3-Phase Induction Motor Design

(© Dr. R. C. Goel \& Nafees Ahmed)

By

UNIVERSITY

Nafees Ahmed

Asstt. Prof. Department of Electrical Engineering DIT, University, Dehradun, Uttarakhand

References:

1. Notes by Dr. R. C. Goel
2. Electrical Machine Design by A.K. Sawhney
3. Principles of Electrical Machine Design by R.K Agarwal
4. VTU e-Learning
5. www.goole.com
6. www.wikipedia.org

OUTPUT EQUATION: - It gives the relationship between electrical rating and physical dimensions (Quantities)

Output of a 3 phase IM is

$$
Q=3 V_{P h 1} \times I_{P h 1} \times \operatorname{Cos} \phi \times \eta \times 10^{-3}
$$

$K W----------------(1)$
Where

$$
\begin{aligned}
\mathrm{V}_{\mathrm{Ph} 1} & =\text { Stator phase voltage } \\
\mathrm{I}_{\mathrm{Ph} 1} & =\text { Stator Phase current } \\
\operatorname{Cos} \phi & =\text { Stator power factor } \\
\eta & =\text { Efficiency of motor }
\end{aligned}
$$

Or equation (1) can be written as

$$
\begin{aligned}
& Q=3\left(4.44 \times K_{p d 1} \times f \times \phi_{1} \times N_{P h 1}\right) \times I_{P h 1} \times \operatorname{Cos} \phi \times \eta \times 10^{-3} \quad K W \\
& \left(\because V_{P h 1}=4.44 \times K_{p d 1} \times f \times \phi_{1} \times N_{P h 1}\right)
\end{aligned}
$$

Where
$\mathrm{f}=$ frequency of supply $=\mathrm{PN} / 120$
$\mathrm{P}=\mathrm{No}$ of Poles
$\mathrm{N}=$ Speed in RPM
$\mathrm{K}_{\mathrm{pd1}}=$ Winding factor $=0.955$
$\phi_{1}=\bar{B} \times \tau_{P} \times L=\bar{B} \times \frac{\Pi D}{P} \times L=$ Average value of fundamental flux
$\bar{B}=$ Average value of fundamental flux density
$\tau_{P}=$ Pole pitch $=\frac{\Pi D}{P}$
$\mathrm{D}=$ Inner diameter of stator
$\mathrm{L}=$ Length of the IM
Total No of Conductors on Stator $=3 \times 2 N_{P h 1}=6 N_{P h 1}$
Total Ampere Conductors on Stator $=6 N_{P h 1} I_{P h 1}$
Total Ampere conductors is known as total electric loading
Specific electric loading
It is defined as electric loading per meter of periphery, denoted by ac .

$$
\overline{a c}=\frac{6 N_{P h 1} I_{P h 1}}{\Pi D}
$$

Or $\quad N_{P h 1} I_{P h 1}=\frac{\bar{a} c \Pi D}{6}$
Putting the values of $\mathrm{f}, \phi_{1} \& \mathrm{~N}_{\mathrm{Ph} 1} \mathrm{I}_{\mathrm{Ph} 1}$ in equation 2 we get

$$
\begin{aligned}
& Q=3 \times 4.44 \times 0.955 \times\left(\frac{N P}{120}\right) \times\left(\bar{B} \times \frac{\Pi D}{P} \times L\right) \times\left(\frac{a c \Pi D}{6}\right) \times \operatorname{Cos} \phi \times \eta \times 10^{-3} \quad K W \\
& Q=\left(17.4 \times 10^{-5} \bar{B} \overline{a c} \operatorname{Cos} \phi \quad \eta\right) D^{2} L N
\end{aligned}
$$

Or $\quad Q=C D^{2} L N \quad K W$
Where

$$
C=\text { Output Co }- \text { efficient }=17.4 \times 10^{-5} \bar{B} \bar{a} \overline{a c} \operatorname{Cos} \phi \quad \eta
$$

CHOICE OF MAGNETIC LOADING (\bar{B}):

(B is average value of fundamental flux density in the air gap)

1. Magnetizing current : Lower \bar{B}
2. P.F : Lower B
3. Iron Loss : Lower \bar{B}
4. Heating \& Temp rise : Lower \bar{B}
5. Overload Capacity : Higher B

We know

$$
V_{P h 1}=4.44 \times K_{p d 1} \times f \times \phi_{1} \times N_{P h 1}
$$

If voltage is constant so for Higher $\bar{B}, \mathrm{~N}_{\mathrm{ph} 1}$ will be less.
And we know
Leakage reactance $\propto N_{P h 1}^{2} \Rightarrow$ Leakage Reactance \downarrow
$\Rightarrow I_{\text {sc }}$ is more \Rightarrow Dia of circle diagram $\uparrow \Rightarrow$ Overload Capacity \uparrow
6. Noise \& Vibration : Lower B
7. Size : Higher B
8. Cost : Higher \bar{B}

Range of $\bar{B}=0.3$ to 0.6 Tesla

CHOICE OF SPECIFIC ELECTRIC LOADING:

1. Copper Losses : Lower ac
2. Heating \& Temp Rise : Lower ac
3. Overload Capacity : Lower ac

$$
\begin{aligned}
& \text { If } \overline{a c} \downarrow \Rightarrow \mathrm{~N}_{\mathrm{Ph} 1} \downarrow \\
& \text { And we know } \\
& \text { Leakage reactance } \infty N_{P h 1}^{2} \Rightarrow \text { Leakage reactan ce } \downarrow \\
& \Rightarrow \mathrm{I}_{\mathrm{sc}} \text { is more } \Rightarrow \text { Dia of circle diagram } \uparrow \Rightarrow \text { Overload Capacity } \uparrow
\end{aligned}
$$

4. Size : Higher ac
5. Cost : Higher ac

Suitable values of $\overline{a c}$ are

$$
\begin{array}{rlrl}
\overline{a c}=10,000 \text { to } 17,500 & & \text { Amp Cond } / \text { meter } & \\
\text { up to } 10 \mathrm{KW} \\
& =20,000 \text { to } 30,000 & & \text { Amp Cond } / \text { meter } \\
& \text { up to } 100 \mathrm{KW} \\
& =30,000 \text { to } 45,000 & & \text { Amp Cond } / \text { meter }
\end{array}
$$

