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Abstract

Protocol authentication properties are generally trace-based, mean-
ing that authentication holds for the protocol if authentication holds for
individual traces (runs of the protocol and adversary). Computational
secrecy conditions, on the other hand, often are not trace based: the
ability to computationally distinguish a system that transmits a secret
from one that does not is measured by overall success on the set of all
traces of each system. Non-trace-based properties present a challenge
for inductive or compositional methods: induction is a natural way
of reasoning about traces of a system, but it does not appear directly
applicable to non-trace properties. We therefore investigate the seman-
tic connection between trace properties that could be established by
induction and non-trace-based security requirements. Specifically, we
prove that a certain trace property implies computational secrecy and
authentication properties, assuming the encryption scheme provides
chosen ciphertext security and ciphertext integrity. We also prove a
similar theorem for computational secrecy assuming Decisional Diffie-
Hellman and a chosen plaintext secure encryption scheme.

1 Introduction

In symbolic and computational models of network protocol execution and
attack, a protocol and adversary define a set of possible traces (runs). In
the computational model, which we consider in this paper, there is a set of
traces for each value of the security parameter, and there is a probability

*Corresponding Author, Address: Stanford University, 353 Serra Mall Rm 490, Stan-
ford, CA 94040 USA, Phone: +1-650-725-3110, Fax: +1-650-725-4671



distribution on each such set arising from randomness used in cryptographic
actions in the protocol and randomness used by the protocol adversary.
Some properties of a protocol are trace properties, meaning that the property
can be observed to hold or fail on an individual trace, and the property holds
for a set of traces iff it holds for all but a negligible subset. For example, the
authentication property “if Bob accepts a key for use with Alice, then Alice
participated in the same session of the same key generation protocol” is a
trace property. We can see, for any given trace, whether Bob accepted the
key and whether Alice participated in the same session of the same protocol.
However, many natural secrecy conditions in the computational model are
not trace based.

Computational indistinguishability, for example, requires that no com-
putational observer can feasibly distinguish a situation in which a secret is
transmitted from a situation in which some non-informative values are trans-
mitted instead. If we look at a single trace, this gives no real information
about how likely an observer is to succeed over the set of all traces. Instead,
we must look at the probability distribution on traces, and determine the
probability of success over the entire distribution. Computational indistin-
guishability and other non-trace properties present a challenge for proving
secrecy properties of protocols, since trace-based properties are naturally
amenable to induction on the length of a trace, while non-trace-based prop-
erties are not. If we assume inductively that a trace-based property holds,
this means it holds for (almost) all traces, and we can consider the effect of
adding one more step to each trace. If the effect preserves the property on
each trace, then we conclude that the property holds for the protocol as a
whole. Since this form of argument only works for trace-based properties, it
does not appear applicable to important computational security properties.

In this paper, we develop foundations for inductive proofs of compu-
tational security properties by proving connections between selected trace
properties and useful non-trace properties. This effort is motivated by our
interest in extending Computational Protocol Composition Logic (Compu-
tational PCL) [27, 28, 47, 48] to computational secrecy properties, and using
that logic to prove properties of standard and useful protocols. However, we
do not develop the applications to PCL in this paper.

We say that a protocol is secretive if the protocol participants protect
values intended to be kept secret in certain ways. While one cannot imme-
diately see syntactically whether a protocol is secretive or not, this is a trace
property because it involves conditions on individual actions by honest par-
ties to a protocol. We prove that all secretive protocols have computational
secrecy and authentication properties, assuming the encryption scheme used



provides chosen ciphertext security and ciphertext integrity. In addition,
we prove a similar theorem for computational secrecy assuming Decisional
Diffie-Hellman and a chosen plaintext secure encryption scheme. The com-
putational security guarantees for secretive protocols are established first
for the simple case when secrets are protected by pre-shared “level-0” keys
(Theorems 1-3), then generalized (Theorems 4-6) under the condition that
each key is protected by predecessor keys in an acyclic graph. This con-
dition avoids the difficulty of dealing with key cycles while assuming only
IND-CCA security of encryption. However, the properties we are able to
prove do depend on key use, as should be expected in light of previous re-
sults [22, 33, 28, 45]. Specifically, we prove strong key indistinguishability
properties for a class of secretive protocols that do not use the established
secret as a key (Theorems 1, 4), and a weaker key usability property for
secretive protocols that allows the established secret to be used as a key
(Theorems 2, 5, 7).

The key proof technique used in obtaining these results is the “bilateral
simulator”, which consistently maintains two possible values of the secret in
carrying out the simulation. A similar simulator is used by Micciancio and
Warinschi in their first result on a correspondence theorem between sym-
bolic and computational trace properties [41] and much subsequent work
by others (e.g. [22]). One key difference is the degree of formalization in
our work. While previous papers described the behavior of the simulator
without a precise step-by-step specification, we present an inductive defini-
tion of the operational behavior of the simulator and prove that it behaves
correctly (see Section 4.2). The correctness proof for the simulator is non-
trivial and justifies the effort. This method can be used to formalize the
simulators used in related work. Another difference from prior work is that
we allow for the use of secrets to be used as keys. In this situation, key
indistinguishability does not hold, but key usability (introduced by Datta et
al [28]) still holds. This is important for applications because most practical
protocols distribute secrets and then use them as keys. In addition, we prove
computational secrecy properties even when the secret keys are protected by
predecessor keys in an acyclic graph. This is particularly relevant for pro-
tocols like Kerberos where key distribution proceeds in multiple stages by
encrypting new keys under previously generated keys. Finally, we provide
guarantees about secrets set up using Diffie-Hellman key exchange, subject
to certain constraints.

