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Chapter 1

Introduction

The field of ultracold atoms has experienced an increasingly rapid development in the
past years. Through the development of new, more advanced experimental techniques,
more and more control and knowledge about the systems under observation is gained.
This allows comparison with theory to so far unreached precision.
Celebrated experimental successes of yesterday, such as the Magneto-Optical Trap
[1] and the achievment of Bose-Einstein Condensation [2, 3, 4], can now be used as
standard tools in a new era, making it possible to advance problems that can provide
useful information for the understanding of closely related systems from other fields
of physics such as solid state physics or material sciences.
The idea of quantum simulation is to study a system which is very well observable
and whose parameters can be controlled in a way that it acts like another system that
is experimentally difficult to access and characterize. That means, one must have the
experimental techniques to be able to create a Hamiltonian for the simulation that
resembles the one of the diffcult to observe system.
The idea of quantum simulation is closely related to quantum computation and goes
back to an idea Richard Feynman had at the beginning of the 1980s [5, 6]: Imagine
an array of atoms that we prepare in specific states 0 and 1. This is our input.
Now we apply a Hamiltonian to the system that is designed specifically to perform
the calculation we want to do. We let the system evolve for some time under this
Hamiltonian and after a while we can look at some specific atoms in states 0 or 1 that
represent the answer to our calculation. It can be shown [7] that for such a quantum
computer the number of variables that must be taken into account for the simulation
of a quantum system with local interactions does not increase exponentially as is the
case for a classical Turing Machine. It is therefore much more efficient at simulating
larger many-body systems, or stated differently, it can do it at all.
An example for a quantum simulation is the experimental realization of the Bose-
Hubbard Hamiltonian in a gas of ultracold atoms using optical lattice potentials [8].
The Bose-Hubbard model was first studied for phase transitions in liquid helium
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and describes bosonic particles with repulsive interactions in a lattice potential. By
changing the light intensity of the interfering light beams that create the optical
lattice, the depth of the potential was tuned. In this way the tunneling rate of
the particles to adjacent lattice sites was controlled. The phase transition from a
superfluid to the Mott insulator phase occurs for a critical depth of the potential wells.
In the superfluid phase, the particles are delocalized over the entire lattice. Neglecting
the trapping potential for the cloud, the Mott insulator phase is characterized by the
same amount of particles localized in each potential well, where the equal distribution
is due to the repulsive interactions. In ultracold gases, it is also possible to tune the
interactions between atoms with magnetic fields using Feshbach resonances [9]. This
made it possible to tune to strong enough attractive interactions for the formation of
molecules out of atom pairs [10].
Ultracold gases in optical lattice potentials are also promising for the simulation
of other Hamiltonians such as those of strongly interacting many electron systems
in solids, the understanding of which is important for the development of modern
materials such as high temperature superconductors or novel magnetic materials. It
is important to realize, that in this simulation the role of the valence electrons is taken
by the atoms, whereas the optical lattice potential mimicks the periodic potential of
the atom trunks. The advantage of optical lattice simulators is, that the system
under observation is very clean and controllable. Also for a possible realization of a
quantum computer, ultracold gases are interesting, since in no other system, states
can be prepared so well and the coherence time is as long.
However, for most interesting problems today, we lack the experimental techniques to
reach the regimes needed to create a Hamiltonian resembling those of the respective
systems for which a simulation would be interesting or to address the system with
good enough resolution.

Quantum Gas Microscope

The aim for our newly designed apparatus is to create an optical lattice simulator with
high enough optical resolution to be able to address single lattice sites when the lattice
spacing is small enough to allow for good tunneling rates. High resolution detection
might allow a closer look at new quantum systems with new potential landscapes
like Kagomé lattices [11]. It might be possible to study frustrated quantum anitfer-
romagnetic behaviour in optical trimerized Kagomé lattices and earn more insight
into systems that could not yet be accessed in condensed matter systems. Frustrated
Quantum Anitferromagnets have been subject of interest in condensed matter physics
for quite a while.
The high resolution of our apparatus might allow the observation of interesting dy-
namics and single lattice site addressability makes high resolution manipulation of
the systems under observation possible. In the new scheme for inducing vortices that
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is presented in this thesis, only a high enough resolution makes it possible to reach
the regimes in which one fully benefits from the new approach. The high resolution
projection system in our new experiment will be a big step towards projecting ar-
bitrary potential landscapes and therefore a much more versatile tool for quantum
simulations.
The use of a high numerical aperture imaging system, instead of imaging with a
shorter wavelength will allow non-destructive imaging in the sense that the atoms are
not lost from the lattice. Because of depth of focus, the large numerical aperture of
NA = 0.8 restricts us to the observation of 2 dimensional systems. Figure 1.1 shows
a simplified picture of the imaging setup. Both the ojective (NA = 0.55) and the
whole imaging system (objective and hemisphere: NA = 0.8) are diffracion limited
and, combined, have a resolution of around 0.5μm. A cloud of atoms is first trapped

Figure 1.1: Quantum Gas Microscope. (a) the imaging system contains
an objective and a hemisphere below which the atoms are held in a surface
trap, (b) a 2D optical lattice is formed by two interfering laser beams below
the hemisphere. I thank Jonathon Gillen (a) and Markus Greiner (b) for the
pictures.

and cooled in a different vacuum chamber in a MOT and then magnetically trans-
ported [12] into the glass cell. During evaporative cooling it is held in the glass cell
by a Ioffe-Pritchard trap. After that, in some more steps, the cloud is loaded into
the 2D surface trap at about 2μm distance from the plane surface of the hemisphere.
This trap is created by the combined action of the magnetic trap and a blue de-
tuned evanescent wave, which keeps the atoms away from the surface. To the surface
trapping potential, an optical lattice potential will be added by two interfering laser
beams which are retro reflected into themselves.
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However, for the experiments presented in this thesis, neither this imaging system
nor a 2D cloud are used. The temporary imaging system that was build for the ex-
periments presented in thesis is descibed in chapter 5. The use of a 3D system makes
depth of focus considerations especially important. This is treated in detail in section
3.2.4. Also, the imaging resolution is limited in the experiments to be described in
chapter 6.

Vortices in Superfluids

An understanding of coherent matter waves in interacting manybody systems is im-
portant for the decription of many recently observed phenomena in atomic physics
such as the observation of interference between two overlapping condensates [13],
molecular condensates with bound pairs of fermions [14, 15] and quantized vortices
and vortex lattices [16]. The basic ideas for this description were originally developed
for superfluidity and superconductivity.
Quantized vortices in a superfluid were first observed in the ”rotating bucket” exper-
iment with liquid helium. The motion of vortex flow in superfluids is fundamentally
different than classical vortex flow [17, 18]: Only above a certain rotation frequency,
lines of singularity, corresponding to vortex cores form. Around these cores, there is
a quantized flow of the superfluid with circulation nh/m (where n is an integer, and
m the particle mass). Interestingly though, the ground state of a system with n > 1
angular momentum quanta for a big enough bucket (diameter >> vortex core), is not
one with a single vortex of charge n, but a lattice of single charged vortices, arranging
themselves in a hexagonal pattern.
In atomic physics, vortices have been used to experimentally prove that a Bose-
Einstein Condensate is a superfluid. When orbital angular momentum is added to a
Bose-Einstein Condensate, spontaneous formation of vortices, just like in the rotat-
ing bucket experiment, can be observed. A more detailed description of quantized
vortices is given in chapter 2. There, the description is based on the assumption that
the many body wavefunction is a symmetrized product of identical single particle
wavefunctions (mean field).
Studying quantized vortices in atomic physics may help to develop a better under-
standing of superfluidity and superconductivity, since atomic physics systems are
much more accessible than, for example, solid state systems. Cooper pairs of elec-
trons in a superconductor behave like a superfluid, which can for example be seen by
magnetic flux quantization (see [19], pages 256-258). When a type-II superconductor
is placed in a magnetic field, screening currents are induced that prevent the field from
entering the material. Since the electrons are delocalized over a large area, a quanti-
zation condition is given by the single-valuedness of the electron wavefunctions. The
corresponding electron energy levels are called Landau levels. Flux can only enter the
material in quantized amounts. The physics of vortices in Bose-Einstein Condensates
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is very similar to this, since particles are also delocalized over a large area, which
leads to the same quantization condition for the atoms taking the role of electrons in
a superconductor. Further the structure of vortices and dynamics of vortex creation
is interesting to study and information on dissipation mechanisms and long range
order can be gained from this.
Especially interesting are also vortices in quasi 2D systems as are possible to study
with our Quantum Gas Microscope. With the third dimension frozen out by an ex-
ternal trapping potential, the transition temperature to Bose-Einstein Condensation
is significantly lower by a factor of roughly ∼ ln N than the temperature at which
the thermal wavelength is comparable to the particle spacing. But independent from
that, a transition to a superfluid phase takes place [20]. For a 2D system, below this
critical temperature Tc, the Berezinskii-Kosterlitz-Thouless theory predicts a phase
transition that is associated with the behaviour of vortices and has recently been
observed [21]: Below Tc vortices are only found in bound pairs of vortices of different
circulation direction, while above Tc unbound vortices proliferate. The holographic
technique to stimulate vortices, which is presented in this thesis should make it pos-
sible to directly create these vortex pairs, the excitation of which is usually thermaly
driven.
An interesting 2D effect to simulate would be the Quantum Hall Effect. The tech-
niques presented in this thesis might help to achieve that. The Quantum Hall Effect
has been observed at low temperatures (samples cooled with liquid helium ⇒ elec-
tron wavefunctions delocalized) in boundary layers between semiconductors with a
different bandgap. Since the Fermi energy must be the same in both materials when
they are contacted, the conduction band gets deformed and a 2 dimensional electron
gas (2DEG) forms in the contact region. When a strong enough magnetic field is ap-
plied (for small fields the system behaves classical: Hall Effect), the electron energy is
quantized in Landau levels, which can be seen by the same reasoning as given for flux
quantization earlier. However, since the 2DEG is restricted to the area of the probe,
another conditon arises: Not all classical particle trajectories are allowed, but only
ones with certain diameters and origins. For magnetic field strengths, for which not
all particles can be put in Landau levels, there is another possibility however: The
surplus particles can be in so called ”edge states” close to the physical boundaries of
the sample. Particles in these states on one side of the probe all move in the same
direction which gives rise to the vanishing electrical resistance of the probe. The
band structure, Hall- and longitudinal voltages for the integer Quantum Hall Effect
are shown in figure 1.2. For the Fractional Quantum Hall Effect, particle interactions
need to be included. These lead to the formation of quasiparticles with less than unit
charge.
To simulate the quantum hall effect in atomic physics one would need to stimulate
vortices in a cloud of atoms in superfluid phase and enter the regime corresponding to
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high magnetic field shown in figure 1.2, where the electrons are mostly in the lowest
Laudau state, which, in the atomic physics system, corresponds to a situation where
the number of vortices is comparable to the number of atoms in the cloud.
Three regimes of vortex states can be characterized by filling factors of the number
of particles Np to the number of vortices Nv: In the high filling factor regime (see
[22, 23]), where all experiments so far were situated, the ground state for a trap that
confines the cloud to a region much larger than the healing length ξ3, is given by sin-
gle charged vortices which assemble themselves in a hexagonal lattice. In the second
regime with filling factors Np/Nv ≈ 10, the elastic shear strength of the vortex lattice
is predicted to drop low enough for quantum fluctuations to melt the lattice, and
strongly correlated boson liquid states which resemble those in the fermionic Frac-
tional Quantum Hall effect should be observable. In the third regime, characterized
by filling factors Np/Nv < 10, quasiparticle excitations obeying fractional statistics
are predicted [24]. A decrease of the lattice elastic shear strength was observed in the
Np/Nv ≈ 500 regime [25].

