
1© Copyright 2010 Dieter Fensel and Florian Fischer

Inductive Logic
Programming

Artificial Intelligence

2

Where are we?

Title
1 Introduction

2 Propositional Logic

3 Predicate Logic

4 Reasoning

5 Search Methods

6 CommonKADS

7 Problem-Solving Methods

8 Planning

9 Software Agents

10 Rule Learning

11 Inductive Logic Programming

12 Formal Concept Analysis

13 Neural Networks

14 Semantic Web and Services

3

Agenda

• Motivation
• Technical Solution

– Model Theory of ILP
– A Generic ILP Algorithm
– Proof Theory of ILP
– ILP Systems

• Illustration by a Larger Example
• Summary
• References

4

MOTIVATION

4

5

Motivation

• There is a vast array of different machine learning
techniques, e.g.:
– Decision Tree Learning (see previous lecture)
– Neural networks
– and… Inductive Logic Programming (ILP)

• Advantages over other ML approaches
– ILP uses an expressive First-Order framework instead of simple

attribute-value framework of other approaches
– ILP can take background knowledge into account

6

Inductive Logic Programming

=

Inductive Learning ∩ Logic Programming

7

The inductive learning and logic programming
sides of ILP

• From inductive machine learning, ILP inherits its goal: to
develop tools and techniques to
– Induce hypotheses from observations (examples)
– Synthesise new knowledge from experience

• By using computational logic as the representational
mechanism for hypotheses and observations, ILP can
overcome the two main limitations of classical machine
learning techniques:
– The use of a limited knowledge representation formalism

(essentially a propositional logic)
– Difficulties in using substantial background knowledge in the

learning process

8

The inductive learning and logic programming
sides of ILP (cont’)

• ILP inherits from logic programming its
– Representational formalism
– Semantical orientation
– Various wellestablished techniques

• ILP systems benefit from using the results of logic
programming
– E.g. by making use of work on termination, types and modes,

knowledgebase updating, algorithmic debugging, abduction,
constraint logic programming, program synthesis and program
analysis

Presenter
Presentation Notes

9

The inductive learning and logic programming
sides of ILP (cont’)

• Inductive logic programming extends the theory and
practice of logic programming by investigating induction
rather than deduction as the basic mode of inference
– Logic programming theory describes deductive inference from

logic formulae provided by the user
– ILP theory describes the inductive inference of logic programs

from instances and background knowledge

• ILP contributes to the practice of logic programming by
providing tools that assist logic programmers to develop
and verify programs

10

Introduction – Basic example

• Imagine learning about the relationships between people in your
close family circle

• You have been told that your grandfather is the father of one of your
parents, but do not yet know what a parent is

• You might have the following beliefs (B):
grandfather(X, Y) ← father(X, Z), parent(Z, Y)
father(henry, jane) ←
mother(jane. john) ←
mother(jane, alice) ←

• You are now given the following positive examples concerning the
relationships between particular grandfathers and their
grandchildren (E+):

grandfather(henry, john) ←
grandfather(henry, alice) ←

11

Introduction – Basic example

• You might be told in addition that the following relationships do not
hold (negative examples) (E-)

← grandfather(john, henry)
← grandfather(alice, john)

• Believing B, and faced with examples E+ and E- you might guess the
following hypothesis H1 ∈ H

parent(X, Y) ← mother(X, Y)

• H is the set of hypotheses and contain an arbitrary number of
individual speculations that fit the background knowledge and
examples

• Several conditions have to be fulfilled by a hypothesis
– Those conditions are related to completeness and consistency with

respect to the background knowledge and examples

12

Introduction – Basic example

• Consistency:
– First, we must check that our problem has a solution:

B ∪ E-⊭ □ (prior satisfiability)
• If one of the negative examples can be proved to be true from the

background information alone, then any hypothesis we find will not
be able to compensate for this. The problem is not satisfiable.

– B and H are consistent with E-:
B ∪ H ∪ E-⊭ □ (posterior satisfiability)

• After adding a hypothesis it should still not be possible to prove a
negative example.

• Completeness:
– However, H allows us to explain E+ relative to B:

B ∪ H ⊧ E+ (posterior sufficiency)
• This means that H should fit the positive examples given.

