with small

enough inaccuracy. Moreover, since the error is then integrated twice to compute the displacement,

the small error can be elevated into a large error in a small amount of time. This integration drift causes

this method to provide poor results, considering the digital compass yields a result with moderate error.

The second method is to detect the step occurrence of the user’s walking from the output of the

accelerometer. However, this method is very hard to apply in our situation where the user is holding

the equipment. Traditional methods of detecting the pedestrian step often use the sensors installed in

the shoes or on the leg where movement can be distinguished clearly. When the user is holding the

phone, the data output does not clearly characterize the person’s stride. Moreover, the data is also

62

subjected to a lot of noise caused by the lagging of a person’s hand while holding the phone. Combined

with a relatively large error from the phone sensors, this method is not suitable for our estimation of the

inertial displacement.

The last method, which is the method we chose to apply, is to detect the whether or not the user is

moving. Using the samples recorded and computing the standard deviation of these samples, we are

able to detect movement due to a larger than normal observed deviation in the acceleration

measurement. Our application collects the last fifty samples and computes the standard deviation of

these samples. Since the fastest sampling rate of the HTC Hero is approximately 20 ms, fifty samples are

about the last second. This provides enough cushions to detect a transition between the stationary

state and the motion state fast enough and prevent the noise from affecting our result.

Figure 4-11: Motion Detection from Inertial Navigation System

The Figure 4-11 is the data collected when the user is holding the phone and starts walking for a short

period before stopping. The blue line is the magnitude of the aligned and calibrated acceleration output

from the accelerometer. The green line is the standard deviation of the last 50 samples. From our

measured test data, the average standard deviation when stationary is approximately 0.1 m/s2 while the

average standard deviation in motion is approximately 1.4 m/s2. Therefore, the standard deviation

threshold is set at 0.7 m/s2.

63

4.3 Combining Outputs of WiFi and Inertial Systems

The WiFi positioning and inertial navigation systems contribute different types of information regarding

the user’s position. The WiFi system outputs an array containing the likelihood of receiving the current

WiFi measurement for each location in the building. The inertial system outputs an estimate of how far

the user has traveled since the last WiFi measurement. The WiFi and inertial systems each have a

potential for error. In this section the method used to combine these two sources of information is

detailed.

4.3.1 Inertial Navigation Likelihood Function

The inertial navigation system uses the magnetic sensor in the HTC Hero to estimate the user’s direction

of travel. It uses the accelerometer to determine the user’s motion. There is the potential for error in

each of these measurements. The magnetic sensor may not precisely locate magnetic north,

introducing an offset into the direction estimate. This sensor is also subject to magnetic interference

from large electronics as well as power transmission lines in a building walls, floors, and ceilings. The

inertial sensor does not directly measure motion, but instead determines whether the user is moving or

stationary. If it is determined that the user is moving, an assumed normal walking pace is used to

estimate displacement based on the time of travel. If the sensor incorrectly determines the user’s state,

or if the user walks a pace that is different from the assumed value, the output will not be accurate.

Though we did not have the capability to precisely characterize these two errors, a probabilistic model

was developed that fit the observed functionality. This model uses a two-dimensional Gaussian

distribution in the polar coordinate system to model the measurement errors. The formula for a one-

dimensional Gaussian is:

. (25)

in which is the average value of and is the standard deviation of the measurement errors. In this

application, the coefficient term can be dropped due to the fact that a scalar multiplication of the entire

distribution will have no effect on the location of the maximum or its value relative to other positions.

The distribution becomes:

. (26)

64

Applying this distribution to the radial and angular coordinates of the polar coordinate system, and

expressing the result as a likelihood yields the distribution:

. (27)

in which and are respectively the measured radial and angular values from the inertial navigation

system, and and are the standard deviations of the radial and angular errors, respectively.

Owing to the fact that both the inertial and WiFi positioning systems operate in rectangular coordinates,

it is necessary to convert this distribution to this system. The result of this conversion is:

. (28)

In this equation and are respectively the x and y displacement values from the inertial navigation

system in rectangular coordinates, and and are respectively the standard deviations of the radial

and angular errors in polar coordinates. An example distribution of this form with inputs:

 (29)

is shown in Figure 4-12.

Without the capability to precisely determine the values of and that best characterize the errors,

observations of system performance were used to choose appropriate values. In this form of the

equation, the radial standard deviation is in units of distance. As stated above, radial errors in the

system stem from discrepancies in velocity, not distance. The error is correctly represented in terms of

the velocity standard deviation as follows:

 . (30)

65

Figure 4-12: Sample INS Likelihood Distribution

In this equation and are again the x and y displacement values from the inertial navigation

system in rectangular coordinates. The term represents the ratio of the velocity standard deviation

 to the assumed average velocity . With these considerations, the final form of the inertial

navigation likelihood function is:

. (31)

4.3.2 Combining INS Likelihood Function with Previous Position Estimate

The inertial navigation system measures changes in position, as opposed to absolute position. For this

reason, the likelihood distribution developed in Section 4.3.1 is useful solely as a transformation of the

previous position estimate. The likelihood of the user having moved from some previous position to

some new position, is given by the product of the likelihood that the user was at the previous position

and the likelihood of the user having moved from there to the new position, given the measurements

from the INS. This can be expressed in the equation

 , (32)

66

In which terms and define the previous position and terms and define displacement

measured by the INS. It follows that the likelihood of the user being at a location is the sum the

preceding equation for all previous positions. This is expressed in the equation

, (33)

 In which the terms and define displacement measured by the INS. This method, while correct, is

not computationally efficient. Due to the fact that the INS likelihood function has negligible values at

large distances from the measured location, the region of the summation is limited to those points of

the previous likelihood distribution near the new point. The equation

, (34)

limits the integrals to values lying in a ten meter square, centered about the new point.

4.3.3 Combining INS-updated Position and WiFi Position Estimate

In order to determine the most likely location of the user, the likelihood array resulting from the

combination of the INS likelihood function and the previous likelihood estimate must be combined with

the likelihood function from the WiFi positioning systems location search algorithm. The combination,

in which each element of the INS array is multiplied by the corresponding element of the WiFi likelihood

array, is expressed as follows:

. (35)

The maximum value of the likelihood array is the system’s current estimate of the user’s

position. This array is stored in memory for use as in the next cycle of calculations.

4.4 Summary

This positioning system uses multiple sources of information to determine its location. Measurements

of WiFi signal strengths from multiple access points are compared to data generated by a propagation

model to estimate the user’s location in the building. The point at which the received signal strengths

are most likely to have occurred is chosen. Data from inertial and magnetic sensors is used to estimate

the user’s change in position between WiFi samples. These two estimates area combined with

information from previous sample periods to determine the user’s most likely location. An example of

the HTC Hero determining the user’s location is displayed in Figure 4-13.

67

a b

Figure 4-13: Example Positioning Functionality

68

5 Navigation

The navigation system is responsible for determining an optimal route to a destination. It consists of

graphing functionality and a routing algorithm.

5.1 Graphing

With the current position of the user known, it is important to determine the destination that the user

wants to go to. The output of this module is a path that guides the user to their desired destination. In

order to achieve this task, we choose to represent the map of the building in a graph on which the

routing algorithm can operate.

A graph can be a complex system of nodes and links that are connected in a tree-like data structure. A

node represents a specific position in a building and tells the information about that position. A building

map often consists of four different elements: rooms, hallways, stairs/elevators, and large rooms. All of

these elements will be represented by nodes with coordinates and information associated with them.

The room node is used to represent a small area enclosed area. The large room node is used to

represent any open space larger than a room. The reason that we distinguish between these two types

of rooms is because we will choose to represent a small room with a single node while a large room will

contain many nodes. This has to do with the accuracy of the positioning methods and the propagation

of WiFi degrading much less in free space. The stair and elevator nodes are type of node which connects

two floors inside of a building. Its special characteristic is that two nodes representing stairs on two

different floors will have a same coordinate, thus the cost of travelling between them cannot be

determined by the Euclidean distance but rather be assigned by a special weighting scheme. The last

element is a hallway, which is typically the most common type of node in a building. It represents

intersection and traffic direction. It serves as the media to connect all the other elements in the system.

A link is a line on which a user can traverse the distance between two nodes. The user can move from a

node to a different node only when there is a link between them. The link is associated with a cost that

represents the distance to travel through the link. The distance between two nodes can be known by

computing the Euclidean distance between their coordinates. In some special cases such as the link

connecting two stairs node or two elevators node, its cost is assigned a special weight.

Our graph is constructed manually in such a way that satisfies our two characteristics: all hallway links

must be either horizontal or vertical lines and there are no links connecting two points that have a wall

69

in between them. The first characteristic leads to a characteristic of the node are that every two hallway

nodes are connected only if they have the same x or y coordinate. The graph is shown in Figure 5-1.

5.2 Routing Algorithm

The routing algorithm that we chose to find the shortest path between two nodes in a graph system is

Dijkstra’s algorithm. Dijkstra’s algorithm has the characteristic that fit our requirement for a shortest

path algorithm: it finds the shortest path from a single source to one or multiple destinations. The

advantages of Dijkstra’s algorithm are:

 The algorithm always provides the shortest path (compared with A* which does not always yield

the shortest path)

 The complexity of Dijkstra when well implemented is O(NlogN) which is suitable for campus like

environments with a moderate number of nodes. With computing ability of mobile device

nowadays, the algorithm could be performed for millions nodes.

 The nature of the floor plan within the building is a sparse graph where most of the nodes are

connected with two other nodes, which makes the number of edges are approximately equal to

the number of nodes. The Dijkstra algorithm can be run very efficiently on sparse graph with

much better performance.

5.3 Map Matching

During map matching, the position, that is returned from the fusion of the WiFi positioning and INS, is

mapped to a point on the layout map in order to display. The process is done with the already

constructed graph as shown in Figure 5-1.

The algorithm consists of three phases, nomination, selection and matching. During nomination, our

algorithm chooses the potential polylines that match one of our requirements: either the normal

distance from the position to the polyline or the distance from the position to its endpoints is under our

threshold. During the selection, a polyline will be selected to match out position. Three criteria are

considered: the normal distance, the slope of the line relative with the heading direction, and the

routing route. Each factor will be given equal weighting and the line with the highest matching result

will be chosen. In the matching phase, the position is simply matched to the normal projection on the

polyline if its projection is on the segment or matched to the endpoints otherwise.

70

Figure 5-1: The graph of the 2nd floor of Engineering Research Building

71

Figure 5-2: Map Matching Algorithm example

Figure 5-2 illustrates an example of our matching algorithm. The blue arrow represents the path that

the user should walk through in order to get to the destination. The grey point is the previous point that

was matched on the route. The blue point is the current position returned from the positioning system

that needs to be matched using our algorithm. The blue fan that attached to the blue point is the

heading from the compass. The yellow is the actual position of the user on the route. Using our criteria

to nominate polylines, the red lines are included because the distance from the blue point to their

endpoint is within our threshold. The green line also is nominated because it is within the threshold

normal distance to the blue point. The grey line is considered because it is the line which the previous

matched position, the grey point, is on. The purple line is considered because it is in our routing path to

the destination. Coming to the selection phase, if we only considered normal distance, the red line will

be chosen with its minimal distance to the blue position. However, given the current route displayed by

the blue arrow and the heading direction, the purple line will be chosen by our algorithm. Our blue

position will mapped to the projection point on the purple line, which is illustrated by the purple dotted

line.

5.4 Summary

The navigation subsystem operates on a graph that represents locations and routes in the building.

Locations are represented as a type of node in the graph. Nodes are designated as a room, a hallway, or

a staircase. Dijkstra’s routing algorithm is chosen as a suitable method for finding the optimal route from

a location to a destination in this graph. It is suitable because it is computationally efficient and it is

guaranteed to find the optimal route. S map-matching system is used to correctly map a user’s location

in space to a node or link in the building graph prior to routing algorithm computation.

72

6 Prototype Implementation

This project consists of a number of subsystems. The following chapter describes the implementation of

these subsystems as a Java application.

6.1 Android Platform Architecture

The software application of our project is implemented on the Google Android phone the HTC Hero.

The HTC Hero is running the Google Android Operating System. The operating system is a Java virtual

machine called Dalvik running on a Linux Kernel. The architecture of the operating system includes four

layers of software as shown in the Figure 2-18. More information can be found on Android official

developer website.

Our application will be implemented using the Application Framework modules and access to the Linux

Kernel through provided Application Programming Interfaces (APIs) in the operating system libraries.

The application is written in Java and its system files will be managed by the Dalvik Virtual Machine.

Our application thread is running under the framework activity and is called at the beginning of the

software launch. The Activity is a thread responsible for processing information and communicating

inside the software. It also manages View framework responsible for graphical representation of

information to be displayed to user. The view is running its own thread to be refreshed periodically to

display the information.

6.2 Software System Design

Our applications can be viewed as four major blocks of processing: positioning, navigation, database,

and interface. Each block is responsible to different functionality of the application. Positioning block is

responsible for finding the current location of the user by combining WiFi positioning and inertial

navigation system. Navigation block is responsible for performing routing algorithm to find the shortest

route between two positions and map matching algorithm to correlate the position on the map for

graphical representation. Database block is responsible for searching information of people and

building. Interface block is responsible for the graphical representation of the information and

interaction with user. The Figure 6-1 shows the software functional blocks and its main components.

73

Figure 6-1: Application Software General Functional Blocks

6.2.1 Threading and Synchronization

Our application software is running in 4 main threads at any given time. All the threads are running

separately in parallel. Each thread is enabled or disabled depending on the current function that the

user is using. Since the thread are given a separate pieces of CPU from the operating system virtual

machine, synchronization between thread communications is one of the major challenge to prevent any

piece of memory from being accessed by two threads at the same time. The four threads are: Activity

thread, View thread, Sensor thread and WiFi thread. The main threads of the software system and its

functions are illustrated in the Figure 6-2.

74

Figure 6-2: Application Main Threads and Functions

The synchronization problem is arising because of our method of data management. Traditionally, the

data is stored in a Handler, which is collection containing the set of pointer reference to each memory

block of the data. Each thread can only access the data when another thread passes the handler to it.

This involves creating a system of data communication called piping. The pipe in nature is a queue

containing the packet of data flow between thread. Each thread will have an incoming and outgoing

pipe to send and receive the handler when the event comes. For the scope of our project, creating the

pipe is too costly in time and implementation cost. Therefore, we go with a less traditional way of

handling synchronization, by adding a protection called lock. When a thread is accessing the data

memory, it will activate the lock which prevents any other threads to access the data. The thread trying

to access a locked data will be waited in a blocking code until the lock is released and thus it can access

the data. This method has the advantage of a simple implementation cost. However, there are two

disadvantages. Firstly, future reusability of this code will have to prevent any deadlock situation when

the application will be frozen. Secondly, since the nature of blocking code, it will make it harder for

correct timing and will also add some delay cost which slows down the performance of such system.

The data dependency map of our application is illustrated in the Figure 6-3. The purple represents the

activity threads, the green represents the view threads, the grey represents the hardware threads and

the yellow represent memory data. The arrow from each data system memory points to the thread that

will access this data.

75

Figure 6-3: Threads & Static Memories Dependencies

6.2.2 Source Code Structure

The project is implemented in Java. Java is an Object Oriented Programming (OOP) language. The

source code structure is illustrated in the Figure 6-4. The source codes are divided into 4 major types:

Activity, View, Memory, and Element. The Activity class is categorized as purple blocks; the View class is

categorized as green blocks; the yellow blocks represent static variable memory class; and the gray

blocks are element classes.

76

Figure 6-4: Application Source Code Structure

The Activity class, which includes MapActivity, DirectoryActivity, and RouteActivity are extended

from Android Activity framework to provide a thread for the device. The Activity class manages thread,

takes data and coordinates data when ready. For example, the MapActivity manages the current

process thread and manages the sensor thread and the WiFi thread. It receives sample data when it’s

available and sends them to the Positioning to perform the computation.

The View class extends the Android View framework to draw and represent graphical pictures. For

example, the MapView class draws the floor plan jpeg picture of the building on the screen and other

graphical component such as nodes and compass.

77

The Memory class is implemented as static memory block which makes it available across all the threads

in the application without passing the handler. It uses lock and synchronized feature to implements

synchronization.

The Element classes are fundamental blocks which contain functional methods for algorithm and

represent different type of data. For example, the Graph class contains the list of GraphNode nodes and

can perform routing algorithm.

6.3 Functional Blocks

The following sections describe the implementation of each functional block inside the application.

6.3.1 Inertial Navigation System

The Inertial Navigation System (INS), is implemented under the MapActivity class, the class initializes

the thread for receiving samples from the accelerometer and digital compass when available. The

hardware sensors are called from the application through Android Application Programming Interface

(API). The API will start when receiving command from the user to search for the current location. After

that, the samples are received periodically at the sampling rate specified and triggered the sensor

thread. After processing the data, the sensor thread then stores it in memory class DeviceSensor. The

sensor thread performs calibration upon receiving the sample if the sample is from the accelerometer.

Then the data is filtered to get the gravity or geomagnetic values. These two values are then combined

to get the rotation matrix and get the orientation values including the current heading of the phone.

The accelerometer values will be push at the end of a queue. We used a queue data structure to store

the last hundred samples. Upon receiving new values, the queue will remove the value at the top of the

queue, which is the oldest value in the queue and replace it with the new value at the end of the queue.

The standard deviation is computed for the entire sensor samples set in the queue. The current status

of the device is stationary when the standard deviation is below the threshold and in motion if it is

above the threshold.

78

Figure 6-5: Inertial Navigation System Software Flowchart

6.3.2 WiFi Positioning

Similar to the INS, the WiFi is initialized in the MapActivity class. It is run on a separate thread to scan

for WiFi network periodically. When the hardware finishes scanning for the area WiFi signals, the thread

79

will receive the sample measurement. After receiving the measurements, the thread filters only signals

that are known in the simulated database by comparing their unique Basic Service Set Identifier (BSSID).

This set of signal measurements will be used to correlate with the simulated propagation. The

correlation computational performance is O(area/resolution2) with the resolution is number of discrete

values in a meter from the propagation simulated model.

6.3.3 Positioning Fusion

After the WiFi correlation is ready, the WiFi thread will start fusing the correlation model with the INS

movement vector. An array of size twice a constant we define as “effective radius” which is the radius

of the discrete Gaussian probability distribution. The computational performance of computing the

Gaussian is O(rgaussian
2). Then this Gaussian distribution array will be shifted on the last values of the

probability density function (PDF) map to compute the new PDF. The computational load is

O(area/resolution2 * rgaussian
2). Since the computation is a floating point multiplication, we see that the

effective size plays an important role in the computational load. A 10 meters Gaussian radius in the

distribution array can result in 3 million floating point multiplication every second.

6.3.4 Database

Although the HTC Hero has the capability of creating a database using SQL in the Content Provider

module of Android Operating System, we don’t use this database in our application. The SQL would

have provided us with better synchronization and portability with a web interface and sharing system.

However, with the timeframe of the project, we decided to implement only a pseudo database using

text file to store directory information and our application will construct the database inside the

program by parsing those text files. The text files that are used to construct our database are: nodes.txt,

edges.txt, and wall.txt. Each of them contains information about the graph nodes inside the building,

the edges that connects them and the physical walls respectively. The nodes information includes the

geographic coordination in the building, the type of the nodes, the identifier of the room and the name

of the person which it belongs to. The edges information contains on which nodes are connected to

each other in a form of an adjacent list. The wall information includes their coordinates in the building.

The text files can be found in Appendix C: Database files.

6.3.5 Routing

The Dijsktra algorithm implementation is in Graph class. The Graph class also contains the list of nodes

which can be accessed by the routing algorithm. The input of the routing algorithm is the id of source

node and the id of the destination node. The output of the algorithm is the cost of the shortest path

80

and the path stored in an array by id of the nodes on the path. The algorithm flow chart is shown in the

Figure 6-6. During a positioning process, the current location will be added to the graph system as a

new node with position matched to the nearest edge using the map matching algorithm. This node will

be connected to the two endpoints node of the edge it is matched to. Then the routing will be

performing using this node as its source.