We know

EFFECT OF SPEED ON COST AND SIZE OF IM:

$D^{2} L=\frac{Q}{C N} \quad \Rightarrow$ Represents the volume of Machine
So for higher speed IM, volume is inversely proportional to speed.
Hence High speed means less volume that is low cost

ESTIMATION OF MAIN DIMENSIONS (D, L):

We know
$D^{2} L=\frac{Q}{C N}$
$\left\{\begin{aligned} \frac{L}{\tau_{P}} & =1 & & \text { : Good Overall Design } \\ & =1 \rightarrow 1.25 & & : \text { for Good PF } \\ & =1.5 & & : \text { for higher } \eta \\ & =1.5 \rightarrow 2.0 & & \text { Overall Economical Design }\end{aligned}\right\}$
Solving equation (1) \& (2) we can find out D \& L.
Alternate method: Fitting the design into the "Standard frame size".

LENGTH OF AIR GAP:

$$
\delta=0.2+2 \times \sqrt{D L}
$$

$$
m m
$$

Note: D \& L are in Meters

$$
\delta_{\min }=0.25 \mathrm{~mm}
$$

For medium rating machines

$$
\delta=2 \rightarrow 3 \mathrm{~mm}
$$

Our effort is to keep the length of the air gap as small as possible. If air gap length is higher, then magnetizing current will be more it will result in poor power factor.

EFFECTIVE LENGTH OF MACHINE:

Generally
$1_{1}=l_{2}=1_{3}=$ \qquad $=1_{n}$

Let
$\mathrm{no}_{\mathrm{v}}=$ No of ventilating ducts
$\mathrm{b}_{\mathrm{v}}=$ Width of one ventilating duct

(Generally for every 10 cm of core length there used to be 1 cm ventilating duct)
Gross Iron length
$1=1_{1}+1_{2}+1_{3}+.$. \qquad $+l_{n}$

$$
\begin{aligned}
& C=17.4 \times 10^{-5} \mathrm{~B} \text { ac } \operatorname{Cos} \phi \quad \eta \\
& C_{\text {min }}=17.4 \times 10^{-5} \times 0.30 \times 10000 \times 0.80 \times 0.85 \quad\left(\text { let } \operatorname{Cos} \phi_{\min }=0.80 \& \eta_{\text {min }}=85 \%\right) \\
& C_{\text {min }}=0.35 \\
& C_{\text {max }}=17.4 \times 10^{-5} \times 0.60 \times 45000 \times 0.85 \times 0.88 \\
& \left(\text { let } \operatorname{Cos} \phi_{\max }=0.85 \& \eta_{\max }=88 \%\right) \\
& C_{\text {min }}=3.5
\end{aligned}
$$

Actual Iron length

$$
\begin{aligned}
\mathrm{l}_{\mathrm{i}} & =\mathrm{K}_{\mathrm{i}} * 1 \\
\mathrm{~K}_{\mathrm{i}} & =\text { Stacking factor } \\
& =0.90 \text { to } 0.92
\end{aligned}
$$

Where
Overall length

$$
\mathrm{L}=1+\mathrm{no}_{\mathrm{v}}{ }^{*} \mathrm{~b}_{\mathrm{v}}
$$

Effective length

$$
L_{e}=L-n o_{v} \times b_{v}^{\prime}
$$

Where $b_{v}^{\prime}=b_{v} \frac{5}{5+\frac{b_{v}}{\delta}}=$ Effective width of ventilating duct ($\left\langle\mathrm{b}_{\mathrm{v}}\right.$ due to fringing)

DESIGN OF STATOR:

Stator and rotor with semi-closed slots
(1) Shapes of stator slots:

May be (i) Open Slot: Used for Synchronous M/Cs
(ii) Partially Closed Slot: Used for Induction M/Cs
(2) No of Stator Slots S_{1} : Two approaches
a.

Slot pitch

So

$$
\begin{aligned}
& \tau_{s g 1}=15 \rightarrow 20 m m=\frac{\Pi D}{S_{1}} \\
& S_{1}=\frac{\Pi D}{\tau_{s g 1}}
\end{aligned}
$$

For 3-Phase IM having P-poles

Let $\mathrm{q}_{1}=\frac{16}{3} \Rightarrow 5 \frac{1}{3} \Rightarrow \mathrm{y}=3$
If poles are 4 then pole pairs $=2$
Select $\mathrm{q}_{1}=5 \frac{1}{2} \Rightarrow \mathrm{y}=2$

Where

$$
\begin{aligned}
& S_{1}=3 q_{1} P \\
& q_{1}=\frac{S_{1}}{3 P}=\text { No of slots per pole per phase }
\end{aligned}
$$

Winding may be integral (q_{1} is integer) or fractional (q_{1} is fractional) slot winding. If q_{1} is fractional, say

$$
q_{1}=\frac{x}{y}=m \frac{n}{y}
$$

Then for windings to be symmetrical it is essential that the denominator ' y ' should be such that the no of pole pair is divisible by ' y '.
If double layer winding is to be use then ' y ' should be divisible by 2 .
Hence S_{1} is estimated.
b. Select $\mathrm{q}_{1}=3$ to 10 and then find S_{1}.
(3) Estimation of No of turns per Phase ($\left.\mathbf{N}_{\mathrm{ph} 1}\right)$, Total no of conductors $\left(\mathbf{Z}_{1}\right) \&$ No of conductors per slots ($\mathbf{N}_{\mathbf{c} 1}$):

We know

$$
\begin{align*}
V_{P h 1} & =4.44 \times K_{p d 1} \times f \times \phi_{1} \times N_{P h 1} \tag{1}\\
\text { So } \quad N_{P h 1} & =\frac{V_{P h 1}}{4.44 \times K_{p d 1} \times f \times \phi_{1}} \tag{2}
\end{align*}
$$

