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Motivation

• There is a vast array of different machine learning 
techniques, e.g.:
– Decision Tree Learning (see previous lecture)
– Neural networks
– and… Inductive Logic Programming (ILP)

• Advantages over other ML approaches
– ILP uses an expressive First-Order framework instead of simple 

attribute-value framework of other approaches
– ILP can take background knowledge into account
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Inductive Logic Programming

= 

Inductive Learning ∩ Logic Programming
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The inductive learning and logic programming 
sides of ILP

• From inductive machine learning, ILP inherits its goal: to 
develop tools and  techniques to 
– Induce hypotheses from observations (examples) 
– Synthesise new knowledge from experience

• By using computational logic as the representational 
mechanism for hypotheses and observations, ILP can 
overcome the two main limitations of classical machine 
learning techniques:
– The use of a limited knowledge representation formalism 

(essentially a propositional logic)
– Difficulties in using substantial background knowledge in the 

learning process
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The inductive learning and logic programming 
sides of ILP (cont’)

• ILP inherits from logic programming its 
– Representational formalism
– Semantical orientation
– Various wellestablished techniques

• ILP systems benefit from using the results of logic 
programming 
– E.g. by making use of work on termination, types and modes, 

knowledgebase updating, algorithmic debugging, abduction, 
constraint logic programming, program synthesis and program 
analysis

Presenter
Presentation Notes
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The inductive learning and logic programming 
sides of ILP (cont’)

• Inductive logic programming extends the theory and 
practice of logic programming by investigating induction
rather than deduction as the basic mode of inference
– Logic programming theory describes deductive inference from 

logic formulae provided by the user
– ILP theory describes the inductive inference of logic programs 

from instances and background knowledge

• ILP contributes to the practice of logic programming by 
providing tools that assist logic programmers to develop 
and verify programs
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Introduction – Basic example

• Imagine learning about the relationships between people in your 
close family circle

• You have been told that your grandfather is the father of one of your 
parents, but do not yet know what a parent is

• You might have the following beliefs (B):
grandfather(X, Y) ← father(X, Z), parent(Z, Y) 
father(henry, jane) ←
mother(jane. john) ←
mother(jane, alice) ←

• You are now given the following positive examples concerning the 
relationships between particular grandfathers and their 
grandchildren (E+): 

grandfather(henry, john) ←
grandfather(henry, alice) ←
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Introduction – Basic example

• You might be told in addition that the following relationships do not 
hold (negative examples) (E-)

← grandfather(john, henry) 
← grandfather(alice, john) 

• Believing B, and faced with examples E+ and E- you might guess the 
following hypothesis H1 ∈ H 

parent(X, Y) ← mother(X, Y) 

• H is the set of hypotheses and contain an arbitrary number of 
individual speculations that fit the background knowledge and 
examples

• Several conditions have to be fulfilled by a hypothesis
– Those conditions are related to completeness and consistency with 

respect to the background knowledge and examples
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Introduction – Basic example

• Consistency:
– First, we must check that our problem has a solution:

B ∪ E-⊭ □ (prior satisfiability)
• If one of the negative examples can be proved to be true from the 

background information alone, then any hypothesis we find will not 
be able to compensate for this. The problem is not satisfiable.

– B and H are consistent with E-:
B ∪ H ∪ E-⊭ □ (posterior satisfiability) 

• After adding a hypothesis it should still not be possible to prove a 
negative example.

• Completeness:
– However, H allows us to explain E+ relative to B:

B ∪ H ⊧ E+ (posterior sufficiency) 
• This means that H should fit the positive examples given.