This paper does not include methods for proving that a protocol is se-
cretive. However, in other work, we have extended the proof system for
Computational PCL to prove that (a) a protocol is secretive, and (b) a



secretive protocol provides computational secrecy. The first set of axioms
capture the semantic definition of secretive protocols presented in this paper
and support inductive proofs of secretive-ness, while the soundness proofs
for the second set of axioms relies on the computational secrecy theorems
established in this paper. The proof rules support reasoning about secrecy
properties of protocols that use symmetric and public key encryption (not
considered in this paper) [47] as well as Diffie-Hellman key exchange [48].
The resulting proof system has been used to establish computational proper-
ties of Kerberos using symmetric and asymmetric keys [47] as well as IKEv2
and Kerberos with Diffie-Hellman key exchange [48].

Section 2 summarizes additional related work. Section 3 describes the
protocol programming language, computational execution model and secu-
rity properties. A trace-based definition of “secretive protocols” and as-
sociated computational security theorems (Theorems 1-6) are presented
in section 4. A similar trace-based definition of protocols that use the
Diffie-Hellman primitive safely and associated computational secrecy theo-
rem (Theorem 7) is presented in section 5. Conclusions appear in section 6.

2 Related Work

Most demonstrated approaches for proving security of complex network pro-
tocols, of the scale that appear in IEEE and IETF standards, use a simplified
model of protocol execution based on symbolic computation and highly ide-
alized cryptography [7, 16, 21, 25]. However, proofs about symbolic compu-
tation do not provide the same level of assurance as proofs about probabilis-
tic polynomial-time attacks. Several groups of researchers have therefore
developed methods for deriving cryptographic meaning from properties of
symbolic protocol execution [5, 4, 19, 22, 35, 36, 41].

One class of methods involve showing that the behavior of a symbolic
abstraction, under symbolic attacks, yields the same significant failures as
a finer-grained execution under finer-grained probabilistic polynomial-time
attack. However, in such equivalence theorems there are no known suit-
able symbolic abstractions of Diffie-Hellman exponentiation. Specifically, in
other studies of Diffie Hellman key exchange, [34] uses a symbolic model,
while [38] imposes non-standard protocol assumptions. In addition, there
are theoretical negative results in the setting of universal composability or
reactive simulatability that suggest that correspondence with ideal function-
ality may be impossible for symmetric encryption if a protocol might reveal
a secret key [18, 23], or for hash functions or exclusive-or [3, 6]. While the



assumptions about the cryptographic primitives in [22] are similar to those
in our work for encryption, they do not allow secrets to be used as keys and
also do not consider Diffie-Hellman key exchange.

In contrast, Computational PCL supports direct reasoning about proper-
ties of probabilistic polynomial-time execution of protocols, under attack by
a probabilistic polynomial-time adversary, without explicit formal reasoning
about the adversary, probability or complexity. In addition, different axioms
may depend on different cryptographic assumptions, allowing us to consider
which assumptions are actually necessary for each property we establish.
Prior work on Computational PCL describes the core logic and semantics
[27], and was used to study protocol composition and key exchange [28].
However, the current paper is the first presentation of applicable general se-
mantic results about non-trace secrecy properties. As mentioned before, the
results of the current paper form the basis of the semantic soundness proofs
for the extended proof system for Computational PCL presented in [47, 48].

More generally, Abadi and Rogaway [1] initiated computationally sound
symbolic analysis of static equivalence, with extensions and completeness
explored in [40, 2]; a recent extension to Diffie-Hellman appears in [15], cov-
ering only passive adversaries (as in prior work in this line), not the stronger
active adversaries used in the present paper. A language-based approach to
computational protocol analysis is taken by Mitchell et al [39, 42, 46, 43].
They develop a process calculus for expressing probabilistic polynomial time
protocols, a specification method based on a compositional form of equiva-
lence, and an equational reasoning system for establishing equivalence be-
tween processes. In subsequent work, Blanchet et al have developed and im-
plemented additional proof techniques in a tool called CryptoVerif [13, 14],
which uses equivalences and a probabilistic polynomial-time process calculus
inspired by pi-calculus and [39, 42, 46, 43].

3 Computational Model

3.1 Modeling Protocols

We use a simple protocol programming language to present a protocol as
a set of programs, one for each role such as “Initiator”, “Responder” or
“Server”. FEach role program is a sequence of protocol actions to be exe-
cuted by an honest participant (see [29, 24, 25, 26] for the syntax and op-
erational semantics of the protocol language). The protocol actions, which
include nonce generation, symmetric encryption and decryption, and com-
munication steps (sending and receiving), are given in Table 1. A principal



executing an instance of a role is called a thread. A principal can simultane-
ously execute multiple threads. Symmetric encryption with a nonce as a key
signifies encryption with a key deterministically generated from the nonce.
It is possible to naturally extend the results of this paper to asymmetric
encryption and signature, but for simplicity of exposition we do not present
those extensions.

We consider an essentially standard two-phase execution model as in [11],
with static rather than adaptive corruption. The execution environment has
an infinite set of principals, a subset of which are labeled honest and the rest
are dishonest. Every principal has access to an infinite sequence of random
coins and every pair of principals have a shared symmetric key. In the ex-
ecution phase, the adversary executes the protocol by interacting with the
principals. The adversary can ask for the keys of the dishonest principals
whereas it is not allowed to do so for the honest principals. We make the
standard assumption that the adversary has complete control over the net-
work, i.e., it sends messages to the parties and intercepts their answers, as
in the accepted cryptographic model of [11]. The adversary also triggers the
creation of new threads. The length of keys, nonces, etc. as well as the run-
ning time of the protocol parties and the attacker are polynomially bounded
in the security parameter. Note that due to the computational limitations of
the adversary, it will only be able to interact with a polynomially bounded
number of principals.