Presenter
Presentation Notes
Prior satisfiability: If one of the negative examples can be proved to be true from the background information alone, then clearly any hypothesis we find will not be able to compensate for this, and the problem is not satisfiable. Actually this is forall e in E- (B does not entail e), or more conveniently as on the slide.

13

TECHNICAL SOLUTIONS
Model Theory of ILP

13

14

Model Theory – Normal Semantics

• The problem of inductive inference:
– Given is background (prior) knowledge B and evidence E
– The evidence E = E+ ∪ E- consists of positive evidence E+ and

negative evidence E-

– The aim is then to find a hypothesis H such that the following
conditions hold:

Prior Satisfiability: B ∪ E-⊭ □
Posterior Satisfiability: B ∪ H ∪ E-⊭ □
Prior Necessity: B ⊭ E+

Posterior Sufficiency: B ∪ H ⊧ E+

• The Sufficiency criterion is sometimes named completeness with
regard to positive evidence

• The Posterior Satisfiability criterion is also known as consistency
with the negative evidence

• In this general setting, background-theory, examples, and
hypotheses can be any (well-formed) formula

15

Model Theory – Definite Semantics

• In most ILP practical systems background theory and hypotheses
are restricted to being definite clauses
– Clause: A disjunction of literals
– Horn Clause: A clause with at most one positive literal
– Definite Clause: A Horn clause with exactly one positive literal

• This setting has the advantage that definite clause theory T
has a unique minimal Herbrand model M+(T)
– Any logical formulae is either true or false in this minimal model (all

formulae are decidable and the Closed World Assumption holds)

16

Model Theory – Definite Semantics

• The definite semantics again require a set of conditions to hold
• We can now refer to every formula in E since they are guaranteed to

have a truth value in the minimal model

• Consistency:
Prior Satisfiability: all e in E- are false in M+(B)
– Negative evidence should not be part of the minimal model
Posterior Satisfiability: all e in E- are false in M+(B ∪ H)
– Negative evidence should not be supported by our hypotheses

• Completeness
Prior Necessity: some e in E+ are false in M+(B)
– If all positive examples are already true in the minimal model of the background

knowledge, then no hypothesis we derive will add useful information
Posterior Sufficiency: all e in E+ are true in M+(B ∪ H)
– All positive examples are true (explained by the hypothesis) in the minimal model

of the background theory and the hypothesis

17

Model Theory – Definite Semantics

• An additional restriction in addition to those of the definite semantics
is to only allow true and false ground facts as examples (evidence)

• This is called the example setting
– The example setting is the main setting employed by ILP systems
– Only allows factual and not causal evidence (which usually captures more

knowledge)

• Example:
– B: grandfather(X, Y) ← father(X, Z), parent(Z, Y)

father(henry, jane) ←
etc.

– E: grandfather(henry, john) ←
grandfather(henry, alice) ←

← grandfather(X, X)

grandfather(henry, john) ← father(henry, jane), mother(jane, john)

Not allowed in
example setting

Not allowed in definite
semantics

18

Model Theory – Non-monotonic Semantics

• In the nonmonotonic setting:
– The background theory is a set of definite clauses
– The evidence is empty

• The positive evidence is considered part of the
background theory

• The negative evidence is derived implicitly, by making
the closed world assumption (realized by the minimal
Herbrand model)

– The hypotheses are sets of general clauses
expressible using the same alphabet as the
background theory

19

Model Theory – Non-monotonic Semantics (2)

• Since only positive evidence is present, it is assumed to
be part of the background theory:

B’ = B ∪ E
• The following conditions should hold for H and B’:

– Validity: all h in H are true in M+(B’)
• All clauses belonging to a hypothesis hold in the database B, i.e.

that they are true properties of the data
– Completeness: if general clause g is true in M+(B’) then H ⊧ g

• All information that is valid in the minimal model of B’ should follow
from the hypothesis

• Additionally the following can be a requirement:
– Minimality: there is no proper subset G of H which is valid and

complete
• The hypothesis should not contain redundant clauses

20

Model Theory – Non-monotonic Semantics (3)