Figure 6-6: Non-optimized Dijkstra Software Flow Chart

81

During initialization process, the cost to each node is set at infinity and the cost to the source node is

zero. The visited array is used to mark if a node has been optimized before. After initialization, the

algorithm is implemented in a while loop. At the beginning of each loop, the minimum cost node which

hasn’t been visited is optimized. The minimum cost node is defined as visited. Then all the cost to the

adjacent nodes will be updated if it is better to go through the minimum node being optimized. After

the destination node is optimized, the shortest path is found.

Then we work on improving the computational performance of the algorithm. As shown in the flow

chart, the main loop of the algorithm will have computational cost of O(n) with n is the number of

vertices. In each loop, the algorithm has to perform a minimum cost node and update all the adjacent

nodes of this node. The computational cost of finding the minimum cost node is O(n) by a linear loop to

examine the cost of each node. The cost of finding all the adjacent nodes are O(n) in traditional graph

matrix representation. The cost of updating is O(1) in a graph matrix representation. This makes a total

computational performance is O(n*n).

To improve the cost of finding adjacent nodes, we store the data of the adjacent nodes in a list. This will

increase the memory used but will reduce the computational cost of from O(n) to an amortized O(1)

computational performance. To improve the finding process of the minimum cost node, we have to

store the data in a minimum heap data structure. There are two types of heap that we considered:

binary heap and Fibonacci heap. To compare these two types of heaps, there are three heap operations

we considered that the algorithm requires: finding the minimum heap node (which is used at the

beginning of the loop to find the minimum cost node), decreasing the key value of a certain node (which

is used to update the cost of an adjacent node), and adding a new node to the heap (which is used to

add the new adjacent node to the heap).

Both the binary heap and Fibonacci heap has the cost of finding the minimum heap of O(1), which is the

nature of a minimum heap. Both the heaps has a similar operation for decreasing key and add new

node by updating new value and reconstruct the heap tree. While in binary heap, the data structure is a

binary tree, which makes the average cost of maintaining the tree of O(logn) but in some cases can

perform poorly if the order of adding nodes to the tree in such a way that makes a very long one side

binary tree. This situation can occur more often when the graph is sparse, which is the nature of our

floor plan graph. The Fibonacci heap prevents this problem by cutting the tree whenever it has too deep

graph, which although has the same average cost of O(logn) but performs better in the extreme case.

82

Therefore, we choose to implement Fibonacci heap for our routing algorithm. The flow diagram of our

Dijkstra algorithm after implementing Fibonacci heap is shown in Figure 6-7.

Figure 6-7: Optimized Dijkstra with Fibonacci Heap Software Flow Chart

83

6.4 Graphical User Interface

The HTC Hero phone is a smartphone device with touch screen interface and six physical buttons

excluding the volume buttons. The physical buttons of the phone are illustrated in the Figure. Later in

the software implementation of our user interface, we will refer to these buttons.

Figure 6-8: HTC Hero Physical I/O Device for User Interaction

The application can be started from the HTC Hero application list. At the home screen of the

application, the user will have three options: view the map of the building, browsing the database and

get directions. The home screen is shown in the Figure 6-9. The user can start each option by pressing

the button on the screen through the touch screen interface. By clicking the button, the user will be

redirected to the accordingly screen of that function.

The following sections will describe about what the user can perform in each option. The Directory

button will help the user to access the database. The Get Directions button will help the user to find

the shortest path to go between places inside the building. The Map View button will display a graphical

view of the map floor plan with information attributed with it. The user interface state map is displayed

in Figure 6-10.

From the Home Activity, the user can jump to other activities through a button click: Directory

Activity, Route Activity, and Map Activity. From these activities, the user can jump to each other

activities using the according function in each activity. For example, from the Map Activity where the

user could view the entire floor plan of the building, the user can jump to Route Activity through Get

Directions button in order to find the path to their desired destination.

84

Figure 6-9: Application Home Screen

Figure 6-10: Application State Map

85

6.4.1 Directory

This option will allow the user to access to the database that contains all the information about the

rooms and people in the building.

a b

Figure 6-11: Directory View Home Screen and is expanded view

At the beginning, the screen will show the different categories that the database uses to store the

information of the building as shown in Figure 6-11a. By clicking the room or name, the user can expand

to see all the content inside each category as shown in Figure 6-11b. The user can browse by room

name or by people name through the screen by scrolling with the touch screen. At any given time, the

user can access the menu button to perform a search function.

When browsing the directory, the user could press the desired location name and hold for 2 seconds to

access pop up menu with additional functions as shown in Figure 6-12a. The three options that the user

has is View Detail, From Here and To Here. The option View Detail shows additional information

about the person or the room that the user wants to get more information.

86

a b

Figure 6-12: Direction Pop Up Menu & View Menu Option

For example, the user can see more information about a person such as the room that he or she is in the

Detail View screen as illustrated in the Figure 6-12b. The other options help the user know how to

get to or from this location to a desired destination. That option will brine user to the Get Directions

screen where the user can input the location he or she want to go to.

As shown in an example Figure 6-13a, the user chooses the option to get directions to this location. The

user will be redirected to the Get Direction screen where he has the option to input where is the user

wants from.

6.4.2 Routing

The home screen of the Routing Activity can be shown in the Figure 6-13b. The user can input

the source and destination location to get the directions about how to get there. The user also is

assisted by an auto-complete function when typing the name of the location. The auto-complete

feature gets its information from the database. An example of the auto-complete function can be

shown in Figure 6-14a.

87

a b

Figure 6-13: Linking from the Directory screen to Get Direction screen

a b

Figure 6-14: Auto-complete feature in Routing GUI

88

When the user finishes inputting the destination and source locations, he or she can get the direction by

pressing the button. The application will ask for more information if the information inputted is missing

as shown the right screen in Figure 6-14b. When the information inputted is sufficient, the application

will find the path and shows the route on the map view as shown in Figure 6-15b.

6.4.3 Map View

The map view is a view where the user can see the entire screen with map and location data displayed

on it. As shown in Figure 6-15a, the location information with name of the person and the room name

are also displayed on the map. The route to go between locations from the routing request can be

displayed on the map with an arrow line showing the direction. During the map view mode, the user

can use the scroll button on the phone to browse the whole map.

a b

Figure 6-15: Map View screen with and without route directions

At map view, the user can press the menu button to show the option for the application to find its

current location on the map using positioning method as shown in Figure 6-16a. The position will be the

center of the screen with a circle and a fan displaying the compass and its angle is the heading direction

that the user is facing as shown in Figure 6-16b.

89

a b

Figure 6-16: Finding the current position of the user and display it on the screen

6.5 Summary

The application is implemented completely in Java and run in the Google Android operating system of

the HTC Hero. The application is a multi threaded object oriented programming project. The INS, WiFi

positioning and positioning integration algorithms are all implemented as a discrete probability

distribution using two dimensional data structure. The positioning integration uses most of the

computational capability of the device. The routing algorithm Dijkstra is implemented using Fibonacci

Heap and achieves optimal result contributing little to the computational load. The application can help

the user to determine the current location and find direction from there to the desired destination. The

user also can browse the directory, view the map and search for a customed route between any

locations inside the building.

90

7 Testing and Results

In order to verify the systems and functionalities described in chapters 4, 0, and 6 a number of tests

were carried out. The procedures and results of these tests are described in this chapter.

7.1 Inertial Navigation System Testing

The purpose of the INS testing was to confirm the functionality described in Section 4.2 and the

probabilistic model of the expected output described in Section 4.3.1.

7.1.1 Quantitative Inertial Navigation System Testing

The accelerometer on the HTC Hero is used to determine whether the user is moving or stationary. The

following test was carried out to assess how accurately the user’s displacement is measured if the

system has determined that the user is moving.

The test was carried out on measured five-meter stretches of hallway in two places on the second floor

of the engineering research building. The two locations are shown in Figure 7-1. To prevent unknowing

contamination of the results cause by bad compass data in any single orientation, data was collected for

both directions of travel on each of two perpendicular stretches of hallway. Trials were conducted in

both locations by two members of the team. Additionally, two motion profiles were used in the

collection of data. In the first, referred to as the “standing” case, the tester started recording data

before beginning to move and stopped recording data after stopping their motion at the end of the

measured path. In the second, referred to as the “walking” case, the tester walked continuously down

the hall way, starting and stopping the recording as the start and finish lines, respectively, were crossed.

Multiple trials were carried out for each combination of test location, direction of motion, tester, and

motion profile.

91

Figure 7-1: INS Test Locations

The raw test data for all four directions, shown as displacement from the origin, is plotted in Figure 7-2.

The data is separated by motion profile into left and right plots for standing and walking, respectively.

The colors of the plotted data match the colors of the test location indicators in Figure 7-1. The four

colored lines radiating outward from the origin match the direction of the four test paths rotated to

match the axis of the plot. The blue circle has radius equal to the length of the test paths. Data points

exactly matching the tester’s motion would lay on the intersection of the circle with the corresponding

radial line.

Figure 7-2: Quad-Directional INS Test Results for Standing and Walking Trials

Qualitative analysis of the two subplots of Figure 7-2 indicates a stronger correlation between measured

and actual distance traveled in the standing case as well as greater directional inaccuracy in the

approximately east and west (green and cyan) cases.

As data from the four paths is intended to accurately reflect behavior of the inertial navigation system

for all orientations, it is useful to consider the data normalized about uniform direction. Figure 7-3 plots

92

the data from both standing and walking tests rotated to an expected heading of zero radians. This was

accomplished by measuring the difference between the building orientation, as seen in Figure 7-1, and

magnetic north as used by the HTC Hero’s compass. The normalized plot of results from the standing

test shows large variability in direction and distance. The results of the walking test are more tightly

grouped, but still imprecise.

In order to combine the INS information with other sources of positioning information, a likelihood of

the received INS data occurring for several displacements is calculated. To validate and calibrate the

likelihood function used, analysis of some simple statistical properties of the test data is useful. In

Figure 7-4 histograms of the radial and angular coordinates of the walking and standing test data are

plotted. As in the plot of the normalized data, the angular coordinates of the samples from the standing

tests vary more widely than those from the walking tests.

Figure 7-3: Direction-Normalized INS Test Results for Standing and Walking Cases

The walking tests were deemed to be more relevant because the user is in motion for an entire sampling

period significantly more often than they transition from stationary to moving within a single period.

93

Figure 7-4: Histograms of Radial and Angular Data from INS Testing

Analysis of the results of the walking tests yielded a radial standard deviation to mean ratio of 0.125 and

an angular standard deviation of 12.4° or 0.217 radians. This information assigns values to the constants

 and defined in Section 4.3.1.

7.1.2 Qualitative Inertial Navigation System Testing

Through qualitative observation, some potential causes for error were found in the method used to

create the inertial navigation system likelihood function (Section 4.3.1). Specifically, when the

displacement is zero the function returns a divide by zero error at the origin and zero for all other

locations. To correct for this possibility, a rectangular Gaussian distribution is used when displacement

is zero. The inertial likelihood functions applied after this correction is

 . (36)

94

A value of 2.0 meters was chosen for constant to reflect the possibility of undetected user motion

when measured displacement is zero.

Additionally, observations led to the determination that the values for and determined in the

quantitative testing did not accurately characterize all potentials for error in the system. While the

value .125 meters for the constant is determined directly from the empirical test data, it only reflects

errors observable in the test. A greater value (= 0.5 meters) was selected to reflect additional errors

the can occur if the system does not correctly determine whether the user is moving or stationary. This

can happen if the person is holding the phone exceptionally still while walking, or moving it vigorously

while standing still. It can also be caused by the sampling delay between the sensor input and the

systems determination of whether or not the user is in motion. The angular standard deviation was

increased from 12.4° to 45° to account for local magnetic disturbances caused by large electronics and

for variation in the way users hold the device. These changes were validated through further qualitative

testing.

Analysis of the simulated propagation data showed that the low sampling resolution was causing

accuracy to be lower near some obstacles. This was corrected by running the simulation at a higher

resolution and down-sampling the output to the resolution required for the positioning system.

Improved performance was observed after this change.

7.2 WiFi Positioning System Testing

The accuracy of the WiFi positioning system has a great effect on the accuracy of the final system. While

other sources of information, including the INS and map matching, are used to improve the position fix,

the WiFi system provides the only absolute position reference.

Figure 7-5: Instantaneous WiFi Positioning Plot

95

Figure 7-5 is a plot of the position estimates gathered by sampling the maximum point of the WiFi

likelihood function described in Section 4.1.3. The red line marks the path the actual path the user took

through the building. The green points and lines are the estimate of the user’s position. For this test,

the average distance between the estimated positions and the user’s path is 1.67 meters. Though the

plotted estimates do not accurately reflect the user’s motion, the inclusion of additional information will

improve the estimate.

7.3 Integrated Positioning System Testing

The positioning system implemented on the HTC Hero makes use of the inertial navigation and WiFi

positioning systems tested in the previous sections along with the methods described in Section 4.3 to

keep a running estimate of the user’s position. Applying these methods to the WiFi measurements

plotted in Figure 7-5 and the corresponding inertial measurements results in the positioning estimates

plotted in Figure 7-6. A comparison of these two figures makes clear the improvement. In this test, the

average distance between the estimated positions and the user’s path is 1.41 meters. Qualitatively,

these position estimates appear to better serve the needs of a navigation application; the estimates

more consistently lay in the same room or hallway as the user’s path.

Figure 7-6: HTC Position Estimates

To further improve the position estimate, each point is mapped onto one of the links shown in Figure

7-7. These links connect the nodes that define locations and intersections in the application’s routing

algorithm. Each link endpoint that is not an intersection is a room, a cubicle, a desk, or a stairway.

96

Figure 7-7: Nodes and Links for Map Matching

The position estimates resulting from the map matching operation are plotted in Figure 7-8. As is

evident in this plot, nearly all of the points map to the user’s actual path. The average distance between

the estimated positions and the user’s path is now 0.71 meters. This accuracy is sufficient for indoor

navigation.

Figure 7-8: Map Matched Position Estimates

7.4 Summary

Testing of the system’s positioning functionalities strongly suggested that sufficient accuracy exists for

use in a navigation application. Full functional testing of the application revealed this to be true.

Following application activation, the system successfully locates the user within a small margin of error

(less than two meters) and then tracks the user’s motion through the building. Some cases were

observed in which the system incorrectly located the user in a room or hallway that they were not

currently in. The system successfully recovered from these errors.

97

8 Conclusion

Three objectives were identified that embody the functionalities necessary in an indoor positioning

system. First, the device must be capable of determining its location in the building. Second, it must be

capable of determining the optimal route to a destination. Third, an intuitive user interface must

provide the user with access to these features.

The process of meeting these objectives took place in four stages: background research, design,

implementation, and testing. In the background research, possible solutions were identified. In the

design process, specific solutions were selected for implementation and test. In the implementation

stage the various subsystems were developed and integrated with each other. To verify that the

preceding three stages had indeed met the objectives, tests were carried out at the system and

subsystem levels. Possible improvements identified in the testing stage were made.

Numerous candidate positioning techniques and technologies were considered for meeting the first

objective. The decision was made to implement an integrated positioning system making use of multiple

sources of information common to modern smartphones. Signal strength measurements from the

device’s wireless adapter are used to estimate position based on the known locations of wireless access

points. The method used is similar to the calibration-heavy technique of location fingerprinting, but a

pre-generated wireless propagation model is used to alleviate the calibration requirement.

Measurements of acceleration and orientation from the device’s accelerometer and magnetic compass

are used to repeatedly approximate the device’s motion. These sources of information are combined

with information from past sample periods to continually estimate the user location.

To overcome the challenge of determining an optimal path to the user’s destination, the rooms and

hallways of the building were represented as graphical nodes and branches. Many common routing

algorithms were considered for use in determining the best path to the user’s destination in the defined

graph. Dijkstra’s algorithm was chosen for its low computational complexity, its guarantee of

determining the optimal path, and potential for efficient handling of sparse graphs.

The user interface was developed using the Google Android software development kit and provides the

user with the ability to determine their location, select a destination from a database of people and

places, and follow the route that the phone determines.

98

Device testing showed that the three primary objectives were accomplished. The integrated positioning

techniques achieved an average deviation between estimated positions and the user’s path of less than

two meters. Matching these position estimates to known paths and locations in the building further

increased the accuracy. Additionally, the location database and routing algorithm accomplished the

objective of optimal routing. A user interface was constructed that allowed access to these functions.

Contributions made through the completion of this project include the use of an integrated propagation

model to simulate wireless propagation and hence negate the need for data collection in a WiFi-

fingerprinting like system. Also, a statistical method was developed for estimating position based on

successive, unreliable, measurements from WiFi positioning and inertial navigation sensors. The

development of these techniques made possible an innovative approach to the challenge of indoor

positioning and navigation that is less difficult to implement and is compatible with existing handheld

devices.

99

9 Recommendations

One of the most important aspects of this project that needs to be worked on is the overall accuracy of

the indoor navigation system. The application currently works with moderate accuracy, which is

sufficient enough but not ideal. Increasing the accuracy of the propagation model can make sure that

the device leads the user to its final destination with complete accuracy.

9.1 Future Directions

There are several directions for future research relevant to this project. A web interface could be

created that will allow a user to download the mapping information from a remote site. By adding a

feature like this the application can reach a new level of availability to users. Another useful subsystem

that can be developed is an application convert a building map into a format useful for routing and

propagation simulation. This map creation system could also guide the user through a procedure to

input any necessary information not found on the map including database information, WAP location,

and WAP signal strength. Further room for improvement exists in the propagation model. A more

accurate propagation simulation will increase the accuracy of the WiFi positioning system. To maximize

the usability of an online map hosting service, integration with the devices GPS to automate map

downloading on building entry would be another useful service.

9.2 Opportunity Analysis

This system can be developed into a highly marketable product. The application can be implemented in

large places such as malls, college campuses, museums or hospitals. The idea of the indoor navigation

system is to allow people to navigate themselves around unfamiliar places. This application could be

integrated into a large mapping system for an entire city that integrates outdoor GPS based systems

with multiple indoor navigation systems.

100

Bibliography

[1] Changdon Kee et al., "Centimeter-Accuracy Indoor Navigation," GPS World, November 2001.

[2] Sinan Gezici et al., "Localization via ultra-wideband radios: a look at positioning aspects for future

sensor networks," IEEE in Signal Processing Magazine, vol. 22, no. 4, pp. 70-84, 2005.

[3] Silke Feldmann, Kyandoghere Kyamakya, Ana Zapater, and Lue Zighuo, "An indoor Blutooth-based

positioning system: concept, Implementation and experimental evaluation," Institute of

Communications Engineering, Hanover,.

[4] Paramvir Bahl and Venkata N. Padmanabhan, "RADAR: an In-building RF-based User Location and

Tracking System," in Joint Conference of the IEEE Computer and Communications Societies, vol. 2,

2000, pp. 775-784.

[5] Kamol Kaemarungsi and Prashant Krishnamurthy, "Modeling of Indoor Positioning Systems Based

on Location Fingerprinting," 2004.

[6] Jeff Thurston, "GALILEO, GLONASS And NAVSTAR A Report on GPS for GIS People," GISCafe.com,

2002.

[7] Nicola Lenihan, A local Optimal User Position System for Indoor Wireless Devices, May 2004.

[8] Vasileios Zeimpekis, George M. Giaglis, and George Lek, "A taxonomy of indoor and outdoor

positioning techniques for mobile location services," SIGecom Exchange, 2003.

[9] Bill R, Cap C, Kofahl M, and Mundt T, "Indoor and Outdoor Positioning in Mobile Environments,"

Geographical Information Sciences, pp. 91-98, 2004.

[10] WildPackets, Inc., "Converting Signal Strength Percentage to dBm Values," Walnut Creek, 2002.

[11] (2009, Aug.) Bluetooth. [Online]. http://www.bluetooth.com/Bluetooth/Technology/Works/

[12] Pierre-Yves Gilliéron and Bertrand Merminod, "Personal Navigation System for Indoor

Applications," in 11th IAIN World Congress, Berlin, 2003.

http://www.bluetooth.com/Bluetooth/Technology/Works/

101

[13] JiJoong Kim and Hatem Hmam, "3D Self-Localisation from Angle of Arrival Measurements,"

Edinburgh South Australia, 2009.

[14] K W Cheung, J H M Sau, and R D Murch, "A New Empirical Model for indoor Propagation

Prediciton," Hong Kong, 1997.