Presenter
Presentation Notes
Prior satisfiability: If one of the negative examples can be proved to be true from the background information alone, then clearly any hypothesis we find will not be able to compensate for this, and the problem is not satisfiable. Actually this is forall e in E- (B does not entail e), or more conveniently as on the slide.
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TECHNICAL SOLUTIONS
Model Theory of ILP

13
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Model Theory – Normal Semantics

• The problem of inductive inference:
– Given is background (prior) knowledge B and evidence E
– The evidence E = E+ ∪ E- consists of positive evidence E+ and 

negative evidence E-

– The aim is then to find a hypothesis H such that the following 
conditions hold:

Prior Satisfiability: B ∪ E-⊭ □
Posterior Satisfiability: B ∪ H ∪ E-⊭ □
Prior Necessity: B ⊭ E+

Posterior Sufficiency: B ∪ H  ⊧ E+

• The Sufficiency criterion is sometimes named completeness with 
regard to positive evidence

• The Posterior Satisfiability criterion is also known as consistency
with the negative evidence

• In this general setting, background-theory, examples, and 
hypotheses can be any (well-formed) formula
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Model Theory – Definite Semantics

• In most ILP practical systems background theory and hypotheses
are restricted to being definite clauses
– Clause: A disjunction of literals
– Horn Clause: A clause with at most one positive literal
– Definite Clause: A Horn clause with exactly one positive literal

• This setting has the advantage that definite clause theory T 
has a unique minimal Herbrand model M+(T)
– Any logical formulae is either true or false in this minimal model (all 

formulae are decidable and the Closed World Assumption holds)
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Model Theory – Definite Semantics

• The definite semantics again require a set of conditions to hold
• We can now refer to every formula in E since they are guaranteed to 

have a truth value in the minimal model

• Consistency:
Prior Satisfiability: all e in E- are false in M+(B)
– Negative evidence should not be part of the minimal model
Posterior Satisfiability: all e in E- are false in M+(B ∪ H)
– Negative evidence should not be supported by our hypotheses

• Completeness
Prior Necessity: some e in E+ are false in M+(B) 
– If all positive examples are already true in the minimal model of the background 

knowledge, then no hypothesis we derive will add useful information
Posterior Sufficiency: all e in E+ are true in M+(B ∪ H)
– All positive examples are true (explained by the hypothesis) in the minimal model 

of the background theory and the hypothesis
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Model Theory – Definite Semantics

• An additional restriction in addition to those of the definite semantics 
is to only allow true and false ground facts as examples (evidence)

• This is called the example setting
– The example setting is the main setting employed by ILP systems
– Only allows factual and not causal evidence (which usually captures more 

knowledge)

• Example:
– B: grandfather(X, Y) ← father(X, Z), parent(Z, Y) 

father(henry, jane) ←
etc.

– E: grandfather(henry, john) ←
grandfather(henry, alice) ←

← grandfather(X, X)

grandfather(henry, john) ← father(henry, jane), mother(jane, john)

Not allowed in
example setting

Not allowed in definite 
semantics
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Model Theory – Non-monotonic Semantics

• In the nonmonotonic setting:
– The background theory is a set of definite clauses
– The evidence is empty

• The positive evidence is considered part of the 
background theory 

• The negative evidence is derived implicitly, by making 
the closed world assumption (realized by the minimal 
Herbrand model)

– The hypotheses are sets of general clauses
expressible using the same alphabet as the 
background theory
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Model Theory – Non-monotonic Semantics (2)

• Since only positive evidence is present, it is assumed to 
be part of the background theory:

B’ = B ∪ E
• The following conditions should hold for H and B’: 

– Validity: all h in H are true in M+( B’ )  
• All clauses belonging to a hypothesis hold in the database B, i.e. 

that they are true properties of the data
– Completeness: if general clause g is true in M+( B’ ) then H ⊧ g

• All information that is valid in the minimal model of B’ should follow 
from the hypothesis

• Additionally the following can be a requirement:
– Minimality: there is no proper subset G of H which is valid and 

complete  
• The hypothesis should not contain redundant clauses
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Model Theory – Non-monotonic Semantics (3)

• Example for B (definite clauses):
male(luc) ← 
female(lieve) ←
human(lieve) ← 
human(luc) ← 

• A possible solution is then H (a set of general clauses): 
← female(X), male(X) 
human(X) ← male(X) 
human(X) ← female(X) 
female(X), male(X) ← human(X) 
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Model Theory – Non-monotonic Semantics (4)

• One more example to illustrate the difference between 
the example setting and the non-monotonic setting

• Consider:
– Background theory B

bird(tweety) ← 
bird(oliver) ←

– Examples E+:
flies(tweety) 