Figure 1.2: Integer Quantum Hall Effect. Taken from a figure in [26].
(a) a 2 dimensinal electron gas forms at the border of a AlGaAs/GaAs
heterostructure, (b) Hall (VH) and longitudinal (Vx) voltages as a function
of the magnetic field strength
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Holographic technique to induce vortices in a Bose-Einstein Condensate

The most common, current technique to induce vortices in Bose-Einstein Conden-
sates is to somehow create an anisotropy in the trap used to capture the atom cloud,
which can then be moved around to transfer angular momentum to the cloud. The
trap anisotropy is usually created by either changing the magnetic field that traps
the atoms and having it rotate, or, more commonly, by moving the focus of a detuned
laser beam around in the cloud and thus adding an AC-Starkshift potential to the
trapping potential. The fastest rotation reached so far was done in two steps: First,
the cloud was set into slow rotation using a magnetic stirrer. Then, an evaporative
spinup technique [27], which removed atoms that carried less than average angular
momentum, was used. This was done by a radio frequency field propagating along the
axes of rotation. With the combined use of magnetic stirring and evaporative spinup
the Boulder group [25] reached the lowest Landau level regime, spinning up the con-
densates to 99% of the trap frequency and reaching filling factors Np/Nv ≈ 500.
In this thesis, a new, more versatile technique to induce vortices in a gas of ultracold
atoms is presented. By coherent transfer of momentum from a light beam carrying
orbital angular momentum to atoms in an ultracold gas cloud, vortex states can be
directly excited. In this way, arbitrary vortex pattern with arbitrary circulation di-
rection and charge (number of angular momentum quanta contained in the vortex)
can be created. Since these are not ground states of the system, interesting dynamics
might be observed and maybe information about systems gained, that can currently
not be generated in stationary state. Holograms are, in principle, capable of creating
any wanted wavefront (in paraxial approximation) of the electro magnetic field. The
holographic technique to produce light beams with orbital angular momentum, dis-
cussed in chapter 3, makes it possible to create a wide range of different light beams
with different momentum states to be transferred. This is clearly an advantage over
other methods in which angular momentum is added to the whole cloud and station-
ary state vortices form spontaneously.
Several problems make it hard to reach the regime of low filling factors in steady
state. The radius of the depleted area close to the vortex center (vortex core), where
propability density of particles is very low, is on the order of the healing length (see
section 2.3.1) of the gas and proportional to the inverse square root of the density
times the scattering length. This makes it hard to fit many vortices into a typical
cloud of a diameter of 30μm. Also, for a harmonic confining potential, the trap is
only capable of holding a cloud with a rotation frequency that is lower than the trap
frequency. This means that, when a cloud is set into fast rotation, the density and
the healing length will chage by a significant amount, until ultimately the trapping
force does not exceed the centrifugal force. This is unlike the behaviour of an electron
gas in a solid, which is strongly bound to the solid.
The high resolution of our Quantum Gas Microscope might allow us to reach the low
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filling factor regime below Np/Nv = 10 in a non equilibrium situation when combined
with the holographic technique to produce orbital angular momentum light beams.
Since we can load about one atom per lattice site in our 2D trap and are able to ad-
dress them individually, this allows us to transfer one quantum of angular momentum
to each of the atoms if a corresponding hologram is used. We hope to find interesting
physics even in the non equilibrium situation created this way.
The results in chapter 6 show the first vortices made in our group, in this new way.
It can be seen that a high resolution projection optics is essential for vortex creation
in this way as it was the limiting factor in the described experiments.

Raman transitions

As explained before, a coherent process of angular momentum transfer is needed to
induce vortices. To achieve this, a Raman laser setup was built in the course of
the work for this Diploma thesis. With the setup, transitions between the hyperfine
ground states and/or the magnetic sublevels and/or momentum states of Rubidium
87 can be driven via the D1 line. For the two coherent light fields needed for Raman
transitions, the light of a single 795nm laser diode is split up. One of the light beams
then passes through a hologram, creating a spatial phase of the light field that carries
angular momentum. The difference in frequency needed for transitions changing the
hyperfine state is obtained from an electro optical modulator. For fast switching and
transitions between Zeeman states an acousto optical modulator is used. The Raman
setup is described in detail in chapter 4.

Optical Lattices from Holograms

Another interesting use of the holographic technique presented in this thesis is to
make a hologram that creates an optical lattice. For this, the object beam and the
conjugate beam can be interfered (see chapter 3.2, [28]). Loosing most of the light
to the zeroth order can be avoided by the use of a phase mask (see section 3.2.3).
The advantage of using a hologram to create an optical lattice is that it is possible
to use a laser with a short coherence length which does not need to be frequency
stabilized extremely well. This is because object and conjugate beam are created
from the same beam and are consequently coherent with respect to each other. Also
very convenient is, that the wavelength of the lattice laser can be changed without
changing the lattice spacing. That means the detuning can also be used to change
the trap depth, affecting spontaneous emission rates. Also it is possible to use a laser
with a very broad frequency spectrum, as has, for example, a pulsed laser.
Other than by inducing vortices it is also possible to mimick a magnetic field for
neutral particles with a rotating optical lattice [29]. Since it might be possible to
rotate a hologram using an ultra vibration free motor with an air bearing, as are
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available today, this approach is also promising.





Chapter 2

Bose-Einstein Condensates

The phenomenon of Bose-Einstein Condensation is very fundamental in the sense
that it is only due to the counting statistics of Bosons. No particle interactions of
any special kind need to be considered in a description of it. That means it can be
predicted in a theory of ideal particles with fixed particle number, as was done by
Albert Einstein in 1924 [30]. About 70 years later, Bose-Einstein Condensation was
first realized in an atomic physics system [2, 3, 4]. Today, creating a Bose-Einstein
Condensate is almost a standard procedure, making this macroscopic quantum object
available as a tool for fundamental research.
After a short review of Bose-Einstein Condensation in an ideal gas, parameters of a
Bose-Einstein Condensate of interacting atoms are calculated using mean field the-
ory. The Gross-Pitaevskii equation will be presented in a short manner and used to
calculate some parameters of the condensate in the Thomas-Fermi approximation.
Also for the description of quantized vortex states in a Bose-Einstein Condensate the
Gross-Pitaevskii equation will be used. Even though interactions are not necessary
for a description of Bose-Einstein Condensation, they are needed for a Bose-Einstein
Condensate to become a superfluid [19], which is the interesting property for vortex
experiments.

2.1 Bose-Einstein Condensation of an ideal gas

From the grand partition function, the average occupation numbers 〈np〉 of a state
with momentum p

〈np〉 =
ze−βεp

1 − ze−βεp
(2.1)

and the equation of state of the ideal Bose gas can be obtained (for detailed
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description of this section, see [19]):

P

kBT
= −4π

h3

∫ ∞

0

dp p2 log(1 − ze−βp2/2m) − 1

V
log(1 − z) (2.2)

1

v
=

4π

h3

∫ ∞

0

dp p2 1

z−1eβp2/2m − 1
+

1

V

z

1 − z
(2.3)

where P is the pressure, T the temperature, V the volume, z = exp(μ/kBT ) =
exp(βμ) the fugacity and v the volume per particle. The integrals are carried out over
the momentum p and are obtained by replacing sums in the limit V → ∞. Since they
diverge for z → 1 and p = 0, these single terms have been split off. This divergence
is connected to Bose-Einstein Condensation.
Expressing the equation of state using the functions g5/2(z) and g3/2(z) (see [19]),
equation 2.3 can be used to derive the occupance of the lowest (p = 0) level at low
temperatures:

〈np=0〉
N

=

⎧⎪⎪⎨
⎪⎪⎩

0

(
λ3

v
≤ g3/2(1)

)

1 −
(

T

Tc

)3/2 (
λ3

v
≥ g3/2(1)

) (2.4)

Here, λ = (2π�
2)/(mkBT )1/2 is the thermal wavelength, which is, at Tc, compa-

rable to the interparticle spacing. g3/2(1) = 2.612 . . . and the critical temperature Tc

is defined as

Tc =
2π�

2

(vg3/2(1))2/3mkB

(2.5)

Equantion 2.4 describes the phenomenon of Bose-Einstein Condensation: Below
the critical temperature Tc, a finite fraction of the particles can be found in the same
(p = 0) state. For T � Tc only a small fraction of the particles is found in the
condensed phase; as T is lowered, more and more particles are in the ground state,
until at T = 0 finally, 〈np=0〉/N = 1.
The condensed phase of an ideal gas has inifinite compressibility, which is, of course
unphysical for gases in atomic physics. Furthermore, superfluidity, which is the most
important property for the work in this thesis, is not found in this idealized system
[19].
This is due to the equation of state used here. To obtain the integrals in 2.2 and
2.3, the limit of an infinite system with V → ∞ has been considered. Thus, the
energy spectrum is continuous. The Landau criterion for superfluidity is, that a
body moving through a superfluid must have a critical velocity in order to excite
higher energy levels in the fluid and loose energy through that. This critical velocity
depends on the energy gap between ground state and excited levels and is thus zero
for a continuous energy spectrum.
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2.2 The Gross-Pitaevskii Equation

For ultracold atoms, scattering processes are of very low energy. In a mean field
description of the condensed phase including interactions, it is therefore sufficient to
consider zero energy scattering. The Lippmann-Schwinger equation for the scattering
matrix T in momentum space

T (k′,k; E) = U(k′,k) +
1

V

∑
k′′

U(k′,k′′)

E − �2k′′2

m
+ iδ

T (k′′,k′; E) (2.6)

contains a sum over intermediate momentum states k′′ 1. An effective interaction
Ũ(k′,k; E) can be introduced by splitting this sum into two groups. In one part k′′

vectors corresponding to an energy higher than ec = �
2k2

c/2m are summed up. This
contribution is regarded as the effective potential Ũ which takes the place of U in
the Lippmann-Schwinger equation 2.6, now containing a sum over the remaining mo-
mentum states. For ultracold atoms, choosing a cut-off energy ec = 0, is enough to
describe the scattered wavefunction on the physically relevant length scale intermedi-
ant between interparticle spacing and cloud size of a typical Bose-Einstein Condensate
well. Doing this the scattering matrix T reduces to the effective interaction U0, which
is related to the scattering length a by

U0 =
4π�

2

m
a (2.7)

U0 is independent of the specific shape of the interaction potential and the mo-
mentum of the particles. In position space, the interaction is a point interaction
U0δ(r − r′).
In a Hartree description of the ground state, it is assumed, that the many body wave-
function Ψ for N particles is a symmetrized product of single particle wavefunctions
φ:

Ψ(r1, r2, . . . , rN) =
N∏

i=1

φ(ri) (2.8)

The Hamiltonian contains the kinetic energy, the external potential and the effec-
tive point interaction potential:

H =
∑

i

( p2
i

2m
+ V (ri)

)
+ U0

∑
i<j

δ(r − r′) (2.9)

Neglecting terms of order 1/N , the time independent Gross-Pitaevskii equation
can be be obtained from the expectation value of the energy:

E =

∫
dr

(
�

2

2m
|∇ψ(r)|2 + V ψ(r)|2 +

1

2
U0ψ(r)|4

)
(2.10)

1For all derivations in this section, see [31]
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Minimizing the energy under the condition that the total number of particles is
constant, leads to the time independent Gross-Pitaevskii equation:

− �
2

2m
∇2ψ(r) + V (r)ψ(r) + U0|ψ(r)|2ψ(r) = μψ(r) (2.11)

Here μ is a Lagrange multiplier, which can be identified as the chemical potential.
The function ψ is the single particle wavefunction in the approximation where terms
of order 1/N are neglected. Equation 2.11 has the form of a Schrödinger equation
with an external potential V , in which the nonlinear term U0|ψ(r)|2 takes the mean
field interactions with the other Bosons into account.
To treat dynamical problems, as the free expansion of an interacting condensate in
time of flight, the Gross-Pitaevskii equation 2.11 can be generalized to same type of
time dependent Schrödinger equation,

− �
2

2m
∇2ψ(r) + V (r)ψ(r) + U0|ψ(r)|2ψ(r) = i�

∂ψ(r)

∂t
(2.12)

the consistency of which with equation 2.11 can be shown [31].
We come to the conclusion that in an interacting Bose-Einstein Condensate, the
system can be well described with the assumption that all particles are in the same
state |ψ〉. It is an eigenstate of a Schrödinger-type equation in which the interaction
potential between atoms enters as a nonlinearity. These interactions are sufficiently
described by a constant, which measures their strength, and the momentum of the
colliding particles does not need to be taken into account.

2.2.1 Radius of a condensed cloud

In the Thomas-Fermi approximation, the kinetic energy term of the Gross-Pitaevskii
equation 2.11 is neglected. Except at the boundries of the cloud, this is a good
approximation for large atom numbers, where the interaction energy outbalances the
kinetic energy. Thus the single particle probability density can be found as

n(r) = |ψ(r)|2 =
μ − V (r)

U0

(2.13)

where μ is the chemical potential. The boundary of the cloud is determined by
μ = V (r). Taking the external trapping potential V (r) = 1/2mω2

0r
2 to be harmonic

and isotropic, we arrive at an expression for the radial extension of the cloud

R0 = (15Na)1/5
(

�

mω0

)2/5

(2.14)
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Equation 2.12 can be used to calculate the free expansion of the cloud in time of
flight. With a variational method using a Gaussian trial function

ψ(r, t) =
A
√

N

R3/2
eiβmr2/2�e−r2/2R2

(2.15)

and minimizing the energy of the state, an approximation using the asymptotic
behaviour can be found as

R(t) =

√
2

3
ω2

0t
2R2(0) + R2(0) (2.16)

In this trial function, β and R are the parameters used to miminize the energy; A
is a constant.