Informally, a trace is a record of all actions executed by honest principals
and the attacker during protocol execution. Since honest principals execute
symbolic programs, a trace contains symbolic descriptions of the actions
executed by honest parties as well as the mapping of bitstrings to variables.
On the other hand, since the attacker is an arbitrary probabilistic poly-time
algorithm, the trace only records the send-receive actions of the attacker
(and the corresponding mapping to bitstrings), but not internal actions of
the adversary.

More formally, a trace is a pair (e, \), where e records the symbolic ac-
tions of protocol participants and send/receive actions of attacker, and A
maps symbolic terms in actions to bitstrings using appropriate functions.
For example, e may indicate that a thread sends ENC[k](t), a message con-
sisting of a term t encrypted with key k, and A gives the bitstring values
of variables in t, the key k and the encryption randomness. The adversary
triggers the creation of new threads belonging to the given principals. Ev-
ery action in a trace is an action of a specific thread, which is identified by
a principal and a thread ID (to make different threads of the same prin-
cipal unique), or an attacker action. Actions associated with a thread of



the protocol have a symbolic representation, because protocols are written
symbolically, but attacker actions are carried out by an arbitrary proba-
bilistic polynomial-time algorithm and only appear symbolically in the form
of bit-string values received from the network by symbolic traces. If the
symbolic action involves some thread generating a new nonce s, then A(s) is
the bitstring obtained by applying a nonce-generation algorithm (which uses
the random coins available to that thread). Similarly, symbolic symmetric
encryption terms are mapped to bitstrings obtained by applying an encryp-
tion function to the bitstring representation of the corresponding plaintext
term given by A. The computational interpretation of decryption is defined
similarly.

3.2 Modeling Security Properties

Authentication and integrity are generally trace properties. In this paper,
we focus on simple integrity properties of the form that a certain encrypted
message was produced by a specific principal. Such a property is satisfied
by a protocol if for all probabilistic poly-time attackers and sufficiently large
security parameters this property holds in almost all runs of the protocol,
where “almost all” means all but a negligible fraction of the runs, as is
standard in cryptographic studies [11]. The condition “almost all” allows
for the fact that a desired property may fail in very unlikely situations such
when the attacker manages to guess all the bits of a key. The interested
reader is referred to [27] for a formal definition.

Computational secrecy is a more subtle property. It is a property of a set
of traces and not a single trace. We consider two notions of computational
secrecy—one based on the standard cryptographic notion of indistinguisha-
bility and the other called key usability, first presented in [28]. We describe
some problems with inductive reasoning about key indistinguishability and
discuss the alternative condition that appears more suitable for our pur-
poses.

We summarize our broad assumptions here:

e The execution model only has static corruption.

e Bitstrings corresponding to (pairs, encryption, ...) are assumed to be
type tagged - we will explain this technically in section 4.2.

e For simplicity, the only cryptographic primitives we consider in this
paper are symmetric encryption (with atomic keys) (Section 4) and
Diffie-Hellman (Section 5). We have also worked with protocols having



public-key encryption, signatures and hashes and the extensions have
been natural.

3.2.1 Basic Cryptographic Definitions

This section provides standard cryptographic definitions for reference (see [12]
for additional details).

Definition 3.1 (Symmetric Encryption Scheme) A symmetric encryp-
tion scheme ES = (KG, £, D) consists of three algorithms, as follows:

o The randomized key generation algorithm KG takes as input the secu-
rity parameter 1 (in unary) and returns a string k. We let Keys(ES)
denote the set of all strings that have mon-zero probability of being
output by KG. The members of this set are called keys. We write
k — KG(n) for the operation of executing KG and letting k denote the
key returned.

o The encryption algorithm &, which might be randomized or stateful,
takes a key k € Keys(ES) and a plaintext M € {0,1}* to return a
ciphertext C € {0,1}* U{ L}, denoted E(M).

e The deterministic decryption algorithm D takes a key k € Keys(ES)
and a ciphertext C' € {0,1}*U{ L} to return some M € {0,1}*, denoted
Di(C).

The scheme is said to provide correct decryption if for any key k €
Keys(ES), any message M € {0,1}*, and any ciphertext Ex(M) ob-
tained by encrypting this message, it is the case that Dy(Ex(M)) = M.
Definition 3.2 (LR Oracle) Let ES = (KG, &, D) be a symmetric encryp-
tion scheme. The left-or-right encryption oracle (LR oracle) for ES is de-
fined as follows, given b € {0,1} and My, M; € {0,1}*):
Oracle &, (LR(My, M1,b))
if |Mo| # |My| then return L
else return E(My)

Definition 3.3 (IND-CPA) The experiment IND-CPA (Indistinguishabil-
ity under Chosen Plaintext Attack), for adversary A, is defined as:

Experiment Expiyp_ cpa 4 (1)
k — KG(n)
d — AEk(LR('7'1b))(77)

return d



A query to any LR oracle consists of two messages of equal length. The
advantage of A is defined as:

Advinp-cpraa(n) = PT[EXP?ND-CPA,A(U) =0] - Pr[EXp}ND-CPA,A(n) = 0]

The encryption scheme ES is IND-CPA secure if the advantage of any
probabilistic poly-time adversary A is negligible in the security parameter.

Definition 3.4 (IND-CCA) ! The experiment IND-CCA (Indistinguisha-
bility under Chosen Ciphertext Attack), for adversary A, is defined as:

Experiment Expiyp coa ()
k—KG(n)
d — Agk(LR('v"b))vpk(')(n)

return d

A query to any LR oracle consists of two messages of equal length and
that adversary A does not query Di(-) on an output of E(LR(-,-,b)). The
advantage of A is defined as:

Advinp-cca,a(n) = Pr[Exp(I)ND—CCA,A(n) =0] - Pr[Exp}ND-CCA,A(n) = 0]

The encryption scheme E£S is IND-CCA secure if the advantage of any
probabilistic poly-time adversary A is negligible in the security parameter.