• Example for B (definite clauses):
male(luc) ←
female(lieve) ←
human(lieve) ←
human(luc) ←

• A possible solution is then H (a set of general clauses):
← female(X), male(X)
human(X) ← male(X)
human(X) ← female(X)
female(X), male(X) ← human(X)

21

Model Theory – Non-monotonic Semantics (4)

• One more example to illustrate the difference between
the example setting and the non-monotonic setting

• Consider:
– Background theory B

bird(tweety) ←
bird(oliver) ←

– Examples E+:
flies(tweety)

– For the non-monotonic setting B’ = B ∪ E+ because positive
examples are considered part of the background knowledge

22

Model Theory – Non-monotonic Semantics (5)

• Example setting:
– An acceptable hypothesis H1 would be

flies(X) ← bird(X)
– It is acceptable because if fulfills the completeness and

consistency criteria of the definite semantics
– This realizes can inductive leap because flies(oliver) is true in

M+(B ∪ H) = { bird(tweety), bird(oliver), flies(tweety), flies(oliver) }

• Non-monotonic setting:
– H1 is not a solution since there exists a substitution {X ← oliver}

which makes the clause false in M+(B’) (the validity criteria is
violated:

M+(B’) = { bird(tweety), bird(oliver), flies(tweety) }
{X ← oliver}: flies(oliver) ← bird(oliver)
{X ← tweety}: flies(tweety) ← bird(tweety)

23

TECHNICAL SOLUTIONS
A Generic ILP Algorithm

23

24

ILP as a Search Problem

• ILP can be seen as a search problem - this view follows
immediately from the modeltheory of ILP
– In ILP there is a space of candidate solutions, i.e. the set of

hypotheses, and an acceptance criterion characterizing solutions
to an ILP problem

• Question: how the space of possible solutions can be
structured in order to allow for pruning of the search?
– The search space is typically structured by means of the dual

notions of generalisation and specialisation
• Generalisation corresponds to induction
• Specialisation to deduction
• Induction is viewed here as the inverse of deduction

25

Specialisation and Generalisation Rules

• A hypothesis G is more general than a hypothesis S if
and only if G ⊧ S
– S is also said to be more specific than G.

• In search algorithms, the notions of generalisation and
specialisation are incorporated using inductive and
deductive inference rules:
– A deductive inference rule r maps a conjunction of clauses G

onto a conjunction of clauses S such that G ⊧ S
• r is called a specialisation rule

– An inductive inference rule r maps a conjunction of clauses S
onto a conjunction of clauses G such that G ⊧ S

• r is called a generalisation rule

26

Pruning the search space

• Generalisation and specialisation form the basis for
pruning the search space; this is because:

– When B ∪ H ⊭ e, where e ∈ E+, B is the background theory, H is
the hypothesis, then none of the specialisations H’ of H will imply
the evidence

• They can therefore be pruned from the search.

– When B ∪ H ∪ {e} ⊧ □, where e ∈ E-, B is the background theory,
H is the hypothesis, then all generalisations H’ of H will also be
inconsistent with B ∪ E

• We can again drop them

27

A Generic ILP Algorithm

• Given the key ideas of ILP as search a generic ILP system is
defined as:

• The algorithm works as follows:
– It keeps track of a queue of candidate hypotheses QH
– It repeatedly deletes a hypothesis H from the queue and expands that

hypotheses using inference rules; the expanded hypotheses are then
added to the queue of hypotheses QH, which may be pruned to discard
unpromising hypotheses from further consideration

– This process continues until the stopcriterion is satisfied

28

Algorithm – Generic Parameters

• Initialize denotes the hypotheses started from
• R denotes the set of inference rules applied
• Delete influences the search strategy

– Using different instantiations of this procedure, one can realise a
depthfirst (Delete = LIFO), breadthfirst Delete = FIFO) or bestfirst
algorithm

• Choose determines the inference rules to be applied on
the hypothesis H

29

Algorithm – Generic Parameters (2)

• Prune determines which candidate hypotheses are to be
deleted from the queue
– This can also be done by relying on the user (employing an