2.3 Rotating Condensates

The motion of superfluids is much more restricted than classical fluid flow, since,
nonrelativistically, the velocity is propotional to the gradient of the phase ς of the
wavefunction

v =
�

m
∇ς (2.17)

where m is the mass of a single particle with wavefunction φ. Since ∇ × v = 0,
the motion of the fluid is irrotational, unless there exists a phase singularity. In
the mean field description of a Bose-Einstein Condensate using the Gross-Pitaevskii
equation 2.11, particles are delocalized over the entire cloud, which gives rise to the
quantization condition for Landau levels. The single-valuedness of the wavefunction
restricts the change of phase around a closed contour containing a phase singularity
to be a multiple of 2π

Δς = 2πl (2.18)

where the integer l is the is the number of orbital angular momentum quanta
(charge) per particle, contained in the vortex. Thus the circulation Γ around the
closed contour is quantized

Γ =

∮
v · ds = l

h

m
(2.19)

and the single particle wavefunction must vary as eilϕ, where ϕ is the azimuthal
angle. The velocity of a purely azimuthal flow with an axis of symmetry perpendicular
to the vortex flow can then be computed as

vϕ =
lh

2πmρ
(2.20)
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where ρ is the distance from the vortex core which is also distance from the center
of the trap. The superfluid vortex motion is thus very different from the motion of
a vortex in a classical fluid where there is friction between different ”shells” at dis-
tances ρ from the vortex core: The phase of the particle wavefunctions varies fast
close to the core and slow far from the core, as is required by angular momentum
conservation.
The results presented in section 2.3.1 show, that the lowest energy state of a not
too tightly confined cloud, in a harmonic trap containing l quanta of angular mo-
mentum has l vortex cores, instead of vortices with higher charge. Figure 2.1(b)
shows a lattice of n single charged vortices that have arranged themselves in their
equilibrium configuration, equally spaced in a hexagonal pattern, which respresents
the ground state of the system with n = l angular momentum quanta per particle.
This absorption image was taken after 41.5ms of time of flight (see [32]), so that the
Condensate cloud and the vortex cores, which can clearly be seen as dark regions,
have expanded. Angular momentum was added to the cloud by use of the stirring

Figure 2.1: (a) calculated phase pattern for the region of the cloud marked
by the grey cirlce. Shading represents phase. Clearly, the interference of all
phases of the single charged vortices can be seen. (b) vortex lattice. Phase
variances along 2 paths are indicated by circles and arrows. Off centered
vortices are moving around the center. The absorption image is taken from
[32], a publication by C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu and
W. Ketterle
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technique described earlier, so that all the vortices have the same circulation direc-
tion. Arrows in the picture indicate the behaviour of the phase of the wavefunction,
which varies as eiϕ around every single vortex, and as einϕ around the whole cloud
containing n vortices, where again ϕ is the azimuthal angle in cylindrical coordinates.
Due to the presence of the other vortices, off-centered vortices move around the center
vortex. This corresponds to Kelvins theorem in classical hydrodynamics, that states,
that the circulation around a contour moving with the fluid is a constant in time
(for rotation frequencies see [31]). Quantum mechanically the movement can be seen
from equation 2.17 by calculating the phase pattern of the condensate wavefunction
for the vortex lattice, which has been done in an image plane crossection through the
cloud and is shown in Figure 2.1(a).
In the new phase imprinting technique presented in this thesis, the phase of a light
field is imprinted on a cloud of atoms. Thus this phase pattern of the atomic wave-
functions resembles the phase of the classical eletromagnetic field in a beam crossec-
tion. Pictures and a description of the intensity and the phase of the light beam
that has passed through hologram creating the shown phase pattern are shown in
chapter 3. The matter wave character of the atom cloud is shown in a nice way by
this correspondence.

2.3.1 Some Vortex Parameters

In this section, the results from a calculation of some experimentally relevant param-
eters of rotating condensates are presented. For example, the density function of a
rotating condensate close to the vortex core, and its development in time of flight
are interesting for the observation of vortex states. When setting up an absorption
imaging system, one needs to be sure that, with the chosen resolution, it is possible
to see the core after a given time of flight.
The energy of the vortex and the extension of the vortex core in equilibrium can be
calculated from equations 2.10 and 2.11. In the wave function, we make use of the
known phase variance of a single vortex:

ψ(r) = f(ρ, z)eilϕ (2.21)

where f is a real function giving the modulus of the amplitue. In cylindrical
coordinates the energy functional 2.10 and the Gross-Pitaevskii equation 2.11 for this
wavefunction become

E =

∫
dr

[
�

2

2m

((∂f

∂ρ

)2

+
(∂f

∂z

)2)
+

�
2l2

2m

f 2

ρ2
+ V (ρ, z)f 2 +

U0

2
f 4

]
(2.22)

and

− �
2

2m

(1

ρ

d

dρ

(
ρ
df

dρ

)
+

d2f

dz2

)
+

�
2

2mρ2
l2f + V (ρ, z)f + U0f

3 = μf. (2.23)
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Figure 2.2: Equilibrium size of a vortex core. The graph is taken from [31].
The in trap healing length of our 87Rb condensate is approximately 1μm

Single vortex in an infinite medium without potential

A numerical solution of the Gross-Pitaevskii equation 2.23 for the idealized case of
a l = 1 single charged vortex in an infinite medium with uniform potential V = 0
in is shown in Figure 2.2. In this graph, the distance x from the vortex center has
been scaled in units of the healing length ξ =

√
(8πm)/(hnU0) of the condensate

wavefunction and f is shown in units of the value f0 = f(ρ → ∞) of f far from
the vortex core. In the expression for the healing length, m is again the mass of the
particles, n the density and U0 the effective potential. From the numerical solution
for f , the energy associated with the vortex can be computed using equation 2.22.
Since this relation diverges for ρ → ∞, the integral is only carried out over a finite
distance 0 . . . b, where we assume b >> ξ. Numerical integration gives

εv =
πn�

2

m
ln

(
1.464

b

ξ

)
. (2.24)

Higher charged vortices and vortex interaction

Equation 2.22 can be used to calculate the energy of higher charged vortices. To see,
if the ground state of a system with l > 1 angular momentum quanta is given by a
single multiply charged vortex or l single charged ones, interactions between vortices
must be considered. In [31] it is shown, that the interaction energy between two
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vortices is to logarithmic accuaracy

εint =
2πl1l2n�

2

m
ln

(R

d

)
. (2.25)

if we assume the cloud radius R to be much bigger than d, the distance between
vortex cores, and this distance d >> ξ. A calculation of the numerical factor in
equation 2.22 confirms that the energy of a multiply charged vortex is higher, than
the one for two interacting vortices with lower charge. This is true for trapping
functions is monotonously increasing and that satisfy the given condition for the
radius.

An equilibrium vortex in a cloud trapped by an harmonical potential

More relevant for experiment is the energy of a vortex in a cloud trapped by a har-
monical potential. For stirring experiments, the critical velocity of stirring, at which
it is favorable for a vortex to enter the cloud can be gained from this.
Assumed is a cloud that can be described well with the Thomas-Fermi approximation
(ξ << R), with the Thomas-Fermi radius R. The energy of a vortex in a 3D harmon-
ical trap can be calculated using 2.22 close to the vortex core (ξ << ρ1 << R) and
integrating up the kinetic energy of the particles far from the core (ρ1 << ρ << R),
taking the density function into account (see [33]). The density profile in the direction
along the vortex line of singularity (z-axes) is taken into account by integrating slices
of the cloud, perpendicluar to the z-axes. The energy of a single vortex is thus found
to be

E =
4πn(0)�2

3m
Z ln

(
0.671

R

ξ0

)
(2.26)

where Z is the semi axes of the cloud in the z-direction and ξ0 is the healing length
at the center of the cloud in absence of rotation.
From this the angular momentum of the cloud and the critical angular velocity for
stirring can be calculated.

Ωc = 2
�

mR2
ln

0.888R

ξ0

(2.27)

Since the behaviour of the cloud is treated to be the same for small ρ as for
the case without potential, the healing length and the size of the vortex core are
approximately the same.

Time of flight expansion of a vortex core

Since vortex core sizes are of the order of the healing length ξ ≈ 1μm and Thomas-
Fermi radii are usually about 15 - 20μm, observation is much easier if the cloud is
expanded in time of flight. The approch to calculate the behaviour of a vortex core in
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time of flight is similar to the one mentioned in 2.2.1, only that the trial function now
takes the phase eilϕ into account. Figure 2.3 is a graph from [34] where the expansion
of a vortex core is calculated in this manner.
Two regions can be distingushed in this graph: For small values, the vortex core
size almost immidiately takes on the value given by the healing length through the
density. The vortex core grows more rapidly than the cloud itself. In the second
region when interactions play a negligible role, the core expands as the cloud does,
which is basically given by free particle movement. Figure 2.3 confirms, that vortex
cores are more easily seen in a weak coupling regime.

Figure 2.3: Expansion of the vortex core size compared to the cloud size
as a function of the product between trap frequency and time. ρi is the
radius where the density of particles reaches the value 1/e. Curves are for
Na/aosc = 10 (full line), 10 (dashed line), 20 (dotted line) and 30 (dot-
dashed line). The horizontal line shows the value for the free particle limit
with Na/aosc = 0.



Chapter 3

Light beams with orbital angular
momentum

After a short excursion on Laguerre-Gaussian modes, this chapter will describe the
holograms used to create light beams with orbital angular momentum. The use of
holograms is shown to be very versatile, since a wide variety of vortex states can easily
be produced, including states with vortex patterns or high orbital angular momentum
states. Besides, holograms of good quality as described here, are interesting for many
other applications, including new ways to create optical lattices.

3.1 Laguerre-Gaussian beams as an example for

beams with orbital angular momentum

The angular momentum of a classical electromagnetic field can be separated into a
spin part and a part corresponding to orbital angular momentum. However it has
generally been assumed that this separation is unphysical for the following reasons.
Firstly, in its rest frame, the spin part should correspond to the total angular momen-
tum of the particle. But this rest frame does not exist for a photon. Secondly, the
action of the associated quantum mechanical operators for spin and orbital angular
momentum parts are believed to yield unphysical states, when appiled on a physical
state of the radiation field. Rather recent investigation shows however that both parts
are separately measurable quantities, but the associated quantum mechanical oper-
ators are not angular momentum operators [35]. For example it can be shown that
all the components of the associated spin operator commute, so it does not generate
rotations of the polarization field.
For linearly polarized light, the vector potential of a Laguerre Gaussian mode in
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Lorentz gauge can be written as [36]

A = u(r, φ, z)e−ikzx̂ (3.1)

with:

upl(r, φ, z) =
C√

1 + z2

z2
R

(
r
√

2

w(z)
)lLl

p(
2r2

w2(z)
)e−r2/w2(z)

× eikr2z/(2(z2+z2
R))e−ilφei(2p+l+1)tan−1(z/zR)

(3.2)

where cylindrical coordinates have been chosen. Ll
p are the Laguerre polynomials

with l specifying the charge, or number of orbital angular momentum quanta per
photon, of the vortex state. w(z) is the well known function describing the spread
of a gaussian beam with Rayleigh length zR. The function u(r, φ, z) satisfies the
paraxial wave equation. A phase variation of e−ilφ is characteristic for beams with
orbital angular momentum. e−ilφ, being the Eigenfunction of the orbital angular
momentum operator, describes a state with orbital angular momentum.
Following [36] and using equation 3.1, the momentum density per unit power of the
Laguerre Gaussian field mode is found to be:

℘ =
1

c

[
rz

z2 + z2
R

| u |2 r̂ +
l

kr
| u |2 φ̂+ | u |2 ẑ

]
(3.3)

where r̂, φ̂ and ẑ are corresponding unit vectors in cylindrical coordinates. The
contributions correspond to the beamspread (r̂), orbital angular momentum (φ̂) and
linear momentum (ẑ). Figure 3.1 shows the Poynting vector c2℘, which describes a
spiral along the direction of propagation.
It is the φ̂ component of the total angular momentum that is coherently transferred

Figure 3.1: Poynting vector of a linearly polarized Laguerre-Gaussian
mode. This figure is taken from [36]
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to the atoms of a Bose-Einstein Condensate to induce a vortex state.
However, Laguerre Gaussian modes are not a very good choice to induce vortex
states in a cloud of ultracold atoms. This is due to the rather large area in the beam
crossection in which the intensity of the beam is small and therefore the interaction of
the atoms with the light field does not induce many atoms in that region to populate
the vortex state. For our purposes, a light beam approximating a constant intensity
over the whole area of the beam as good as possible is desirable.
In figure 3.2 the intensity and phase of a L1

0 beam is shown. For this mode the
intensity for small r is proportional to 1/r as can be seen from equation 3.1.

Figure 3.2: L1
0 beam. A cross section in the x-y plane. Coloring represents

phase, height beam intensity.