[15] J D Parsons, The Mobile Radio Propagation Channel, 2nd ed. England: John Wiley & Sons Ltd, 2000.

[16] Gregory D. Durgin, "Practical Geometrical Behavior of Knife-Edge Diffraction," 2008.

[17] Nerius Tradišauskas and Dalia Tiešytė, "A Study of Map Matching for GPS Positioned Mobile

Objects," in 7th WIM Meeting, Uppsala, 2004.

[18] Huabei Yin and Ouri Wolfson, "A Weight-based Map Matching Method in Moving Objects

Databases," in 16th International Conference on Scientific and Statistical Database Management,

2004, p. 437.

[19] E. W. Dijkstra, "A Note on Two Problems in Connexion with Graphs," Numerische Mathematlk 1, pp.

269-271, 1959.

[20] iPhone Developer Program - Apple Developer Connection. [Online].

http://developer.apple.com/iphone/program/

[21] (2009, September) Google Android | Tech Flare Solutions. [Online].

http://www.techflare.com.au/news/2008/11/25/32/Google_Android

[22] Flurry Inc. (2009, July) Flurry Inc Website. [Online]. http://blog.flurry.com/bid/23244/Smartphone-

Industry-Pulse-June-2009

[23] HTC.com. (2009, Sep.) HTC - Products - HTC Hero - Specifications. [Online].

http://www.htc.com/www/product/hero/specification.html

http://developer.apple.com/iphone/program/
http://www.techflare.com.au/news/2008/11/25/32/Google_Android
http://blog.flurry.com/bid/23244/Smartphone-Industry-Pulse-June-2009
http://blog.flurry.com/bid/23244/Smartphone-Industry-Pulse-June-2009
http://www.htc.com/www/product/hero/specification.html

102

Appendices

Appendix A: MATLAB Propagation Simulation

The MATLAB propagation simulation exists as a main function (Propagation_Simulation.m) that calls a

number of sub-functions to perform simple tasks. Included below is the main function, as well as the

sub-functions that were written for this project.

Propagation Modeling Function

function RSS = Propagation_Simulation(wap,walls,fname)

%%%
%wap.posit x-y coordinates of WAP
%wap.power measured power of WAP at 1m
%wap.MAC MAC address of WAP
%walls list of wall elements (start x-y, end x-y, WAF)
%fname file name for output
%%%

start = clock; % Start timer to measure and display execution time

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% Adjustable Parameters %%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n1 = 2.5; % Path loss exponent (PLE) within the break point distance
n2 = 3.33; % Path loss exponent (PLE) outside the break point distance
Dbp = 10; % Break point distance in meters
Res = 8; % Resolution of simulation (in points per meter)
thresh_min = -100; % Value in dBm below which data will not be plotted
thresh_max = 0; % Value in dBm above which data will be clipped

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% Setup %%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%locate map correctly on XY plane
walls = wall_list_prep(walls,Res);

%calculate length of each wall
wall_length = ((walls(:,1) - walls(:,3)).^2 ...
 + (walls(:,2) - walls(:,4)).^2).^.5;

wap.posit = round(wap.posit*Res)/Res;

%determine building dimensions
building_size = [ceil(Res*max([walls(:,1);walls(:,3)]))/Res...
 ceil(Res*max([walls(:,2);walls(:,4)]))/Res];

103

%determine number of wall elements
num_walls = size(walls,1);

%determins dimensions of matrices needed for calculations
mat_size = [num_walls building_size(1)*Res+1 building_size(2)*Res+1];

%expand wall vector information into matrices
WALL_X1 = expand2fit(walls(:,1),mat_size);
WALL_Y1 = expand2fit(walls(:,2),mat_size);
WALL_X2 = expand2fit(walls(:,3),mat_size);
WALL_Y2 = expand2fit(walls(:,4),mat_size);
WALL_AF = expand2fit(walls(:,5),mat_size);

%create coordinate matrices
x = repmat(0:1/Res:building_size(1),building_size(2)*Res+1,1)';
y = repmat(0:1/Res:building_size(2),building_size(1)*Res+1,1);
X = expand2fit(x,mat_size);
Y = expand2fit(y,mat_size);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% Calculations %%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calculate distance from WAP to each point in building
path_dist = ((x - wap.posit(1)).^2 + (y - wap.posit(2)).^2).^.5;

%calculate slope of path from WAP at each point
path_m = make_finite((y-wap.posit(2))./(x-wap.posit(1)));
PATH_M = expand2fit(path_m,mat_size);

%calculate (finite) inverse of path slope at each point
path_m_inv = make_finite(1./path_m);

%calculate (finite) wall slope at each point
wall_m = make_finite((walls(:,2)-walls(:,4))./(walls(:,1)-walls(:,3)));
WALL_M = expand2fit(wall_m,mat_size);

%calculate (finite) inverse of wall slope at each point
wall_m_inv = make_finite(1./wall_m);

%calculate x and y intercepts of all walls and paths
WALL_X_INT = expand2fit(walls(:,1)-walls(:,2).*wall_m_inv,mat_size);
WALL_Y_INT = expand2fit(walls(:,2)-walls(:,1).*wall_m,mat_size);
PATH_X_INT = expand2fit(wap.posit(1)-wap.posit(2).*path_m_inv,mat_size);
PATH_Y_INT = expand2fit(wap.posit(2)-wap.posit(1).*path_m,mat_size);

%calculate free space losses, including break point (Cheung et. al.)
proploss_near = (10*log10((path_dist).^n1));
proploss_far = (10*(log10((Dbp).^n1)+log10((path_dist/Dbp).^n2)));
proploss_near(path_dist>Dbp) = proploss_far(path_dist>Dbp);
proploss_combined = proploss_near;

104

%calculate angle between each path and each wall
THETA = abs(atan((WALL_M-PATH_M) ./ (1+WALL_M.*PATH_M)));

%calculate x and y coordinates of all intersections between path and wall
X_INTSCT = (PATH_Y_INT-WALL_Y_INT) ./ (WALL_M-PATH_M);
Y_INTSCT = WALL_M .* PATH_M .* (PATH_X_INT-WALL_X_INT) ./ (PATH_M-WALL_M);
Y_INTSCT(PATH_M == 0 & WALL_M == -intmax) = wap.posit(2);

%for walls || or |_ to x-axis, fix intercept errors caused by inf. slopes
X_INTSCT(walls(:,1) == walls(:,3),:,:) = ...
 repmat(walls(walls(:,1) == walls(:,3),1), ...
 [1 building_size(1)*Res+1 building_size(2)*Res+1]);
Y_INTSCT(walls(:,2) == walls(:,4),:,:) = ...
 repmat(walls(walls(:,2) == walls(:,4),2), ...
 [1 building_size(1)*Res+1 building_size(2)*Res+1]);

%determine dBm interference value for each wall at all points
INTERFERENCE = WALL_AF./(.5*(1+max(sin(THETA),.1)));

%determine which walls interfere with path to which points
INTERFERE_PATH = order_test(wap.posit(1),X_INTSCT,X) & ...
 order_test(wap.posit(2),Y_INTSCT,Y);
INTERFERE_WALL = order_test(WALL_X1,X_INTSCT,WALL_X2) & ...
 order_test(WALL_Y1,Y_INTSCT,WALL_Y2);

INTERFERE = INTERFERE_PATH & INTERFERE_WALL;

%set interference values for walls that don't interfere to zero
INTERFERENCE(~INTERFERE)=0;

%add wall losses to free space losses
proploss_combined = proploss_combined + squeeze(sum(INTERFERENCE,1));

pl_new = 10.^(-proploss_combined/10);

%%%%%%%%%%% Diffraction %%%%%%%%%%%

%initialize vector that will hold list of diffracted corners
diffracted = wap.posit;

%display time to complete non multipath simulation
now = clock-start;
display(['Time elapsed: ' num2str(now(6)+60*now(5))])

%initialize variable for WAP to edge pathlosses
pl = zeros(2*num_walls);

%pre-calculate angles for diffraction simulation
dist_end1 = ((walls(:,1) - wap.posit(1)).^2 ...
 + (walls(:,2) - wap.posit(2)).^2).^.5;
dist_end2 = ((walls(:,3) - wap.posit(1)).^2 ...
 + (walls(:,4) - wap.posit(2)).^2).^.5;
theta1_end1 = acos(((dist_end1.^2 + wall_length.^2 - dist_end2.^2)) ...
 ./ (2.*dist_end1.*wall_length));

105

theta1_end2 = acos(((dist_end2.^2 + wall_length.^2 - dist_end1.^2)) ...
 ./ (2.*dist_end2.*wall_length));

%loop to test for diffraction at each end of each wall
for i = 1:2*num_walls

 %determine which wall of which end to test
 wall = ceil(i/2);
 wall_end = mod(i+1,2)+1;

 %determine whether or not wall end is a corner for diffraction
 [will_diffract diffracted] = ...
 is_corner(walls,wall,wall_end,wap.posit,Res,diffracted);

 %if point is corner at which diffract will occur
 if will_diffract

 %get x and y coord. of wall ends
 plx = walls(wall,2*mod(i+1,2)+1);
 ply = walls(wall,2*mod(i+1,2)+2);
 plx_alt = walls(wall,2*mod(i,2)+1);
 ply_alt = walls(wall,2*mod(i,2)+2);

 %get proploss from WAP to wall end
 pl(i)=proploss_combined(plx*Res+1,ply*Res+1);

 %get distance from WAP to both wall ends
 path_dist = ((x - plx).^2 + (y - ply).^2).^.5;
 path_dist_alt = ((x - plx_alt).^2 + (y - ply_alt).^2).^.5;

 %calculate slope of path from WAP at each point
 path_m = make_finite((y-ply)./(x-plx));
 PATH_M = expand2fit(path_m,mat_size);

 %calculate (finite) inverse of path slope at each point
 path_m_inv = make_finite(1./path_m);

 %calculate x and y intercepts of paths
 PATH_X_INT = expand2fit(plx-ply.*path_m_inv,mat_size);
 PATH_Y_INT = expand2fit(ply-plx.*path_m,mat_size);

 %calculate free space losses
 proploss2 = (10*log10((path_dist).^n1));
 proploss_far = (10*(log10((Dbp).^n1)+log10((path_dist/Dbp).^n2)));
 proploss2(path_dist>Dbp) = proploss_far(path_dist>Dbp);
 proploss2 = make_finite(proploss2);

 %calculate angle between each path and each wall
 THETA = atan((WALL_M-PATH_M) ./ (1+WALL_M.*PATH_M));

 %get/calculate angles needed to calculate diffraction coefficient
 theta_1 = eval(['theta1_end' num2str(wall_end)]);
 theta_1 = abs(theta_1(wall));
 theta_2 = acos((path_dist.^2 + wall_length(wall).^2 ...

106

 - path_dist_alt.^2) ...
 ./ (2.*path_dist.*wall_length(wall)));
 theta_2 = theta_2.*(-1).^(squeeze(INTERFERE_PATH(wall,:,:))-1);
 theta_2 = 2*pi - mod(real(theta_2),2*pi);

 %calculate x and y coord. of intersections between path and wall
 X_INTSCT = (PATH_Y_INT-WALL_Y_INT) ./ (WALL_M-PATH_M);
 Y_INTSCT = WALL_M .* PATH_M .* ...
 (PATH_X_INT-WALL_X_INT) ./ (PATH_M-WALL_M);

 %for walls || or |_ to x-axis, correct inf. slope errors
 X_INTSCT(walls(:,1) == walls(:,3),:,:) = ...
 repmat(walls(walls(:,1) == walls(:,3),1), ...
 [1 building_size(1)*Res+1 building_size(2)*Res+1]);
 Y_INTSCT(walls(:,2) == walls(:,4),:,:) = ...
 repmat(walls(walls(:,2) == walls(:,4),2), ...
 [1 building_size(1)*Res+1 building_size(2)*Res+1]);

 %determine dBm interference value for each wall at all points
 INTERFERENCE = make_finite(WALL_AF./max(sin(abs(THETA)),.1));

 %determine which walls interfere with path to which points
 INTERFERE = order_test(plx,X_INTSCT,X) & ...
 order_test(ply,Y_INTSCT,Y) & ...
 order_test(WALL_X1,X_INTSCT,WALL_X2) & ...
 order_test(WALL_Y1,Y_INTSCT,WALL_Y2);

 %set interference values for walls that don't interfere to zero
 INTERFERENCE(~INTERFERE)=0;

 %add wall losses to free space losses
 proploss2 = proploss2 + squeeze(sum(INTERFERENCE,1));

 %calculate diffraction coefficient
 D = squeeze(abs(-exp(-j*pi/4)/sqrt(2*pi) ...
 .*abs(csc(theta_2-theta_1)) ...
 .*sqrt(-sin(theta_2)./sin(theta_1))));

 %remove infinite and unnecessary values from array
 D(D==Inf | D==-Inf | isnan(D) | theta_2<=pi) = ...
 zeros(size(D(D==Inf | D==-Inf | isnan(D) | theta_2<=pi)));
 D(D>1) = zeros(size(D(D>1)));
 D(D<0) = zeros(size(D(D>1)));

 %calculate, correct, and add new pathlosses to running total
 pl_tmp = 10.^(-pl(i)/10)*10.^(-proploss2/10).*D;
 pl_tmp(isnan(pl_tmp)) = zeros(size(pl_tmp(isnan(pl_tmp))));
 pl_new = pl_new + (pl_tmp);

 %display progress and time elapsed
 disp([num2str(i) ' of ' num2str(2*num_walls) ' complete'])
 now = clock-start;
 display(['Time elapsed: ' num2str(now(6)+60*now(5)) ' seconds'])
 end

107

end

%convert proploss to decibels
proploss = -10*log10(pl_new);

%subtract propagation losses from transmit power
RSS = wap.power - real(proploss);

%remove low values to preserve plot scale
RSS(RSS>thresh_max) = thresh_max;

%clip high values to preserve plot scale
RSS(RSS<thresh_min) = thresh_min;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% Plot Results %%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[TMP RSS] = down_sample(RSS); %downsample array to output resolution

%call function to plot results
SS_plot(building_size,walls,RSS,diffracted)

%open file and save results
fid = fopen([fname '.txt'],'w');
fprintf(fid,'%12s\n',wap.MAC);
fprintf(fid,'%8.0f%8.0f\n',size(RSS));
format = [repmat('%8.2f',1,size(RSS,2)) '\n'];
fprintf(fid,format,fliplr(RSS'));
fclose(fid);

%clear variables from memory
clear all

return

Supporting Functions

The following functions, listed in the order they are called, perform tasks subordinate to the propagation

simulation.

wall_list_prep.m

%This function translates wall position data to the origin and rounds
%coordinate to the nearest multiple of a given resolution
function wall_list_new = wall_list_prep(walls,Res)

%%%
%walls list of wall element coordinates (start x-y, end x-y)
%Res Resolution of model (in m^-1)
%%%

108

%round values to nearest multiple of resolution
walls(:,1:4) = round(walls(:,1:4)*Res)/Res;

%find coordinates of wall point closest to origin
xmin = min([walls(:,1);walls(:,2)]);
ymin = min([walls(:,2);walls(:,4)]);

%translate coordinates to match closest corner to origin
walls(:,1) = walls(:,1)-xmin;
walls(:,3) = walls(:,3)-xmin;
walls(:,2) = walls(:,2)-ymin;
walls(:,4) = walls(:,4)-ymin;

%return new wall list
wall_list_new = walls;

return

expand2fit.m

%This function expands vectors and arrays into the 3-d form used for matrix
%calculations
function out = expand2fit(in,fit_size)

%%%
%in input vector
%Res size required to array operations
%%%

%seperate fit vector dimensions
x = fit_size(1);
y = fit_size(2);
z = fit_size(3);

%if input is a vector
if size(in) == [x 1]
 %repeat in two additional dimensions
 out = repmat(in,[1 y z]);

%else if input is an array
elseif size(in) == [y z]
 %repeat in one additional dimension
 out = repmat(reshape(in,[1 y z]),[x 1 1]);

%if input is of invalid size, return an error
else
 out = zeros(x,y,z);
 error('Invalid input to function "expand2fit"')
end

return

make_finite.m

%replaces infinite values with the maximum integer value of the system

109

function y = make_finite(x)

%%%
%x input vector to be made finite
%%%

%replace all infinite values with maximum integer of corresponding sign
x(x==Inf)=intmax;
x(x==-Inf)=-intmax;

%return result
y=x;

return

order_test.m

%determines if the B input is between the A and C inputs, inclusive
function bool = order_test(a, b, c)

%%%
%a first extreme value
%b test value
%c second extreme value
%%%

%round values to nearest thousandth (tollerence)
a = round(10^3*a)/10^3;
b = round(10^3*b)/10^3;
c = round(10^3*c)/10^3;

%perform logical comparison
bool = (a<=b&b<=c) | (a>=b&b>=c);

return

is_corner.m

%This function searchs a list of walls for intersections with a given wall
%in order to determine if a corner shape exists that would cause
%significant diffraction
function [is diffract] = is_corner(walls,wall,end_in,wap_xy,Res,diffract)

%%%
%walls list of wall element coordinates (start x-y, end x-y)
%wall specific wall to be checked for intersections
%end_in which end of specific wall to check for corners
%wap_xy x-y coordinates of wireless access point
%Res resolution of simulation
%diffract list of already found corners to which any newfound corners
% will be appended
%%%

%assume that the end being tested is a corner
is = 1;

110

%reshape walls array into a list of ends
ends = [walls(:,1:2) ; walls(:,3:4)];

%pre-allocate memory for intersection-count variable
k = zeros(length(ends),1);

%for each end of a wall
for i = 1:length(ends)
 %determine if coordinates are the same as end of another wall
 if isequal(ends((end_in-1)*length(walls)+wall,:),ends(i,:))
 %if coordinates are the same, set corresponding count bit to '1'
 k(i)=1;
 end
 %if more than one overlap (in addition to overlap with self)
 %is found, break out of loop
 if sum(k) > 2
 break
 end
end

%set count bit corresponding to overlap with self back to '0'
k((end_in-1)*length(walls)+wall)=0;

%if an intersection exists
if sum(k)
 %This section of code determines the orientation, relative to an
 %incident signal path, of a corner formed by two walls with overlapping
 %ends. Diffraction will ot occur at corners to which the path is
 %incident on the inside.
 end_1 = end_in;
 end_2 = 1+(find(squeeze(k),1)>length(walls));
 wall_1_1 = walls(wall,1+2*(end_1-1):2+2*(end_1-1));
 wall_1_2 = walls(wall,3-2*(end_1-1):4-2*(end_1-1));
 wall_1_d = [wall_1_1(1) - wall_1_2(1) wall_1_1(2) - wall_1_2(2)];
 wall_1_l = sum((wall_1_1-wall_1_2).^2)^.5;
 wall_1_test = wall_1_1-(1/Res).*wall_1_d./wall_1_l;
 wall_2_1 = walls(mod(find(k,1)-1,length(walls))+1, ...
 1+2*(end_2-1):2+2*(end_2-1));
 wall_2_2 = walls(mod(find(k,1)-1,length(walls))+1, ...
 3-2*(end_2-1):4-2*(end_2-1));
 wall_2_d = [wall_2_1(1) - wall_2_2(1) wall_2_1(2) - wall_2_2(2)];
 wall_2_l = sum((wall_2_1-wall_2_2).^2)^.5;
 wall_2_test = wall_2_1-(1/Res).*wall_2_d./wall_2_l;
 dist_1_1 = sum((wall_1_1-wap_xy).^2)^.5;
 dist_1_test = sum((wall_1_test-wap_xy).^2)^.5;
 dist_2_1 = sum((wall_2_1-wap_xy).^2)^.5;
 dist_2_test = sum((wall_2_test-wap_xy).^2)^.5;
 away_1 = (dist_1_test > dist_1_1);
 away_2 = (dist_2_test > dist_2_1);
 if ~xor(away_1,away_2)
 is = 0;
 end

%otherwise, check for 'T' shaped intersections that will prevent
%diffraction

111

else
 for i = 1:length(walls)
 d1=((walls(i,1)-walls(wall,1+2*(end_in-1)))^2+(walls(i,2) ...
 -walls(wall,2+2*(end_in-1)))^2)^.5;
 d2=((walls(i,3)-walls(wall,1+2*(end_in-1)))^2+(walls(i,4) ...
 -walls(wall,2+2*(end_in-1)))^2)^.5;
 wall_length=((walls(i,1)-walls(i,3))^2+ ...
 (walls(i,2)-walls(i,4))^2)^.5;
 if ((d1+d2) == wall_length) && (i ~= wall)
 is = 0;
 break
 end
 end
end

%if no conditions found that prevent diffraction
if is == 1
 %append location of corner to list of corners and return
 diffract = [diffract; walls(wall,1+2*(end_in-1):2+2*(end_in-1))];
end

return

down_sample.m

%This function downsamples an array of predicted values to a size that is
%computationally appropriate for manipulation on the HTC Hero
function [y1 y2] = down_sample(x)

%%%
%x oversampled array to be reduced
%%%

%filtering array for use in averaging; oversampled points that map to
%multiple daownsampled points are weighted lower for each use
remap = [1 2 2 2 1; ...
 2 4 4 4 2; ...
 2 4 4 4 2; ...
 2 4 4 4 2; ...
 1 2 2 2 1];

%for each element of the desired downsampled array
for i = 1:round(size(x,1)/2)/2
 for j = 1:round(size(x,2)/2)/2
 if 4*i-3 < size(x,1) && 4*j-3 < size(x,2)
 y1(i,j) = x(4*i-3,4*j-3);
 end

 %create indexing array of coordinate to correctly apply filtering
 % array
 coordx_tmp = [4*i-5 4*i-4 4*i-3 4*i-2 4*i-1; ...
 4*i-5 4*i-4 4*i-3 4*i-2 4*i-1; ...
 4*i-5 4*i-4 4*i-3 4*i-2 4*i-1; ...
 4*i-5 4*i-4 4*i-3 4*i-2 4*i-1; ...
 4*i-5 4*i-4 4*i-3 4*i-2 4*i-1];
 coordy_tmp = [4*j-5 4*j-5 4*j-5 4*j-5 4*j-5; ...