Definition 3.5 (INT-CTXT) The experiment INT-CTXT (Ciphertext In-
tegrity), for adversary A, is defined as:

Experiment EXpINT—CTXT,.A(n)
k— KG(n)
e ASO)

return c

The output ¢ of adversary A should not have been a response of Ex(-). The
advantage of A is defined as:

Advinrorxr,.a(n) = PrEXpyr crxr.a(n) can be decrypted successfully with key k]

The encryption scheme ES is INT-CTXT secure if the advantage of any
probabilistic poly-time adversary A is negligible in the security parameter.

Tn the sequel, we use an extension of IND-CCA to the multi-user setting with ||
keys, following [8]. We refer to this definition as |C|-IND-CCA.



Definition 3.6 (DDH) A group family G is a set of finite cyclic groups
G = {G\}, where X\ ranges over an infinite indexed set. Let n be a security
parameter. An instance generator IG for G is a probabilistic polynomial
time algorithm (in n) that outputs an index A and a generator g of G. The
Decisional Diffie-Hellman (DDH) assumption states that for all probabilistic
polynomial time adversaries A, every constant o and all sufficiently large
n’s, we have:

|PrlA(X, g,9% ¢",9°") = 1] = PrlA(\, g, 9%, 9%, 9°) =1]| < 1/n°

Here the probabilities are taken over the random bits of A, the choice of
(N, g) according to the distribution IG(1"), and the choice of a, b, and c
uniformly at random in [1,| Gy |].

3.2.2 Key indistinguishability

Intuitively, key indistinguishability means that an attacker cannot distin-
guish the actual key produced by a run of the protocol from a random key
drawn from the same distribution. In [11] the secrecy requirement for au-
thenticated key exchange protocols is defined by issuing a random challenge
to the adversary, while the corresponding notion in [9] allows an adversary
to compare the run of a protocol to a simulated ideal protocol. As in [29],
we define key indistinguishability using a cryptographic game that is similar
to [11] but adapted to the way our protocol execution model is formulated.
The game involves a two-phase adversary A = (A, A.). In the key ez-
change phase, the honest parties run sessions of the protocol following the
execution model described in Section 3.1. At the end of the key exchange
phase, the adversary selects a challenge session among all sessions executed
by the honest parties, and outputs some state information representing the
information 4, was able to gather during its execution. It does not matter if
A, is interacting with dishonest principals as well, as the action of dishonest
principals can be simulated by A, itself. We therefore assume A, is inter-
acting only with honest principals. Let k& be the key locally output by the
honest party executing the session. At this point, the experiment enters its
second phase—the challenge phase where the goal of the adversary A, is to
distinguish the key k from a random key r drawn from the same distribution
using the state information previously output by A.. The protocol is said
to satisfy key indistinguishability if the success probability of A, is bounded
above 1/2 by a negligible function of the security parameter.

Key indistinguishability turns out to be too strong a condition in many
practical scenarios. Specifically, even if a key exchange protocol run in isola-
tion satisfies this condition, key indistinguishability is generally lost as soon
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as the key is used to encrypt a message of a known form or with partially
known possible content. Moreover, some situations allow one agent to begin
transmitting encrypted data before the other agent finishes the last step of
the key exchange, rendering key indistinguishability false at the point that
the key exchange protocol finishes. This appears to be the case for SSL [30];
see [44] for a discussion of data transfer before the key exchange finished
messages are received. Furthermore, some key exchange protocols even use
the generated key during the protocol, preventing key indistinguishability.
Key indistinguishability may not hold in these cases even if the encryption
scheme is key concealing. Fortunately, many protocols that use keys do not
require key indistinguishability to provide meaningful security guarantees.
In particular, semantic security [32] does not require that the keys used re-
main indistinguishable from random. To circumvent the technical problems
we encountered in working with key indistinguishability, we developed an
alternative notion, key usability, in [28] that is parameterized by the security
goal of the application in which the resulting key is used.

Rackoff makes a distinction between stronger and weaker notions of dis-
tinguishability, illustrated by example in the appendix of [20]. The basic
idea is that an adversary who can continue to interact with the protocol af-
ter a challenge has been issued may have more power than an attacker who
cannot. This leads to a distinction between key indistinguishability based
on an attacker who uses a challenge (the key or a surrogate chosen ran-
domly from the same distribution) to interact with subsequent steps of the
key exchange protocol, and indistinguishability based on an attacker who
cannot execute further protocol steps. The definition of key usability that
we use in this paper is similar to the weaker notion of key indistinguishabil-
ity in that the adversary who attempts to win, for example, the IND-CPA
game for encryption, does not have the opportunity to interact further with
other protocol participants. On the other hand, because protocols (such as
SSL [30]) that provide key confirmation steps will also fail the stronger form
of definition suggested by Rackoff, we consider the weaker condition we use
advantageous for certain practical settings. Specifically, different protocols
in current use achieve different properties, and there is value to stating and
proving these properties precisely. We also hope that the setting presented
in this paper provides a useful starting point for expressing and reasoning
about stronger security conditions.
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3.2.3 Key usability

We define usability of keys obtained through a key exchange protocol ¥ with
respect to a class of applications S via a two-phase experiment. The exper-
iment involves a two-phase adversary A = (A, A.). In the key exchange
phase, the honest parties run sessions of the protocol following the standard
execution model. At the end of the key exchange phase, the adversary se-
lects a challenge session among all sessions executed by the honest parties,
and outputs some state information representing the information 4. was
able to gather during its execution. Let k be the key locally output by the
honest party executing the session. At this point, the experiment enters
its second phase—the challenge phase where the goal of the adversary is to
demonstrate an attack against a scheme II € S which uses the key k. After
A, receives as input St, it starts interacting with IT according to the game
used for defining security of the application protocols in S. For example, if
S is a set of encryption schemes, then the relevant game may be IND-CPA
or IND-CCA [31].