3.2 Holograms to produce light beams with orbital

angular momentum

Besides a short introductory description of holography, this section describes the holo-
grams used in our experiment and how to make them. For good image quality the
resolution and evenness of the hologram features is crucial. It will be shown that
binary holograms provide a good approximation to a greyscale hologram for our pur-
poses and can be manufactured with high precision.
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3.2.1 Holography

The idea of holography is, to create an image that not only contains the intensity
information, but also the information about phase. Consider a light beam that prop-
agates in the positive z-direction. The field amplitudes in every plane (x, y, z = z0)
perpendicular to the propagation direction at some time t0 contain all information
about the field amplitudes of the same wavefront at all times t in all planes (x, y, z).
In paraxial approximation a hologram reproduces the field amplitude of the original
beam with which it was recorded and thereby recreates a 3 dimensional image of an
object.
Figure 3.3 1 shows how a hologram is taken:
A coherent beam of light is split up; one part illuminates an object, the other is
used as a reference beam. In some plane z = z0 the light field scattered off the
object spacially overlaps with the reference beam and forms an interference pattern.
The interference pattern is stationary since both light fields are coherent, and can be
recorded onto a photographic film.

Figure 3.3: Recording of a hologram

If the processed hologram is again placed in the reference light field, it acts as
a mask: The reference light can only pass through the hologram where there was
constructive interference when it was recorded. Under the original angle of incidence
θ between object and reference beam (see Figure 3.3), the light fields passing through

1Part of this Figure is taken from [28]
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the mask have the phases needed to again form the original object beam. However
it needs to be mentioned, that the object beam is not the only beam created when
projecting a hologram (see section 3.2.2).
A good reference on holography can be found in [28], or for a more detailed explana-
tion [37].

3.2.2 Calculation of holograms

The information on holography can now be used to calculate the hologram for a light
beam with orbital angular momentum. Looking again at Figure 3.3 we take the object
beam as the beam carrying orbital angular momentum and calculate the interference
with the reference beam in the plane z0.
Consider first the simple case of a hologram for a light beam containing a single vortex
with charge l. Since, as mentioned in section 3.1, a constant intensity over the whole
size of the vortex is desirable, we take the object beam be

Aobj(x) = eilφ(x)eikobjx (3.4)

which is a plane wave multiplied by the characteristic classical phase of a light field
with a single vortex that carries l quanta of orbital angular momentum per photon.
φ(x) is the function that returns the angle φ in plane z = z0 (see Figure 3.4), which
we take as the reference plane to define the absolute phase. Choosing the intensity as

Figure 3.4: Looking into the −z-direction. φ(x) returns the angle φ in the
plane z = z0

constant will produce a physical light beam in which the size of the region with small
intensity close to the phase singularity at the center of the vortex is determined by
the projection optics.
As the reference beam, we take a plane wave:

Aref (x) = eikrefx (3.5)

To calculate the interference pattern we add the amplitudes 3.4 and 3.5 and take
the modulus squared:

I(x) =| eikrefx + eilφ(x)eikobjx |2= 2(1 + cos(krefx − (kobjx + lφ(x)))) (3.6)
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For calculating the hologram we choose the plane z0 = 0. Again, θ specifies the
angle between the plane wave reference beam and the plane wave component of the
object beam. Further,

|k| = |kref | = |kobj| =
2π

λ
(3.7)

With these definitions, we get for the interference pattern in the plane of the
hologram:

I(x|z=0) = 2(1 + cos(|k| sin(θ)x + lφ(x|z=0))) (3.8)

where x is a cartesian coordinate. A microscopy image of a binary approximation
to this intensity pattern is shown in figure 3.7, section 3.2.3.

Multiple vortex holograms

It is now easy to calculate holograms for light beams with multiple vortices at arbi-
trary positions, rotation direction and charges reaching from one to very high num-
bers:

• The rotation direction of a vortex is given by the sign in the exponent of the
exp(±lφ) multiplicant. Looking in the propagation direction of the beam, ”+”
creates clockwise rotation, ”−” rotates counterclockwise.

• l specifies the charge.

• By adding arbitrary vectors an to the argument of the function φ(x − an),
vortices can be positioned.

As an example, the following expression for an object beam describes a light
beam with four vortices of charges l = 1, 2, 4, 8, positioned at locations a1 . . . a4.
The vortices with charges l = 1, 2 are rotating counterclockwise; those with charges
l = 4, 8 are rotating clockwise. Figure 3.5 shows a phase plot in a cross section of
this object beam.

Aobj(x) = e−iφ(x−a1)e−i2φ(x−a2)ei4φ(x−a3)ei8φ(x−a4)eikobjx (3.9)

Choosing again 3.5 as a reference beam, the intensity pattern in the plane z0 = 0
of the hologram is found to be:

I(x|z=0) = 2[1 + cos(|k| sin(Θ)x−φ((x − a1)|z=0))−2φ((x − a2)|z=0)) +

+ 4φ((x − a3)|z=0)) + 8φ((x − a4)|z=0))] (3.10)

Figure 3.6 shows the intensity pattern described by equation 3.10. On first sight,
the basic structure of the intensity pattern (or hologram) is a stripe pattern, like
a diffraction grating. This is due to the plane wave components in the object and
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Figure 3.5: Phase plot in a cross section of the object beam 3.9. Coloring
represents phase.

reference beams. Two coherent plane waves with propagation directions different
by the angle θ will create an intensity pattern 1 + cos(|k| sin(θ)x) which looks like a
greyscale diffraction grating. This immidiately gives a hint what beams other than the
object beam we can expect to be created when projecting the hologram: A sinusoidal
diffraction grating will, of course, produce three diffraction orders!
The fork-like structures are creating the vortices. A more intuitive explanation on
how this happens will be given in section 3.2.3. In this example, vectors a1...a4 were
chosen to position the vortex centers on the corners of a square. In the beam, each
vortex core is positioned at the center of the respective fork structure, where the
upper row contains the counter clockwise rotating vortices with charges l = 1 (left)
and l = 2 (right); the l = 4 (left) and l = 8 (right) charged clockwise rotating vortices
are in the lower row.



28 3. Light beams with orbital angular momentum

Figure 3.6: Hologram for a beam with 4 vortices of charge l = 1, 2, 4, 8.
The upper and lower row vortices have opposite directions.

3.2.3 Binary Holograms

Now that we know how to calculate the hologram for our specific application, we need
a way to produce holograms in good quality. Obviously a good resolution, on the or-
der of the projection light wavelength, of the hologram features, is needed to achieve
that. Also, since we are considering thin holograms and try to create a mask that
blocks the reference light in a plane, the material used needs to extinct the light well
or needs to create a well defined phaseshift of the reference beam (see the following
paragraph on phase holograms).
Glass substrates with good surface quality are, of course, widely available, which sug-
gests that a chrome mask might be the right choice for a hologram. Chrome masks
can be produced in very good resolution with standard lithographic techniques, but
are usually ”binary”, which means they cannot represent greyscale, but are either
opaque or transparent. To convert a hologram to a binary approximation, we only
need to define a threshold for the intensity in the corresponding equation and specify
for which values the hologram is transparent and for which the light gets blocked.
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For the specific holograms we are interested in, it is not so much of an obstacle that
no greyscale can be represented. The resulting changes in the light fields when the
greyscale hologram is changed to a binary hologram, can be seen from a Fourier
analysis of the pattern. A sinusoidal pattern contains only one spatial frequency (or
positve and negative of this frequency and a constant). This means that the Fourier
transform of the light field that is passing through the hologram will only contain
the ±1st and 0th orders. The binary pattern with its sharp edges, on the other hand
contains many different spatial frequencies. These will show up as higher orders in
the Fourier transform of the light field passing through the hologram. How many
higher orders there are depends on the line spacing and width. This determines the
angle at which the orders are diffracted, which can’t be larger than 90◦. This is equiv-
alent to the statement that structures smaller than the wavelength of the light can’t
be resolved by it. Since we are only using one of the first orders anyway, the only
difference to the sinusoidal pattern will be the efficiency of how much of the incoming
light is diffracted into the first orders.
Figure 3.7 shows two microscopy pictures of a chrome mask for a single vortex de-
scribed by equation 3.8. Looking at the one with larger magnification, it can be
seen that the resolution of the laser lithograph used is indeed good: All the lines are
smooth and the fork structure is nicely displayed.
As before, the hologram mostly looks like a diffraction grating, so the reference beam,
after the hologram gets split up into diffraction orders. The first diffraction order
propagates at an angle at which the light passing through one slit is 2π out of phase
relative to the light passing through the next slit. To see how the phaseshift eilφ is cre-
ated in the beam, consider a path around the fork structure as drawn in the picture.
On the left side of the fork structure the difference of the phases passing through the
upper and lower slits is roughly 2π in the first diffraction orders. Following the path
on the right side however, 2 slits are passed, amounting to a phaseshift of 4π. That
means 2π of phase are gained in the first diffraction orders moving around the path.
By the same reasoning it is easy to see how all diffraction orders behave: The mth
diffraction order has a phaseshift of 2πm around a path as shown in figure 3.7. Fur-
ther, two respective orders with same m are rotating in opposite directions.

Phase mask holograms

The use of a chrome mask as a hologram wastes most of the light, which might be
a downside for many applications. First a hologram like the one shown in figure 3.7
reflects half the light from the chrome coated regions. Then usually only the first
diffraction order(s) are used, which leaves most of the light, that is contained in the
zeroth order, unused. For inducing vortices in a 87Rb Bose-Einstein Condensate, this
is not of importance however, since very little light, on the order of 10μW/mm2, is
needed for the Raman transitions, even for relatively large detunings of up to 5GHz
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Figure 3.7: Microscopy images of a binary hologram for a single vortex
state.

(see chapter 4). This is due to the small saturation intensity for transitions between
the lowest fine structure levels of 87Rb. For other applications where high intensity is
needed, as for example creating an optical lattice by interfering the first orders of a
hologram, this needs to be avoided.
A way to get more intensity into the interesting orders is to use a phase mask as
shown in figure 3.8. Instead of blocking the light, a microstructured coating is ap-
plied on a substrate. At regions where the light gets blocked in a chrome mask, the
light travelling into the z-direction now experiences a well defined phase shift of π
at regions with coating as compared to regions without coating in figure 3.8. By the
reasoning used for figure 3.7 in the preceding paragraph, it is easy to see that the
0th order, containing most of the light for a chrome mask hologram, gets suppressed
when a phase mask is used. The light passing through the uncoated regions interferes
destructivly with the light passing through the coated regions. The first order, how-
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ever, contains most of the light suppressed from the 0th order, since in regions where
there would have been destructive interference in a recording process as described
figure 3.3, now the object beam gets an extra π of phase, changing from destructive
to constructive interference. This also means that a phase hologram, so to speak,
uses the positive and negative of a hologram at the same time.
To calculate how much more efficient a phase mask compared to the mask that blocks
the light is, Fourier analysis can be used again. Neglecting the fork structures for the
vortices, but only comparing simple diffraction gratings, the pattern of the chrome
mask can be one dimensionally represented by same length intervals of amplitude 1
and 0 along an x-dimension. By Fourier transformation of this function, it can be
found that around 10% of the light that hits the hologram gets diffracted into one
first order. For the phase mask the amplitude is taken to be 1 and −1 in the respec-
tive intervalls. By the following argument it can be seen that for the phase mask,
around 40% of the light intensity are diffracted into one first order. The phase mask
pattern can be changed to the chrome mask pattern by a shift y = (x + 1)/2. In the
Fourier transformation, this gives a delta distribution for the constant term, while the
amplitude for the other points is half as big. Thus, since the intensity is the square of
the amplitude, four times more light is in one first order, when a phase mask is used.

Figure 3.8: Phase mask hologram. The height of the structure induces a
phase shift of λ/2 compared to air or other surrounding media.

Critical for phase masks is a substrate of low surface roughness and even thickness
over the whole beam area. The coating thickness must, of course, be defined well
below wavelength. Microstructured coatings with this high of a precision can be
manufactured using a lithograpic technique combined with liftoff.