– For the non-monotonic setting B’ = B ∪ E+ because positive 
examples are considered part of the background knowledge
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Model Theory – Non-monotonic Semantics (5)

• Example setting:
– An acceptable hypothesis H1 would be 

flies(X) ← bird(X)
– It is acceptable  because if fulfills the completeness and 

consistency criteria of the definite semantics
– This realizes can inductive leap because flies(oliver) is true in 

M+( B ∪ H) = { bird(tweety), bird(oliver),  flies(tweety), flies(oliver) }

• Non-monotonic setting:
– H1 is not a solution since there  exists a substitution {X ← oliver} 

which makes the clause false in M+( B’ ) (the validity criteria is 
violated:

M+( B’ ) = { bird(tweety), bird(oliver),  flies(tweety) }
{X ← oliver}: flies(oliver) ← bird(oliver)
{X ← tweety}: flies(tweety) ← bird(tweety)
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TECHNICAL SOLUTIONS
A Generic ILP Algorithm

23
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ILP as a Search Problem

• ILP can be seen as a search problem - this view  follows 
immediately from the modeltheory of ILP 
– In ILP there is a space of candidate solutions, i.e. the set of 

hypotheses, and an acceptance criterion characterizing solutions 
to an ILP problem

• Question: how the space of possible solutions can be 
structured in order to allow for pruning of the search?
– The search space is typically structured by means of the dual 

notions of generalisation and specialisation
• Generalisation corresponds to induction
• Specialisation to deduction
• Induction is viewed here as the inverse of deduction
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Specialisation and Generalisation Rules

• A hypothesis G is more general than a hypothesis S if 
and only if G ⊧ S
– S is also said to be more specific than G. 

• In search algorithms, the notions of generalisation and 
specialisation are incorporated using inductive and 
deductive inference rules: 
– A deductive inference rule r  maps a conjunction of clauses G 

onto a conjunction of clauses S such that G ⊧ S
• r is called a specialisation rule

– An inductive inference rule r  maps a conjunction of clauses S 
onto a conjunction of clauses G such that G ⊧ S

• r is called a generalisation rule
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Pruning the search space

• Generalisation and specialisation form the basis for 
pruning the search space; this is because: 

– When B ∪ H ⊭ e, where e ∈ E+, B is the background theory, H is 
the hypothesis, then none of the specialisations H’ of H will imply 
the evidence

• They can therefore be pruned from the search. 

– When B ∪ H ∪ {e} ⊧ □, where e ∈ E-, B is the background theory, 
H is the hypothesis, then all generalisations H’ of H will also be 
inconsistent with B ∪ E

• We can again drop them
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A Generic ILP Algorithm

• Given the key ideas of ILP as search a generic ILP system is 
defined as: 

• The algorithm works as follows:
– It keeps track of a queue of candidate hypotheses QH
– It repeatedly deletes a hypothesis H from the queue and expands that 

hypotheses using inference rules; the expanded hypotheses are then 
added to the queue of hypotheses QH, which may be pruned to discard 
unpromising hypotheses from further consideration

– This process continues until the stopcriterion is satisfied
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Algorithm – Generic Parameters

• Initialize denotes the hypotheses started from
• R denotes the set of inference rules applied
• Delete influences the search strategy

– Using different instantiations of this procedure, one can realise a 
depthfirst (Delete = LIFO), breadthfirst Delete = FIFO) or bestfirst 
algorithm

• Choose determines the inference rules to be applied on 
the hypothesis H
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Algorithm – Generic Parameters (2)

• Prune determines which candidate hypotheses are to be 
deleted from the queue
– This can also be done by relying on the user (employing an 

“oracle”)
– Combining Delete with Prune it is easy to obtain advanced 

search

• The Stopcriterion states the conditions under which the 
algorithm stops
– Some frequently employed criteria require that a solution be 

found, or that it is unlikely that an adequate hypothesis can be 
obtained from the current queue
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TECHNICAL SOLUTIONS
Proof Theory of ILP