We formalize the case when the game defines IND-CPA security. A, has
access to a left-right encryption oracle under k, and in addition, it receives
as input the state information from A.. The advantage of the adversary
is defined as for the standard IND-CPA game with the difference that the
probability is taken over the random coins of the honest parties (used in the
execution of the protocol), the coins of the two adversaries, and the coins
used for encryption in the challenge phase. The keys obtained by running
the key exchange protocol are usable for the schemes in S if this advantage
is bounded above by a negligible function of the security parameter, for all
encryption schemes in .S. The universal quantification over schemes is used
to capture the fact that the security property is guaranteed for all encryption
schemes which satisfy the IND-CPA condition. The definition can be easily
modified to define a similar usability property of keys for other primitives,
for example, message authentication codes, by appropriately changing the
security game that is played in the second phase.

The above definition of usability is consistent with accepted definitions
of symmetric key-based primitives based on security against adversaries that
are allowed arbitrary uses of the primitive in a priori unknown settings. Our
model adds the possibility that key generation is accomplished using a key
exchange protocol instead of a non-interactive algorithm. The adversary
is provided with auxiliary information obtained by interacting with this
protocol.
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4 Secretive Protocols

4.1 Definitions

In this section, we define a trace property of protocols and show that this
property implies computational secrecy and integrity. The computational
secrecy properties include key indistinguishability and key usability for IND-
CCA secure encryption. These results are established first for the simple
case when secrets are protected by pre-shared “level-0” keys (Theorems 1-
3), then generalized (Theorems 4-6) under the condition that each key is
protected by predecessor keys in an acyclic graph. The proofs use standard
cryptographic reductions.

Let s be a term of type nonce and K be a set of terms of type key. In-
tuitively, these terms will be used to set up a game in which an adversary
associates s with a nonce value and K with keys that protect the nonce
from the adversary. The adversary then tries to determine the value of the
protected nonce. The protocol specification itself can be viewed as a blue-
print which uses abstract names for the various terms being generated in a
role. Each thread uses the blue-print of a specific role for the sequence of
actions to be performed, but uses distinct names for the terms - so two dif-
ferent threads of the same role will call corresponding variables by different
names. The terms s and /C are names used by specific threads.

The adversary we consider knows the symbolic form of the protocol and
determines the name of each term. An (s, K)-adversary, As i, is a protocol
adversary that additionally chooses a thread to generate the nonce s, as
well as chooses which keys in the execution to associate with the individual
keys in K. Since each thread consists of a principal executing a program
for a role, adversary Asx may select a nonce from a trace by choosing a
thread in that trace and the name used in that thread for a nonce, without
knowing the bitstring value of the nonce, and similarly for the keys. For
simplicity, we refer to the symbolic nonce selected by the adversary as s and
the symbolic keys as k € K. Given a trace (e, \) and a choice of I by the
adversary, let A(K) = {A(k) | k € £} be the set of bitstring values of keys
in IC. The bitstrings A(s) and A(k) for k € IC are generally determined from
the honest party randomness and are not a priori known to the adversary.

Intuitively, overlooking some details that we address in the definitions,
a protocol with the following properties should guarantee the secrecy of s
under the keys IC, in a way that is inductively verifiable:

o If the thread that generates the value of the nonce s sends this out
on the network in any message, then the message must be structured
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such that s is encrypted with a key k with bitstring value A(k) € A(K).

e [f any thread decrypts a message that was encrypted with a key k with
A(k) € A(K) and sends any parts of this message out on the network,
then those parts must be sent in a way that encrypts them with some
key k" with A(k") € A(K) .

In other words, s is protected by I if s is initially sent on the network
in a form that is encrypted with one of the keys in I, and any time a
message encrypted with one of the keys (that might potentially contain s)
is decrypted, any part of the resulting decryption must again be encrypted
with a key in KC before it is sent on the network. An example of a secretive
protocol is given in Figure 1.

Definition 4.1 (Good Terms) Let s be a term of type nonce and K be
a set of terms of type key. Let (e, \) be a trace generated by executing the
protocol against an (s, K)-adversary. An (s,K)-good term for any thread
in this trace is any term received by that thread, a term of atomic type
different from monce or key, a nonce with value different from A(s), or a
term constructed in the following ways: pairing (s, K)-good terms, unpairing
an (s,K)-good term, encrypting an (s,K)-good term, encrypting any term
with a key with value in A(K), or decrypting good terms with keys with
value not in A(K).

Definition 4.2 (Secretive Trace) Lets be a term of type nonce and K be
a set of terms of type key. A trace (e, \) generated by executing the protocol
against an (s, K)-adversary is (s,K)-secretive if every thread belonging to
honest principals sends out only (s, K)-good terms.

Definition 4.3 (Secretive Protocol) Let Q be a protocol and let As i be
an (s, K)-adversary. Then Q is an (s, K)-secretive protocol for Asx if, for
all sufficiently large 1, the probability that a trace t(Asx, Q,n) generated by
the interaction of Asx with honest principals following roles of Q is (s, K)-
secretive is overwhelmingly close to 1, where this probability is taken over
all adversary and protocol randomness. In formulas,

(1 - Pr{t(Ask, Q,n) is (s, K)-secretive |) is a negligible function of n

Recall that adversary Asx may choose arbitarily which nonce in the
trace to designate as s and which keys to designate as elements of K. In the
Bellare et al. approach [11], the adversary fixes the threads about which a
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security property is to be established. Then s and k € K are specific terms
occurring in those threads. In PCL [47], which provides a proof system for
trace properties, a security property is usually in the form of post condition
of a thread and this thread identifies the necessary term names. Although
we use the results in this paper to prove soundness of axioms and rules of
PCL, we find it convenient here to leave the choice up to the adversary, since
that leads to technical results that are applicable to any choice determined
by the syntax of roles and formulas.