3.2.4 Hologram Projection

To use a hologram it needs to be projected onto an image plane. Figure 3.9 (a) shows
the intensity of the first order beam of the hologram shown in figure 3.7 in the image
plane over a section in which the intensity of the gaussian beam used to project the
hologram is approximately constant. The region of small intensity at the center of
the vortex can clearly be seen. As mentioned before, its size is determined by the
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Figure 3.9: Reproduction of the object beam from the hologram shown
in figure 3.7. Image (a) shows the intensity pattern. The size of the cortex
core, which can clearly be seen, is determined by the projection optics. For
image (b), the object beam was interfered with a copropagating reference
beam with a plane phase, in a Mach-Zehnder interferometer.

projection optics and is not given by the hologram itself.
To make the phase of the beam with orbital angular momentum visible, a Mach-
Zehnder interferometer (see [38], page 411) was built. The hologram was placed into
one arm and a first order was projected onto an image (camera) plane. As a reference
beam a Gaussian beam with no phase variation in every crossection perpendicular
to the propagation direction was chosen. The resulting intensity in the image plane
can be seen in figure 3.9 (b). As expected there is a region where the phases in-
terfere constructively, and a region of destructive interference on the opposite side
of the vortex, which is positioned at the center of the image. If the position of the
hologram in the direction of propagation of the light beam is changed, the regions of
constructive/destructive inteference can be seen to move. For the first order beam
oviously a position change of λ amounts to a phase change of 2π, so that the region
of constructive interference moves the whole way around the vortex center back to
the original position.
Two other holograms for vortex patterns are shown in figure 3.10. One for a four-
vortex beam with all vortices spinning in the same direction (3.10 (a)), and a hexag-
onal pattern of vortices spinning all in the same direction (3.10 (b)).
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The result of projecting the holograms of figure 3.10 is shown in figure 3.11 and 3.12.
The respective location of the vortex centers is the same in all pictures. Figure parts
(a) are always the intensities in the image planes; parts (b) show the interference
pattern in the Mach-Zehnder interferometer. The region of small intensity at the
center of a vortex is bigger for a vortex with higher charge, as can be seen in figure
3.11 (a), where the upper row vortices have charge 1 (left) and charge 2 (right). In
the lower row are vortices with charges 4 (left) and 8 (right).

Figure 3.10: Calculated greyscale holograms for multiple vortex light
beams. (a) differently charged vortices, (b) hexagonal vortex pattern. In the
real chrome mask holograms made, the angle θ between object and reference
beams was chosen larger. This results in a smaller line spacing compared to
the vortex spacing. All chrome masks were of the same size and calculated
for the same angle θ ≈ 2.5◦. The resulting line spacing can be seen in figure
in 3.7.

Depth of Focus for hologram projection

When projecting a hologram onto a cloud of atoms, the image plane needs to be posi-
tioned at the center of the cloud. Since no 2D gas is used in the experiments described
in this thesis, the atoms at different positions along the direction of propagation z of
the light see different intensity pattern of the light field due to the depth of focus of
the projection system. For d = λ the phase shift amounts to 2π.



Figure 3.11: First order beam of a hologram of the type shown in 3.10(a).
(a) intensity, (b) interference pattern. Both pictures are taken in the same
way as described for figure 3.9.



Figure 3.12: First order beam of a hologram of the type shown in 3.10(b).
(a) intensity, (b) interference pattern. Both pictures are taken in the same
way as described for figure 3.9.
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As shown in chapter 4, different intensites lead to different Rabi frequencies Ωeff

for the Raman transitions at different locations in the beam and therefore limit max-
imum achievable population transfer to the state with orbital angular momentum.
Depth of focus therefore limits the usability of holograms for projecting vortex pat-
terns in 3 dimensional clouds.
The change of the light fields at different z-positions in the cloud can be computed
using an input-output relation obtained from the transfer function of free space (see
[28], pages 116-120).

H (νx, νy) = e

(
−2πi

q

1
λ2 −ν2

x−ν2
y d

)
(3.11)

Is the function by which the amplitude of a plane wave in crossection f(x, y, z =
z0), with spatial frequencies νx, νy, needs to be multiplied to obtain the amplitiude
f(x, y, z = z0 + d) in another crossection z + d. This is valid for 1/λ2 > ν2

x + ν2
y .

By expanding an arbitrary input amplitude in plane z = z0 in plane waves, the
output amplitude at another position z = z0 + d can be calculated. This yields the
input-output relation

f(x, y, z = z0 + d) =

∫
dνxdνy H (νx, νy)F (νx, νy)exp[−i2π(νxx + νyy)] (3.12)

used to calculate the field amplitudes dependent on the position z. Here F (νx, νy)
is the Fourier transform of the input function f(x, y, z = z0) and the integrals trans-
form back to position space to yield the field amplitudes in crossection z0 + d.
Figure 3.13 shows a calculation for the intensity distribution around the image plane
z0 = 0 when projecting the hologram for the hexagonal vortex pattern shown in 3.10
(b). The calculation used equation 3.12 and assumed our diffraction limited projec-
tion optics with a numerical aperture of 0.55 was used. For the two Fourier transforms
needed for this calculation, a list of values was first computed. This list was then
discretely transformed by a Fast Fourier transform algorithm.
Clearly, a rapid change in the intensity pattern can be seen. Also, the centerpoints of
the vortices do not stay at the same x, y coordinates, but rotate around the center of
the structure. A spread of the vortex structure can also be seen, resulting in larger
distance between vortices and a larger region of small intensity close to the vortex
cores. For very large distances d the patterned structure of the beam disappears
and a single multiple charged vortex appears. The charge of this vortex will then be
the total orbital angular momentum contained in the beam - as required by angular
momentum conservation.
The distance between vortices in the image plane (d = 0) of figure 3.13 was set to
4μm. With this projection optics the dark region close to a vortex center is computed
to be about 1μm in diameter in the (d = 0) image plane.
Compared to the size of a typical Bose-Einstein Condensate, which is around 30μm
in a usual harmonic trap, it can be seen that a very good projection system is needed
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to project high filling factors of vortices. The use of a high numerical aperture will
however restrict the system to 2 dimensions, as can be estimated from the depth of
focus calculations described here.

Figure 3.13: Projection of the hexagonal vortex pattern. Shown is the
intensity in different planes z = z0 + d for values of d between −20μm and
+60μm. d = 0 specifies the image plane, where the vortex spacing is chosen
to be 4μm for this calculation.





Chapter 4

Raman Transitions

Raman transitions provide a way to coherently transfer atoms between different quan-
tum states. This state can be a different internal state and/or a different momentum
state, characterized by a transferred momentum of �(k1 − k2), where k1 and k2 are
the wave vectors of the respective light fields 1 and 2.
Atoms in a Bose-Einstein Condensate can be transfered into a vortex state, if one or
both of the two light fields driving the Raman transition is carrying orbital angular
momentum. A stimulated Raman transition is a process for which two light fields
are needed. The atoms that undergo a Raman transition absorb a photon from one
light field and reemit it into the other light field. Thus, if a photon with angular mo-
mentum is absorbed, but the stimulated emission to the other light beam demands a
photon without angular momentum, the angular momentum quantum stays with the
atom.
This chapter presents results from a description of Raman transitions in a three-level
system in Λ-configuration and the laser setup that was build to drive Raman transi-
tions in Rubidium 87 atoms. Spontaneous emission rates due to the light fields present
during the process is compared to the Raman transfer rates. This is an important
measure for the coherence of the process.

4.1 Raman transitions in the Λ-level configuration

4.1.1 Treatment as an effective two level system

Consider a 3 level system with states |g〉, |e〉, |i〉 and two light fields present as shown
in figure 4.1. In a semi-classical description, the electric field, with both light fields
E1, E2 of frequencies ω1 and ω2 present, can be written as

E = E1 cos(k1 · x − ω1t + φ1) + E2 cos(k2 · x − ω2t + φ2) (4.1)
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Figure 4.1: Three level system in Λ-configuration. The Δs are single
photon detunings, δ is the two photon detuning. Raman transitions are
driven between the levels |g〉 and |e〉. This figure is taken from [39]

Taking only electric dipole transitions into account, the semi-classical Hamiltonian
of the system is

H =
p2

2m
+ �ωe|e〉〈e| + �ωi|i〉〈i| + �ωg|g〉〈g| − d · E (4.2)

with the initial momentum p of the system, the resonant single photon transition
frequencies ωg,i,e to the respective levels and the electric dipole operator −d ·E. The
light frequencies are taken to be nearly resonant, with a common detuning Δ, to
precision δ, from the excited state, where δ is called the two photon detuning. Thus
the difference between ω1 and ω2 is roughly ωeg, which is the resonant transition
frequency between the levels |g〉 and |e〉. The single photon detunings of light field 1
from levels |e〉 and |i〉 and light field 2 from levels |g〉 and |e〉 that are also shown in
figure 4.1 contribute to the spontaneous emission rates, that introduce decoherence
into the system, which are calculated later.
The single photon Rabi frequencies are defined as

Ωg = −〈i|d · E1|g〉
�

, Ωe = −〈i|d · E2|e〉
�

(4.3)

and can be evaluated using the Wigner-Eckart theorem (see e.g. [40]). In the
limit of far detunining Δ >> Ωg, Ωe and neglecting spontaneous emission, the third
level |i〉 can be adiabatically eleminated [41], so that the system behaves like a 2 level
system which is cycling between ground state |g〉 and excited state |e〉. The Rabi
frequency for this transition in a frame rotating with ωeg is

Ωr =
√

Ω2
eff + (δ − δAC)2 (4.4)
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with the two photon Rabi frequency

Ωeff =
Ω�

e Ωg

2Δ
ei(φ1−φ2) (4.5)

In Ωr, several other effects have been taken into account:
Since the linewidth of a Raman transition is small, the effects of an initial momentum
p of the system and the momentum transfer of the light itself cannot be neglected.
Taking this into account, the two photon detuning becomes

δ = (ω1 − ω2) −
(

ωeg +
p · keff

m
+

�|keff |2
2m

)
(4.6)

where �keff = �(k1 − k2) is the effective momentum transfer by the Raman
transition to the system.
If the single photon Rabi frequencies are not the same, this causes a differential
AC-Stark shift between the levels, which can be approximated by

δAC =
|Ωe|2
4Δ

− |Ωg|2
4Δ

(4.7)

where only influence of ω1 on state |g〉 and ω2 on |e〉 has been considered for
simplicity. For the expansion coefficients in the rotating frame ce,p+�keff

and cg,p,
associated with the levels |g〉 and |e〉, the well known solution of the optical bloch
equations for a two level system, which is gained by making the rotating wave ap-
proximation, can be used to obtain

ce,p+�keff
(t0 + τ) = e−i(ΩAC

e +ΩAC
g )τ/2e−iδτ/2

[
ce,p+�keff

(t0)

(
cos

(Ωrτ

2

)

+ i
δ − δAC

Ωr

sin
(Ωrτ

2

))
+ cg,p(t0)e

−i(δt0+φeff )

(
− i

Ωeff

Ωr

sin
(Ωrτ

2

))]
(4.8)

cg,p(t0 + τ) = e−i(ΩAC
e +ΩAC

g )τ/2eiδτ/2

[
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+ cg,p(t0)

(
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(Ωrτ

2

)
+ i
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(Ωrτ

2

))]
(4.9)

If the system is in the ground state at τ = 0, the propability at τ to find it in the
excited state is thus

|ce,p+�keff
(t0 + τ)|2 =

|Ωeff |2
Ω2

r

sin2
(Ωrτ

2

)
(4.10)
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Figure 4.2: Rabi flopping of the system: Occupance of the excited state as
a function of detuning and time. The intensity in this calculation chosen as
9μW/π(75μm)2, a value that is close the one used in the vortex experiments
described in chapter 6.

Figure 4.2 shows this behaviour of the system, which is called Rabi flopping.
The amplitude of oscillation does not decrease, since spontaneous emission and other
processes that introduce decoherence are neglected in equation 4.10 which was used to
calculate this graph. Also two-photon resonance was assumed, which means |Ωeff |2 =
Ω2

r.

Coherence and the Bloch sphere picture

The dynamics of the effective two level system can be nicely displayed in the Bloch
sphere picture [42, 41]. Here, the state of the system is described by a vector on a
unit sphere as shown in figure 4.3. In this picture, a vector in the positive z-direction
is identified with the excited state |e〉; a vector in the negative z-direction with the
ground state |g〉. States in between describe superposition states of the system, where
the azimuthal angle represents the phase of the state. For example, a vector in the x-y
plane describes a 50-50% superposition state with phase eiφ where φ is the azimuthal
angle.
Equations 4.9 describe the dynamics of the effective two level system as seen from a



4.1 Raman transitions in the Λ-level configuration 43

Figure 4.3: Bloch Sphere. This is a modified version of a picture taken
from [41].

frame rotating with angular frequency ωeg. In the Bloch sphere picture this means
viewing the vector that represents the state of the system from a frame rotating
with this angular frequency about the z-axis. The Bloch vector is found to follow
exactly the same dynamics as a magnetic dipole vector precessing in a magnetic field.
Expressing the vector as

S =

⎛
⎝ |g〉〈e| + |e〉〈g|

−i|e〉〈g| + i|g〉〈e|
|e〉〈e| − |g〉〈g|

⎞
⎠ (4.11)

the Hamiltoninan for the system in the rotating frame can now be rewritten. In
the Heisenberg picture, this leads to the equations of motion

d

dt
S = Ω(t) × S (4.12)

for the vector on the Bloch sphere. Where

Ω(t) =

⎛
⎝ −2Re(Ωeff (t))

−2Im(Ω∗
eff (t))

−δ

⎞
⎠ (4.13)

is the axis around which the Bloch vector precesses at time t, for the case |Ωeff |2/Ω2
r =

1, where the system is initially at rest p = 0, the two light fields are copropagating
keff ≈ 0 and the single photon Rabi frequencies 4.3 are the same.
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Suppose at time t0, the system is in a superposition state and our goal is to transfer it
completely into the excited state. From equation 4.10 clearly follows that we can only
achieve that for |Ωeff |2/Ω2

r = 1. But that is not all that matters: The orientation of
the rotation axis Ω depends on the relative phase between the two driving light fields
(see the definition of Ωeff , equation 4.5). If the two photon detuning δ is chosen to
be zero, the rotation axis Ω lies in the x-y plane, but only for one specific orientation
will the Bloch vector pass through the state |e〉. An example for a case, when the
relative phase of the two light fields is not oriented in a right way with respect to
the bloch sphere vector to achieve complete transfer to the excited state is shown in
figure 4.4.