30
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Proof Theory of ILP

• Inductive inference rules can be obtained by inverting deductive 
ones
– Deduction: Given B ⋀ H ⊧ E+ , derive E+ from B ⋀ H 
– Induction: Given B ⋀ H ⊧ E+ , derive H from B and B and E+

• Inverting deduction paradigm can be studied under various 
assumptions, corresponding to different assumptions about the 
deductive rule for ⊧ and the format of background theory B and 
evidence E+

⇒ Different models of inductive inference are obtained

• Example: θ-subsumption
– The background knowledge is supposed to be empty, and the 

deductive inference rule corresponds to θ-subsumption among 
single clauses
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θ-subsumption

• θ-subsumes is the simplest model of deduction for ILP 
which regards clauses as sets of (positive and negative) 
literals

• A clause c1 θ-subsumes a clause c2 if and only if there 
exists a substitution θ such that c1θ ⊆ c2
– c1 is called a generalisation of c2 (and c2 a specialisation of c1) 

under θsubsumption
– θ-subsumes The θsubsumption inductive inference rule 

is:
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θ-subsumption

• For example, consider:
c1 = { father(X,Y) ← parent(X,Y), male(X) }
c2 = { father(jef,paul) ← parent(jef,paul), parent(jef,ann), male(jef), 

female(ann) }

With θ = {X = jef, Y = paul}  c1 θsubsumes c2 because 

{ father(jef,paul) ← parent(jef, paul), male(jef) } ⊆
father(jef,paul) ← parent(jef,paul),  parent(jef,ann), male(jef), 

female(ann) }
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Some properties of θ-subsumption

• θsubsumption has a range of relevant properties

• Example: Implication
• If c1 θ-subsumes c2, then c1 ⊧ c2

– Example: See previous slide

• This property is relevant because typical ILP systems 
aim at deriving a hypothesis H (a set of clauses) that 
implies the facts in conjunction with a background theory 
B, i.e. B ∪ H  ⊧ E+

– Because of the implication property, this is achieved when all the 
clauses in E+ are θ-subsumed by clauses in B ∪ H 
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Some properties of θ-subsumption

• Example: Equivalence
• There exist different clauses that are equivalent 

under θsubsumption
– E.g. parent(X,Y) ← mother(X,Y), mother(X,Z) θ-

subsumes parent(X,Y) ← mother(X,Y) and vice versa
– Two clauses equivalent under θsubsumption are also 

logically equivalent, i.e. by implication
– This is used for optimization purposes in practical 

systems
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TECHNICAL SOLUTIONS
ILP Systems

36
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Characteristics of ILP systems 

• Incremental/nonincremental: describes the way the 
evidence E (examples) is obtained
– In nonincremental or empirical ILP, the evidence is given at the 

start and not changed afterwards
– In incremental ILP, the examples are input one by one by the 

user, in a piecewise fashion. 

• Interactive/ Noninteractive 
– In interactive ILP, the learner is allowed to pose questions to an 

oracle (i.e. the user) about the intended interpretation
• Usually these questions query the user for the intended interpretation of an example or 

a clause.
• The answers to the queries allow to prune large parts of the search space

– Most systems are non-interactive
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Concrete ILP implementations

• A well known family of related, popular systems: Progol
– CProgol, PProgol,  Aleph

• Progol allows arbitrary Prolog programs as background knowledge 
and arbitrary definite clauses as examples

• Most  comprehensive implementation: CProgol
– Homepage: http://www.doc.ic.ac.uk/~shm/progol.html

• General instructions (download, installation, etc.)
• Background information
• Example datasets

– Open source and free for research and teaching
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An  ILP system: CProgol

• CProgol uses a covering approach: It selects an example to be 
generalised and finds a consistent clause covering the example

• Basic algorithm for CProgol:
1. Select an example to be generalized.
2. Build most-specific-clause. Construct the most specific clause that entails the example 

selected, and is within language restrictions provided. This is usually a definite clause 
with many literals, and is called the "bottom clause."

3. Find a clause more general than the bottom clause. This is done by searching for 
some subset of the literals in the bottom clause that has the "best" score. 

4. Remove redundant examples. The clause with the best score is added to the current 
theory, and all examples made redundant are removed. Return to Step 1 unless all 
examples are covered.