In proving properties of secretive protocols, we will be concerned with
subset, of traces that are secretive. Since the set of non-secretive traces is a
negligible subset of all traces, by definition, any advantage the adversary ob-
tains against the non-secretive traces will be cumulatively negligible. When
clear from context, we will drop the subscripts s, I from the adversary name.

A level-0 key for a protocol execution is an encryption key which is only
used as a key but never as part of a payload. We use multi-party security
definitions due to Bellare, Boldyreva and Micali [8] applied to symmetric
encryption schemes in the following theorems. In [8], IND-CCA and the
multi-party IND-CCA game are shown to be asymptotically equivalent.

4.2 Bilateral Simulator

The general structure of the proofs of the secrecy theorems is by reduction
of the appropriate protocol secrecy game to a multi-party IND-CCA game.
That is, given protocol adversary A, we construct an adversary A’ against
a multi-party IND-CCA challenger which provides |K|-party Left-or-Right
encryption oracles &, (LR(-,-,b)) parameterized by a challenge bit b and
decryption oracles Dy, (-) for all k; € K (Following [8], LR(mg, m,b) is a
function which returns my,).

The strategy of A’ is to provide a simulation of the secretive protocol to
A by using these oracles such that the capability of A to break the indis-
tinguishability or key usability of the nonce can be leveraged in some way
to guess the challenge bit b of the multi-party IND-CCA challenger. To
this end, A" employs a bilateral simulator S which extracts two bit-strings
80,51 from the randomness of A’ as alternate values of the putative secret
s and then simulates execution of the protocol to the protocol adversary A
for both the values. The security parameter, the key generation algorithm,
the symmetric encryption/decryption algorithms are fixed beforehand and
are known to the simulator. The nonce length and key lengths are non
constant positive polynomials in the security parameter. All keys not in K
are generated by S as and when required. A can ask S for keys known to
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a dishonest party, but not keys known only to honest parties. Since A is
polynomially bounded, S only has to generate polynomially bounded num-
ber of keys. All the randomness required by S in the various cryptographic
operations, as well as the randomness required by A, are supplied from the
randomness of A’. The IND-CCA challenger, however, uses independent
randomness unknown to A’. Both the randomness lengths are non-constant
positive polynomials in the security parameter. All the security theorems
in this paper are over uniform probability distributions on both adversary
and challenger randomness. The theorems are asymptotic in flavour in that
they assert that for given polynomials specifying various parameter lengths
and a given adversary, there is a large enough security parameter such that
the adversary has negligible advantage in winning a game. Figure 2 illus-
trates the behavior of the bilateral simulator on one possible execution of
the secretive protocol in Figure 1.

As with the execution of the actual protocol, S receives messages and
scheduling information from A and acts according to the roles of the given
protocol. A also specifies the symbolic names of the terms in the operations.
The difference from a normal protocol execution is that in computing bit-
string values of terms that involve s, S does so for both values of s. We will
show that for secretive protocols the value of s that A sees is determined
by the challenge bit b of the CCA challenger. The operational semantics of
the bilateral simulator is formalized in Table 2. We explain the form of the
definition using an example. The action m := pair m’,m” requires that the
terms m and m’ have already been evaluated in the protocol thread under
execution. We also impose the syntactic requirement that each term vari-
able is evaluated only once — this does not constrain the expressive power of
the language as variables could be alpha renamed. The functions lv and rv
map a term to its bit-string values intuitively corresponding to the values
so and s1 of s respectively. The function pair is the actual computational
implementation of pairing. The result of executing this action rule states
that lv(m) is evaluated by pairing the bit-strings lv(m’) and lv(m”) and sim-
ilarly for rv(m). In simulating the protocol to the protocol adversary, the
simulator executes each action of the currently scheduled thread following
this definition.

We first argue informally here that the inductive structure of encryption
and decryption allowed in a secretive protocol ensures that the simulator
does not stop due to the operational semantics of a send action — a send
action stops simulation when the lv() and rv() values of the the term to be
sent are different. Lemma 4.4 states the general case more formally. Suppose
m is a term explicitly constructed from s in the thread that generates s. As
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S is simulating an (s, K)-secretive protocol, this term is to be encrypted with
a key k in K to construct a message to be sent out to A. So, S asks the
encryption oracle of the |[IC|-IND-CCA challenger to encrypt (lv(m),rv(m))
with k. In addition, this pair of bitstrings is recorded and the result of the
query is logged in a set which we denote as qdby—for each key k we have
a distinct set qdbx. If a message construction involves decryption with a
key in IC, S first checks whether the term to be decrypted was produced by
an encryption oracle by accessing the log qdbi—if not, then the decryption
oracle is invoked; if yes, then S uses the corresponding encryption query as
the decryption. In the second case the encryption query must have been
of the form (mg,m1). Following the definition of secretive protocol, terms
constructed from this decryption will be re-encrypted with a key in X before
sending out. Thus we note here that all such replies will be consistent to A
with respect to any choice of b.

The situation becomes trickier when encryption or decryption of a term
is required with s as the key. In this case S encrypts or decrypts with
sp. We therefore always have [v(m) = rv(m) for any message m being sent
out. Hence, the simulator will not get stuck due to a send action. The
computational evaluation of an encryption using a nonce as a key involves
generation of a key from the nonce using a deterministic keygen function.
The keygen function is assumed to map a uniform distribution over the
nonce space to a distribution computationally indistinguishable from the
key space required by the symmetric encryption scheme.