Figure 4.4: If the relative phases of the light fields don’t match the phase of
the Bloch vector, no complete transfer to the excited state can be achieved.
If the Bloch vector is originally in the y-z plane at t0, Ω needs to lie on the
x-axis inorder to achieve complete transfer. The picture is taken from [41]

The considerations just presented make it clear, that the relative phase of the
the two driving light fields must not vary much during the pulse duration, even for
the practically interesting case where we want to transfer the system from ground to
excited state (here only the stability matters, since |g〉 is always orthogonal to Ω when
the light fields are two-photon resonant). Since π-pulses are usually rather short, this
is not so hard to achieve, however. More demanding is the phase stabilization, if
a sequence of pulses (Ramsey sequence) is applied. In this case the relative phase
between the light fields must be stable for the whole sequence of pulses when a
superposition state of a specific phase is supposed to be changed in a defined way.
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4.1.2 Spontaneous emission

During a stimulated Raman transition, the system absorbs a photon from one light
field, being ”lifted” to level |i〉 and reemits it again to the other light field by stimu-
lated emission. During a time interval τ0, that is given by the energy-time uncertaincy
relation τ0 
 1/Δ, the system also has the option to spontaneoulsy reemit the photon.
This is clearly unwanted, since atoms in a cloud that undergo the transition can be
lost to other levels. But even worse, spontaneous emission is an incoherent process.
To induce vortices, a defined momentum transfer is needed, while spontaneous emis-
sion gives random momentum kicks to an atom. Therefore the ratio of spontaneous
emission to stimulated emission from the upper level has to be minimized, which can
be accomplished by choosing the detuning Δ to be large.
The spontaneous scattering rate Γsc may be estimated as

Γsc = −〈ḋ · E〉
�ω

≈ 3πc2

2�ω3
0

Γ
∑

j

Ij

∣∣∣∣〈F1; mF q|F1; F ′m′
F 〉j

Δj

∣∣∣∣
2

(4.14)

which can be obtained from a simple oscillator model of an atom interacting with
a light field [43, 44]. Here ω0 is the resonance frequency of the oscillator model,
Ij = 1/2ε0c|E|2 the intensity of the respective light field and Γ the damping constant
of the oscillator model (decay rate). The scattering rates of all levels with the common
decay rate are summed up, taking their respective transition strengths, given by the
Clebsch-Gordan coefficients in the numerator, and detunings from resonance in the
denominator, into account. In the Clebsch-Gordan coefficient, the spin of a photon
is added to the total angular momentum of the atom.

Optimization of coherent transfer rates

Spontaneous emission is often a problem when high transfer rates are needed. Stimu-
lated Raman Adiabatic Passage and Landau-Zener Passage are schemes for applying
the coherent light fields separately [45, 41]. These allow rather stable transfer rates,
independent of the pulse lengths. If the pulse lengths are very short (e.g. due to
strong transitions), the problem of controlling such a short pulse can also be solved
in this manner. The basic idea for these schemes can be understood in the dressed
atomic states picture. It is achieved by adiabatically moving a dressed atomic state
from one bare state to another, and thereby changing the state of the system.
For the specific setup with which the experiments for this thesis were performed, the
transfer rates and spontaneous emission rates were however not limiting. Since the
Raman pulses were applied during time of flight, while the atoms were already falling,
fluctuations were tolerated to get faster transfer rates.
However, if the setup is used with fewer atoms that one wants to prepare in very
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defined states, as might be needed in the optical lattice simulator, the techniques
mentioned above might be interesting.

4.2 Raman laser setup

Our experiments are performed using Rubidium 87 as a bosonic particle. The Ra-
man setup that was built in the course of the work for this thesis, can be used to
drive transitions between the hyperfine ground states |52S1/2; F = 1, 2 mF 〉 and all
magnetic sublevels of these states (for transitions that satisfy the selection rules). By
choosing the propagation direction of the Raman beams with respect to each other,
linear momentum can be transfered to the atoms undergoing the transitions. This
can, for example, be used for Bragg diffraction experiments [46]. The transitions are
driven via the intermediate states |52P1/2; F = 1, 2 mF 〉 using the D1 transition (see
figure 4.5). The interaction with both levels is determined by the detuning Δ, which
is usually bigger than the 52P1/2 hyperfine splitting of 816MHz. Nevertheless, a very
good approximation to a three level system can be constructed for some transitions.
This is accomplished by choosing the polarizations in a way that the selection rules
prevent transitions via the |52P1/2; F = 1 mF 〉 states.
Since the availability of Electro-Optical Modulators (EOM) [28] that can handle mod-
ulation frequencies of higher than 10GHz, it is possible to build such a setup, even
for transitions changing the hyperfine state, with little complexity. For our case, the
hyperfine splitting of the 87Rb 52S1/2 ground state is 6.8GHz, so the setup needs to
provide two coherent light fields of this frequency difference.
It is possible to build two lasers that need to be phase locked and kept at the dif-
ference frequency, to provide these light fields. However the use of an EOM makes
the whole setup much less complex, since the light of the same laser can be split up
and is therefore already inherently coherent. The phase stability between the light
fields therefore depends on the phase stability of the oscillator that generates the
modulation signal driving the EOM. Considerations about the phase stability of the
microwave modulation frequency, will be given later in this section. When the signal
is applied to the EOM, it will create side bands in the light fields, which are spaced
by the modulation frequency.
For Zeeman state and momentum state changing transitions, which are at much lower
frequency, the frequency difference is provided directly by AOMs.

4.2.1 Setup

Figure 4.6 shows a picture of the setup. The 795nm diode laser has an external
cavity with a Littrow grating, which reflects the 1st order back into the diode and
thus makes it run on one mode of the internal cavity. The details of this configuration
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Figure 4.5: D1 level structure. With the setup described all possible tran-
sitions between the 52S1/2 magnetic and hyperfine levels can be driven. The
graphic is taken from [47].

are explained elsewhere [48]. Following the main beam path (shown in red) through
the setup, we pass an anamorphic prism pair that changes the output of the laser
diode to an approximately circular beam profile and a faraday isolator that prevents
back reflections from farther downstream affecting the laser diode.
At the next cube, the light for the lock signal generation and spectroscopy is split
off. Looking downstream the main beam path, the vapor cell that contains both
87Rb and 85Rb isotopes can be seen to the right. Details of lock signal generation
and saturation spectroscopy are described in [49] (lock signal) and [48] (saturation
spectroscopy). From the lock signal an error signal is derived, which is fed back to the
piezo that moves the Littrow grating, and keeps the laser at a constant frequency.
Along the main beam path then follows a telescope that changes the beam size to
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Figure 4.6: Raman laser setup
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mode match the fiber coupling. Then the beam is split up into three, passing through
two cubes. Each of the resulting beams pass through separate AOMs which are used to
switch the beams on and off fast enough for Raman pulses and to change the frequency
of the light by adding an RF-phonon to photons passing through it. After that, the
beams pass through mechanical shutters, which guarantee good beam extinction and
are fiber coupled. The EOM is a fibercoupled version, which is directly put in one of
the fiber paths.
The core of the EOM fiber is 4μm, which is also the size of the birefringent lithium
niobate crystal used in it. Thus the electrodes between which the modulation signal
is applied are only spaced by this distance. Consequently a high electrical field energy
density can be achieved in the crystal even with a low total field energy. This makes
the high efficiency even at modulation frequencies of up to 20GHz possible.
Through the fibers, the light passes on to a different table with the vacuum apperatus.
One of the light beams passes through the hologram which is mounted on the other
table together with the projection system for the light beams onto to the atoms. This
part will be described in chapter 6.

4.2.2 Sideband intensity and oscillator stability for the EOM

Phase modulation

In an EOM the refractive index of a birefringent crystal is changed by a voltage
that is put across it (see [28]). This means, that if a voltage is applied across the
crystal, the light passing through it will experience a phase shift compared to 0V
that is proportional to the voltage (for a linear modulator). When the voltage is time
dependent, the light is phase modulated. The classical electrical field of the light for
a sinusoidal modulation is

E = A ei(ωt+φ+B cos(ωmt+φm)) (4.15)

where A is the light amplitude, ω is the carrier light frequency, φ the phase of
the light without modulation at time t = 0, B the modulation amplitude, ωm the
modulation frequency and φm the phase of the modulation signal at time t = 0.
Fourier transformation of expression 4.15 gives

E = A
∞∑

n=0

inJn(B)ei(ω±nωmt+φ±nφm) (4.16)

where the amplitude of the different frequency components are found to be Bessel
functions with the amplitude of the modulation signal B as their argument. In our
setup we want to use the first order sideband, the intensity of which we thus want
to maximize. Figure 4.7 shows the intensity of the carrier light and the first two
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Figure 4.7: Intensity of the carrier (green), a single first order sideband
(red) and a single second order sideband (blue) as a function of the modu-
lation voltage amplitude.

sidebands as a function of peak-to-peak modulation amplitude. The source of the
modulation frequency and the phase stability of it are treated in the next paragraph.

Oscillator stability

As explained, the modulation voltage needs to be phase and frequency stable in order
to get reproducible Raman transfer rates with the laser setup. Thus the noise of the
oscillator that puts out the modulation voltage for the EOM needs to be considered.
The total noise of an oscillator has two contributions, amplitude noise and phase noise
(see figure 4.8). The interesting quantity for this case is, how much the phase of the
oscillator drifts during a pulse or pulse sequence, since that gives rise to a change in
the rotation axis around which the Bloch vector precesses. Thus, amplitude noise is
neglected in the following.
The root mean square drift 〈Δφ(t)〉 of the oscillator phase after a time t can be
calculated from the single sideband power spectrum L(Δω) as

〈Δφ(t)〉 =

√
4

π

∫ ∞

0

dΔω L(Δω) sin2(
Δωt

2
) (4.17)

where Δω = ω − ω0 is the frequency off the carrier. L(Δω) is a typical way to
specify the noise for most oscillators. For a derivation of this formula, see [50].
In our setup, the 6.8GHz modulation signal is obtained from external multiplication
of a 142MHz signal, derived from frequency synthesizer, by a factor of 48×. An
approximate integration of the power spectrum given by the company using equation
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Figure 4.8: Amplitude and phase noise. Shown is the oscillator signal
at a time t, which is rotating counter clock wise in the complex plane. The
direction of phase noise amplitude is orthogonal to the direction of the signal
amplitude and the amplitude noise.

4.17 gave 〈Δφ(10ms)〉 ≈ 30mrad. The true phase drift might be slightly bigger,
since the synthesizer produces the wanted ouput frequency from an internal oscillator,
and the power spectrum specification of the company was given for multiples of the
internal oscillator frequency only. Even so, the oscillator phase should still be stable
enough to apply defined Ramsey sequences for which more than one pulse is applied
during longer time intervals.