“oracle”)
– Combining Delete with Prune it is easy to obtain advanced

search

• The Stopcriterion states the conditions under which the
algorithm stops
– Some frequently employed criteria require that a solution be

found, or that it is unlikely that an adequate hypothesis can be
obtained from the current queue

30

TECHNICAL SOLUTIONS
Proof Theory of ILP

30

31

Proof Theory of ILP

• Inductive inference rules can be obtained by inverting deductive
ones
– Deduction: Given B ⋀ H ⊧ E+ , derive E+ from B ⋀ H
– Induction: Given B ⋀ H ⊧ E+ , derive H from B and B and E+

• Inverting deduction paradigm can be studied under various
assumptions, corresponding to different assumptions about the
deductive rule for ⊧ and the format of background theory B and
evidence E+

⇒ Different models of inductive inference are obtained

• Example: θ-subsumption
– The background knowledge is supposed to be empty, and the

deductive inference rule corresponds to θ-subsumption among
single clauses

32

θ-subsumption

• θ-subsumes is the simplest model of deduction for ILP
which regards clauses as sets of (positive and negative)
literals

• A clause c1 θ-subsumes a clause c2 if and only if there
exists a substitution θ such that c1θ ⊆ c2
– c1 is called a generalisation of c2 (and c2 a specialisation of c1)

under θsubsumption
– θ-subsumes The θsubsumption inductive inference rule

is:

33

θ-subsumption

• For example, consider:
c1 = { father(X,Y) ← parent(X,Y), male(X) }
c2 = { father(jef,paul) ← parent(jef,paul), parent(jef,ann), male(jef),

female(ann) }

With θ = {X = jef, Y = paul} c1 θsubsumes c2 because

{ father(jef,paul) ← parent(jef, paul), male(jef) } ⊆
father(jef,paul) ← parent(jef,paul), parent(jef,ann), male(jef),

female(ann) }

34

Some properties of θ-subsumption

• θsubsumption has a range of relevant properties

• Example: Implication
• If c1 θ-subsumes c2, then c1 ⊧ c2

– Example: See previous slide

• This property is relevant because typical ILP systems
aim at deriving a hypothesis H (a set of clauses) that
implies the facts in conjunction with a background theory
B, i.e. B ∪ H ⊧ E+

– Because of the implication property, this is achieved when all the
clauses in E+ are θ-subsumed by clauses in B ∪ H

35

Some properties of θ-subsumption

• Example: Equivalence
• There exist different clauses that are equivalent

under θsubsumption
– E.g. parent(X,Y) ← mother(X,Y), mother(X,Z) θ-

subsumes parent(X,Y) ← mother(X,Y) and vice versa
– Two clauses equivalent under θsubsumption are also

logically equivalent, i.e. by implication
– This is used for optimization purposes in practical

systems

36

TECHNICAL SOLUTIONS
ILP Systems

36

37

Characteristics of ILP systems

• Incremental/nonincremental: describes the way the
evidence E (examples) is obtained
– In nonincremental or empirical ILP, the evidence is given at the

start and not changed afterwards
– In incremental ILP, the examples are input one by one by the

user, in a piecewise fashion.

• Interactive/ Noninteractive
– In interactive ILP, the learner is allowed to pose questions to an

oracle (i.e. the user) about the intended interpretation
• Usually these questions query the user for the intended interpretation of an example or

a clause.
• The answers to the queries allow to prune large parts of the search space

– Most systems are non-interactive

38

Concrete ILP implementations

• A well known family of related, popular systems: Progol
– CProgol, PProgol, Aleph

• Progol allows arbitrary Prolog programs as background knowledge
and arbitrary definite clauses as examples

• Most comprehensive implementation: CProgol
– Homepage: http://www.doc.ic.ac.uk/~shm/progol.html

• General instructions (download, installation, etc.)
• Background information
• Example datasets

– Open source and free for research and teaching

39

An ILP system: CProgol

• CProgol uses a covering approach: It selects an example to be
generalised and finds a consistent clause covering the example

• Basic algorithm for CProgol:
1. Select an example to be generalized.
2. Build most-specific-clause. Construct the most specific clause that entails the example

selected, and is within language restrictions provided. This is usually a definite clause
with many literals, and is called the "bottom clause."