112

 4*j-4 4*j-4 4*j-4 4*j-4 4*j-4; ...
 4*j-3 4*j-3 4*j-3 4*j-3 4*j-3; ...
 4*j-2 4*j-2 4*j-2 4*j-2 4*j-2; ...
 4*j-1 4*j-1 4*j-1 4*j-1 4*j-1];

 %only use indices for which elements exist
 coordx = coordx_tmp(coordx_tmp>0 & coordx_tmp<=size(x,1) ...
 & coordy_tmp>0 & coordy_tmp<=size(x,2));
 coordy = coordy_tmp(coordx_tmp>0 & coordx_tmp<=size(x,1) ...
 & coordy_tmp>0 & coordy_tmp<=size(x,2));
 x_rel = diag(x(coordx,coordy));

 %collect relevant signal strength values
 remap_rel = remap(coordx_tmp>0 & coordx_tmp<=size(x,1) ...
 & coordy_tmp>0 & coordy_tmp<=size(x,2));

 %perform weighted average using relative remap array elements
 y2(i,j) = sum(sum(x_rel.*remap_rel))/sum(sum(remap_rel));
 end
end

return

SS_plot.m

%This function plots the output of the propagation simulation function
function SS_plot(building_size,wall_list,RSS,diffracted)

%%%
%building_size dimensions of building being modeled
%wall_list list of wall elements used to plot building layout
%RSS array of predicted received signal strength values
%diffracted list of coordinate of corners at which diffraction was
% modeled
%%%

%open a new figure
figure

%in the right subplot, plot the predicted RSS values
subplot(1,2,2)
imagesc(0:.1:building_size(2),0:.1:building_size(1),RSS);
title('RSS (dBm)')
xlabel('meters')
ylabel('meters')
grid off,axis tight,axis equal,axis vis3d,view([0 90]),zoom(1),colorbar,axis

xy
axis([min([wall_list(:,2) ; wall_list(:,4)]) ...
 max([wall_list(:,2) ; wall_list(:,4)]) ...
 min([wall_list(:,1) ; wall_list(:,3)]) ...
 max([wall_list(:,1) ; wall_list(:,3)])])

%in the left subplot, plot the building layout includig walls, WAP
% location, and location of corners for which diffraction was modeled
subplot(1,2,1)

113

title('Floor Plan')
xlabel('meters')
ylabel('meters')
line([wall_list(:,2) wall_list(:,4)]',[wall_list(:,1)

wall_list(:,3)]','color','b')
axis equal,axis tight,zoom(1)
axis([min([wall_list(:,2) ; wall_list(:,4)]) ...
 max([wall_list(:,2) ; wall_list(:,4)]) ...
 min([wall_list(:,1) ; wall_list(:,3)]) ...
 max([wall_list(:,1) ; wall_list(:,3)])])
axis xy
hold on
plot(diffracted(1,2),diffracted(1,1),'xr')
plot(diffracted(2:end,2),diffracted(2:end,1),'og')

114

Appendix B: HTC Android Application Source Code

Activity

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.wpirl"

 android:versionCode="1"

 android:versionName="1.0">

 <application android:icon="@drawable/icon" android:label="@string/app_name"

android:debuggable="true">

 <activity android:name=".Home"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name="com.wpirl.activity.MapActivity"

android:label="@string/map_activity"></activity>

 <activity android:name="com.wpirl.activity.RouteActivity"

android:label="@string/route_activity"></activity>

 <activity android:name="com.wpirl.activity.DirectoryActivity"

android:label="@string/route_activity"></activity>

 </application>

 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE"></uses-

permission>

 <uses-permission android:name="android.permission.CHANGE_WIFI_STATE"></uses-

permission>

 <uses-sdk android:minSdkVersion="3" />

</manifest>

http://schemas.android.com/apk/res/android

115

Home.java

package com.wpirl;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import com.wpirl.activity.DirectoryActivity;

import com.wpirl.activity.MapActivity;

import com.wpirl.activity.RouteActivity;

import com.wpirl.map.Map;

import com.wpirl.positioning.Positioning;

public class Home extends Activity implements OnClickListener {

 private Button btnMapActivity;

 private Button btnRouteActivity;

 private Button btnDirectoryActivity;

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.home);

 btnMapActivity = (Button) findViewById(R.id.btnMapActivity);

 btnMapActivity.setOnClickListener(this);

 btnRouteActivity = (Button) findViewById(R.id.btnRouteActivity);

 btnRouteActivity.setOnClickListener(this);

 btnDirectoryActivity = (Button) findViewById(R.id.btnDirectoryActivity);

 btnDirectoryActivity.setOnClickListener(this);

 initialize();

 }

 public void onClick(View v) {

 if (v == btnMapActivity) {

 startActivity(new Intent(Home.this, MapActivity.class));

 } else if (v == btnRouteActivity) {

 startActivity(new Intent(Home.this, RouteActivity.class));

 } else if (v == btnDirectoryActivity) {

 startActivity(new Intent(Home.this, DirectoryActivity.class));

 }

 }

 /**

 * Initialize all the static classes

 */

 private void initialize() {

 Map.initialize();

 Positioning.initialize();

 }

}

116

Home.xlm

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

 <Button

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:id="@+id/btnMapActivity"

 android:text="@string/map_activity"/>

 <Button

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:id="@+id/btnRouteActivity"

 android:text="@string/route_activity"/>

 <Button

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:id="@+id/btnDirectoryActivity"

 android:text="@string/directory_activity"/>

</LinearLayout>

http://schemas.android.com/apk/res/android

117

Directory.java

package com.wpirl.activity;

import java.util.Arrays;

import android.app.ExpandableListActivity;

import android.content.Intent;

import android.os.Bundle;

import android.view.ContextMenu;

import android.view.Gravity;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.view.ViewGroup;

import android.view.ContextMenu.ContextMenuInfo;

import android.widget.AbsListView;

import android.widget.BaseExpandableListAdapter;

import android.widget.ExpandableListAdapter;

import android.widget.ExpandableListView;

import android.widget.TextView;

import android.widget.Toast;

import android.widget.ExpandableListView.ExpandableListContextMenuInfo;

import com.wpirl.map.GraphNode;

import com.wpirl.map.Map;

public class DirectoryActivity extends ExpandableListActivity {

 private static final int MENU_VIEW_DETAIL = Menu.FIRST + 1;

 private static final int MENU_FROM_HERE = Menu.FIRST + 2;

 private static final int MENU_TO_HERE = Menu.FIRST + 3;

 // Sample data set. children[i] contains the children (String[]) for groups[i].

 private final String[] groups = { "Room", "Name" };

 private String[][] children = new String[2][];

 ExpandableListAdapter adapter;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // Set up our adapter

 adapter = new DirectoryExpandableListAdapter();

 children[0] = Map.getRooms();

 Arrays.sort(children[0]);

 children[1] = Map.getPeople();

 Arrays.sort(children[1]);

 setListAdapter(adapter);

 registerForContextMenu(getExpandableListView());

 }

 @Override

 public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo

menuInfo) {

 menu.setHeaderTitle("Menu");

 menu.add(0, MENU_VIEW_DETAIL, 0, "View Detail");

 menu.add(0, MENU_FROM_HERE, 0, "From Here");

 menu.add(0, MENU_TO_HERE, 0, "To Here");

 }

118

 @Override

 public boolean onContextItemSelected(MenuItem item) {

 ExpandableListContextMenuInfo info = (ExpandableListContextMenuInfo)

item.getMenuInfo();

 String title = ((TextView) info.targetView).getText().toString();

 int type = ExpandableListView.getPackedPositionType(info.packedPosition);

 int id = item.getItemId();

 /*

 * If the menu clicked is the child

 */

 if (type == ExpandableListView.PACKED_POSITION_TYPE_CHILD) {

 GraphNode node = Map.searchDetail(title);

 switch (id) {

 case MENU_VIEW_DETAIL:

 StringBuilder sb = new StringBuilder();

 sb.append("Detail information\n");

 sb.append("Room ID: " + node.room + "\n");

 sb.append("Name: " + node.person + "\n");

 Toast.makeText(this, sb.toString(), Toast.LENGTH_LONG).show();

 break;

 case MENU_FROM_HERE:

 Map.setRoutingSource(node);

 startActivity(new Intent(this, RouteActivity.class));

 break;

 case MENU_TO_HERE:

 Map.setRoutingDestination(node);

 startActivity(new Intent(this, RouteActivity.class));

 break;

 }

 return true;

 /*

 * If the menu clicked is the group

 */

 } else if (type == ExpandableListView.PACKED_POSITION_TYPE_GROUP) {

 int groupPos =

ExpandableListView.getPackedPositionGroup(info.packedPosition);

 if (groupPos == 0) {

 Toast.makeText(this,

 "This group contains the list of rooms in this

building",

 Toast.LENGTH_SHORT).show();

 } else {

 Toast.makeText(this,

 "This group contains the list of names in this

building",

 Toast.LENGTH_SHORT).show();

 }

 return true;

 }

 return false;

 }

 /**

 *

 */

 public class DirectoryExpandableListAdapter extends BaseExpandableListAdapter {

 public Object getChild(int groupPosition, int childPosition) {

 return children[groupPosition][childPosition];

119

 }

 public long getChildId(int groupPosition, int childPosition) {

 return childPosition;

 }

 public int getChildrenCount(int groupPosition) {

 return children[groupPosition].length;

 }

 public TextView getGenericView() {

 // Layout parameters for the ExpandableListView

 AbsListView.LayoutParams lp = new AbsListView.LayoutParams(

 ViewGroup.LayoutParams.FILL_PARENT, 64);

 TextView textView = new TextView(DirectoryActivity.this);

 textView.setLayoutParams(lp);

 // Center the text vertically

 textView.setGravity(Gravity.CENTER_VERTICAL | Gravity.LEFT);

 // Set the text starting position

 textView.setPadding(36, 0, 0, 0);

 return textView;

 }

 public View getChildView(int groupPosition, int childPosition, boolean

isLastChild,

 View convertView, ViewGroup parent) {

 TextView textView = getGenericView();

 textView.setText(getChild(groupPosition, childPosition).toString());

 return textView;

 }

 public Object getGroup(int groupPosition) {

 return groups[groupPosition];

 }

 public int getGroupCount() {

 return groups.length;

 }

 public long getGroupId(int groupPosition) {

 return groupPosition;

 }

 public View getGroupView(int groupPosition, boolean isExpanded, View

convertView,

 ViewGroup parent) {

 TextView textView = getGenericView();

 textView.setText(getGroup(groupPosition).toString());

 return textView;

 }

 public boolean isChildSelectable(int groupPosition, int childPosition) {

 return true;

 }

 public boolean hasStableIds() {

 return true;

 }

 }

}

120

RouteActivity.java

package com.wpirl.activity;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.ArrayAdapter;

import android.widget.AutoCompleteTextView;

import android.widget.Button;

import android.widget.Toast;

import com.wpirl.R;

import com.wpirl.map.GraphNode;

import com.wpirl.map.Map;

public class RouteActivity extends Activity implements OnClickListener {

 private GraphNode source;

 private GraphNode destination;

 private AutoCompleteTextView textViewSource;

 private AutoCompleteTextView textViewDestination;

 private Button btnSearch;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.route);

 String[] database = Map.getDatabase(Map.DATABASE_PERSON +

Map.DATABASE_ROOM);

 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

 android.R.layout.simple_dropdown_item_1line, database);

 btnSearch = (Button) findViewById(R.id.btnSearchRoute);

 btnSearch.setOnClickListener(this);

 textViewSource = (AutoCompleteTextView) findViewById(R.id.editSource);

 textViewSource.setAdapter(adapter);

 textViewDestination = (AutoCompleteTextView)

findViewById(R.id.editDestination);

 textViewDestination.setAdapter(adapter);

 source = Map.getRoutingSource();

 destination = Map.getRoutingDestination();

 if (source.person.length() > 0) {

 textViewSource.setText(source.person);

 } else {

 textViewSource.setText(source.room);

 }

 if (destination.person.length() > 0) {

121

 textViewDestination.setText(destination.person);

 } else {

 textViewDestination.setText(destination.room);

 }

 }

 @Override

 public void onClick(View v) {

 if (v == btnSearch) {

 if (textViewSource.getText().length() == 0) {

 Toast.makeText(this, "Please input source",

Toast.LENGTH_SHORT).show();

 } else if (textViewDestination.getText().length() == 0) {

 Toast.makeText(this, "Please input destination",

Toast.LENGTH_SHORT).show();

 } else {

 Map.setRoutingSource(Map.searchDetail(textViewSource.getText().toString()));

 Map.setRoutingDestination(Map.searchDetail(textViewDestination.getText().toString

()));

 Map.enableRouting();

 startActivity(new Intent(this, MapActivity.class));

 }

 }

 }

}

122

Route.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Get directions from source to destination" />

 <LinearLayout

 android:orientation="horizontal"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Source" />

 <AutoCompleteTextView android:id="@+id/editSource"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"/>

 </LinearLayout>

 <LinearLayout

 android:orientation="horizontal"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Destination" />

 <AutoCompleteTextView android:id="@+id/editDestination"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"/>

 </LinearLayout>

 <Button

 android:id="@+id/btnSearchRoute"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Search Maps" />

</LinearLayout>

http://schemas.android.com/apk/res/android

123

MapActivity.java

package com.wpirl.activity;

import java.util.Arrays;

import java.util.List;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.hardware.Sensor;

import android.hardware.SensorEvent;

import android.hardware.SensorEventListener;

import android.hardware.SensorManager;

import android.net.wifi.ScanResult;

import android.net.wifi.WifiManager;

import android.os.Bundle;

import android.view.Menu;

import android.view.MenuItem;

import android.widget.Toast;

import com.wpirl.map.GraphEdge;

import com.wpirl.map.GraphNode;

import com.wpirl.map.Map;

import com.wpirl.positioning.DeviceSensor;

import com.wpirl.positioning.Positioning;

import com.wpirl.positioning.WifiPositioning;

import com.wpirl.util.DeviceWriter;

import com.wpirl.util.Util;

import com.wpirl.view.MapView;

public class MapActivity extends Activity implements SensorEventListener {

 public static final int MENU_MY_LOCATION = Menu.FIRST + 1;

 public static final int MENU_CHOOSE_DESTINATION = Menu.FIRST + 2;

 public static final int MENU_STOP_RECORDING = Menu.FIRST + 3;

 private MapView view;

 private SensorManager mSensorManager;

 private WifiManager mWifiManager;

 private WifiReceiver mWifiReceiver;

 private DeviceWriter out;

 private long timezero = 0;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 view = new MapView(this);

 setContentView(view);

 mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);

 mWifiManager = (WifiManager) getSystemService(Context.WIFI_SERVICE);

 mWifiReceiver = new WifiReceiver();

 }

 @Override

 public void onPause() {

 super.onPause();

 if (Positioning.isPositioning()) {

 mSensorManager.unregisterListener(this);

 unregisterReceiver(mWifiReceiver);

124

 Positioning.stopPositioning();

 }

 }

 @Override

 public void onResume() {

 super.onResume();

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 menu.setQwertyMode(true);

 menu.add(0, MENU_MY_LOCATION, 0, "My Location");

 menu.add(0, MENU_CHOOSE_DESTINATION, 0, "Get Direction");

 menu.add(0, MENU_STOP_RECORDING, 0, "Stop Recording");

 return super.onCreateOptionsMenu(menu);

 }

 /**

 * This function will be called when a menu button option

 * is selected. If the option is "My Location", the program

 * start the MapActivity and initialize the sensors and WiFi

 * scanning.

 */

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 int id = item.getItemId();

 switch (id) {

 case MENU_MY_LOCATION:

 /*

 * Turn on the positioning flag to tell other threads

 * that the user has select positioning.

 */

 out = new DeviceWriter("positioning.csv");

 timezero = System.currentTimeMillis();

 Positioning.startRecording();

 Positioning.startPositioning();

 Positioning.startConverging();

 Positioning.resetINS();

 /*

 * Initializing all the sensors by registering them

 * to the phone kernel driver.

 */

 Sensor asensor =

mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

 Sensor msensor =

mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

 Sensor osensor =

mSensorManager.getDefaultSensor(Sensor.TYPE_ORIENTATION);

 mSensorManager.registerListener(this, asensor,

SensorManager.SENSOR_DELAY_FASTEST);

 mSensorManager.registerListener(this, msensor,

SensorManager.SENSOR_DELAY_FASTEST);

 mSensorManager.registerListener(this, osensor,

SensorManager.SENSOR_DELAY_FASTEST);

 registerReceiver(mWifiReceiver, new

IntentFilter(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));

 mWifiManager.startScan();

 break;

 case MENU_CHOOSE_DESTINATION:

 if (Positioning.isPositioning()) {

 if (Map.getGraphSize()-1 > Map.GRAPH_SIZE) {

125

 Map.removeLast();

 }

 GraphNode myNode = new GraphNode();

 myNode.id = Map.GRAPH_SIZE+1;

 myNode.position = Positioning.matchedPoint();

 myNode.type = GraphNode.TYPE_CORRIDOR;

 myNode.room = "";

 myNode.person = "My Location";

 GraphEdge edge = Positioning.matchedEdge();

 myNode.adjacent = new int[2];

 myNode.adjacent[0] = edge.endpoints[0].id;

 myNode.adjacent[1] = edge.endpoints[1].id;

 Map.source(myNode);

 Map.addNode(myNode);

 startActivity(new Intent(this, RouteActivity.class));

 } else {

 Toast.makeText(this, "Current location is not available",

Toast.LENGTH_SHORT).show();

 }

 break;

 case MENU_STOP_RECORDING:

 Positioning.stopRecording();

 break;

 }

 return super.onOptionsItemSelected(item);

 }

 @Override

 public void onAccuracyChanged(Sensor sensor, int accuracy) {

 }

 /**

 * This function is called whenever a sample is received from the

 * accelerometer or the compass

 */

 @Override

 public void onSensorChanged(SensorEvent event) {

 int type = event.sensor.getType();

 float[] data = Util.copyArray(event.values);

 if (type == Sensor.TYPE_ACCELEROMETER) {

 DeviceSensor.setDevA(data);

 Positioning.updateINS();

 } else if (type == Sensor.TYPE_MAGNETIC_FIELD) {

 DeviceSensor.setDevM(data);

 DeviceSensor.toEarthCS();

 } else if (type == Sensor.TYPE_ORIENTATION) {

 DeviceSensor.setDevO(data);

 }

 }

 /**

 * This class contains the WiFi thread that will be called

 * when a signal is received from the hardware

 */

 private class WifiReceiver extends BroadcastReceiver {

 public void onReceive(Context c, Intent intent) {

 // Get the measurement sample

 List<ScanResult> wl = mWifiManager.getScanResults();

126

 /*

 * Filter only the signal strength value of known

 * WAP that is in our simulated propagation by comparing

 * their BSSID.