Where

$$
\begin{align*}
\phi_{1} & =\bar{B} \times \tau_{P} \times l_{e}=\bar{B} \times \frac{\Pi D}{P} \times l_{e} \tag{3}\\
Z_{1} & =3 \times 2 N_{P h 1}=6 N_{P h 1} \tag{4}\\
N_{c 1} & =\frac{Z_{1}}{S_{1}}
\end{align*}
$$

$N_{c 1}$ Must be an integer and divisible by 2 for double layer windings. If not an integer make it integer and hence find the corrected value of $N_{c 1}$ that is $N_{c 1, \text { corrected }}$. Also find out the corrected values of Followings

$Z_{1, \text { corrected }}$	Using equation (5)
$N_{\text {Phl,corrected }}$	Using equation (4)
$\phi_{1, \text { corrected }}$	Using equation (1)
$\bar{B}_{\text {corrected }}$	Using equation (3)

(4) Sectional area of stator conductor $\left(F_{c 1}\right)$:

Per phase stator current

So

$$
\begin{aligned}
& I_{P h 1}=\frac{Q \times 10^{3}}{3 V_{P h 1} \operatorname{Cos} \phi \eta} \\
& F_{C 1}=\frac{I_{P h 1}}{\delta_{1}} \quad \mathrm{~mm}^{2}
\end{aligned}
$$

Where

$$
\delta_{1}=\text { Current density }=3 \rightarrow 4 \mathrm{~A} / \mathrm{mm}^{2}
$$

From ICC (Indian Cable Company) table, find d_{c} corresponding to $\mathrm{F}_{\mathrm{c} 1}$

SWG	$\mathrm{F}_{\mathrm{cl}}(\mathrm{mm})$	$\mathrm{d}_{\mathrm{c}}(\mathrm{mm})$	$\mathrm{d}_{\text {overall }}(\mathrm{mm})$
50		0.025	
25		0.5	
1		7.62	

(5) Stator slot design:

Let
$\mathrm{n}_{\mathrm{v}}=$ No of conductors vertically
$\mathrm{n}_{\mathrm{h}}=$ No of conductors horizontally
So $\quad \mathrm{N}_{\mathrm{cl}}=\mathrm{n}_{\mathrm{v}} * \mathrm{n}_{\mathrm{h}}$
6 Prepared by: Nafees Ahmed

$$
\begin{equation*}
\frac{n_{v}}{n_{h}}=3 \rightarrow 5 \tag{2}
\end{equation*}
$$

Solving equation (1) \& (2) find out $\mathrm{n}_{\mathrm{v}} \& \mathrm{n}_{\mathrm{h}}$.
Height of slot

$$
\mathrm{h}_{\mathrm{s} 1}=\mathrm{n}_{\mathrm{v}} * \mathrm{~d}_{\mathrm{c}}+3 * 0.5+3.5+1.5+2 \quad \mathrm{~mm}
$$

(0.5 mm is insulation thickness and 2 mm for slack \& tolerance)
Width of the slot

$$
\mathrm{b}_{\mathrm{s} 1}=\mathrm{n}_{\mathrm{h}} * \mathrm{~d}_{\mathrm{c}}+2 * 0.5+2 \quad \mathrm{~mm}
$$

(0.5 mm is insulation thickness and 2 mm for slack \& tolerance)
Slot opening

$$
b_{01}=\frac{2}{5} b_{s 1}
$$

Ratio

$$
\frac{h_{s 1}}{b_{s 1}}=3 \rightarrow 5
$$

Partially closed slot for 400Volts IM

Thickness of insulation

With mica or leatheroid insulation for small rating machines

KV	0.4	1.1	3.3	6.6	11	15
mm	0.5	0.75	1.5	2.5	4	5.5

With improved insulation (Semica Therm)

KV	2	3	6	10	16	25
mm	1.1	1.4	1.8	2.8	4.0	6.0
				Thickness $=0.215 \mathrm{KV}+0.7 \mathrm{~mm}$		

Advantages of Semica Therm:
(a) Much better heat is dissipated for higher rating machines due to less thickness of wall insulations.
(b) Insulation occupies little less space in the slot.
(6) Length of mean turns ($\mathrm{L}_{\mathrm{mt} 1}$)

$$
L_{m t 1}=2 L+2.3 \tau_{P}+0.24
$$

Where

$$
\tau_{P}=\text { Pole pitch }=\frac{\Pi D}{P}
$$

(7) Resistance of stator winding per phase ($\mathbf{R}_{\mathrm{Ph} 1}$)

$$
R_{P h 1}=0.021 \times 10^{-6} \times \frac{L_{m 11}}{F_{c 1}} N_{P h 1}
$$

One Turns
(8) Total copper loss in the stator winding

$$
=3 I_{P h 1}^{2} R_{P h 1}
$$

(9) Flux density in stator tooth

Maximum flux density in stator tooth should not exceed 1.8 T ; otherwise iron losses and magnetizing current will be abnormally high. (So if flux density $>1.8 \mathrm{~T}$, change slot dimensions) Mean flux density in the stator tooth is calculated at $\frac{1^{\text {rd }}}{3}$ of tooth height from the narrow end of the stator tooth.

Dia of stator at $\frac{1}{3}^{\text {rd }}$ of tooth height from narrow end

$$
D_{\frac{1}{3} h_{t}}=D+\frac{1}{3} h_{s} \times 2
$$

Slot pitch at $\frac{1}{3}^{\text {rd }}$ of tooth height from narrow end

$$
\tau_{s s \frac{1}{3} h_{t}}=\frac{\Pi D_{\frac{1}{3} h_{t}}}{S_{1}}
$$

Width of the tooth at $\frac{1^{\text {rd }}}{}$ of tooth height from narrow end

$$
b_{t \frac{1}{3} h_{t}}=\tau_{s g \frac{1}{3} h_{t}}-b_{s}
$$

Area of one stator tooth at $\frac{1^{r d}}{3}$ of tooth height from narrow end

$$
=b_{t \frac{1}{3} h_{t}} \times K_{i} l \quad\left(\text { Where } \mathrm{l}_{\mathrm{i}}=\mathrm{k}_{\mathrm{i}} \mathrm{l}=\text { Actual iron length }\right)
$$