Presenter
Presentation Notes
Constructing the bottom clause is often called the “saturation” step. Details of constructing the bottom clause can be found in Muggleton’s paper on inerse entailment. The search in step 3 is done by an A*-like algorithm.
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An  ILP system: CProgol

• Example: CProgol can be used to learn legal moves of chess pieces 
(Based on rank and File difference for  knight moves)
– Example included in CProgol distrubtion

• Input:
% Typespos(b,3),pos(d,2)).
knight(pos(e,7),pos(f,5)).
rank(1).  rank(2).  rank(3).  rank(4).
rank(5).  rank(6).  rank(7).  rank(8).
knight(pos(c,4),pos(a,5)).
file(a).  file(b).  file(c).  file(d).
file(e).  file(f).  file(g).  file(h).
knight(pos(c,7),pos(e,6)).
Etc.
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An  ILP system: CProgol

• Output:
[Result of search is]
knight(pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,-2), 

invent(q4, E).
[17 redundant clauses retracted]
knight(pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,2), 

invent(q4,E).
knight(pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,1), 

invent(q2,E).
knight(pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,-1), 

invent(q2, E).
knight(pos(A,B),pos(C,D)) :- rdiff(B,D,E), fdiff(A,C,-2), 

invent(q4,E).
[Total number of clauses = 4]
[Time taken 0.50s]
Mem out = 822
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ILLUSTRATION BY A LARGER 
EXAMPLE

Michalski’s train problem

42
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Michalski’s train problem

• Assume ten railway trains: five are travelling east and five are 
travelling west; each train comprises a locomotive pulling wagons; 
whether a particular train is travelling towards the east or towards 
the west is determined by some properties of that train

• The learning task: determine what governs which kinds of trains are 
Eastbound and which kinds are Westbound
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Michalski’s train problem (2)

• Michalski’s train problem can be viewed as a 
classification task: the aim is to generate a classifier 
(theory) which can classify unseen trains as either 
Eastbound or Westbound

• The following knowledge about each car can be 
extracted: which train it is part of, its shape, how many 
wheels it has, whether it is open (i.e. has no roof) or 
closed, whether it is long or short, the shape of the 
things the car is loaded with. In addition, for each pair of 
connected wagons, knowledge of which one is in front of 
the other can be extracted.
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Michalski’s train problem (3)

• Examples of Eastbound trains
– Positive examples:

eastbound(east1).
eastbound(east2).
eastbound(east3).
eastbound(east4).
eastbound(east5).

– Negative examples:
eastbound(west6).
eastbound(west7).
eastbound(west8).
eastbound(west9).
eastbound(west10).
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Michalski’s train problem (4)

• Background knowledge for train east1. Cars are uniquely identified by 
constants of the form car_xy, where x is number of the train to which the car 
belongs and y is the position of the car in that train. For example car_12 
refers to the second car behind the locomotive in the first train

– short(car_12). short(car_14).
– long(car_11). long(car_13).
– closed(car_12).
– open(car_11). open(car_13). open(car_14).
– infront(east1,car_11). infront(car_11,car_12).
– infront(car_12,car_13). infront(car_13,car_14).
– shape(car_11,rectangle). shape(car_12,rectangle).
– shape(car_13,rectangle). shape(car_14,rectangle).
– load(car_11,rectangle,3). load(car_12,triangle,1).
– load(car_13,hexagon,1). load(car_14,circle,1).
– wheels(car_11,2). wheels(car_12,2).
– wheels(car_13,3). wheels(car_14,2).
– has_car(east1,car_11). has_car(east1,car_12).
– has_car(east1,car_13). has_car(east1,car_14).
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Michalski’s train problem (5)

• An ILP systems could generate the following hypothesis:
eastbound(A) ← has_car(A,B), not(open(B)), not(long(B)).

i.e. A train is eastbound if it has a car which is both not open and not long.
• Other generated hypotheses could be:

– If a train has a short closed car, then it is Eastbound and otherwise 
Westbound

– If a train has two cars, or has a car with a corrugated roof, then it is 
Westbound and otherwise Eastbound

– If a train has more than two different kinds of load, then it is Eastbound 
and otherwise Westbound