 */

 int[] rssi = new int[WifiPositioning.WAP_NUMBER];

 Arrays.fill(rssi, Integer.MIN_VALUE);

 for (int i = 0; i < wl.size(); i++) {

 int n = Positioning.findBSSID(wl.get(i).BSSID);

 if (n >= 0) { rssi[n] = wl.get(i).level; }

 }

 Positioning.updateWifi(rssi);

 Positioning.process();

 if (Positioning.isRecording()) {

 StringBuilder sb = new StringBuilder();

 //time

 long now = System.currentTimeMillis();

 sb.append(String.valueOf(now - timezero) + ",");

 // displacement

 float[] d = Positioning.displacement();

 sb.append(String.valueOf(d[0]) + ",");

 sb.append(String.valueOf(d[1]) + ",");

 // rssi

 for (int i = 0; i < WifiPositioning.WAP_NUMBER; i++) {

 sb.append(String.valueOf(rssi[i]) + ",");

 }

 // position

 float[] p = Positioning.position();

 sb.append(String.valueOf(p[0]) + ",");

 sb.append(String.valueOf(p[1]) + ",");

 int[] p2 = Positioning.matchedPoint();

 sb.append(String.valueOf(p2[0]) + ",");

 sb.append(String.valueOf(p2[1]) + "\n");

 out.write(sb.toString());

 }

 mWifiManager.startScan();

 }

 }

}

127

Map

Map.java

package com.wpirl.map;

import java.util.ArrayList;

import com.wpirl.util.Util;

public class Map {

 public static final float SCALE = 0.033264f; // 1 pixel = 0.1 meter

 public static final float NORTH = -0.221992086112412f;

 public static final int DATABASE_PERSON = 1;

 public static final int DATABASE_ROOM = 2;

 private static Object lockGraph;

 private static Graph graph;

 private static Object lockArchitecture;

 private static Architecture architecture;

 private static Object lockRouting;

 private static boolean flagRouting;

 private static GraphNode source;

 private static GraphNode destination;

 /**

 * Initialize all the variables

 */

 public static void initialize() {

 lockGraph = new Object();

 lockArchitecture = new Object();

 graph = new Graph();

 architecture = new Architecture();

 lockRouting = new Object();

 flagRouting = false;

 source = new GraphNode();

 destination = new GraphNode();

 }

 /*

 * ==

 * Graph access and management

 * ==

 */

 public static ArrayList<GraphNode> getNodes() {

 ArrayList<GraphNode> copy = new ArrayList<GraphNode>();

 synchronized(lockGraph) {

 ArrayList<GraphNode> nodes = graph.getGraph();

 for (int i = 0; i < nodes.size(); i++) {

 GraphNode node = new GraphNode(nodes.get(i));

 copy.add(node);

 }

 }

128

 return copy;

 }

 public static String[] getDatabase(int key) {

 ArrayList<String> s = new ArrayList<String>();

 ArrayList<GraphNode> nodes = getNodes();

 for (int i = 1; i < nodes.size(); i++) {

 if (((key & DATABASE_ROOM) > 0) && (nodes.get(i).room.length() >

0))

 s.add(nodes.get(i).room);

 if (((key & DATABASE_PERSON) > 0) && (nodes.get(i).person.length() >

0))

 s.add(nodes.get(i).person);

 }

 String[] r = new String[s.size()];

 s.toArray(r);

 return r;

 }

 public static String[] getRooms() {

 return getDatabase(DATABASE_ROOM);

 }

 public static String[] getPeople() {

 return getDatabase(DATABASE_PERSON);

 }

 public static GraphNode searchDetail(String key) {

 ArrayList<GraphNode> nodes = getNodes();

 for (int i = 1; i < nodes.size(); i++) {

 GraphNode node = nodes.get(i);

 if ((node.room.indexOf(key) >= 0) || (node.person.indexOf(key) >= 0)) {

 return node;

 }

 }

 return null;

 }

 public static GraphNode searchId(int key) {

 ArrayList<GraphNode> nodes = getNodes();

 for (int i = 1; i < nodes.size(); i++) {

 GraphNode node = nodes.get(i);

 if ((node.id == key)) {

 return node;

 }

 }

 return null;

 }

 /**

 * Map matching algorithm

 * @param x

 * @param y

 * @return

 */

 public static int[] mapMatching(int x, int y) {

 int[] match = new int[2];

 ArrayList<GraphNode> nodes = getNodes();

 int min = Integer.MAX_VALUE;

 for (int i = 1; i < nodes.size(); i++) {

 GraphNode a = nodes.get(i);

 for (int j = 0; j < a.adjacent.length; j++) {

129

 if (a.adjacent[j] > i) {

 GraphNode b = nodes.get(a.adjacent[j]);

 int[] online = new int[2];

 int distance = Util.distancePointLine(x, y, a.position,

b.position, online);

 if (distance < min) {

 min = distance;

 match[0] = online[0];

 match[1] = online[1];

 }

 }

 }

 }

 return match;

 }

 /*

 * ==

 * Synchronized routing

 * ==

 */

 public static boolean isRouting() {

 boolean b;

 synchronized (lockRouting) {

 b = flagRouting;

 }

 return b;

 }

 public static void enableRouting() {

 graph.route(source.id, destination.id);

 synchronized (lockRouting) {

 flagRouting = true;

 }

 }

 public static void disableRouting() {

 synchronized (lockRouting) {

 flagRouting = false;

 }

 }

 public static void setRoutingSource(GraphNode node) {

 synchronized (lockRouting) {

 source = node;

 }

 }

 public static void setRoutingDestination(GraphNode node) {

 synchronized (lockRouting) {

 destination = node;

 }

 }

 public static GraphNode getRoutingSource() {

 GraphNode node;

 synchronized (lockRouting) {

 node = new GraphNode(source);

 }

 return node;

 }

 public static GraphNode getRoutingDestination() {

130

 GraphNode node;

 synchronized (lockRouting) {

 node = new GraphNode(destination);

 }

 return node;

 }

 public static int[] getPath() {

 int[] path = Util.copyArray(graph.getPath());

 return path;

 }

 /*

 * ==

 * Miscellaneous methods

 * ==

 */

 /**

 * Convert to map coordination system

 *

 * Return the distance move in pixel in the frame system

 * of the current building with specified offset angle

 *

 * @param north the distance toward north in meter

 * @param east the distance toward east in meter

 * @return the distance in x and y axis in pixel

 */

 public static float[] toMapCS(float[] csEarth) {

 // Input coordinate system:

 // ^ y = north

 // |

 // |

 // |

 // |

 // o---------> x = east

 //

 // >>

 // Building coordinate system

 //

 // y \ | north

 // \ a | ,

 // \ | , x

 // \ | ,

 // \| ,

 // o

 //

 // Roration Matrix for rotate the coordinate system "a" degree

 //

 // [cos a sin a] * [x]

 // [- sin a cos a] [y]

 // >>

 // Map coordinate system

 //

 // \ a | north ,

 // \ | , x

 // \ | ,

 // \| ,

 // o

 // \

 // \

 // \y

131

 // Flip Matrix

 //

 // [1 0] * [x]

 // [0 -1] [y]

 float[] csBuilding = new float[2]; // building coordinate system

 float[] csMap = new float[2]; // map coordinate system

 float a = -Map.NORTH; // rotation angle (counterclockwise)

 // rotate earth coordinate system to get building coordinate system

 // [cos a sin a] * [x]

 // [- sin a cos a] [y]

 csBuilding[0] = (float) (Math.cos(a)*csEarth[0] + Math.sin(a)*csEarth[1]);

 csBuilding[1] = (float) (- Math.sin(a)*csEarth[1] + Math.cos(a)*csEarth[1]);

 // flip building coordinate system and convert from meters to pixels

 // to get map coordinate system

 // [1 0] * [x]

 // [0 -1] [y]

 csMap[0] = csBuilding[0];

 csMap[1] = -csBuilding[1];

 return csMap;

 }

 /**

 * Convert the vector from meter to pixels

 * @param meter The vector in meter

 * @return The vector in pixel

 */

 public static int[] toMapScale(float[] meter) {

 return toMapScale(meter[0], meter[1]);

 }

 /**

 * Convert the vector from meter to pixels

 *

 * @param x the x coordination point right in meter

 * @param y the y coordination point bottom in meter

 * @return the vector in pixel

 */

 public static int[] toMapScale(float x, float y) {

 int[] pixel = new int[2];

 pixel[0] = (int)(x / Map.SCALE);

 pixel[1] = (int)(y / Map.SCALE);

 return pixel;

 }

}

132

Architecture.java

package com.wpirl.map;

import java.util.ArrayList;

import com.wpirl.util.DeviceReader;

import com.wpirl.util.Util;

public class Architecture {

 public static final String WALLS_FILE = "/sdcard/wpirl/map/walls.txt";

 public static final int ORIGIN_X = 74;

 public static final int ORIGIN_Y = 188;

 private ArrayList<Wall> walls;

 public Architecture() {

 walls = new ArrayList<Wall>();

 DeviceReader in = new DeviceReader(WALLS_FILE);

 int n = Integer.valueOf(in.readln());

 for (int i = 0; i < n; i++) {

 String s = in.readln();

 float x1 = Float.valueOf(s.substring(0, 8));

 float y1 = Float.valueOf(s.substring(8, 16));

 float x2 = Float.valueOf(s.substring(16, 24));

 float y2 = Float.valueOf(s.substring(24, 32));

 int[] p1 = Util.translate(Map.toMapScale(x1, y1), ORIGIN_X, ORIGIN_Y);

 int[] p2 = Util.translate(Map.toMapScale(x2, y2), ORIGIN_X, ORIGIN_Y);

 walls.add(new Wall(p1, p2, Wall.SORT_X));

 }

 }

}

133

Wall.java

package com.wpirl.map;

import com.wpirl.util.Util;

public class Wall {

 public static int SORT_X = 1;

 public static int SORT_Y = 2;

 public int x1;

 public int y1;

 public int x2;

 public int y2;

 public Wall(int x1, int y1, int x2, int y2, int sort) {

 this.x1 = x1;

 this.y1 = y1;

 this.x2 = x2;

 this.y2 = y2;

 if (sort == SORT_X) { sortX(); }

 else { sortY(); }

 }

 public Wall() {

 this(0, 0, 0, 0, 0);

 }

 public Wall(int[] p1, int[] p2, int sort) {

 this(p1[0], p1[1], p2[0], p2[1], sort);

 }

 public float distance() {

 return Util.distance(x1, y1, x2, y2);

 }

 private void sortX() {

 if (x1 > x2) {

 int xt = x1; x1 = x2; x2 = xt;

 int yt = y1; y1 = y2; y2 = yt;

 }

 };

 private void sortY() {

 if (y1 > y2) {

 int xt = x1; x1 = x2; x2 = xt;

 int yt = y1; y1 = y2; y2 = yt;

 }

 };

}

134

Graph.java

package com.wpirl.map;

import java.util.ArrayList;

import java.util.Arrays;

import com.wpirl.util.DeviceReader;

import com.wpirl.util.Util;

public class Graph {

 public static final String NODES_FILE = "/sdcard/wpirl/map/nodes.txt";

 public static final String EDGES_FILE = "/sdcard/wpirl/map/edges.txt";

 private ArrayList<GraphNode> nodes;

 private FibonacciHeap dijkstra;

 private int[] track; // the shortest path

backtrack array

 private boolean[] visited; // flag to mark visited nodes

 private int[] path; // the shortest path

 /**

 * Constructor call when Graph is first initialized

 */

 public Graph() {

 nodes = new ArrayList<GraphNode>(); // initialize the array list nodes

 /*

 * Read the nodes from the input text files.

 * The nodes information includes the position on the graph,

 * the type of node and data associated with its location

 */

 DeviceReader in = new DeviceReader(NODES_FILE); // open the text file

 int n = Integer.valueOf(in.readln()); // read the number of

nodes

 in.readln(); // skip the first

line

 /*

 * Add an empty node at the beginning to make the id

 * of the node is also its location on the data structure

 * array list. This is only for the convenience of accessing

 * the array list

 */

 nodes.add(new GraphNode());

 /*

 * Read the information associated with each node. All the data

 * of one node are written on one line of text file.

 */

 for (int i = 0; i < n; i++) {

 /*

 * Read the entire line and extract information out of

 * the string by concatting different locations of the string

 */

 String s = in.readln();

 int id = Integer.valueOf(s.substring(0, 3).trim());

 int x = Integer.valueOf(s.substring(4, 8).trim());

 int y = Integer.valueOf(s.substring(9, 13).trim());

 String type = s.substring(14, 22).trim();

 int[] pos = {x, y};

135

 String room = new String();

 if (s.length() > 30) { room = s.substring(23, 31).trim(); }

 String host = new String();

 if (s.length() > 32) { host = s.substring(32, s.length()); }

 /*

 * Add the new nodes into the graph

 */

 nodes.add(new GraphNode(id, pos, type, room, host));

 }

 in.close(); // close the

 /*

 * Read the edges represented by adjacent list of each node from

 * a text file. Each line represented all the id of the nodes adjacent

 * with the node id at the beginning of the line.

 */

 in = new DeviceReader(EDGES_FILE); // open the text file

 in.readln(); // skip the first line

 for (int i = 0; i < n; i++) {

 /*

 * Read the entire line and extract information out of

 * the string by concatting different locations of the string

 */

 String s = in.readln();

 int id = Integer.valueOf(s.substring(0, 2).trim());

 int size = Integer.valueOf(s.substring(3, 5).trim());

 int start = 6;

 int[] adjacent = new int[size];

 for (int j = 0; j < size; j++) {

 int k = Integer.valueOf(s.substring(start, start+2).trim());

 start += 3;

 adjacent[j] = k;

 }

 nodes.get(id).adjacent = adjacent; // update this adjacent to the node

 }

 in.close(); // close the edges text file

 }

 /**

 * Find the nearest GraphNode on the graph

 * for the specified position

 *

 * @param x the x coordination of the position

 * @param y the y coordination of the position

 * @return the GraphNode id of the nearest GraphNode

 */

 public int matchNode(int x, int y) {

 float minDistance = Float.MAX_VALUE;

 int minNode = 0;

 for (int i = 0; i < nodes.size(); i++) {

 int pos[] = nodes.get(i).position;

 float d = Util.distance(x, y, pos[0], pos[1]);

 if (d < minDistance) {

 minDistance = d;

 minNode = i;

 }

 }

 return minNode;

136

 }

 /**

 * Find the route between two specified GraphNodes

 *

 * @param source the id of the source GraphNode

 * @param destination the id of the destination GraphNode

 */

 public void route(int source, int destination) {

 initDijkstra(source, destination);

 while ((!dijkstra.isEmpty()) && (!visited[destination])) {

 HeapNode uHeapNode = dijkstra.min(); // get the minimum node from the

top of the heap at O(1)

 dijkstra.removeMin(); // remove this node from

the heap

 GraphNode u = uHeapNode.getData(); // extract the id of this

node

 visited[u.id] = true; // set flag for this

GraphNode as visited

 double costu = uHeapNode.getKey(); // path cost from source to u

 int[] adjacent = u.adjacent; // get all the adjacent nodes

 /*

 * Visit each nodes adjacent with the current evaluating node u

 */

 for (int i = 0; i < adjacent.length; i++) {

 GraphNode v = nodes.get(adjacent[i]); // get the node v

adjacent with u

 double duv = distance(u.id, v.id); // distance

between u and v

 /*

 * When v has not been in the heap yet, which mean v has not

been

 * reachable before, we then add v into the heap

 */

 if (v.heap == null) {

 HeapNode vHeapNode = new HeapNode(v, costu + duv); // the

heap node containing the source node

 v.heap = vHeapNode;

 track[v.id] = u.id;

 dijkstra.insert(vHeapNode, costu + duv);

 /*

 * When v has already been in the heap, update the new cost to v

through u

 * if the new cost (key of the heap) is smaller

 */

 } else {

 double costv = v.heap.getKey(); //

current cost from source to v

 if (costv > costu + duv) {

 dijkstra.decreaseKey(v.heap, costu + duv); // update the

distance in the heap

137

 track[v.id] = u.id;

 // update the track

 }

 }

 }

 } // dijkstra loop

 track(source, destination);

 }

 /**

 * initialize values used in dijkstra algorithm

 *

 * @param source id of the source GraphNode

 * @param destination id of the destination GraphNode

 */

 private void initDijkstra(int source, int destination) {

 int size = nodes.size();

 dijkstra = new FibonacciHeap();

 track = new int[size];

 visited = new boolean[size];

 Arrays.fill(track, 0); // clear the track array

 Arrays.fill(visited, false); // make the visited set empty

 // clear the old heap reference in the nodes list

 for (int i = 0; i < nodes.size(); i++) {

 nodes.get(i).heap = null;

 }

 /*

 * Set the source GraphNode dijkstra value = 0

 * and put the source GraphNode at the top of the heap

 */

 GraphNode sGraphNode = nodes.get(source); // the source node

in the graph

 HeapNode sHeapNode = new HeapNode(sGraphNode, 0); // the heap node

containing the source node

 sGraphNode.heap = sHeapNode; // put a

reference of the heap node pointer

 dijkstra.insert(sHeapNode, 0);

 }

 /**

 * Create the path found by the algorithm from source

 * to destination using the track array recorded

 *

 * @param source the id of the source node

 * @param destination the id of the destination node

 */

 private void track(int source, int destination) {

 int[] temp = new int[nodes.size()];

 int count = 0;

 int now = destination;

 /*

 * Get the path of the shortest route using the track array

 * by tracing reversely from the destination back to the source

 */

 while (now != 0) {

 temp[count] = now;

 now = track[now];

138

 count++;

 }

 /*

 * Reverse the path array to make the path go from source

 * to destination.

 */

 path = new int[count];

 for (int i = 0; i < count; i++) {

 path[i] = temp[count-i-1];

 }

 }

 /**

 * Return the distance between two GraphNodes by id

 *

 * @param source the id of the source node

 * @param destination the id of the destination node

 * @return the distance between the two nodes

 */

 private float distance(int source, int destination) {

 int[] s = nodes.get(source).position;

 int[] d = nodes.get(destination).position;

 return Util.distance(s, d);

 }

 /*

 * ==

 * get & set methods

 * ==

 */

 public ArrayList<GraphNode> getGraph() {

 return nodes;

 }

 public int[] getPath() {

 return path;

 }

}

139

GraphNode.java

package com.wpirl.map;

import com.wpirl.util.Util;

public class GraphNode {

 public static final int TYPE_CORRIDOR = 1;

 public static final int TYPE_STAIR = 2;

 public static final int TYPE_ELEVATOR = 3;

 public static final int TYPE_ROOM = 4;

 public int id;

 public int[] position; // x y coordination (unit in pixels)

 public int[] adjacent;

 public int type;

 public String room;

 public String person;

 public HeapNode heap;

 public GraphNode(int id, int[] position, String type, String room, String person)

{

 this.id = id;

 this.position = new int[2];

 this.position[0] = position[0];

 this.position[1] = position[1];

 this.room = room;

 this.person = person;

 if (type.compareToIgnoreCase("room") == 0) {

 this.type = TYPE_ROOM;

 } else if (type.compareToIgnoreCase("elevator") == 0) {

 this.type = TYPE_ELEVATOR;

 } else if (type.compareToIgnoreCase("stair") == 0) {

 this.type = TYPE_STAIR;

 } else if (type.compareToIgnoreCase("corridor") == 0) {

 this.type = TYPE_CORRIDOR;

 }

 }

 public GraphNode(int id, int x, int y) {

 this.id = id;

 this.position = new int[2];

 this.position[0] = x;

 this.position[1] = y;

 }

 public GraphNode(GraphNode node) {

 this.id = node.id;

 this.position = Util.copyArray(node.position);

 this.adjacent = Util.copyArray(node.adjacent);

 this.type = node.type;

 this.room = node.room;

 this.person = node.person;

 }

 public GraphNode() {

 this.position = new int[2];

 this.room = new String();

140

 this.person = new String();

 this.adjacent = new int[1];

 }

}

141

FibonacciHeap.java

package com.wpirl.map;

import java.util.ArrayList;

import java.util.List;

import java.util.Stack;

/**

 * This class implements a Fibonacci heap data structure used for Dijkstra algorithm

 *

 * The amortized running time of most of these methods is O(1).