4.2.3 Complete Raman scheme

The Raman transitions we want to drive with the described setup are more compli-
cated than the ones in the simplified description, given in section 4.1. In the first
place, there are four levels that matter. Since we want to supress spontaneous scat-
tering as much as possible, we need to choose a detuning that is around 3 times as big
as the 52P1/2 level spacing. That means that both 52P1/2 hyperfine states contribute
to the transition.
Also, since an EOM is used, all the sideband light frequencies and the carrier will be
present (for maximum intensity of the first order sideband, see figure 4.7). A simpli-
fied scheme of the light fields present that contribute most to the Raman transition
and spontaneous scattering is shown in figure 4.9. The wanted transition is driven
via the first order of the EOM and the second ”Beam 2” that does not contain side-
bands. As can be seen from the figure, the backwards transition is possibly driven at
the same time by the minus first order and Beam 2. This might lead to destructive
interference, which is avoided in our setup by using the small linewidth of Raman
transitions and the two photon detuning to our advantage. For that, the modulation
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Figure 4.9: A simplified scheme of the light fields present. Shown are only
the light fields that drive the transition and those that mainly contribute
to spontaneous emission. For each of the light fields, the polarization, the
square of the Clebsch-Gordan coefficients (upper one for F ′ = 2, lower one
for F ′ = 1) for the respective transitions and the intensity compared to the
beam without EOM is given. The frequency shifts due to the AOMs are not
shown.

frequency of the EOM is chosen a little (∼ 8MHz) higher than the number shown
in figure 4.5 for the hyperfine splitting. In beam 2 this shift is compensated by the
AOM in its beam path. Since the minus first order of the EOM is shifted in the other
direction, the two photon detuning for the backwards transition is around 16MHz
- more than enough to prevent it from having any effect. Even with the shortest
pulses we can control, the linewidth of the Raman transition is not much bigger than
100kHz.
Our choice of polarizations shown in the picture is rather arbitrary and depends more
on technical matters as for example mounts for coils that define quantization axes.
The common detuning Δ is achieved by locking the laser to a 85Rb transition.
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Figure 4.10: Saturation spectroscopy of the 87Rb and 85Rb lines as ob-
tained from the laser setup. The 87Rb lines are spaced so far apart, that
they hardly fit in the same doppler curve, which is why there is almost
no crossover peak visible. In our Ioffe-Pritchard trap, the atoms are pre-
pared in state |52S1/2; F = 1mf = −1〉. The detuning Δlock from the
resonant transition F = 1 → F ′ = 1 is achieved by locking to one of
the 85Rb lines. It follows from a calculation that Δlock can be chosen as
1848MHz, 2210MHz, 4885MHz, 5246MHz or the 2 crossover peaks.

Figure 4.11: Spontaneous scattering rates to be expected per atom and
μs. The detuning shown is Δlock, which is not the detuning for the Raman
transition Δ.
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The hyperfine splittings in 85Rb are smaller by just the right amount to have a
nice variety of detunings at hand. These can be calculated with (see [47])

ΔEhfs =
1

2
AhfsK + Bhfs

3
2
K(K + 1) − 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
(4.18)

where
K = F (F + 1) − I(I + 1) − J(J + 1) (4.19)

From the calculation for 85Rb and the numbers in figure 4.5 follow the possible
detunigs Δlock. These and the saturation spectroscopy line shapes are shown in figure
4.10.
The spontaneous scattering rates, calcutated by summing up the scattering rates for
all light fields using equation 4.14 are shown in figure 4.11. There is a minimum since,
for a big detuning Δlock, the light fields from the upper level are beginning to become
resonant again. This can be seen from figure 4.9.



Chapter 5

Projection and imaging

In this chapter, the projection system that was used to image the first diffraction order
of a hologram onto a Bose-Einstein Condensate is described. It does not contain the
final high NA objective, but was designed for the experiments described in chapter 6.
Since the pictures and quantitative analysis shown in chapter 6 depend on absorption
imaging, this technique is shortly described as well.

5.1 Projection setup

The projection setup for the holograms is shown is figure 5.1. In the foreground the
chrome mask hologram can be seen. Along the beam path of the first order diffracted
beam then follows a 1 to 1 imaging system in 4f configuration (for a description,
see [28]). The 4f system consists of two lenses that perform a Fourier transform
and a back transformation. The hologram is put in one focal plane of the first lens
and its (finite aperture) Fourier transform appears in the second focal plane of this
lens. The wanted first order vortex beam is filtered out by an aperture here and this
selected light field is transformed back by the second lens of the 4f system. Thus
in the second focal plane an image of the first order angular momentum beam ap-
pears. This image was demagnified by a telescope (not shown) and projected onto
the atoms. The demagification was changed during the later experiments and will be
specified in chapter 6. The first telescope lens, which was a 1000mm achromatic lens
was mounted on a rail. With that it could be moved to focus the vortex beam in the
plane of the atoms.
The light of the other 2 (Gaussian) beams is joined to the first order hologram beam
by a non-polarizing beam splitting cube directly after the first lens of the 4f con-
figuration. One of these light beams has passed through the EOM and contains
the sideband shifted by 6.8GHz. The other beam is a plain Gaussian (reference)
beam which was used for the interference experiments with the vortex beams, which
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Figure 5.1: Projection setup for the hologram which can be seen in the
lower part of the picture. In the Fourier plane of a 4f lens configuration,
one first diffraction order of the hologram is selected by an aperture. Two
Gaussian beams with orthogonal polarizations are made copropagating with
the hologram beam.
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are described in chapter 6. All the beams were aligned copropagating to interfero-
metric precision by interfering two beams at a time. For the alignement, the EOM
was switched off, the AOMs were set to the same frequency and polarizations were
changed.
As this was done, the interference pattern was seen to change rather fast in time,
even though the RF-signal for two of the AOMs were derived from the same oscil-
lator. Most likely the long fibers that were used in the experiment and mechanical
movement of the mounts lead to this. For Ramsey sequences, a more stable setup
would need to be built, but for the short pulses that were applied in the experiments
described in chapter 6, the stability was good enough. For this setup, the change in
phase due to mechanical movements was clearly a much bigger effect than the insta-
bility due to the oscillator that was calculated in chapter 4.
Polarizations were adjusted to the ones shown in figure 4.9 in the following way: The
light coming from the hologram passes a cube that polarizes it linearly. The other
two light beams are joined in a polarizing beam splitting cube, thus having orthog-
onal polarizations. A λ/2 wave plate is used to make the polarization of the plain
Gaussian (reference) beam the same as the vortex beam. Circular polarizations were
obtained with a λ/4 wave plate, that turns the orthogonal polarizations of the EOM
beam and hologram or plain gaussian beam into σ+ and σ−.
After time of flight, which was usually 17ms for the vortex experiments, the cloud
was imaged onto a CCD camera using D2 F = 2 → F = 3 light. The imaging setup
consisted of two achromatic lenses magnifiying the image of the atoms. This magifi-
cation was changed during the later experiments and will be specified in chapter 6.
When imaging the |52S1/2; F = 1 mF = −1〉 state, in which the atoms are originally
prepared, F = 1 → F = 2 repump light was additionally applied during imaging. For
all vortex experiments, hyperfine structure changing transitions were used however
and no repump light was applied in this case.

5.2 Absorption imaging of a Bose-Einstein Con-

densate

If a cloud of atoms is illuminated by a resonant or near resonant light beam, the
scattering that occurs casts a shadow in the light beam. The light can then be
imaged on a camera making the density profile in z-direction ñ(x, y), of the cloud
visible (if the imaging resolution is high enough). Thus, from measuring the optical
density, dependent on the x and y positions in the plane, the real column density
profile and the approximate number of atoms in the cloud can be computed.
A light beam with an intensity profile I0(x, y) is attenuated by

I(x, y) = I0(x, y)e−D(x,y) (5.1)
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when passing through the cloud with optical density D(x, y) [44]. The optical
density depends on the atomic column density

D(x, y) = 2σ0
1

1 + I
ISat

+ 4Δ2

Γ2

ñ(x, y) (5.2)

where σ0 = λ2/2π is the polarzation averaged resonant scattering cross section of
the atoms, I the beam intensity, which is taken to be constant in the region of the
atoms, ISat the saturation intensity of the respective transition, Δ the detuning of
the light from resonance, and Γ the decay rate of the excited state.

D(x, y) = max
[
0, A

(
1 −

(x − xc

σx

)2

−
(y − yc

σy

)2) 3
2
]

(5.3)

Is taken as the approximate optical density function in our experiments, where σx,y

are the characteristic widths of the condensate. These and the peak optical density
A are found as fit parameters. The total number of atoms N can be found from these
parameters by integrating ñ(x, y), which gives:

N =
Aπσxσy

5σ0

(
1 +

I

ISat

+
4Δ2

Γ2

)
(5.4)

As a concluding remark it needs to be mentioned, that for detuned imaging light,
refraction of the condensate itself can change the optical density function, as observed
in the camera plane, significantly. A detailed description of the expected images can
be found in [51]. Different shapes of cloud shadows can be seen for red and blue
detuned light. However, this effect is mostly observed, if the imaging system is not
focused properly. Some of the shadows for detuned and defocused imaging can look
very similar to the density profile of a vortex state, which can be annoying . . .



Chapter 6

Experimental Results

In this last chapter, the first results of vortex projection and Raman setup experi-
ments are presented. It is demonstrated that it is possible to transfer orbital angular
momentum from a light beam to atoms in a Bose-Einstein Condensate. By interfering
the atom wavefunctions of a vortex state with a constant phase one, it can directly
be seen that the phase of the classical electromagnetic field of the light beams in-
ducing the Raman transitions is stored in the atom wavefunction. Exactly the same
interference pattern as is shown for light fields in chapter 3 can thus be created in a
Bose-Einstein Condensate. Amongst other things it was possible to stimulate a vortex
pair with opposite circulation direction, which was also identified by interferometry.

6.1 Observation of Raman transitions

Before projecting light beams with angular momentum, the Raman setup was tested.
This section presents some quantitative results taken at different stages of the exper-
iment.
All experiments started out with a 87Rb Bose-Einstein Condensate of approximately
3.5 million atoms in the |52S1/2; F = 1 mF = −1〉 state. The total number of atoms
was calculated from equation 5.4. 14ms after being released from the trap (time of
flight), both copropagating Raman beams were switched on for a defined amount of
time. Thus a fraction of the atoms was transfered to the |52S1/2; F = 2 mF = 1〉
state by driving transitions with σ+- and σ−-polarized light fields as shown in figure
4.9. Figure 6.1 shows a Rabi oscillation of the system. The data was fitted with

f(t) = A +
1

2
B

(
1 − cos(wt − t0)e

−t/τ
)

(6.1)

where A,B,w, t0, τ are fit parameters. Formula 6.1 takes an exponential damping
with the characteristic time τ , a phase offset t0 and an amplitude different from 1 into
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Figure 6.1: Transfered fraction of the atoms as a function of the pulse
length. The intensites of both Raman beams were set to 6μW/π(75μm)2, a
detuning of Δlock = 2π · 5.2GHz and a 2 photon detuning of δ = 2π · 5KHz
was chosen.

account. The values obtained for the respective parameters are shown in the figure.
To calculate an approximate Rabi frequency for this 4 level system, the transfer
rates via the two intermediate states |52P1/2; F = (1, 2) mF = 0〉 were added. Using
equation 4.10 to calculate the expected pulse length for maximum transfer (π-pulse)
in this way gives 10μs, which is roughly in agreement with the experimental data.
Clearly, there is a strong damping mechanism visible in this dataset. A detuning of
Δlock = 2π · 5.2GHz corresponds to a detuning Δ = 2π · 800MHz of the shifted light
field from the upper intermediate level. Looking at figure 4.11, it can be seen that the
expected spontaneous scattering rate for this detuning during a 60μs pulse is around
18%, which may explain the damping.
Only 34% of the light in the EOM beam is in the first order and also the Clebsch-
Gordan coefficient for the σ+ transition is smaller by a factor of 3. The differential
Stark shift due to this is approximated with equation 4.7 to be δAC

F ′=2 = 164kHz for
the upper level and δAC

F ′=1 = 80kHz for the lower level. If not compensated, this leads
to a two photon detuning, which limits the maximum transfer. From equation 4.10
the maximum expected transfer by transitions via the respective levels is computed
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Figure 6.2: Transfer as a function of the two photon detuning. The Raman
pulse duration for this dataset was 12μs.

to be
|(F ′=1,2)Ωeff |2

(F ′=1,2)Ω2
r

≈ 0.35 (6.2)

slightly higher than the measured one, which is only approximate however. This
might be due to the damping.
For graph 6.2 the two photon detuning was scanned by changing the modulation

frequency of the EOM. A Lorentzian was fitted to this dataset. The Stark shift offset
might be too small to be evident in this graph since it is only δfAC

F ′=2 = 26kHz and
δfAC

F ′=1 = 12kHz for respective levels and the line is clearly broadened. The maximum
transfer in this graph may then be limited by the pulse length. Since very small beam
cross sections were used to collect both datasets, it might be that not both beams
were hitting the atom cloud centered and overlapping well. This could have led to a
much bigger differential Stark shift than assumed in equation 6.2 and, if the intensity
of one of the beams at the location of the cloud was significantly smaller, also to
slower Rabi cycling. A hint towards this might also be the line broadening since, if
different sections of the cloud would have seen different beam intensities and thus the
Rabi frequencies and the Stark shifts might have been locally different, one would
expect a broader line. The line broadening cannot be totally due to the short pulse
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that was applied. Was it merely due to the pulse duration one would expect it to be
Δf = 1/2π12μs ≈ 13.3kHz for the 12μs pulse.
The transfer efficiency was not optimized, since high transfer rates were not wanted
in the vortex experiments. This is because we did not want to detune the imaging
light to avoid the refractive effects mentioned in 5.2 of the Bose-Einstein Condensate
itsself. For the use with fewer atoms in the surface trap, the efficiency will however
need to be improved. For that, a detailed calculation of the differential Stark shifts
caused by all light fields might be needed.
Another limitation for the transfer rates in the experiments might be due to the exper-
imental sequence. It cloud be that during trap shut-off and time of flight expansion,
other Zeeman states get populated, which don’t get transfered by the Raman pulses,
leading to lower transfer when compared to the total number of atoms.