– For each train add up the total number of sides of loads (taking a circle 
to have one side); if the answer is a divisor of 60 then the train is 
Westbound andotherwise Eastbound
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Michalski’s train problem – Demo 

• Download Progrol 
– http://www.doc.ic.ac.uk/~shm/Software/progol5.0

• Use the Progol input file for Michalski's train problem 
– http://www.comp.rgu.ac.uk/staff/chb/teaching/cmm510/michalski

_train_data

• Generate the hypotheses

http://www.doc.ic.ac.uk/%7Eshm/Software/progol5.0
http://www.comp.rgu.ac.uk/staff/chb/teaching/cmm510/michalski_train_data
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Summary

• ILP is a subfield of machine learning which uses logic 
programming as a uniform representation for 
– Examples
– Background knowledge
– Hypotheses 

• Many existing ILP systems
– Given an encoding of the known background knowledge and a 

set of examples represented as a logical database of facts, an 
ILP system will derive a hypothesised logic program which 
entails all the positive and none of the negative examples

• Lots of applications of ILP
– E.g. bioinformatics, natural language processing, engineering

• IPL is an active research filed



51

REFERENCES

51



52

References

• Mandatory Reading:
– S.H. Muggleton. Inductive Logic Programming. New Generation 

Computing, 8(4):295-318, 1991. 
– S.H. Muggleton and L. De Raedt. Inductive logic programming: Theory 

and methods. Journal of Logic Programming, 19,20:629-679, 1994. 

• Further Reading:
– N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques 

and Applications. 1994. 
• http://www-ai.ijs.si/SasoDzeroski/ILPBook

• Wikipedia:
– http://en.wikipedia.org/wiki/Inductive_logic_programming

http://www-ai.ijs.si/SasoDzeroski/ILPBook
http://en.wikipedia.org/wiki/Inductive_logic_programming


53

Next Lecture

# Title
1 Introduction

2 Propositional Logic

3 Predicate Logic

4 Reasoning

5 Search Methods

6 CommonKADS

7 Problem-Solving Methods

8 Planning

9 Software Agents

10 Rule Learning

11 Inductive Logic Programming

12 Formal Concept Analysis

13 Neural Networks

14 Semantic Web and Services



5454

Questions?


	Artificial Intelligence
	Where are we?
	Agenda
	MOTIVATION
	Motivation
	Slide Number 6
	The inductive learning and logic programming sides of ILP
	The inductive learning and logic programming sides of ILP (cont’)
	The inductive learning and logic programming sides of ILP (cont’)
	Introduction – Basic example
	Introduction – Basic example
	Introduction – Basic example
	TECHNICAL SOLUTIONS
	Model Theory – Normal Semantics
	Model Theory – Definite Semantics
	Model Theory – Definite Semantics
	Model Theory – Definite Semantics
	Model Theory – Non-monotonic Semantics
	Model Theory – Non-monotonic Semantics (2)
	Model Theory – Non-monotonic Semantics (3)
	Model Theory – Non-monotonic Semantics (4)
	Model Theory – Non-monotonic Semantics (5)
	TECHNICAL SOLUTIONS
	ILP as a Search Problem
	Specialisation and Generalisation Rules
	Pruning the search space
	A Generic ILP Algorithm
	Algorithm – Generic Parameters
	Algorithm – Generic Parameters (2)
	TECHNICAL SOLUTIONS
	Proof Theory of ILP
	θ-subsumption
	θ-subsumption
	Some properties of θ-subsumption
	Some properties of θ-subsumption
	TECHNICAL SOLUTIONS
	Characteristics of ILP systems 
	Concrete ILP implementations
	An  ILP system: CProgol
	An  ILP system: CProgol
	An  ILP system: CProgol
	ILLUSTRATION BY A LARGER EXAMPLE
	Michalski’s train problem
	Michalski’s train problem (2)
	Michalski’s train problem (3)
	Michalski’s train problem (4)
	Michalski’s train problem (5)
	Michalski’s train problem – Demo 
	SUMMARY
	Summary
	REFERENCES
	References
	Next Lecture
	Slide Number 54