 * Several have an actual running time of O(1).

 *

 * removeMin() and delete() have O(log n) amortized running times because they do the

heap consolidation.

 */

public class FibonacciHeap {

 private static final double oneOverLogPhi =

 1.0 / Math.log((1.0 + Math.sqrt(5.0)) / 2.0);

 private HeapNode minNode; // pointer to the minimum node in the heap

 private int nNodes; // number of node in the heap

 /**

 * Constructs a FibonacciHeap object that contains no elements.

 */

 public FibonacciHeap() {

 } // DijkstraHeap()

 /**

 * Tests if the Fibonacci heap is empty or not. Returns true if the heap is

 * empty, false otherwise.

 *

 * @return true if the heap is empty, false otherwise

 */

 public boolean isEmpty() {

 return minNode == null;

 } // isEmpty

 /**

 * Removes all elements from this heap.

 */

 public void clear() {

 minNode = null;

 nNodes = 0;

 } // clear

 /**

 * Decreases the key value for a heap node, given the new value to take on.

 * The structure of the heap may be changed and will not be consolidated.

 *

 * <p>Running time: O(1) amortized<p>

 *

 * @param x node to decrease the key of

 * @param k new key value for node x

 *

 * @exception IllegalArgumentException Thrown if k is larger than x.key

 * value.

142

 */

 public void decreaseKey(HeapNode x, double k) {

 if (k > x.key) throw new IllegalArgumentException("decreaseKey() got larger

key value");

 x.key = k;

 HeapNode y = x.parent;

 if ((y != null) && (x.key < y.key)) {

 cut(x, y);

 cascadingCut(y);

 }

 if (x.key < minNode.key) minNode = x;

 } // decreaseKey

 /**

 * Deletes a node from the heap given the reference to the node. The trees

 * in the heap will be consolidated, if necessary. This operation may fail

 * to remove the correct element if there are nodes with key value

 * -Infinity.

 *

 * <p>Running time: O(log n) amortized</p>

 *

 * @param x node to remove from heap

 */

 public void delete(HeapNode x) {

 decreaseKey(x, Double.NEGATIVE_INFINITY); // make x as small as possible

 removeMin(); // remove the smallest, which

decreases n also

 } // delete

 /**

 * Inserts a new data element into the heap. No heap consolidation is

 * performed at this time, the new node is simply inserted into the root

 * list of this heap.

 *

 * <p>Running time: O(1) actual</p>

 *

 * @param node new node to insert into heap

 * @param key key value associated with data object

 */

 public void insert(HeapNode node, double key) {

 node.key = key;

 // concatenate node into min list

 if (minNode != null) {

 node.left = minNode;

 node.right = minNode.right;

 minNode.right = node;

 node.right.left = node;

 if (key < minNode.key) {

 minNode = node;

 }

 } else {

 minNode = node;

 }

 nNodes++;

 } // insert

143

 /**

 * Returns the smallest element in the heap. This smallest element is the

 * one with the minimum key value.

 *

 * <p>Running time: O(1) actual</p>

 *

 * @return heap node with the smallest key

 */

 public HeapNode min() {

 return minNode;

 } // min

 /**

 * Removes the smallest element from the heap. This will cause the trees in

 * the heap to be consolidated, if necessary.

 *

 * <p>Running time: O(log n) amortized</p>

 *

 * @return node with the smallest key

 */

 public HeapNode removeMin() {

 HeapNode z = minNode;

 if (z != null) {

 int numKids = z.degree;

 HeapNode x = z.child;

 HeapNode tempRight;

 // for each child of z do...

 while (numKids > 0) {

 tempRight = x.right;

 // remove x from child list

 x.left.right = x.right;

 x.right.left = x.left;

 // add x to root list of heap

 x.left = minNode;

 x.right = minNode.right;

 minNode.right = x;

 x.right.left = x;

 // set parent[x] to null

 x.parent = null;

 x = tempRight;

 numKids--;

 }

 // remove z from root list of heap

 z.left.right = z.right;

 z.right.left = z.left;

 if (z == z.right) {

 minNode = null;

 } else {

 minNode = z.right;

 consolidate();

 }

 // decrement size of heap

 nNodes--;

 }

144

 return z;

 } // removeMin

 /**

 * Returns the size of the heap which is measured in the number of elements

 * contained in the heap.

 *

 * <p>Running time: O(1) actual</p>

 *

 * @return number of elements in the heap

 */

 public int size() {

 return nNodes;

 } // size

 /**

 * Joins two Fibonacci heaps into a new one. No heap consolidation is

 * performed at this time. The two root lists are simply joined together.

 *

 * <p>Running time: O(1) actual</p>

 *

 * @param h1 first heap

 * @param h2 second heap

 *

 * @return new heap containing h1 and h2

 */

 public static FibonacciHeap union(FibonacciHeap h1, FibonacciHeap h2) {

 FibonacciHeap h = new FibonacciHeap();

 if ((h1 != null) && (h2 != null)) {

 h.minNode = h1.minNode;

 if (h.minNode != null) {

 if (h2.minNode != null) {

 h.minNode.right.left = h2.minNode.left;

 h2.minNode.left.right = h.minNode.right;

 h.minNode.right = h2.minNode;

 h2.minNode.left = h.minNode;

 if (h2.minNode.key < h1.minNode.key) {

 h.minNode = h2.minNode;

 }

 }

 } else {

 h.minNode = h2.minNode;

 }

 h.nNodes = h1.nNodes + h2.nNodes;

 }

 return h;

 } // union

 /**

 * Creates a String representation of this Fibonacci heap.

 *

 * @return String of this.

 */

 public String toString() {

 if (minNode == null) {

 return "FibonacciHeap=[]";

 }

145

 // create a new stack and put root on it

 Stack<HeapNode> stack = new Stack<HeapNode>();

 stack.push(minNode);

 StringBuffer buf = new StringBuffer(512);

 buf.append("FibonacciHeap=[");

 // do a simple breadth-first traversal on the tree

 while (!stack.empty()) {

 HeapNode curr = stack.pop();

 buf.append(curr);

 buf.append(", ");

 if (curr.child != null) {

 stack.push(curr.child);

 }

 HeapNode start = curr;

 curr = curr.right;

 while (curr != start) {

 buf.append(curr);

 buf.append(", ");

 if (curr.child != null) {

 stack.push(curr.child);

 }

 curr = curr.right;

 }

 }

 buf.append(']');

 return buf.toString();

 } // toString

 /**

 * Performs a cascading cut operation. This cuts y from its parent and then

 * does the same for its parent, and so on up the tree.

 *

 * <p>Running time: O(log n); O(1) excluding the recursion</p>

 *

 * @param y node to perform cascading cut on

 */

 protected void cascadingCut(HeapNode y) {

 HeapNode z = y.parent;

 if (z != null) { // if there's a parent...

 if (!y.mark) { // if y is unmarked, set it marked

 y.mark = true;

 } else {

 cut(y, z); // it's marked, cut it from parent

 cascadingCut(z); // cut its parent as well

 }

 }

 } // cascadingCut

 protected void consolidate() {

 int arraySize = ((int) Math.floor(Math.log(nNodes) * oneOverLogPhi)) + 1;

 List<HeapNode> array = new ArrayList<HeapNode>(arraySize);

146

 // Initialize degree array

 for (int i = 0; i < arraySize; i++) { array.add(null); }

 // Find the number of root nodes.

 int numRoots = 0;

 HeapNode x = minNode;

 if (x != null) {

 numRoots++;

 x = x.right;

 while (x != minNode) {

 numRoots++;

 x = x.right;

 }

 }

 // For each node in root list do...

 while (numRoots > 0) {

 // Access this node's degree..

 int d = x.degree;

 HeapNode next = x.right;

 // ..and see if there's another of the same degree.

 for (;;) {

 HeapNode y = array.get(d);

 if (y == null) {

 // Nope.

 break;

 }

 // There is, make one of the nodes a child of the other.

 // Do this based on the key value.

 if (x.key > y.key) {

 HeapNode temp = y;

 y = x;

 x = temp;

 }

 // HeapNode y disappears from root list.

 link(y, x);

 // We've handled this degree, go to next one.

 array.set(d, null);

 d++;

 }

 // Save this node for later when we might encounter another

 // of the same degree.

 array.set(d, x);

 // Move forward through list.

 x = next;

 numRoots--;

 }

 // Set min to null (effectively losing the root list) and

 // reconstruct the root list from the array entries in array[].

 minNode = null;

 for (int i = 0; i < arraySize; i++) {

 HeapNode y = array.get(i);

147

 if (y == null) {

 continue;

 }

 // We've got a live one, add it to root list.

 if (minNode != null) {

 // First remove node from root list.

 y.left.right = y.right;

 y.right.left = y.left;

 // Now add to root list, again.

 y.left = minNode;

 y.right = minNode.right;

 minNode.right = y;

 y.right.left = y;

 // Check if this is a new min.

 if (y.key < minNode.key) {

 minNode = y;

 }

 } else {

 minNode = y;

 }

 }

 } // consolidate

 /**

 * The reverse of the link operation: removes x from the child list of y.

 * This method assumes that min is non-null.

 *

 * <p>Running time: O(1)</p>

 *

 * @param x child of y to be removed from y's child list

 * @param y parent of x about to lose a child

 */

 protected void cut(HeapNode x, HeapNode y) {

 // remove x from childlist of y and decrement degree[y]

 x.left.right = x.right;

 x.right.left = x.left;

 y.degree--;

 // reset y.child if necessary

 if (y.child == x) {

 y.child = x.right;

 }

 if (y.degree == 0) {

 y.child = null;

 }

 // add x to root list of heap

 x.left = minNode;

 x.right = minNode.right;

 minNode.right = x;

 x.right.left = x;

 // set parent[x] to nil

 x.parent = null;

 // set mark[x] to false

 x.mark = false;

 } // cut

148

 /**

 * Make node y a child of node x.

 *

 * <p>Running time: O(1) actual</p>

 *

 * @param y node to become child

 * @param x node to become parent

 */

 protected void link(HeapNode y, HeapNode x) {

 // remove y from root list of heap

 y.left.right = y.right;

 y.right.left = y.left;

 // make y a child of x

 y.parent = x;

 if (x.child == null) {

 x.child = y;

 y.right = y;

 y.left = y;

 } else {

 y.left = x.child;

 y.right = x.child.right;

 x.child.right = y;

 y.right.left = y;

 }

 // increase degree[x]

 x.degree++;

 // set mark[y] false

 y.mark = false;

 } // link

}

149

HeapNode.java

package com.wpirl.map;

/**

 * This class implements a node of the Fibonacci heap used in Dijkstra algorithm.

 *

 * It holds the data used for maintaining the structure of the heap.

 * It also holds the reference to the key value (which is used to determine the heap

structure).

 */

public class HeapNode {

 GraphNode data; // note data;

 HeapNode child; // first child node

 HeapNode left; // left sibling node

 HeapNode parent; // parent node

 HeapNode right; // right sibling node

 boolean mark; // true if this node has had a child removed since this

node was added to its parent

 double key; // key value for this node

 int degree; // number of children of this node excluding grandchildren

 /**

 * Default Constructor. Initializes the right and left pointers, making this

 * a circular doubly-linked list.

 *

 * @param data data for this node

 * @param key initial key for node

 */

 public HeapNode(GraphNode data, double key)

 {

 this.right = this;

 this.left = this;

 this.data = data;

 this.key = key;

 }

 public final double getKey() {

 return key;

 }

 public GraphNode getData() {

 return data;

 }

 public String toString()

 {

// return Double.toString(key);

 StringBuilder sb = new StringBuilder();

 sb.append("Node=[parent = ");

 if (parent != null) { sb.append(Double.toString(parent.key)); }

 else { sb.append("---"); }

 sb.append(", key = ");

 sb.append(Double.toString(key));

 sb.append(", degree = ");

 sb.append(Integer.toString(degree));

 sb.append(", right = ");

150

 if (right != null) { sb.append(Double.toString(right.key)); }

 else { sb.append("---"); }

 sb.append(", left = ");

 if (left != null) { sb.append(Double.toString(left.key)); }

 else { sb.append("---"); }

 sb.append(", child = ");

 if (child != null) { sb.append(Double.toString(child.key)); }

 else { sb.append("---"); }

 sb.append(']');

 return sb.toString();

 }

}

151

Positioning

Positioning.java

package com.wpirl.positioning;

import com.wpirl.map.GraphEdge;

import com.wpirl.map.Map;

import com.wpirl.util.Util;

public class Positioning {

 private static final float GAUSSIAN_POLAR_THETA_ERROR = (float) Math.PI /

4.0f;

 private static final float GAUSSIAN_POLAR_RADIUS_ERROR = 1.0f;

 private static final float GAUSSIAN_CARTESIAN_ERROR = 2.0f; // 2 meters

 private static final int GAUSSIAN_SIZE = 3; // 3

meters

 private static final int CONVERGING_PERIOD = 5000; // 10

seconds

 private static InertialNavigationSystem ins;

 private static WifiPositioning wifi;

 private static Object insLock = new Object();

 private static Object wifiLock = new Object();

 private static float[][] pdf = new float[RadioMap.ROW][RadioMap.COL];

 public static void initialize() {

 wifi = new WifiPositioning();

 ins = new InertialNavigationSystem();

 }

 /*

 * --

 * WIFI POSITIONING

 * --

 */

 public static int[] getWifiPosition() {

 synchronized (wifiLock) { return wifi.position(); }

 }

 public static void updateWifi(int[] rssi) {

 synchronized (wifiLock) { wifi.addMeasurement(rssi); }

 }

 public static int findBSSID(String bssid) {

 synchronized (wifiLock) { return wifi.findBSSID(bssid); }

 }

 /*

 * --

 * INERTIAL NAVIGATION SYSTEM

 * --

 */

 public static void updateINS() {

 synchronized (insLock) { ins.addMotion(); }

 }

152

 public static float[] getDisplacement() {

 synchronized (insLock) { return ins.displacement(); }

 }

 public static void resetINS() {

 synchronized (insLock) { ins.reset(); }

 }

 /*

 * --

 * POSITIONING INTEGRATION

 * --

 */

 public static void process() {

 /*

 * If the initial position has already been determined,

 * process the data by fusing different positioning methods

 */

 if (!isConverging()) {

 integrate();

 /*

 * If the initial position has not yet been determined,

 * evaluate for the given period of time to estimate

 * the position

 */

 } else {

 if (timeConverging() == 0) {

 timeConverging(System.currentTimeMillis());

 pdf = wifi.correlate();

 } else {

 long now = System.currentTimeMillis();

 if (timeConverging() - now > CONVERGING_PERIOD) {

 stopConverging();

 timeConverging(0);

 }

 integrate();

 }

 }

 }

 public static void integrate() {

 /*

 * The probability density function (PDF) of the next position

 * computed from the PDF of the last position, the new displacement

 * vector from the inertial navigation system (INS), and the probability

 * model from the simulated wi-fi positioning system (SWP)

 */

 // d is the displacement vector returned from the INS

 float[] d = getDisplacement();

 d = Map.toMapCS(d);

 displacement(d);

 /*

 * Clear all the INS displacement from the previous PDF. The future INS

 * displacement will be referenced from this PDF.

 */

 resetINS();

 /*

 * Convert the displacement vector from Cartesian coordination system

 * to the polar coordination system. The angle theta and the radius r

 * are the component of the displacement vector in polar coordination system

153

 */

 double theta = Math.atan2(d[1], d[0]);

 double r = Util.magnitude(d);

 /*

 * The current probability density function PDF has the size

 * of the building map with the same geometric resolution as

 * the simulated propagation model

 */

 float[][] newpdf = new float[RadioMap.ROW][RadioMap.COL];

 /*

 * The effect radius is the size to be computed of the Gaussian

 * distribution model in polar coordinate system. The EFFECT_RADIUS

 * is measured in meter. The size of the array is equal the radius times

 * the resolution, which is the number of samples per meter

 */

 int size = GAUSSIAN_SIZE * RadioMap.RESOLUTION;

 /*

 * The origin index of the Gaussian probability model. The reason we need

this

 * is because we cannot declare an array with negative index in java.

 */

 int originx = size;

 int originy = size;

 float[][] gauss = new float[size*2+1][size*2+1];

 if (r != 0) {

 /*

 * The variance of the radius and the angle theta of displacement

vector

 * in a Gaussian probability density function

 */

 double varR = Util.square(GAUSSIAN_POLAR_RADIUS_ERROR*r);

 double varT = Util.square(GAUSSIAN_POLAR_THETA_ERROR);

 for (int i = -size; i <= size; i++) {

 for (int j = -size; j <= size; j++) {

 double x = j/2.0; // x is the coordination in meter

 double y = i/2.0; // y is the coordination in meter

 double diffsqrR = Util.square(Util.magnitude(x, y) - r);

 double diffsqrT = Util.square(Math.atan2(y, x) - theta);

 gauss[i + originy][j + originx] =

 (float) Math.exp(- diffsqrR/(2*varR + 1)

 - diffsqrT/(2*varT*r)

);

 }

 }

 } else {

 double var = Util.square(GAUSSIAN_CARTESIAN_ERROR);

 for (int i = -size; i <= size; i++) {

 for (int j = -size; j <= size; j++) {

 double x = j/2.0; // x is the coordination in meter

 double y = i/2.0; // y is the coordination in meter

 gauss[i + originy][j + originx] =

 (float) Math.exp(- Util.square(x)/(2*var)

 - Util.square(y)/(2*var)

);

 }

154

 }

 }

 float[][] wp = wifi.correlate();

 float max = Float.MIN_VALUE;

 int[] maxpos = new int[2];

 for (int i = 0; i < RadioMap.ROW; i++) {

 for (int j = 0; j < RadioMap.COL; j++) {

 newpdf[i][j] = 0;

 /*

 * The previous PDF is used as the confident of the last position

 * With the gaussian distribution from the displacement vector,

 * using the probability from the last PDF as a weight, we then

sum

 * all these gaussian accross the entire old PDF to get new PDF.