Area of all the stator teeth under one pole

$$
\begin{aligned}
&{\underset{c}{t} \begin{array}{c}
t_{3} h_{t} \\
A_{t}
\end{array}}=\text { Area of one tooth } \times \text { No of teeth per pole }\left(\frac{S_{1}}{P}\right) \\
&\left.=b_{t}\right) \times K_{i} l \times\left(\frac{S_{1}}{P}\right) \\
&=\left[\frac{\Pi\left(D+\frac{1}{3} h_{s} \times 2\right)}{S_{1}}-b_{s}\right] \times K_{i} l \times\left(\frac{S_{1}}{P}\right)
\end{aligned}
$$

So mean flux density in teeth

$$
B_{t \frac{1}{3} h_{t}}=\frac{\phi_{1}}{A_{t \frac{1}{3} h_{t}}}
$$

(10) Depth (Height) of stator yoke $\left(h_{y}\right)$:

Flux through stator yoke is half of the flux per pole

$$
\frac{\phi_{1}}{2}=B_{y} \times h_{y} K_{i} l
$$

Where $B_{y}=$ flux density in yoke

$$
=1.3 \text { to } 1.5 \mathrm{~T}
$$

So $\quad h_{y}=\frac{\phi_{1} / 2}{B_{y} K_{i} l}$
(11) Outer dia of IM $\left(D_{0}\right)$:

$$
D_{o}=D+2 h_{s}+2 h_{y}
$$

(12) Estimation of iron losses:

Corresponding to flux density in tooth $B_{t \frac{1}{3} h_{t}}$ find out iron loss per Kg from the graph given on page 19, fig 18. So $\quad B_{t_{\frac{1}{3} k_{t}}} \Rightarrow p_{i t} W / K g$
Iron loss in teeth

$$
\begin{aligned}
& =\mathrm{p}_{\mathrm{it}}^{*} \text { density } * \text { volume of iron in teeth } \\
& =\mathrm{p}_{\mathrm{it}}^{*} 7600 * \text { volume of iron in teeth }
\end{aligned}
$$

Corresponding to flux density in yoke B_{y} find out iron loss per Kg from the graph given on page 19, fig 18. So $\quad B_{y} \Rightarrow p_{i y} W / K g$
Iron loss in yoke

$$
\begin{aligned}
& =\mathrm{p}_{\mathrm{iy}} * \text { density } * \text { volume of iron in yoke } \\
& =\mathrm{p}_{\mathrm{iy}} * 7600 * \text { volume of iron in yoke } \\
\text { Total iron losses } \quad \mathrm{P}_{\mathrm{i}} & =\text { Iron loss in teeth + Iron loss in yoke }
\end{aligned}
$$

So

$$
I_{C}=\frac{P_{i}}{3 V_{P h 1}}
$$

ROTOR DESIGN:

(1) Estimation of rotor no of slots ($\mathbf{S}_{\mathbf{2}}$)

If $S_{1}=S_{2}$, cogging will take place and slot selection also affects noise \& vibrations. So as a general rule to avoid crawling, cogging and keeping noise $\&$ vibrations low, following slot combinations are selected

$$
\begin{aligned}
& q_{1}-q_{2}= \pm 1, \pm \frac{1}{3}, \pm \frac{2}{3} \ldots \ldots \ldots \\
& q_{2}=q_{1} \pm 1, \pm \frac{1}{3}, \pm \frac{2}{3} \ldots \ldots \ldots
\end{aligned}
$$

Where, $q_{1} \& \mathrm{q}_{2}$ are no of slots per pole per phase for stator and rotor respectively.
So No of rotor slots

$$
S_{2}=3 q_{2} P
$$

(2) Estimation of rotor no of turns, conductors etc

(a) Wound rotor IM:

We may keep

$$
\frac{V_{P h 2}}{V_{P h 1}}=\frac{N_{P h 2}}{N_{P h 1}}=0.5 \rightarrow 0.6
$$

So No of turns per phase on rotor

$$
N_{P h 2}=(0.5 \rightarrow 0.6) N_{P h 1}
$$

Total no of conductors on rotor

$$
Z_{2}=6 N_{P h 2}
$$

Conductors per slot for rotor
$N_{C 2}=\frac{Z_{2}}{S_{2}} \quad$ Make it $\left(\mathrm{N}_{\mathrm{C} 2}\right)$ integer if not and divisible by 2 for 2 layer winding. Hence find out correct value of $N_{C 2}, N_{\text {Ph } 2} \& Z_{2}$ i.e. $N_{C 2, \text { Corrected }} N_{\text {Ph2,Corrected, }}, Z_{2, \text { Corrected }}$
(b) Cage rotor IM:

No of rotor bars

$$
Z_{2 \text { bar }}=S_{2}
$$

(3) Rotor current ($\mathbf{I}_{\mathbf{P h} 2}$)

It is assumed that 85% of ampere turns get transferred to the rotor.
Ampere turns on stator $=3 \mathrm{I}_{\mathrm{Ph} 1} \mathrm{~N}_{\mathrm{Ph} 1}$

(a) Wound rotor IM:

Ampere turns on rotor $=3 \mathrm{I}_{\mathrm{Ph} 2} \mathrm{~N}_{\mathrm{Ph} 2}$
So

$$
3 \mathrm{I}_{\mathrm{Ph} 2} \mathrm{~N}_{\mathrm{Ph} 2}=0.85 \times 3 \mathrm{I}_{\mathrm{Ph} 1} \mathrm{~N}_{\mathrm{Ph} 1}
$$

Or

$$
\mathrm{I}_{\mathrm{Ph} 2}=\frac{0.85 \times \mathrm{I}_{\mathrm{Ph} 1} \mathrm{~N}_{\mathrm{Ph} 1}}{\mathrm{~N}_{\mathrm{Ph} 2}}
$$

(b) Cage rotor IM:

Ampere turns on rotor $=I_{2 \text { bar }} \frac{S_{2}}{2}$
So

$$
\begin{aligned}
\mathrm{I}_{2 \text { bar }} \frac{\mathrm{S}_{2}}{2} & =0.85 \times 3 \mathrm{I}_{\mathrm{Ph} 1} \mathrm{~N}_{\mathrm{Ph} 1} \\
\mathrm{I}_{2 \text { bar }} & =\frac{0.85 \times 6 \mathrm{I}_{\mathrm{Ph} 1} \mathrm{~N}_{\mathrm{Ph} 1}}{\mathrm{~S}_{2}}
\end{aligned}
$$

Or
End ring current

$$
I_{2 e n d r i n g}=\frac{S_{2} \times I_{2 b a r}}{\Pi P}
$$

(4) Size of rotor conductors:
(a) Wound rotor IM:

X-sectional area of rotor conductor

$$
F_{C 2}=\frac{I_{P h 2}}{\delta_{2}}
$$

Where

$$
\begin{aligned}
\delta_{2} & =\text { Current density in rotor winding } \\
& =4 \text { to } 5 \mathrm{~A} / \mathrm{mm} 2
\end{aligned}
$$

(Higher than stator current density because rotor is rotating so cooling is increased hence, δ_{2} is more)
SWG or strip conductors may be used.

(b) Cage rotor IM:

X-sectional area of rotor bar

Where

$$
F_{C 2 b a r}=\frac{I_{2 b a r}}{\delta_{b a r}}
$$

$$
\begin{aligned}
\delta_{b a r} & =\text { Current density in rotor bar } \\
& =5 \text { to } 7 \mathrm{~A} / \mathrm{mm} 2
\end{aligned}
$$

(Higher than stator \& wound rotor because rotor conductors are bare that is no insulation so better heat conduction resulting in better cooling so δ is more)
If round bars are used then dia of bar

$$
\begin{aligned}
& F_{C 2 b a r}=\frac{\Pi}{4} d_{2 b a r}^{2} \\
& d_{2 b a r}=\sqrt{\frac{4 F_{C 2 b a r}}{\Pi}}
\end{aligned}
$$

X -sectional area of rotor endring

$$
F_{C 2 e n d r i n g}=\frac{I_{2 \text { endring }}}{\delta_{b a r}}
$$

Current density in end ring is same as current density in bar.

(5) Flux density in rotor tooth

(Note: This is same as flux density in stator tooth)
Dia of rotor at $\frac{1}{3}^{r d}$ of tooth height from narrow end

$$
D_{\frac{1}{3} h_{t 2}}=D-2 \delta-\frac{2}{3} h_{t 2} \times 2
$$

Slot pitch at $\frac{1^{\text {rd }}}{3}$ of tooth height from narrow end

$$
\tau_{s g 2 \frac{1}{3} \frac{1}{12}}=\frac{\Pi D_{\frac{1}{3} n_{12}}}{S_{2}}
$$

Width of the tooth at $\frac{1^{\text {rd }}}{}$ of tooth height from narrow end

$$
b_{t 2 \frac{1}{3} h_{12}}=\tau_{S g 2 \frac{1}{3} h_{12}}-b_{S 2}
$$

Area of one stator tooth at $\frac{1}{3}^{\text {rd }}$ of tooth height from narrow end

$$
=b_{t 2 \frac{1}{3} h_{12}} \times K_{i} l
$$

Area of all the stator teeth under one pole

$$
\begin{aligned}
& A_{t 2 \frac{1}{3} h_{12}}=\text { Area of one tooth } \times \text { No of teeth per pole }\left(\frac{S_{2}}{P}\right) \\
& \quad=b_{t 2 \frac{1}{3} h_{12}} \times K_{i} l \times\left(\frac{S_{2}}{P}\right) \\
& \quad=\left[\frac{\Pi\left(D-2 \delta-\frac{2}{3} h_{t 2} \times 2\right)}{S_{2}}-b_{s 2}\right] \times K_{i} l \times\left(\frac{S_{2}}{P}\right)
\end{aligned}
$$

So mean flux density in teeth

$$
B_{t 2 \frac{1}{3} n_{12}}=\frac{\phi_{1}}{A_{t 2 \frac{1}{3} h_{12}}}
$$

(6) Rotor copper loss
(a) Wound rotor:

Length of mean turns of rotor

$$
L_{m t 2}=2 L+3.5 \tau_{P}
$$

DC resistance per phase at $75^{\circ} \mathrm{C}$

$$
R_{P h 2,75^{\circ} \mathrm{C}}=0.021 \times 10^{-6} \times \frac{L_{m+2}}{F_{c 2}} N_{P h 2}
$$

We don't take the ac resistance because the rotor current frequency is very small ($\mathrm{f}_{2}=\mathrm{sf}$)
So Rotor cu loss $=3 I_{P h 2}^{2} R_{P h 2}$

(b) Cage rotor:

Resistance of one bar $=0.021 \times 10^{-6} \frac{L(m)}{F_{C 2 b a r}\left(m^{2}\right)}$
Cu loss in bars $=S_{2} \times I_{2 b a r}^{2} \times$ Resistance of one bar Resistance of end ring

$$
=0.021 \times 10^{-6} \frac{\Pi\left(D-2 \delta-2 d_{2 b a r}\right)(m)}{F_{\text {C2endring }}\left(m^{2}\right)}
$$

Cu loss in end rings

$$
=2 \times I_{\text {2endring }}^{2} \times \text { Resistance of one endring }
$$

Total cu loss $=\mathrm{Cu}$ loss in bars +Cu loss in end rings

Slip

$$
\begin{aligned}
& S=\frac{\text { Rotor Cu Loss }}{\text { Rotor Input Power }} \\
& S=\frac{\text { Rotor Cu Loss }}{\text { Mech Power Output }+ \text { Losses }}
\end{aligned}
$$

Losses $=$ Rotor Iron Loss (Negligible) + Rotor Cu loss $+\mathrm{F} \& \mathrm{~W}$ loss
F \& W loss up to 5\% for small motors
3% to $4 \% \quad$ for medium motors
2% to 3% for large motors
S up to 5\% for small motors
2.5% to 3.5% for medium motors
1% to 1.5% for large motors

EFFECTIVE AIR GAP LENGTH $\left(\delta^{\prime}\right)$:

Effective air gap length

$$
\delta^{\prime}=K_{C 1} K_{C 2} \delta
$$

Where

$$
K_{C 1}=\text { Gap Contraction factor for stator }
$$

$$
K_{C 2}=\text { Gap Contraction factor for rotor }
$$

$$
K_{C 2}=\frac{\tau_{S_{g} 2}}{\tau_{S_{g} 2}-K_{02} b_{02}} \quad \& \tau_{S_{g} 2}=\frac{\Pi(D-2 \delta)}{S_{2}}
$$

$$
\begin{aligned}
& K_{C 1}=\frac{\tau_{S_{g} 1}}{\tau_{S_{g} 1}-K_{01} b_{01}} \& \tau_{S_{g 1}}=\frac{\Pi D}{S_{1}} \\
& b_{01}=\text { stator slot Opening } \\
& K_{01}=\text { Carter's gap coefficient for stator }=\frac{1}{1+5 \frac{\delta}{b_{s 1}}}
\end{aligned}
$$

$K_{02}=$ Carter's gap coefficient for rotor $=\frac{1}{1+5 \frac{\delta}{b_{s 2}}}$

$$
b_{02}=\text { rotor slot Opening }
$$

FLUX DENSITY DISTRIBUTION:

Flux density at 30° from direct axis
$=$ flux density at 60° from inter-polar axis
So $\quad B_{30^{\circ}}=B_{60^{\circ}}=B_{m 1} \operatorname{Cos} 30^{\circ}$

$$
\begin{aligned}
& =\frac{\Pi}{2} \bar{B} \frac{\sqrt{3}}{2} \\
& =1.36 \bar{B}
\end{aligned}
$$

For all practical purposes this value is modified to

$$
B_{30^{\circ}}=1.35 \bar{B}
$$

$\underline{\text { MMF REQUIRED IN AIR GAP }}\left(A T_{\delta^{\prime}}\right)$:

$$
\begin{aligned}
& H=\frac{1}{\mu_{0}} B \\
& A T_{\delta^{\prime}}=\frac{1}{\mu_{0}} B_{30^{\prime}} \delta^{\prime}
\end{aligned}
$$

ESTIMATION OF MAGNETIZING CURRENT \& NO LOAD CURRENT ($\mathbf{I}_{\underline{m}}$ \& $\mathbf{I}_{\mathbf{o}}$):

S.No	Part	Length of path	Flux density	$\begin{gathered} \text { at } \\ (\mathrm{AT} / \mathrm{m}) \end{gathered}$	$\mathbf{A T}_{\text {pole-pair }}$
1	Stator Yoke	1_{y}	B_{y}	at_{y}	AT_{y}
2	Stator Tooth	$2 \mathrm{~h}_{\text {t1 }}$	$B_{t_{3}^{1} h_{t 1}}$	$\mathrm{at}_{2 \mathrm{ht1}}$	$\mathrm{AT}_{2 \text { ht1 }}$
3	Air Gap	$2 \delta^{\prime}$	$B_{30}{ }^{0}$	$a t_{28}$.	AT_{28},
4	Rotor Tooth	$2 \mathrm{~h}_{12}$	B	$\mathrm{at}_{2 \mathrm{ht} 2}$	$\mathrm{AT}_{2 \mathrm{~h} 2}$
5	Rotor Yoke	$1_{\text {ry }}$	$\mathrm{Bry}_{\mathrm{ry}}$	atry	$\mathrm{AT}_{\text {ry }}$
$\mathbf{A T}_{\text {pole-pair }}=A T_{30}=\sum$					

$$
A T_{30}=\mathrm{AT}_{\mathrm{y}}+\mathrm{AT}_{2 \mathrm{ht} 1}+\mathrm{AT}_{2 \delta^{\prime}}+\mathrm{AT}_{2 \mathrm{~h} \mid 2}+\mathrm{AT}_{\mathrm{ry}}
$$

AT for one pole $=\frac{A T_{30}}{2}$
So magnetizing component of no load current

$$
I_{m}=A T_{30} \frac{P}{2} \frac{1}{1.17 K_{p d 1} N_{P h 1}} \quad I_{C}=\frac{P_{i}}{3 V_{P h 1}}
$$

No load current

$$
I_{o}=\sqrt{I_{C}^{2}+I_{m}^{2}}
$$

No load power factor

$$
\operatorname{Cos} \phi_{o}=\frac{I_{C}}{I_{O}}
$$

ESTIMATIONS OF IDEAL BLOCKED ROTOR CURRENT:

Total resistance referred to stator

$$
R_{01}=R_{1}+R_{2}^{\prime}
$$ Where $R_{2}^{\prime}=\left(\frac{K_{p d 1} N_{P h 1}}{K_{p d 2} N_{P h 2}}\right)^{2} R_{2}$

Total leakage reactance referred to stator

$$
\begin{aligned}
& X_{01}=X_{1}+X_{2}^{\prime} \\
& I_{s c, \text { Ideal }}=\frac{V_{P h 1}}{\sqrt{R_{01}^{2}+X_{01}^{2}}} \\
& \operatorname{Cos} \phi_{s c}=\frac{R_{01}}{\sqrt{R_{01}^{2}+X_{01}^{2}}}
\end{aligned}
$$

ESTIMATION OF LEAKAGE REACTANCE:

Leakage reactance consists of

1. Stator slot leakage reactance
2. Rotor slot leakage reactance
(a) Wound rotor or
(b) Cage rotor

Slot leakage Reactance

For cage rotor IM Zigzag leakage reactance is small and may be ignored.
5. Differential or harmonic leakage reactance

1. Stator slot leakage reactance:

Assumptions are
(i) Permeability of iron is infinity so NO MMF is consumed in iron path.
(ii) Leakage flux path is parallel to slot width

Let
$\mathrm{I}_{\mathrm{c} 1}=$ Conductor current (A)
$\mathrm{N}_{\mathrm{c} 1}=$ No of conductors per slot
$\mathrm{Z}_{1}=$ Total No of conductors
$\mathrm{N}_{\mathrm{Ph} 1}=$ Turns per Phase
P = No of poles
$\mathrm{q}_{1}=$ Slot / Pole /Phase