One subtle issue arises when we consider term deconstructors such as un-
pairings and decryptions, and pattern matching actions. The bilateral simu-
lation for term constructions like pairing and encryption is fairly straightfor-
ward. However, to have a consistent simulation we need to ensure that the
success of the decontruction and pattern matching actions are independent
of the challenge bit b, i.e. if the term for b = 0 can be unpaired or decrypted
then the corresponding operation also succeeds for the term for b = 1; if
there is a match for b = 0 then there should also be a match for b = 1.

For this technical reason, we assume that honest parties conform to
certain type conventions. These restrictions may be imposed by prefixing
the values of each type (nonces, ids, constant strings, pairs, encryptions with
key k, etc.) with a tag such as ‘constant’ or ‘encrypted with key-id k — id’
that are respected by honest parties executing protocol roles. The adversary
may freely modify or spoof tags or produce arbitrary untagged bitrings. It
turns out that the type information carried by terms ensures deconstruction
and matching consistency in an overwhelming number of traces. This is
stated in lemmas 4.6 and 4.7. The proofs proceed by induction over the
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operational semantics in Table 2.

Lemma 4.4 If an honest principal in a trace (e, \) constructs an (s, K)-
good term m, then any bilateral simulator with parameters s, K, executing
symbolic actions e produces identical bitstring values for m on both sides of
the simulation, i.e., we will have lv(m) = rv(m).

Proof. The proof is by induction on the construction of good terms. The
base cases for received terms, terms of atomic type different from nonce
or key simply follow from the operational semantics of the simulator. For
encryption of a good term and decryption with a key not in /C, we use the
fact that only the lv() of the key is used in the operational semantics for
encryption and decryption, hence the result also has equal lv() and rv()
values. The case for encryption of any term with a key in K follows as the
operational semantics for this case produces the same value for (v() and rv()
in the result. O

Definition 4.5 (&) For term variables m,m’, we write m = m’ iff lv(m) =
lo(m’) Arv(m) = ro(m’).

Lemma 4.6 (Consistent Deconstructions) If the bitstring value of the
term wvariable m is a pair on one side of a bilateral simulation then it is a
pair on the other side also; similarly for encryption. Formally,

o If lv(m) = pair(lp,l1) for some ly,l1, then rv(m) = pair(rg,r1) for
some 1,1 and vice versa.

e [flv(m) is equal to an encryption enc(l,lv(k)) for some I, then rv(m)
is also equal to an encryption enc(r,lv(k)) for some r and vice versa
(It is implicit that the encryption is randomized).

Proof. The proof is by simultaneous induction on the following stronger
propositions:

e If lu(m) = pair(ly,l;) for some lp,l1, then either lv(m) = rv(m) or
there exists m’ such that m = m’ and m’ is derived by a pair action.

o If lv(m) = enc(l,lv(k)) for some [, then either {v(m) = rv(m) or, k ¢ K

and there exists m’, k’ such that m = m’, k = k/ and m’ is derived by
an enc -, k" action.

e If lu(m) is tagged to be of type nonce then either (v(m) = rv(m) or,
lv(m) = sp Arv(m) = s1.
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e In all other cases, lv(m) = rv(m)

We do the induction as follows on the operational semantics defined in
table 2:

Case: (m in the static list, m ¢ K), (receive m;), (new m; m #s) —
in all these cases, lv(m) = rv(m), so we are done.

Case: new m; m =s — this satisfies lu(m) = so A rv(m) = s7.

Case: m := pair m’,m”; — resultant value is a pair of two component
values and satisfies the proposition that it has been derived by a pair ac-
tion.

Case: m:=enc m’,n; n ¢ K — resultant value is an encryption using
the key lv(n) values and satisfies the proposition that it has been derived by
a enc action.

Case: m:=enc m’,n; n € K — in all this case, lv(m) = rv(m)

Case: m := fst m’; Now, lv(m’) = pair(lv(m),1) for some [. Therefore,
by IH, either lv(m’) = rv(m’) or m’ was derived by a pair action.

If lv(m’) = ro(m’), then lv(m) = fst(lv(m')) = fst(rv(m’)) = rv(m) and
we are done.

If m” = m’ was derived by a pair action, say: m” := pair u,p’;
Therefore,

lw(m”) =lv(m") = fst(lo(m”)) = fst(lv(m')) = lv(p) = lv(m)
ro(m”) = ro(m’) = fst(ro(m”)) = fst(ro(m’)) = ro(p) = rov(m)

Therefore p = m and we are through by IH. The induction over rule SND is
similar.

Case: m := dec m/,k; Now, lv(m’) = enc(lv(m),lv(k)). Therefore,
by IH, either lv(m’) = rv(m’) or, k ¢ K and some m” was derived by an
enc -, k” action, with m” = m’, k" = k'

If lv(m’") = ro(m’) and their value is € q¢db then rule for the case
(m := enc m’,k; k € K) must have been invoked for an m” = m’ at
some point before, when the value was entered in the qdby - i.e. we had
m” := enc u,k; k € K. Therefore lv(p) = dec)(lv(m”)) = decd(lv(m’)) =
lv(m), and rv(u) = dec}.(rv(m”)) = dect(rv(m’)) = rv(m). Hence, 4 = m
and the induction follows by IH.
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If lv(m’) = ro(m’) and their value is ¢ qdby, then enc(lv(m),lv(k)) =
enc(rv(m),lv(k)). Therefore lv(m) = rv(m).

If lv(m’) # ruv(m’), then k ¢ K and some m” was derived by an enc -,k
action, with m” = m’ k" =2 k. Since lv(m’) # rv(m’), this derivation must
have been by the rule for the action (m :=enc m’,k; ke K), say: m” :=

enc fu, k”. Therefore,

n

lv(m”) = lv(m") = enc(lv(p), (k")) = enc(lv(m),lv(k)) = lv(p) = lv(m)

ro(m”) = rv(m’) = enc(rv(u), (k")) = enc(rv(m),lv(k)) = rv(u) = ro(m)

Therefore 4 = m and we are through by IH.