 */

 for (int ig = -size; ig <= size; ig++) {

 for (int jg = -size; jg <= size; jg++) {

 if ((i + ig >= 0) && (i + ig < RadioMap.ROW)) {

 if ((j + jg >= 0) && (j + jg < RadioMap.COL)) {

 newpdf[i][j] += pdf[i + ig][j + jg] *

 gauss[originy - ig][originx -

jg];

 }

 }

 }

 }

 /*

 * Correlate the PDF with the wifi positioning system PDF

 */

 newpdf[i][j] *= wp[i][j];

 if (newpdf[i][j] > max) {

 max = newpdf[i][j];

 maxpos[0] = j;

 maxpos[1] = i;

 }

 }

 }

 for (int i = 0; i < RadioMap.ROW; i++) {

 for (int j = 0; j < RadioMap.COL; j++) {

 newpdf[i][j] /= max;

 }

 }

 pdf = newpdf;

 float[] pos = RadioMap.toActualScale(maxpos);

 position(pos);

 int[] mappos = Map.toMapScale(pos);

 mappos = Util.translate(mappos, -RadioMap.LEFT, -RadioMap.TOP);

 Map.match(mappos[0], mappos[1]);

 }

 /*

 * --

 * CONVERGEANCE

 * --

 */

155

 private static boolean isConverging;

 private static Object isConvergingLock = new Object();

 public static void startConverging() {

 synchronized (isConvergingLock) { isConverging = true; }

 }

 public static void stopConverging() {

 synchronized (isConvergingLock) { isConverging = false; }

 }

 public static boolean isConverging() {

 synchronized (isConvergingLock) { return isConverging; }

 }

 private static long timeConverging;

 private static Object timeConvergingLock = new Object();

 public static void timeConverging(long time) {

 synchronized (timeConvergingLock) { timeConverging = time; }

 }

 public static long timeConverging() {

 synchronized (timeConvergingLock) { return timeConverging; }

 }

 /*

 * --

 * SYNCHRONIZED POSITION

 * --

 */

 private static float[] position = new float[2];

 private static Object positionLock = new Object();

 public static void position(float[] p) {

 synchronized (positionLock) { Util.copyArray(position, p); }

 }

 public static float[] position() {

 synchronized (positionLock) { return Util.copyArray(position); }

 }

 private static float[] displacement = new float[2];

 private static Object displacementLock = new Object();

 public static void displacement(float[] p) {

 synchronized (displacementLock) { Util.copyArray(displacement, p); }

 }

 public static float[] displacement() {

 synchronized (displacementLock) { return Util.copyArray(displacement); }

 }

 /*

 * --

 * SYNCHRONIZED RECORDING

 * --

 */

 private static boolean isRecording;

 private static Object isRecordingLock = new Object();

 public static void startRecording() {

 synchronized (isRecordingLock) { isRecording = true; }

 }

 public static void stopRecording() {

156

 synchronized (isRecordingLock) { isRecording = false; }

 }

 public static boolean isRecording() {

 synchronized (isRecordingLock) { return isRecording; }

 }

 /*

 * --

 * SYNCHRONIZED POSITIONING

 * --

 */

 private static boolean isPositioning;

 private static Object isPositioningLock = new Object();

 public static void startPositioning() {

 synchronized (isPositioningLock) { isPositioning = true; }

 }

 public static void stopPositioning() {

 synchronized (isPositioningLock) { isPositioning = false; }

 }

 public static boolean isPositioning() {

 synchronized (isPositioningLock) { return isPositioning; }

 }

 /*

 * --

 * MAP MATCHING

 * --

 */

 private static int[] matchedPoint = new int[2];

 private static Object matchedPointLock = new Object();

 public static void matchedPoint(int[] point) {

 synchronized (matchedPointLock) { Util.copyArray(matchedPoint, point); }

 }

 public static int[] matchedPoint() {

 synchronized (matchedPointLock) { return Util.copyArray(matchedPoint); }

 }

 private static GraphEdge matchedEdge = new GraphEdge();

 private static Object matchedEdgeLock = new Object();

 public static void matchedEdge(GraphEdge edge) {

 synchronized (matchedEdgeLock) { matchedEdge = new GraphEdge(edge); }

 }

 public static GraphEdge matchedEdge() {

 synchronized (matchedEdgeLock) { return new GraphEdge(matchedEdge); }

 }

}

157

DeviceSensor.java

package com.wpirl.positioning;

import android.hardware.SensorManager;

import com.wpirl.util.Util;

public class DeviceSensor {

 private static final float MOVEMENT = 0.5f;

 private static final int WINDOW_SUMMATION_SIZE = 30; // 50 * 20 ms = 1

second

 private static final float EARTH_GRAVITY =

SensorManager.GRAVITY_EARTH; // 9.80755f

 private static final float EARTH_GEOMAGNETIC = 47.0f;

 private static final float THRESHOLD_GRAVITY = 1.0f;

 private static final float THRESHOLD_GEOMAGNETIC = 3.0f;

 public static Object lockSensing = new Object();

 public static float[] devA = new float[3];

 public static float[] devM = new float[3];

 public static float[] devO = new float[3];

 public static float[] gravity = new float[3];

 public static float[] geomagnetic = new float[3];

 public static float[] refA = new float[3];

 public static float[] refO = new float[3];

 public static float[] mR = new float[9];

 public static float[] mI = new float[9];

 public static Object lockMoving = new Object();

 public static boolean flagMoving = false;

 public static int wsPosition = 0;

 public static float wsAggregate = 0;

 public static float[] wsSequence = new float[WINDOW_SUMMATION_SIZE];

 /**

 * Set the accelerometer sample values

 * and calibrate the data if required

 *

 * * @param raw The raw output from accelerometer

 */

 public static void setDevA(float[] raw) {

 synchronized (lockSensing) {

 Util.copyArray(devA, raw);

 /*

 * Add new acceleration to the window summation

 * sequences and find the variance to compare

 *

 * Note: the sequence is constructed as a rotation array with the

wsPosition

 * is the position of the latest value

 */

 aggregrateMotion();

 float magnitude = Util.magnitude(devA);

 float threshold = THRESHOLD_GRAVITY;

158

 if (Math.abs(magnitude - EARTH_GRAVITY) <= threshold) {

 Util.copyArray(gravity, devA);

 }

 }

 }

 /**

 * Set the magnetic sample values

 * and calibrate the data if required

 *

 * @param raw The raw magnetic output from sensor

 */

 public static void setDevM(float[] raw) {

 synchronized (lockSensing) {

 Util.copyArray(devM, raw);

 /*

 * Update the geomagnetic vector if this sample

 * under the threshold

 */

 float magnitude = Util.magnitude(devM);

 if (Math.abs(magnitude - EARTH_GEOMAGNETIC) <= THRESHOLD_GEOMAGNETIC) {

 Util.copyArray(geomagnetic, devM);

 }

 }

 }

 public static void setDevO(float[] raw) {

 synchronized (lockSensing) {

 Util.copyArray(devO, raw);

 }

 }

 /**

 * Convert the sensor data from the device's coordination system

 * to the world's coordination system including motion and orientation

 *

 * @return true if convertible

 */

 public static boolean toEarthCS() {

 synchronized (lockSensing) {

 // When current gravity and current geomagnetic are known

 if ((Util.magnitude(devA) > 0) && (Util.magnitude(devM) > 0)) {

 /*

 * compute the rotation matrix from the current gravity and

geomanetic

 * the rotation matrix is used to transpose from the device's

coordination system

 * to the world's coordination system

 */

 SensorManager.getRotationMatrix(mR, mI, gravity, geomagnetic);

 /*

 * compute the orientation of the device from rotation matrix

 * including azimuth, pitch and roll angles of the device's

current position

 * in the world's coordination system

 */

 SensorManager.getOrientation(mR, refO);

 /*

159

 * compute the acceleration in the world's coordination system

 * by multiplying the device acceleration with the rotation

matrix

 *

 * | refA0 | | mR0 mR1 mR2 | | devA0 |

 * | refA1 | = | mR3 mR4 mR5 | * | devA1 |

 * | refA2 | | mR6 mR7 mR8 | | devA2 |

 */

 refA[0] = devA[0] * mR[0] +

 devA[1] * mR[1] +

 devA[2] * mR[2];

 refA[1] = devA[0] * mR[3] +

 devA[1] * mR[4] +

 devA[2] * mR[5];

 refA[2] = devA[0] * mR[6] +

 devA[1] * mR[7] +

 devA[2] * mR[8];

 return true;

 } else {

 return false;

 }

 }

 }

 /**

 * Synchronized get function to get the reference acceleration

 * in the Earth's coordination system

 *

 * @return the vector containing the acceleration in (x, y, z)

 */

 public static float[] getRefAcceleration() {

 float[] result = new float[3];

 synchronized (lockSensing) {

 Util.copyArray(result, refA);

 }

 return result;

 }

 /*

 * ==

 * Motion detection methods

 * ==

 */

 /**

 * Return the angle between the device direction

 * and the north direction in the Earth's coordination system

 *

 * @return the heading angle in degrees

 */

 public static float getHeading() {

 float degrees;

 synchronized (lockSensing) {

 degrees = (float) devO[0];

 }

 return degrees;

 }

 public static void enableMoving() {

160

 synchronized (lockMoving) {

 flagMoving = true;

 }

 }

 public static void disableMoving() {

 synchronized (lockMoving) {

 flagMoving = false;

 }

 }

 public static boolean isMoving() {

 synchronized (lockMoving) {

 if (flagMoving) return true;

 else return false;

 }

 }

 private static void aggregrateMotion() {

 float magnitude = Util.magnitude(devA);

 /*

 * The wsSequence contains the last N samples output from

 * the sensor. The sequence is implemented using a rotation array.

 * The rotation array uses a fixed array and a rotation wsPosition

 * to indicate the position of the next samples

 */

 /*

 * If this wsPosition is out of bound, go back to the

 * beginning of the fixed array, thus make the rotation

 */

 wsPosition++;

 if (wsPosition == WINDOW_SUMMATION_SIZE) wsPosition = 0;

 /*

 * The wsAggregate is the sum of all the value in the rotation

 * array. A new sum is computed by deducting old value and replace

 * it with the new value.

 */

 wsAggregate = wsAggregate - wsSequence[wsPosition] + magnitude;

 wsSequence[wsPosition] = magnitude;

 /*

 * The length of the rotation array. This is not at maximum length

 * only at the beginning of the sampling period when the program

 * just launches and the number of samples has not reached the maximum N.

 * After the first N samples, the length is always N.

 */

 int length;

 if (wsSequence[WINDOW_SUMMATION_SIZE - 1] == 0) {

 length = wsPosition + 1;

 } else {

 length = WINDOW_SUMMATION_SIZE;

 }

 float mean = wsAggregate / length; // the arithmetic mean (average)

 float stdev = 0; // the standard deviation

 /*

161

 * Compute the variance of the wsSequence

 */

 for (int i = 0; i < length; i++) {

 stdev += (wsSequence[i] - mean) * (wsSequence[i] - mean);

 }

 stdev = (float) Math.sqrt(stdev/length);

 /*

 * If the standard deviation is below the threshold

 * the phone is not in motion.

 */

 if (stdev > MOVEMENT) { enableMoving(); }

 else { disableMoving(); }

 }

}

162

InertialNavigationSystem.java

package com.wpirl.positioning;

import java.util.LinkedList;

import com.wpirl.util.Util;

public class InertialNavigationSystem {

 public static final int MAX_SIZE = 1000;

 public static final float HUMAN_SPEED_WALK = 5000.0f/3600.0f; //

5km/3600s

 private LinkedList<Motion> motions;

 public InertialNavigationSystem() {

 motions = new LinkedList<Motion>();

 }

 public void reset() {

 if (!motions.isEmpty()) motions.clear();

 long time = System.currentTimeMillis();

 motions.add(new Motion(time));

 }

 /**

 * Add new motion sample to the queue

 * @param a acceleration

 * @param t time

 */

 public void addMotion() {

 // If the queue is full, remove the first element

 if (motions.size() == MAX_SIZE) { motions.removeFirst(); }

 long time = System.currentTimeMillis();

 float dt = (time - motions.getLast().time)/1000.0f;

 float[] d = Util.copyArray(motions.getLast().distance);

 Motion current = new Motion(time);

 if (DeviceSensor.isMoving()) {

 // moved distance

 float distance = HUMAN_SPEED_WALK * dt;

 float heading = (float) Math.toRadians(DeviceSensor.getHeading());

 current.distance[0] = d[0] + distance * (float) Math.sin(heading);

 current.distance[1] = d[1] + distance * (float) Math.cos(heading);

 } else {

 current.distance[0] = d[0];

 current.distance[1] = d[1];

 }

 // add the new motion element to the end of the queue

 motions.addLast(current);

 }

 public float[] displacement() {

 float[] d = Util.copyArray(motions.getLast().distance);

 return d;

 }

}

163

Motion.java

package com.wpirl.positioning;

import com.wpirl.util.Util;

public class Motion {

 public float[] distance;

 public long time;

 public Motion() {

 this.distance = new float[2];

 this.time = 0;

 }

 public Motion(long time) {

 this.distance = new float[2];

 this.time = time;

 }

 public Motion(Motion m) {

 this.distance = Util.copyArray(m.distance);

 this.time = m.time;

 }

}

164

WifiPositioning.java

package com.wpirl.positioning;

import com.wpirl.util.DeviceReader;

import com.wpirl.util.Util;

public class WifiPositioning {

 public static final int WAP_NUMBER = 6; // 5 wireless access points

 public static final int WAP_COUNT = 4;

 public static final int VALUE_LENGTH = 8; // 6 digits + minus sign '-' +

decimal point '.'

 public static final String SIMULATION_FILE =

"/sdcard/wpirl/simulation_model/WAP";

 public static final int MAX_COUNT = 5;

 private RadioMap[] simulation; // the router simulated map

 private int[] rssi;

 /**

 * Read the simulated model from input file stored

 * in the sdcard at location /sdcard/locus/simulation_model/

 * with name format is WAP# with # is the order number

 */

 public WifiPositioning() {

 simulation = new RadioMap[WAP_NUMBER];

 rssi = new int[WAP_NUMBER];

 input();

 }

 private void input() {

 // for each simulation file containing the radio map of one wireless access

point

 for (int k = 0; k < WAP_NUMBER; k++) {

 String file = new String(SIMULATION_FILE + String.valueOf(k+1) +

".txt"); // the path of the file

 DeviceReader in = new DeviceReader(file);

 // open the file to read

 String s = in.readln();

 // read the first line

 s = s.toLowerCase();

 simulation[k] = new RadioMap();

 simulation[k].bssid = s;

 // the first line is BSSID (MAC address)

 s = in.readln();

 // skip the next line

 for (int i = 0; i < RadioMap.ROW; i++) {

 // browse the number of row

 s = in.readln();

 // read the entire line

 int start = 0;

 int j = 0;

 // start with column 0

 /*

 * Each value contains exact 8 characters:

 * 6 digits, 1 minus sign '-', and 1 decimal point '.'

 * The value will be read from position: 0, 8, 16, etc.

 */

165

 while (j < RadioMap.COL) {

 String value = s.substring(start, start + VALUE_LENGTH);

 // the value at row i column j

 start += VALUE_LENGTH;

 simulation[k].map[i][j] = Float.valueOf(value);

 // record the value

 j++;

 }

 }

 in.close();

 }

 }

 /**

 * Return the probability density function of the last sample

 * based on the simulated propagation models

 *

 * @param rssi

 * @return

 */

 public float[][] correlate() {

 float[][] c = new float[RadioMap.ROW][RadioMap.COL];

 boolean[] highest = Util.highest(rssi, WAP_COUNT);

 int[] maxpos = new int[2];

 float max = 0;

 for (int i = 0; i < RadioMap.ROW; i++) {

 for (int j = 0; j < RadioMap.COL; j++) {

 c[i][j] = 1;

 for (int k = 0; k < WAP_NUMBER; k++) {

 if ((rssi[k] > Integer.MIN_VALUE) && (highest[k])) {

 float square = Util.square(rssi[k] -

simulation[k].map[i][j]);

 c[i][j] *= (double) Math.exp((square) / (5*rssi[k])

);

 if (c[i][j] > max) {

 max = c[i][j];

 maxpos[0] = j;

 maxpos[1] = i;

 }

 }

 }

 }

 }

 addPosition(maxpos);

 return c;

 }

 public void addMeasurement(int[] rssi) {

 Util.copyArray(this.rssi, rssi);

 }

 /**

 * Find the id of the WAP in simulation maps using the

 * BSSID (physical MAC address of the router). In the WAP

 * is among the simulated propagation models, return the id of

 * that WAP, else return -1 if this WAP is not in the model.

166

 *

 * @param bssid The BSSID of the WAP to search

 * @return The id of the simulated model of this WAP

 */

 public int findBSSID(String bssid) {

 for (int k = 0; k < WAP_NUMBER; k++) {

 if (bssid.equals(simulation[k].bssid)) {

 return k;

 };

 }

 return -1;

 }

 private int[][] position = new int[MAX_COUNT][2];

 private double[] average = new double[2];

 private int count = 0;

 public void addPosition(int[] newpos) {

 double[] d = new double[MAX_COUNT];

 double sum = 0;

 position[count][0] = newpos[0];

 position[count][1] = newpos[1];

 int length;

 if (position[MAX_COUNT-1][0] + position[MAX_COUNT-1][1] == 0) {

 length = count+1;

 } else {

 length = MAX_COUNT;

 }

 count++;

 if (count == MAX_COUNT) count = 0;

 if (length > 1) {

 for (int i = 0; i < length; i++) {

 d[i] = Util.distance(position[i][0], position[i][1], average[0],

average[1]);

 sum += d[i];

 }

 average[0] = 0;

 average[1] = 0;

 for (int i = 0; i < length; i++) {

 average[0] += ((double) position[i][0]) * (sum - d[i]) /

((length - 1) * sum);

 average[1] += ((double) position[i][1]) * (sum - d[i]) /

((length - 1) * sum);

 }

 } else {

 average[0] = position[0][0];

 average[1] = position[0][1];

 }

 }

 public int[] average() {

 int[] value = new int[2];

 value[0] = (int) average[0];

 value[1] = (int) average[1];

 return value;

 }

167

 public int[] position() {

 int[] value = Util.copyArray(position[count]);

 return value;

 }

}

168

RadioMap.java

package com.wpirl.positioning;

public class RadioMap {

 public static final int RESOLUTION = 2; // 2 sample per meter

 public static final int LEFT = 74;

 public static final int TOP = 188;

 public static final int ROW = 94;

 public static final int COL = 25;

 public float[][] map;

 public String bssid;

 public RadioMap() {

 map = new float[ROW][COL];

 }

 public String toString() {

 StringBuilder sb = new StringBuilder();

 for (int i = 0; i < ROW; i++) {

 for (int j = 0; j < COL; j++) {

 sb.append(String.valueOf(map[i][j]));

 }

 sb.append("\n");

 }

 return sb.toString();

 }

}

169

View

MapView.java

package com.wpirl.view;

import java.util.ArrayList;

import android.content.Context;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.graphics.Canvas;

import android.graphics.Color;

import android.graphics.ComposePathEffect;

import android.graphics.CornerPathEffect;

import android.graphics.LinearGradient;

import android.graphics.Paint;

import android.graphics.Path;

import android.graphics.PathDashPathEffect;

import android.graphics.Rect;

import android.graphics.RectF;

import android.graphics.Shader;

import android.view.KeyEvent;

import android.view.View;

import com.wpirl.R;

import com.wpirl.map.GraphNode;

import com.wpirl.map.Map;

import com.wpirl.positioning.DeviceSensor;

import com.wpirl.positioning.Positioning;

import com.wpirl.positioning.RadioMap;

import com.wpirl.util.Util;

public class MapView extends View {

 private static final int SPACING = 3;

 private static final int COMPASS_RADIUS = 15;

 private static final int COMPASS_FAN = 60;

 private static final int POINT_RADIUS = 5;

 private int x;

 private int y;

 private float phase;

 private Bitmap map;

 private Paint paintPath;

 private Paint paintPoint;

 private Paint paintText;

 private Paint paintFrame;

 private Paint paintCompass;

 private Paint paintFan;

 public MapView(Context context) {

 super(context);

 setFocusable(true);

 map = BitmapFactory.decodeResource(getResources(), R.drawable.er2);

 x = map.getWidth()/2 - 200;

 y = map.getHeight()/2;

 paintPath = new Paint(Paint.ANTI_ALIAS_FLAG);

 paintPath.setStyle(Paint.Style.STROKE);

170

 paintPath.setStrokeWidth(6);

 paintPath.setColor(Color.argb(100, 0, 0, 255));

 paintFrame = new Paint();

 paintFrame.setAntiAlias(true);

 paintFrame.setStyle(Paint.Style.FILL_AND_STROKE);

 paintFrame.setStrokeWidth(1);

 paintCompass = new Paint();

 paintCompass.setAntiAlias(true);

 paintCompass.setStyle(Paint.Style.STROKE);

 paintCompass.setStrokeWidth(2);

 paintCompass.setColor(Color.argb(100, 0, 0, 255));

 paintFan = new Paint(paintCompass);

 paintFan.setStyle(Paint.Style.FILL);

 paintPoint = new Paint();

 paintPoint.setAntiAlias(true);

 paintPoint.setStyle(Paint.Style.FILL);

 paintPoint.setColor(Color.RED);

 paintText = new Paint();

 paintText.setAntiAlias(true);

 paintText.setStyle(Paint.Style.FILL);

 paintText.setTextSize(9);

 paintText.setColor(Color.WHITE);

 }

 @Override

 protected void onDraw(Canvas canvas) {

 // GET SCREEN INFO

 Rect screen = canvas.getClipBounds();

 int sw = screen.width();

 int sh = screen.height();