(a) For 1-Layer winding

Total amp conductors in slot $=I_{c 1} N_{c 1}$
Consider an elementary path of thickness dx at a distance of x as shown in the figure. Let $d \phi_{x}$ be the leakage flux through the elementary path of thickness $d x$ \& height x.
MMF at distance x

$$
\begin{equation*}
M_{x}=\frac{N_{c 1} I_{c 1}}{h_{1}} x \tag{1}
\end{equation*}
$$

Permeance $=\mu_{0} \frac{A}{L}=\mu_{0} \frac{L d x}{b_{s 1}}$
So

$$
\begin{align*}
& d \phi_{x}=M_{x} \times \text { Permeance of the path } \\
& d \phi_{x}=\frac{N_{c 1} I_{c 1}}{h_{1}} x \times \mu_{0} \frac{L d x}{b_{s 1}}--- \text { (3) } \tag{3}
\end{align*}
$$

Leakage flux linkages associated with this elementary path
$d \psi_{x}=$ No of Conductors with which it is associated $\times d \phi_{x}$

$$
\begin{equation*}
d \psi_{x}=\left(\frac{N_{C 1}}{h_{1}} x\right) \times \frac{N_{c 1} I_{c 1}}{h_{1}} x \times \mu_{0} \frac{L d x}{b_{s 1}} \tag{4}
\end{equation*}
$$

So flux linkages in height h_{1}

$$
\begin{equation*}
\psi_{h 1}=\mu_{0} N_{C 1}^{2} I_{c 1} \frac{L}{b_{s 1}} \int_{0}^{h_{1}}\left(\frac{x}{h_{1}}\right)^{2} d x \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{h 1}=\mu_{0} N_{C 1}^{2} I_{c 1} L \frac{h_{1}}{3 b_{s 1}} \tag{6}
\end{equation*}
$$

Leakage flux linkages in height h_{2}

$$
\begin{equation*}
\psi_{h 2}=\mu_{0} N_{C 1}^{2} I_{c 1} L \frac{h_{2}}{b_{s 1}} \tag{7}
\end{equation*}
$$

Leakage flux linkages in height h_{3}

$$
\begin{equation*}
\psi_{h 3}=\mu_{0} N_{C 1}^{2} I_{c 1} L \frac{2 h_{3}}{\left(b_{s 1}+b_{01}\right)} \tag{8}
\end{equation*}
$$

Leakage flux linkages in height h_{4}

$$
\begin{equation*}
\psi_{h 4}=\mu_{0} N_{C 1}^{2} I_{c 1} L \frac{h_{4}}{b_{01}} \tag{9}
\end{equation*}
$$

Total slot leakage flux

$$
\begin{equation*}
\psi_{s 1}=\mu_{0} N_{C 1}^{2} I_{c 1} L\left[\frac{h_{1}}{3 b_{s 1}}+\frac{h_{2}}{b_{s 1}}+\frac{2 h_{3}}{\left(b_{s 1}+b_{01}\right)}+\frac{h_{4}}{b_{01}}\right]- \tag{10}
\end{equation*}
$$

Slot leakage inductance will be

$$
\begin{align*}
& L_{s 1}=\frac{\Psi_{s 1}}{I_{C 1}}=N_{C 1}^{2} L \quad \mu_{0}\left[\frac{h_{1}}{3 b_{s 1}}+\frac{h_{2}}{b_{s 1}}+\frac{2 h_{3}}{\left(b_{s 1}+b_{01}\right)}+\frac{h_{4}}{b_{01}}\right]- \tag{11}\\
& L_{s 1}=\frac{\Psi_{s 1}}{I_{C 1}}=N_{C 1}^{2} L \quad\left[\lambda_{s}\right] \tag{12}
\end{align*}
$$

Where

$$
\lambda_{s}=\mu_{0}\left[\frac{h_{1}}{3 b_{s 1}}+\frac{h_{2}}{b_{s 1}}+\frac{2 h_{3}}{\left(b_{s 1}+b_{01}\right)}+\frac{h_{4}}{b_{01}}\right]=\text { Specific slot permeance }
$$

No of slots per phase $=\mathrm{Pq}_{1}$
Slot leakage inductance per phase

$$
\begin{equation*}
L_{s 1} / \text { Phase }=P q_{1} N_{C 1}^{2} L \quad\left[\lambda_{s}\right] \tag{13}
\end{equation*}
$$

Total No of conductors

$$
Z_{1}=N_{c 1} \cdot 3 q_{1} \cdot P=6 N_{P h 1}
$$

So $\quad N_{C 1}=\frac{2 N_{P h 1}}{P q_{1}}$ Put in above equation
So $\quad L_{s 1} /$ Phase $=P q_{1}\left(\frac{2 N_{P h 1}}{P q_{1}}\right)^{2} L\left[\lambda_{s}\right]$
Or $\quad L_{s 1} /$ Phase $=4 \mu_{0} \frac{N_{P h 1}^{2}}{P q_{1}} L\left[\frac{h_{1}}{3 b_{s 1}}+\frac{h_{2}}{b_{s 1}}+\frac{2 h_{3}}{\left(b_{s 1}+b_{01}\right)}+\frac{h_{4}}{b_{01}}\right]$
Slot leakage reactance per phase (1-Layer)

$$
\begin{align*}
& X_{s 1}=2 \pi f L_{s 1} / \text { Phase } \\
& X_{1}=X_{s 1}=8 \pi f \mu_{0} \frac{N_{P h 1}^{2}}{P q_{1}} L\left[\frac{h_{1}}{3 b_{s 1}}+\frac{h_{2}}{b_{s 1}}+\frac{2 h_{3}}{\left(b_{s 1}+b_{01}\right)}+\frac{h_{4}}{b_{01}}\right] \tag{15}
\end{align*}
$$