3. Find a clause more general than the bottom clause. This is done by searching for
some subset of the literals in the bottom clause that has the "best" score.

4. Remove redundant examples. The clause with the best score is added to the current
theory, and all examples made redundant are removed. Return to Step 1 unless all
examples are covered.

Presenter
Presentation Notes
Constructing the bottom clause is often called the “saturation” step. Details of constructing the bottom clause can be found in Muggleton’s paper on inerse entailment. The search in step 3 is done by an A*-like algorithm.

40

An ILP system: CProgol

• Example: CProgol can be used to learn legal moves of chess pieces
(Based on rank and File difference for knight moves)
– Example included in CProgol distrubtion

• Input:
% Typespos(b,3),pos(d,2)).
knight(pos(e,7),pos(f,5)).
rank(1). rank(2). rank(3). rank(4).
rank(5). rank(6). rank(7). rank(8).
knight(pos(c,4),pos(a,5)).
file(a). file(b). file(c). file(d).
file(e). file(f). file(g). file(h).
knight(pos(c,7),pos(e,6)).
Etc.

41

An ILP system: CProgol

• Output:
[Result of search is]
knight(pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,-2),

invent(q4, E).
[17 redundant clauses retracted]
knight(pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,2),

invent(q4,E).
knight(pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,1),

invent(q2,E).
knight(pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,-1),

invent(q2, E).
knight(pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,-2),

invent(q4,E).
[Total number of clauses = 4]
[Time taken 0.50s]
Mem out = 822

42

ILLUSTRATION BY A LARGER
EXAMPLE

Michalski’s train problem

42

43

Michalski’s train problem

• Assume ten railway trains: five are travelling east and five are
travelling west; each train comprises a locomotive pulling wagons;
whether a particular train is travelling towards the east or towards
the west is determined by some properties of that train

• The learning task: determine what governs which kinds of trains are
Eastbound and which kinds are Westbound

44

Michalski’s train problem (2)

• Michalski’s train problem can be viewed as a
classification task: the aim is to generate a classifier
(theory) which can classify unseen trains as either
Eastbound or Westbound

• The following knowledge about each car can be
extracted: which train it is part of, its shape, how many
wheels it has, whether it is open (i.e. has no roof) or
closed, whether it is long or short, the shape of the
things the car is loaded with. In addition, for each pair of
connected wagons, knowledge of which one is in front of
the other can be extracted.

45

Michalski’s train problem (3)

• Examples of Eastbound trains
– Positive examples:

eastbound(east1).
eastbound(east2).
eastbound(east3).
eastbound(east4).
eastbound(east5).

– Negative examples:
eastbound(west6).
eastbound(west7).
eastbound(west8).
eastbound(west9).
eastbound(west10).

46

Michalski’s train problem (4)

• Background knowledge for train east1. Cars are uniquely identified by
constants of the form car_xy, where x is number of the train to which the car
belongs and y is the position of the car in that train. For example car_12
refers to the second car behind the locomotive in the first train

– short(car_12). short(car_14).
– long(car_11). long(car_13).
– closed(car_12).
– open(car_11). open(car_13). open(car_14).
– infront(east1,car_11). infront(car_11,car_12).
– infront(car_12,car_13). infront(car_13,car_14).
– shape(car_11,rectangle). shape(car_12,rectangle).
– shape(car_13,rectangle). shape(car_14,rectangle).
– load(car_11,rectangle,3). load(car_12,triangle,1).
– load(car_13,hexagon,1). load(car_14,circle,1).
– wheels(car_11,2). wheels(car_12,2).
– wheels(car_13,3). wheels(car_14,2).
– has_car(east1,car_11). has_car(east1,car_12).
– has_car(east1,car_13). has_car(east1,car_14).