 /*

 * When the current mode is positioning

 */

 if (Positioning.isPositioning()) {

// int[] position = Map.toMapScale(Positioning.position());

// position = Util.translate(position, -RadioMap.LEFT, -RadioMap.TOP);

// x = position[0];

// y = position[1];

 int[] position = Positioning.matchedPoint();

 x = position[0];

 y = position[1];

 }

 // The pixel coordinate of the screen top left corner

 int left = x - sw/2;

 int top = y - sh/2;

 // draw the map within the screen

 canvas.drawBitmap(map, -left, -top, null);

 ArrayList<GraphNode> nodes = Map.getNodes();

 if (Map.isRouting()) {

 int[] path = Map.path();

171

 Path p = new Path();

 GraphNode n = nodes.get(path[0]);

 p.moveTo(n.position[0] - left, n.position[1] - top);

 for (int i = 1; i < path.length; i++) {

 n = nodes.get(path[i]);

 p.lineTo(n.position[0] - left, n.position[1] - top);

 }

 phase--;

 paintPath.setPathEffect(new ComposePathEffect(

 new CornerPathEffect(10),

 new PathDashPathEffect(makePathDash(),

12, phase,

 PathDashPathEffect.Style.ROTATE)));

 canvas.drawPath(p, paintPath);

 GraphNode source = Map.source();

 Shader shade = new LinearGradient(source.position[0] - left,

 source.position[1] - top +

POINT_RADIUS/2,

 source.position[0] - left,

 source.position[1] - top +

POINT_RADIUS/2,

 Color.rgb(225, 32, 33),

 Color.rgb(189, 26, 25),

 Shader.TileMode.CLAMP);

 paintPoint.setShader(shade);

 canvas.drawCircle(source.position[0] - left,

 source.position[1] - top,

 POINT_RADIUS, paintPoint);

 }

 for (int i = 0; i < nodes.size(); i++) {

 GraphNode node = nodes.get(i);

 if ((node.type == GraphNode.TYPE_ROOM) || (node.type ==

GraphNode.TYPE_CUBICLE)) {

 if (Util.inside(node.position, x - sw/2, y - sh/2, x + sw/2, y + sh/2))

{

 ArrayList<String> s = new ArrayList<String>();

 int nx = node.position[0] - left;

 int ny = node.position[1] - top;

 int nw = 0;

 int nh = SPACING;

 if (node.room.length() > 0) {

 s.add(node.room);

 Rect r = new Rect();

 paintText.getTextBounds(node.room, 0, node.room.length(),

r);

 nw = r.right - r.left;

 nh += r.bottom - r.top + SPACING;

 }

 if (node.person.length() > 0) {

 s.add(node.person);

 Rect r = new Rect();

 paintText.getTextBounds(node.person, 0,

node.person.length(), r);

 if ((r.right - r.left) > nw) {

172

 nw = r.right - r.left;

 }

 nh += r.bottom - r.top + SPACING;

 }

 nw += 2*SPACING;

 if (s.size() > 0) {

 Shader shade = new LinearGradient(nx, ny-nh/2, nx, ny+nh/2,

 Color.rgb(81,

169, 231),

 Color.rgb(44,

116, 206),

Shader.TileMode.CLAMP);

 paintFrame.setShader(shade);

 canvas.drawRect(nx - nw/2, ny - nh/2, nx + nw/2, ny + nh/2,

paintFrame);

 for (int j = 0; j < s.size(); j++) {

 canvas.drawText(s.get(j), nx - nw/2 + SPACING, ny +

nh/2 - SPACING - j*10, paintText);

 }

 }

 }

 }

 }

 /*

 * Drawing the compass using the heading from the compass sensor

 * The compass is only drawn in positioning mode

 */

 if (Positioning.isPositioning()) {

 float heading = DeviceSensor.getHeading();

 canvas.drawCircle(sw/2, sh/2, COMPASS_RADIUS, paintCompass);

 canvas.drawCircle(sw/2, sh/2, 2, paintFan);

 RectF oval = new RectF(sw/2 - COMPASS_RADIUS, sh/2 - COMPASS_RADIUS,

 sw/2 + COMPASS_RADIUS, sh/2 +

COMPASS_RADIUS);

 canvas.drawArc(oval, heading - Map.NORTH - 90 - COMPASS_FAN/2, COMPASS_FAN,

true, paintFan);

 } else {

 canvas.drawCircle(sw/2, sh/2, 2, paintPoint);

 }

 invalidate();

 }

 @Override

 public boolean onKeyUp(int keyCode, KeyEvent event) {

 final int MOVE = 40;

 switch (keyCode) {

 case KeyEvent.KEYCODE_DPAD_UP:

 y += MOVE;

 break;

 case KeyEvent.KEYCODE_DPAD_LEFT:

 x += MOVE;

 break;

 case KeyEvent.KEYCODE_DPAD_RIGHT:

 x -= MOVE;

 break;

 case KeyEvent.KEYCODE_DPAD_DOWN:

 y -= MOVE;

 break;

173

 }

 return super.onKeyUp(keyCode, event);

 }

 private Path makePathDash() {

 Path p = new Path();

 p.moveTo(0, 0);

 p.lineTo(0, -4);

 p.lineTo(8, -4);

 p.lineTo(12, 0);

 p.lineTo(8, 4);

 p.lineTo(0, 4);

 return p;

 }

}

174

Utilities

Util.java

package com.wpirl.util;

public class Util {

 /*

 * ==

 * Compiler methods

 * ==

 */

 /**

 * Return the number of count-highest elements of an array.

 * The returning array at position i in a is true only when

 * a[i] is one of count-highest elements in a

 *

 * @param a The input array

 * @param count The number of highest elements to find

 * @return The boolean array indicating highest elements

 */

 public static boolean[] highest(int[] a, int count) {

 int size = a.length;

 boolean[] highest = new boolean[size];

 int[] b = new int[size];

 int[] c = new int[size];

 /*

 * Initialize b and c and highest

 * b is a clone array of a

 * c is an index array to track the changes position

 * of b when sorting

 */

 for (int i = 0; i < size; i++) {

 b[i] = a[i];

 c[i] = i;

 highest[i] = false;

 }

 // sort the b array in ascending order

 for (int i = 0; i < size-1; i++) {

 for (int j = i+1; j < size; j++) {

 if (b[i] < b[j]) {

 int temp;

 temp = b[i]; b[i] = b[j]; b[j] = temp;

 temp = c[i]; c[i] = c[j]; c[j] = temp;

 }

 }

 }

 for (int i = 0; i < count; i++) highest[c[i]] = true;

 return highest;

 }

 public static void copyArray(int[] a, int[] b) {

 for (int i = 0; i < a.length; i++) {

 a[i] = b[i];

175

 }

 }

 public static void copyArray(float[] a, float[] b) {

 for (int i = 0; i < a.length; i++) {

 a[i] = b[i];

 }

 }

 public static int[] copyArray(int[] a) {

 int[] r = new int[a.length];

 for (int i = 0; i < a.length; i++) r[i] = a[i];

 return r;

 }

 public static float[] copyArray(float[] a) {

 float[] r = new float[a.length];

 for (int i = 0; i < a.length; i++) r[i] = a[i];

 return r;

 }

 /*

 * ==

 * Mathematics methods

 * ==

 */

 public static int getMin(int a, int b) {

 if (a > b) return b;

 else return a;

 }

 public static int getMax(int a, int b) {

 if (a > b) return a;

 else return b;

 }

 public static boolean between(int x, int a, int b) {

 int min = getMin(a, b);

 int max = getMax(a, b);

 if ((x>=min) && (x<= max)) {

 return true;

 } else {

 return false;

 }

 }

 /**

 * Return the magnitude of the input vector, which is

 * the squared root of the sum of squared value

 *

 * @param v The input vector

 * @return The magnitude of the vector

 */

 public static float magnitude(float[] v) {

 float result = 0;

 for (int i = 0; i < v.length; i++) {

 result += square(v[i]);

 }

 result = (float) Math.sqrt(result);

 return result;

 }

176

 public static double magnitude(double x, double y) {

 return Math.sqrt(square(x) + square(y));

 }

 public static int[] translate(int[] p, int originX, int originY) {

 return translate(p[0], p[1], originX, originY);

 }

 public static int[] translate(int x, int y, int originX, int originY) {

 int[] t = new int[2];

 t[0] = x + originX;

 t[1] = y + originY;

 return t;

 }

 public static int distancePointLine(int x, int y, int[] p1, int[] p2, int[] m) {

 int distance = Integer.MAX_VALUE;

 if (p1[0] == p2[0]) {

 if (between(y, p1[1], p2[1])) {

 distance = Math.abs(p1[0] - x);

 m[0] = p1[0];

 m[1] = y;

 } else {

 if (distance(x, y, p1[0], p1[1]) > distance(x, y, p2[0], p2[1]))

{

 m[0] = p1[0];

 m[1] = p1[1];

 distance = (int) distance(x, y, p1[0], p1[1]);

 } else {

 m[0] = p2[0];

 m[1] = p2[1];

 distance = (int) distance(x, y, p2[0], p2[1]);

 }

 }

 } else if (p1[1] == p2[1]) {

 if (between(x, p1[0], p2[0])) {

 distance = Math.abs(p1[1] - y);

 m[0] = x;

 m[1] = p1[1];

 } else {

 if (distance(x, y, p1[0], p1[1]) > distance(x, y, p2[0], p2[1]))

{

 m[0] = p1[0];

 m[1] = p1[1];

 distance = (int) distance(x, y, p1[0], p1[1]);

 } else {

 m[0] = p2[0];

 m[1] = p2[1];

 distance = (int) distance(x, y, p2[0], p2[1]);

 }

 }

 }

 return distance;

 }

 public static float distance(double[] p1, double[] p2) {

 return distance(p1[0], p1[1], p2[0], p2[1]);

 }

 public static float distance(float[] p1, float[] p2) {

 return distance(p1[0], p1[1], p2[0], p2[1]);

 }

177

 public static float distance(int[] p1, int[] p2) {

 return distance(p1[0], p1[1], p2[0], p2[1]);

 }

 public static float distance(int x1, int y1, int x2, int y2) {

 return (float) Math.sqrt(square(x1 - x2) + square(y1 - y2));

 };

 public static float distance(float x1, float y1, float x2, float y2) {

 return (float) Math.sqrt(square(x1 - x2) + square(y1 - y2));

 };

 public static float distance(double x1, double y1, double x2, double y2) {

 return (float) Math.sqrt(square(x1 - x2) + square(y1 - y2));

 };

 public static int square(int n) {

 return n*n;

 }

 public static float square(float n) {

 return n*n;

 }

 public static double square(double n) {

 return n*n;

 }

 /*

 * ==

 * Other methods

 * ==

 */

 /**

 * Adjust angle to be between 0 and 360 degrees

 * @param degrees

 * @return new angle

 */

 public static float adjustAngle(float degrees) {

 while (degrees < 0) { degrees += (float) 360.0; }

 while (degrees > 360) { degrees -= (float) 360.0; }

 return degrees;

 }

 public static boolean inside(int x, int y, int left, int top, int right, int

bottom) {

 if ((x < left) || (x > right) || (y < top) || (y > bottom)) { return false;

}

 else { return true; }

 }

 public static boolean inside(int[] p, int left, int top, int right, int bottom) {

 return inside(p[0], p[1], left, top, right, bottom);

 }

}

178

DeviceReader.java

package com.wpirl.util;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.InputStreamReader;

public class DeviceReader {

 private String path;

 private String file;

 private String line;

 private FileInputStream fis;

 private InputStreamReader isr;

 private BufferedReader in;

 /**

 * Constructor with no specified file.

 * The default file location is /sdcard/samples.txt

 */

 public DeviceReader() {

 path = new String("/sdcard/");

 file = new String("samples.txt");

 initialize();

 }

 /**

 * Constructor with an input specified location file

 *

 * @param s The string contains the file path to read from

 */

 public DeviceReader(String s) {

 if (s.contains("/")) {

 this.path = s.substring(0, s.lastIndexOf("/") + 1);

 this.file = s.substring(s.lastIndexOf("/") + 1);

 } else {

 this.path = "/sdcard/";

 this.file = s;

 }

 initialize();

 }

 /**

 * Write a string to the specified file

 */

 public String readln() {

 try {

 this.line = in.readLine();

 } catch (IOException e) {}

 return this.line;

 }

 /**

 * Close the file

 */

 public void close() {

 try {

179

 this.in.close();

 this.isr.close();

 this.fis.close();

 } catch (IOException e) {}

 }

 /**

 * Initialize the output stream in order to write

 * to the specified file.

 */

 private void initialize() {

 File f = new File(new String(this.path + this.file));

 try {

 this.fis = new FileInputStream(f);

 } catch (FileNotFoundException e) {

 }

 this.isr = new InputStreamReader(this.fis);

 this.in = new BufferedReader(isr);

 }

 public String toString() {

 return new String(this.path + this.file);

 }

 public void setPath(String path) {

 this.path = path;

 }

 public void setFileName(String fileName) {

 this.file = fileName;

 }

 public String getPath() {

 return this.path;

 }

 public String getFileName() {

 return this.file;

 }

}

180

DeviceWriter.java

package com.prototype.ins2;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.OutputStreamWriter;

public class DeviceWriter {

 private String path;

 private String fileName;

 private FileOutputStream fos;

 private OutputStreamWriter osw;

 /*

 * Constructor with default value;

 */

 public DeviceWriter() {

 path = new String("/sdcard/");

 fileName = new String("samples.txt");

 initialize();

 }

 /*

 * Constructor with a specified input

 */

 public DeviceWriter(String s) {

 if (s.contains("/")) {

 this.path = s.substring(0, s.lastIndexOf("/") + 1);

 this.fileName = s.substring(s.lastIndexOf("/") + 1);

 } else {

 this.path = "/sdcard/";

 this.fileName = s;

 }

 initialize();

 }

 /*

 * Write a string to the specified file

 */

 public void write(String s) {

 try {

 this.osw.write(s);

 this.osw.flush();

 } catch (IOException e) {

 }

 }

 public void close() {

 try {

 this.osw.flush();

 this.osw.close();

 this.fos.close();

 } catch (IOException e) {

 }

 }

 public String toString() {

 return new String(this.path + this.fileName);

181

 }

 /*

 * Initialize the output stream in order to write

 * to the specified file.

 */

 private void initialize() {

 File f = new File(new String(this.path + this.fileName));

 try {

 this.fos = new FileOutputStream(f);

 } catch (FileNotFoundException e) {

 }

 this.osw = new OutputStreamWriter(this.fos);

 }

 /*

 * ::::::::::::::::::::::::::::::::::::

 * get & set methods

 * ::::::::::::::::::::::::::::::::::::

 */

 public void setPath(String path) {

 this.path = path;

 }

 public void setFileName(String fileName) {

 this.fileName = fileName;

 }

 public String getPath() {

 return this.path;

 }

 public String getFileName() {

 return this.fileName;

 }

}

182

Appendix C: Database files

Nodes.txt

73

 1 122 246 cubicle

 2 214 231 cubicle

 3 306 231 cubicle

 4 398 231 cubicle

 5 153 282 corridor

 6 202 282 corridor

 7 228 282 corridor

 8 319 282 corridor

 9 363 282 corridor

 10 132 355 cubicle

 11 228 332 corridor

 12 344 332 corridor

 13 296 355 cubicle

 14 344 355 cubicle

 15 405 355 cubicle

 16 129 402 stair

 17 228 402 corridor

 18 228 455 corridor

 19 344 455 corridor

 20 296 426 cubicle

 21 344 426 cubicle

 22 405 426 cubicle

 23 296 487 cubicle

 24 344 487 cubicle

 25 405 487 cubicle

 26 228 586 corridor

 27 296 559 cubicle

 28 344 559 cubicle

 29 405 559 cubicle

 30 296 619 cubicle Liaoyuan Zeng

 31 344 619 cubicle

 32 405 619 cubicle

 33 228 712 corridor

 34 344 712 corridor

 35 296 690 cubicle

 36 344 690 cubicle Niall Brownen

 37 405 690 cubicle Michael Barry

 38 344 586 corridor

 39 105 698 cubicle er2-028d

 40 179 698 cubicle er2-028c

 41 105 761 cubicle er2-028b

 42 179 761 cubicle er2-028a

 43 228 771 corridor

 44 354 816 room er2-028 CSRC Meeting Room

 45 228 888 corridor

 46 113 874 room er2-024

 47 228 927 corridor

 48 106 956 room er2-023 Dr. G Leen

 49 316 979 cubicle er2-029d Matthew Kelley

 50 389 979 cubicle er2-029c Dimitris Saragas

 51 316 1043 cubicle er2-029b Michael Ghizzo

183

 52 389 1043 cubicle er2-029a Manh-Hung Le

 53 228 1065 corridor

 54 114 1048 room er2-022

 55 228 1106 corridor

 56 113 1122 room er2-021 T. Kruger

 57 228 1241 corridor

 58 114 1244 room er2-020 C. MacNamee

 59 352 1237 room er2-029 CSRC Lab

 60 228 1282 corridor

 61 108 1308 room er2-019

 62 228 1467 corridor

 63 144 1379 room er2-018

 64 228 1507 corridor

 65 144 1596 room er2-017 A. Dervell

 66 395 1467 corridor

 67 276 1570 cubicle

 68 751 1467 corridor

 69 751 1438 corridor

 70 751 1332 stair

 71 741 1516 elevator

 72 120 730 room

 73 402 1009 room Nathan Webb

184

Edges.txt

 1 1 5

 2 1 6

 3 1 8

 4 1 9

 5 3 1 6 10

 6 3 2 5 7

 7 3 6 8 11

 8 3 3 7 9

 9 2 4 8

10 1 5

11 3 7 12 17

12 4 11 13 14 15

13 1 12

14 1 12

15 1 12

16 1 17

17 3 11 16 18

18 3 17 19 26

19 7 18 20 21 22 23 24 25

20 1 19

21 1 19

22 1 19

23 1 19

24 1 19

25 1 19

26 3 18 33 38

27 1 38

28 1 38

29 1 38

30 1 38

31 1 38

32 1 38

33 4 26 34 40 43

34 4 35 36 37 33

35 1 34

36 1 34

37 1 34

38 7 26 27 28 29 30 31 32

39 2 40 41

40 4 33 39 42 72

41 2 39 42

42 4 40 41 43 72

43 4 33 42 44 45

44 1 43

45 3 43 46 47

46 1 45

47 4 45 48 49 53

48 1 47

49 3 47 50 51

50 3 49 52 73

51 2 49 52

52 3 50 51 73

53 3 47 54 55

54 1 53

55 3 53 56 57

185

56 1 55

57 4 55 58 59 60

58 1 57

59 1 57

60 3 57 61 62

61 1 60

62 4 60 63 64 66

63 1 62

64 3 62 65 67

65 1 64

66 2 62 68

67 1 64

68 3 66 69 71

69 2 68 70

70 1 69

71 1 60

72 2 40 42

73 2 50 52

186

Walls.txt

32

 0.00 46.60 0.00 0.00

 4.29 13.63 4.29 7.73

 4.29 46.60 4.29 43.35

 4.29 40.69 4.29 35.94

 4.29 33.78 4.29 30.33

 4.29 28.05 4.29 24.60

 4.29 22.46 4.29 20.51

 5.73 40.42 5.73 34.66

 5.73 23.48 5.73 19.77

 9.23 40.42 9.23 39.23

 12.10 46.60 12.10 0.00

 0.00 46.60 12.10 46.60

 0.00 42.08 4.29 42.08

 0.00 37.50 4.29 37.50

 0.00 34.82 4.29 34.82

 0.00 31.88 4.29 31.88

 0.00 29.10 4.29 29.10

 0.00 26.20 4.29 26.20

 0.00 23.39 4.29 23.39

 0.00 20.51 4.29 20.51

 0.00 13.63 4.29 13.63

 0.00 6.33 4.29 6.33

 5.73 6.33 12.10 6.33

 5.73 10.15 12.10 10.15

 5.73 13.97 12.10 13.97

 5.73 40.42 9.23 40.42

 9.23 39.23 12.10 39.23

 5.73 23.48 12.10 23.48

 5.73 17.78 12.10 17.78

 5.73 32.92 5.73 25.38

 5.73 29.18 12.10 29.18

 0.00 0.00 12.10 0.00