6.2 Results of vortex projection

This section presents the images taken of the cloud after projecting a hologram. Two
holograms that were projected: The first one contained a single vortex in the region
were the Gaussian beam that illuminated it was not negligible. A second one con-
tained a structure for two counterpropagating vortices. Vortices were induced in the
cloud by driving hyperfine state changing Raman transitions as before, but now one
of the light beams was carrying orbital angular momentum.
By applying a second Raman pulse with the two Gaussian beams, it was possible to
interfere the Bose-Einstein Condensate in the vortex state with a constant phase one.
The pulse sequence makes it clear that the phase of the classical electrical field was
indeed stored in the atom wavefunctions, since the beams of the Raman setup that
have a stationary interference pattern were not switched on at the same time. The
whole sequence for the interference experiments is summarized in the table. For the

Sequence for interferometry experiments
Time Action Effect
t = 0 Trap shutoff Start of time of flight
t = 14ms First Raman pulse. Fraction of atoms

Vortex beam + EOM transfered into a vortex
Gaussian beam are applied state

t = 14ms + first Ra- Second Raman pulse. Interference between
man pulse length Plain Gaussian + EOM both states

Gaussian Beam are applied
t = 17ms F = 2 → F ′ = 3 imaging Absorption imaging

light applied
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Figure 6.3: (a),(b) absorption images of single vortex states. Imaging
magnification was 6.6, which means one pixel, which is 20μm in our camera,
corresponds to ∼ 3μm in the cloud. (a) telescope magnification was set to:
projection 0.15. (b) telescope magnification: projection 0.075. (c) optical
density profile on path straight through the vortex core of image (a).

images of solely the vortex state, the second Raman pulse was not applied.
Since the projection and imaging system consists of a simple arrangement of achro-
matic lenses, the resolution of both were limiting for the experiments. Thus we did
not project the vortex beams onto the cloud while still in trap, but after 14ms time
of flight, when it had expanded by roughly a factor of two. An absoption image of
the cloud was taken 3ms after applying the Raman pulses.
It will be interesting to proceed with the experiments once the final high resolution
objective is installed. Then it will become possible to study the stability of vortices
and the dynamics of the condensate containing vortices with in trap experiments.

6.2.1 Single vortex

Figure 6.3 shows two absorption images of condensate states carrying one quantum
of angular momentum. The Raman pulse durations were (a) 4μs and (b) 6μs. Inten-
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sities and detunings were chosen to be: (a) Δlock = 5.2GHz, 6.2μW/π(75μm)2 and
(b) Δlock = 1.8GHz, 10μ/π(131μm)2W , where the radii in the denominators are for
the beam after demagnification.
Both pictures result from projecting a slightly defocused vortex, where in image (a)
the defocusing was stronger. This is why the core looks bigger. From figure 3.13 it
can be seen that if the image plane is not in the plane of the atom cloud, the size of
the vortex core in the light beam is bigger. This means that also in the condensate
cloud, the region where the atoms have not undergone a Raman transition is bigger.
For our case this was wanted, since the imaging resolution was otherwise not enough
to see the vortex core. A depth of focus calculation for the projection system used in
(a) showed that the vortex core in the beam roughly doubles its size for a displace-
ment d = 200μm from the image plane. That the effect of differently well focused
projection can be seen in the images of the cloud shows that the condensate had not
equilibrated after 3ms more time of flight. Equilibration is expected to be slow after
14ms time of flight, since it depends on the interactions, which are already small after
this expansion time.
Figure 6.4 shows 4 pictures for which the vortex state was interfered with a constant
phase one. For that, two Raman pulses of 4μs duration were applied directly after

Figure 6.4: Interference of a single vortex state with a plane phase.

one another. The other parameters were the same as for figure 6.3(a). The phases
between the vortex beam and the Gaussian EOM beam were different for each of
the pictures. Thus the regions of constructive/destructive interference can be seen in
different locations. The picture resembles the one in figure 3.9, which was taken with
a Mach-Zehnder interferometer for light (see chapter 3).
If the plain Gaussian beam (reference beam) that is used together with the EOM
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Gaussian beam in the second pulse for the interference pulse sequence is not exactly
copropagating with the vortex beam, an interference pattern that resembles the holo-
gram pattern itsself can be produced. A cloud that is interfering in this way is shown
in figure 6.5(a),(b). Like in all the experiments presented, the interference of the
Bose-Einstein Condensate is just the same as in the light beams. Thus the interfer-
ence pattern is the same as was calculated in chapter 3, equation 3.8, where there
is an angle θ between the object beam and the reference beam. Figure 6.5(c) shows
a picture with a tilted reference beam which was also taken with the Mach-Zehnder
interferometer for light.

Figure 6.5: (a), (b) interference with a reference beam that is not co-
propagating. Intensity, detuning and beam radii were Δlock = 1.8GHz,
10μ/π(131μm)2W for these experiments. (c) interference of a light beam
containing a single vortex with a tilted reference beam.

However, it needs to be emphasized again that this resemblance is due to the wave
nature of matter. It is not the case that the plain Gaussian beam is interfering with
the vortex beam, thus transfering atoms only where there is constructive interference
between both beams. Rather, the wavefunctions, which obtained their phase from
the classical electromagnetic field during the Raman transitions, of the vortex state
and the state with plane phase interfere and this inteference pattern is recorded. The
fact that these two beams are not switched on at the same time makes this clear.

6.2.2 Counter spinning vortex pair

We succeeded in exciting a state with two counter spinning vortices by projecting the
corresponding hologram. Two images of clouds in this state are shown in figure 6.6.
In the hologram, the fork like structures (pointing towards each other for counter-
propagating vortices) where spaced by 330μm, which demagnified by a factor of 0.075
resulted in a spacing of 24.75μm in the image plane. As before, both images result
from projecting a slightly defocused vortex pair, which was done for better visibility
(or better, visibility at all) of the vortex cores.
Figure 6.7 shows results from a depth of focus calculation for two vortices, which was
described in 3.2.4. The numerical aperture of NA = 0.16 corresponds to the projec-
tion system that demagnifies by a factor of 0.075. The shown patterns are best case,
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Figure 6.6: Counter spinning vortices. Experimental parameters were
Δlock = 1.8GHz, 10μ/π(131μm)2W and pulse duration 8μs.

since a diffraction limited system was assumed. Aberations and some dust resulted
in a worse intensity profile. It can be seen, that the vortex core size in the beams
rapidly grows bigger from the image plane to a plane that is displaced by d = 100μm.
At around d = 200μm the diffraction rings around the vortex cores can be seen to
overlap in the region between the cores. This leads to higher intensity in this region.
For larger displacements, the cores change shape.
Looking again at picture 6.6, it can be seen that the Raman transfer rate between
the vortex centers was much higher than on the outside. In between the vortex cores
the atoms were even transfered back, which means the pulse duration for this region
correspondend to more than a π-pulse. The high transfer rates in between the cores
is probably an artifact of defocusing. Comparing figures 6.7 and 6.6, one can estimate
that displacement of the image plane in the experiment was around 200-300μm. Dur-
ing the experiments the focusing of the projection was often changed. For focusing,
a lens of the telescope arrangement was moved on a rail system. Starting on one
(defocused) side, the vortex cores in the atom clouds could be seen to grow smaller,
disappear and the reappear, as expected from figure 6.7.
Interference experiments were also performed with the counter spinning vortex pair.

Figure 6.7: Change in the intensity pattern for defocused projection. The
calculation was done for a diffraction limited projection system of NA =
0.16.
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The results are shown in the last figure in this chapter. Two 4μs pulses were ap-
plied; the other parameters were Δlock = 1.8GHz, 10μ/π(131μm)2W . The column
(a) shows absorption images of the cloud for different relative phases between the
vortex state and the reference beam. Calculated interference pattern for a counter
spinning vortex pair (b) and a copropagating vortex pair (c) can be compared to the
pictures in column (a). The relative phases for the calculations that approximately
resemble the ones seen (a), are given on the right. From this, the vortex pair can
definitely be identified as a counter rotating one.

Figure 6.8: (Back of the page) Interference of the counter spinning
vortex pair with a plane phase reference state. Column (a) shows the
interference pattern for different relative phases of both states. For com-
parison, calculated interference patterns for a counter spinning vortices
(b) and co-spinning vortices are shown. The vortex pair can clearly be
identified as counter spinning.





Conclusion

The work described in this thesis successfully demonstrates the scheme of inducing
vortices in a cloud of ultracold atoms by transfer of orbital angular momentum quanta
from light beams. By exploitation of the coherence property of Raman transitions it
was possible to prepare defined internal and momentum states of atoms in a Bose-
Einstein Condensate.
The results in chapter 6 show that the usefulness and versatility of this scheme re-
lies critically on the resolution with which the orbital angular momentum beams are
projected. In the presented experiments, it was only possible to project two vortices
onto the Bose-Einstein Condensate during time of flight due to this limitation. Also
since the observed core size depended rather on projection than on the Bose-Einstein
Condensate itself, no information about the structure of the vortex could be gained.
However, the stimulation of a state with counter propagating vortices is notable since
this is not easily possible with common stirring techniques.
There are many interesting questions for the experiments to follow. In the introduc-
tion, it is mentioned that low filling factors of vortices are an interesting regime for
research. In principle, the resolution of the chrome mask holograms is high enough to
have many vortex structures on an area that is still usable. It is described in chapter 3
how to make holograms with many vortices. With the final imaging system, it should
be possible to project a low filling factor regime. It will be interesting to find out, if
any useful information can be obtained from a non equlibrium situation created in
this way.
Interesting are, of course, experiments with the cloud still in trap. Only like this
is it possible to study the stability and dynamics of vortex states for longer periods
without parameters, such as density, changing. The influence of interactions will be
interesting to observe.
Vortices were induced by Raman transitions with copropagating beams that changed
the hyperfine and magnetic state. Thus, although in the absorption images not vis-
ible, the other spin state is still present in the cloud. Structures with spin textures
as the one created in our experiment have raised the interest of researchers since the
1960s and are referred to as skyrmions (called after T. H. R. Skyrme) or merons
[52, 53, 54].



The interaction of the atoms of the same spin state and those in the other spin
state is different. It will be interesting to see the effect of this difference in interaction
on parameters like vortex core size or vortex dynamics in the condensate. Since the
intensity in the vortex core of the light beam is very low, the atoms there do not take
part in the Raman transition. This means, that the vortex core is filled with atoms
of the other spin state interacting with the atoms in the vortex state. By improving
the transfer efficiency, it will then be possible to produce a vortex states where only
in the cores there are still atoms of the other spin state. Thus, for those experiments,
the relevant quantity for the behaviour of the wavefunction, close to the vortex core,
may be the spin healing length and not the healing length introduced in section 2.3.1.
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[48] W. Demtröder, Laser Spectroscopy. Springer, third ed., 2003.

[49] G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for
measuring weak absorptions and dispersions,” Optics Letters (1980).

[50] R. Harjani and L. Dai, Design of Higher-Performance CMOS Voltage
Controlled Oscillators. Springer, 2003.

[51] M. R. Matthews, Two Component Bose-Einstein Condensation. PhD thesis,
University of Texas, 1994.

[52] A. E. Leanhardt, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle,
“Coreless Vortex Formation in a Spinor Bose-Einstein Condensate,” Phys. Rev.
Lett. 90 (Apr, 2003) 140403.

[53] N. D. Mermin and T.-L. Ho, “Circulation and Angular Momentum in the A
Phase of Superfluid Helium-3,” Physical Review Letters 36 (1976).

[54] P. W. Anderson and G. Toulouse, “Phase Slippage without Vortex Cores:
Vortex Textures in Superfluid 3He,” Physical Review Letters (1977).



Acknowledgement

First of all I would like to thank the whole group for the good atmosphere and support
throughout this whole year. It was great working with you and I learned a lot.
Especially I would like to thank Markus Greiner for the extraordinary good men-
toring. In fact, I cannot imagine what could have been better. A good mentoring
of diploma thesis is not self-evident, as I know from a lot of friends. So I am very
thankful for that.
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