47

Michalski’s train problem (5)

• An ILP systems could generate the following hypothesis:
eastbound(A) ← has_car(A,B), not(open(B)), not(long(B)).

i.e. A train is eastbound if it has a car which is both not open and not long.
• Other generated hypotheses could be:

– If a train has a short closed car, then it is Eastbound and otherwise
Westbound

– If a train has two cars, or has a car with a corrugated roof, then it is
Westbound and otherwise Eastbound

– If a train has more than two different kinds of load, then it is Eastbound
and otherwise Westbound

– For each train add up the total number of sides of loads (taking a circle
to have one side); if the answer is a divisor of 60 then the train is
Westbound andotherwise Eastbound

48

Michalski’s train problem – Demo

• Download Progrol
– http://www.doc.ic.ac.uk/~shm/Software/progol5.0

• Use the Progol input file for Michalski's train problem
– http://www.comp.rgu.ac.uk/staff/chb/teaching/cmm510/michalski

_train_data

• Generate the hypotheses

http://www.doc.ic.ac.uk/%7Eshm/Software/progol5.0
http://www.comp.rgu.ac.uk/staff/chb/teaching/cmm510/michalski_train_data

49

SUMMARY

49

50

Summary

• ILP is a subfield of machine learning which uses logic
programming as a uniform representation for
– Examples
– Background knowledge
– Hypotheses

• Many existing ILP systems
– Given an encoding of the known background knowledge and a

set of examples represented as a logical database of facts, an
ILP system will derive a hypothesised logic program which
entails all the positive and none of the negative examples

• Lots of applications of ILP
– E.g. bioinformatics, natural language processing, engineering

• IPL is an active research filed

51

REFERENCES

51

52

References

• Mandatory Reading:
– S.H. Muggleton. Inductive Logic Programming. New Generation

Computing, 8(4):295-318, 1991.
– S.H. Muggleton and L. De Raedt. Inductive logic programming: Theory

and methods. Journal of Logic Programming, 19,20:629-679, 1994.

• Further Reading:
– N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques

and Applications. 1994.
• http://www-ai.ijs.si/SasoDzeroski/ILPBook

• Wikipedia:
– http://en.wikipedia.org/wiki/Inductive_logic_programming

http://www-ai.ijs.si/SasoDzeroski/ILPBook
http://en.wikipedia.org/wiki/Inductive_logic_programming

53

Next Lecture

Title
1 Introduction

2 Propositional Logic

3 Predicate Logic

4 Reasoning

5 Search Methods

6 CommonKADS

7 Problem-Solving Methods

8 Planning

9 Software Agents

10 Rule Learning

11 Inductive Logic Programming

12 Formal Concept Analysis

13 Neural Networks

14 Semantic Web and Services

5454

Questions?

	Artificial Intelligence
	Where are we?
	Agenda
	MOTIVATION
	Motivation
	Slide Number 6
	The inductive learning and logic programming sides of ILP
	The inductive learning and logic programming sides of ILP (cont’)
	The inductive learning and logic programming sides of ILP (cont’)
	Introduction – Basic example
	Introduction – Basic example
	Introduction – Basic example
	TECHNICAL SOLUTIONS
	Model Theory – Normal Semantics
	Model Theory – Definite Semantics
	Model Theory – Definite Semantics
	Model Theory – Definite Semantics
	Model Theory – Non-monotonic Semantics
	Model Theory – Non-monotonic Semantics (2)
	Model Theory – Non-monotonic Semantics (3)
	Model Theory – Non-monotonic Semantics (4)
	Model Theory – Non-monotonic Semantics (5)
	TECHNICAL SOLUTIONS
	ILP as a Search Problem
	Specialisation and Generalisation Rules
	Pruning the search space
	A Generic ILP Algorithm
	Algorithm – Generic Parameters
	Algorithm – Generic Parameters (2)
	TECHNICAL SOLUTIONS
	Proof Theory of ILP
	θ-subsumption
	θ-subsumption
	Some properties of θ-subsumption
	Some properties of θ-subsumption
	TECHNICAL SOLUTIONS
	Characteristics of ILP systems
	Concrete ILP implementations
	An ILP system: CProgol
	An ILP system: CProgol
	An ILP system: CProgol
	ILLUSTRATION BY A LARGER EXAMPLE
	Michalski’s train problem
	Michalski’s train problem (2)
	Michalski’s train problem (3)
	Michalski’s train problem (4)
	Michalski’s train problem (5)
	Michalski’s train problem – Demo
	SUMMARY
	Summary
	REFERENCES
	References
	Next Lecture
	Slide Number 54