(b) For 2-Layer winding

Same as 1-Layer winding
Slot leakage reactance per phase (2-layer)

$$
\begin{equation*}
X_{1}=X_{s 2}=8 \pi f \mu_{0} \frac{N_{P h 1}^{2}}{P q_{1}} L\left[\frac{2 h_{1}}{3 b_{s 1}}+\frac{h_{2}}{4 b_{s 1}}+\frac{h_{3}}{b_{s 1}}+\frac{2 h_{4}}{\left(b_{s 1}+b_{01}\right)}+\frac{h_{5}}{b_{01}}\right] \tag{16}
\end{equation*}
$$

2-Layer stator slot MMF Distribution

2. Rotor slot leakage reactance $\left(X_{2}\right)$

(a) Wound rotor: Estimated in the same manor as for stator.
(b) Cage rotor:
$\mathrm{W}_{0}=\mathrm{b}_{02}=(0.2$ to 0.4$) \mathrm{d}_{2 \text { bar }}$
$\mathrm{h}=1$ to 3 mm
Rotor reactance per phase

$$
\begin{equation*}
X_{2}=8 \pi f \frac{N_{P h 2}^{2}}{P q_{2}} L \quad\left[\lambda_{r}\right] \tag{17}
\end{equation*}
$$

Where

$$
\begin{aligned}
& \lambda_{r}=\text { Rotor Specific Permeance } \\
& \lambda_{r}=\mu_{0}\left(0.623+\frac{h}{W_{0}}\right)
\end{aligned}
$$

Rotor resistance referred to stator

$$
X_{2}^{\prime}=\left(\frac{K_{p d 1} N_{P h 1}}{K_{p d 2} N_{P h 2}}\right)^{2} X_{2}
$$

Where

Cage Rotor with Round Slot
3. Overhang leakage reactance $\left(X_{0}\right)$:

$$
\begin{equation*}
X_{0}=8 \pi f \frac{N_{P h 1}^{2}}{P q_{1}} l_{0} \quad\left[\lambda_{0}\right] \tag{18}
\end{equation*}
$$

Where

$$
\lambda_{0}=\text { Overhang Specific Permeance }
$$

$$
\begin{aligned}
& \lambda_{0}=\mu_{0} K_{s} \frac{\tau_{P}^{2}}{l_{0} \pi \tau_{s g}} \\
& 1_{0}=\text { Length of conductor in overhang } \\
& \mathrm{K}_{\mathrm{s}}=\text { Slot leakage factor } \\
& \tau_{P}=\text { Pole Pitch } \\
& \tau_{s g}=\text { Slot Pitch }
\end{aligned}
$$

4. Zigzag leakage reactance (X_{z}):

$$
\begin{equation*}
X_{z}=\frac{5}{6} X_{m}\left(\frac{1}{S_{P 1}^{2}}+\frac{1}{S_{P 2}^{2}}\right) \tag{19}
\end{equation*}
$$

Where

$$
X_{m}=\frac{V_{P h 1}}{I_{m}} \quad S_{P 1}=\frac{S_{1}}{P} \quad \& \quad S_{P 2}=\frac{S_{2}}{P}
$$

5. Differential or Belt or Harmonic leakage reactance (X_{h}):

It is ignored for cage rotor but considered for wound rotor IM. It is due to the fact that spatial distribution of MMFs of the primary and secondary windings is not the same; the difference in the harmonic contents of the two MMFs causes harmonic leakage fluxes.

$$
\begin{equation*}
X_{h}=X_{m}\left(K_{h 1}+K_{h 2}\right) \tag{20}
\end{equation*}
$$

Where
$\mathrm{K}_{\mathrm{h} 1} \& \mathrm{~K}_{\mathrm{h} 2}$ are the factors for stator \& rotor

Hence

Total leakage reactance referred to the stator side

$$
X_{01}=X_{1}=X_{s 1}+X_{2}^{\prime}+X_{0}+X_{z}+X_{h}
$$

CONSTRUCTION OF CIRCLE DIAGRAM FROM DESIGNED DATA:

We should know following for drawing the circle diagram
a. No load current and no load power factor
b. Short circuit current and short circuit power factor

Steps to draw the circle diagram are (See the figure)

1. Draw horizontal (x-axis) and vertical (y-axis) lines.
2. Draw I_{0} at an angle ϕ_{0} from vertical line assuming some scale for current.
3. Draw $I_{s c}$ at an angle $\phi_{s c}$ from vertical line.
4. Join AB , which represents the o / p line of the motor to power scale.
5. Draw a horizontal line AC , and erect a perpendicular bisector on the o / p line AB so as to meet the line AF at the point O^{\prime}. Then O^{\prime} as center and AO^{\prime} as radius, draw a semi circle ABC .
6. Draw vertical line BD ; divide line BD in the radio of rotor copper loss to stator copper loss at the point E.
7. Join AE, which represent the torque line.

Determination of design performance from above circle diagram

1. Power scale can be find out from current scale Power in watt per $\mathrm{Cm}=$ Voltage x Current per Cm
2. Full load current \& power factor

Draw a vertical line BF representing the rated o / p of the motor as per the power scale.
From point F, draw a line parallel to o/p line, so as to cut the circle at pint P. Join OP which represents the full load current of the motor to current scale.

Operating power factor $=\cos \phi_{1}$
3. Full load efficiency

Draw a vertical line from P as shown in above figure.

$$
\begin{aligned}
\mathrm{PQ} & =\mathrm{O} / \mathrm{p} \text { Power } \\
\mathrm{PT} & =\mathrm{I} / \mathrm{p} \text { Power } \\
\eta & =\frac{P Q}{P T}
\end{aligned}
$$

4. Full load slip

$$
\begin{aligned}
\text { Slip } & =\frac{\text { Rotor Cu loss }}{\text { Rotor Input Power }} \\
& =\frac{Q R}{P S}
\end{aligned}
$$

5. Torque: Line PS represents the torque of the motor in synchronous watts on power scale.
6. Maximum power output: Draw perpendicular line from O^{\prime} to line AB (o / p Line), which intersect circle at point U. Now draw vertical line UV.

Maximum power output $=$ UV
7. Maximum Torque: Draw perpendicular line from O' to line AE (torque Line), which intersect circle at point W . Now draw vertical line WX.

$$
\text { Maximum Torque }=\text { WX } \quad(\text { Synchronous Watt })
$$