Lemma 4.7 (Consistent Matchings) If the term variables m and m’ are
computationally evaluated by a bilateral simulator, and the action match
m as m’ is executed, then with overwhelming probability, the match succeeds
on the left side iff it succeeds on the right.

Proof. Suppose the action match m as m’ is executed and the match suc-
ceeds exactly on one side. Therefore, for at least one of m, m'—say m’'—it
must be that lv(m’) # rv(m’). Therefore, m’ must have been derived by
either pairing or, an encryption with a key k such that k ¢ K, or, m’ &s.

e Suppose m”, m” = m’, was derived by a pair action—m” = pair pu,p’.

It must be that for one of u, p/, say u, lv(p) # ro(w).

~

e Suppose m”, m” = m’ was derived by a enc action — k ¢ K,m" =
enc i, k. It must be that lv(u) # rov(u).

Now the argument about m’ can be reapplied to u since lv(p) # ro(u).
It therefore follows that as we iteratively look at the derivations, we will
eventually reach a symbol n, such that n & s. Intuitively what this means
is that it is possible to obtain s from m’ through a series of unpairings and
decryptions using keys that honest principals have used. We will be guided
by this intuition to build an adversary against a |KC|-IND-CCA challenger.
The |K|-IND-CCA adversary we build consists of a modified simulator &’
interacting with a protocol adversary A" which can instruct 8’ to undertake
individual actions, represented symbollically. As compared to S, S’ follows
the same operational semantics on individual symbolic actions from the
given protocol syntax but instead of conforming to a specific protocol role,
these actions are dictated by the adversary. In addition S’ outputs status
of actions such as ‘match succeeded or failed on left, right or both sides’,
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‘unpairing succeeded/failed” and ‘decryption succeeded/failed’, ‘send failed
as lv() # rv().

The algorithm A’ first uses S’ to simulate the protocol execution to the
protocol adversary A. Whenever the action match m as m’ is executed and
the match succeeds exactly on one side, the simulator S’ tells A’ so. At
this point, A" executes the function parse-get-s (Table 3) on the symbols
m and m’. We will show that for at least one of m and m’, parse-get-s()
will output a (b, s’) such that s’ = sp. Also with overwhelming probability
b’ = b will hold, where b is the |[K|-IND-CCA challenger bit.

Suppose the matching succeeds on the left side, i.e., lv(m) = lv(m’) but
rv(m) # rv(m’). Since lv(m) = lv(m’), note that m and m’ will have an
identical parsing sequence. Since also lv(m’) # rv(m’), the parsing should
reach, at least once, an n’ with n’ = s. The parse tree of m should also have
a corresponding n with lv(n) = sp. Since rv(m) # rv(m’), for at least one of
these leaves n we should have rv(n) # s1, but in this case we can only have
ro(n) = sg = lv(n). Therefore send n action is allowed for S’. Therefore
parse-get-s(m) succeeds and outputs (0, sp).

Case 1: matching succeeds only in the left. We argue in this case that
b = 0 with overwhelming probability. Suppose on the contrary, b = 1. Then
the protocol simulation from A”’s perspective used sy only as a key to an
IND-CCA secure encryption scheme, if used at all. Since sy was chosen
randomly, the probability of an adversary coming up with sg is negligible.
Hence b = 1 only with negligible probability.

Case 2: matching succeeds only in the right. We argue in this case
that b = 1 with overwhelming probability. Suppose on the contrary, b = 0.
Then the protocol simulation from A”’s perspective never used s;. Since s1
was chosen randomly, the probability of an adversary to come up with s1 is
negligible. Hence b = 0 only with negligible probability. O

4.3 Computational Security

We recall some of the earlier discussion here for context. An (s, K)-adversary,
As i, is a protocol adversary that additionally chooses a thread to generate
the nonce s, as well as chooses which keys in the execution to associate with
the individual keys in K. Since each thread consists of a principal executing
a program for a role, adversary Asx may select a nonce from a trace by
choosing a thread in that trace and the name used in that thread for a
nonce, without knowing the bitstring value of the nonce, and similarly for
the keys. In proving properties of secretive protocols, we will be concerned
with subset of traces that are secretive. Since the set of non-secretive traces
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is a negligible subset of all traces, by definition, any advantage the adversary
obtains against the non-secretive traces will be cumulatively negligible. A
level-0 key for a protocol execution is an encryption key which is only used
as a key but never as part of a payload.

Theorem 4.8 (CCA security - No keying - level 0) Assume that a prob-
abilistic poly-time (s, K)-adversary A interacts with an (s, K)-secretive pro-
tocol with K consisting of level-0 keys only. Also assume that in every trace
(e, ), a term of value \(s) is never used as a key by the honest principals.
The adversary has negligible advantage at distinguishing the value of s from
random, over the set of all traces (e, \), after the interaction if the encryp-
tion scheme is IND-CCA secure. In other words, the protocol satisfies key
indistinguishability for s against A.

Proof. We will show that if .4 has non-negligible advantage at distinguishing
the value of s from random, after the interaction, then we can construct
a |KC|-IND-CCA adversary .A; with non-negligible advantage against the
encryption scheme.

Adversary A; employs a bilateral simulator S which randomly chooses
two bit-strings sg, s1 as alternate values of the putative secret s and then
simulates execution of the protocol to the protocol adversary A for both the
values. Since the protocol is (s, K)-secretive with respect to A, terms to be
sent out by the honest principals will have identical lv() and rv() values by
lemma 4.4. By lemmas 4.6 and 4.7, unpairings, decryptions and matchings
will succeed or fail consistently on both sides of the simulation. Since s
is never used as a key, we therefore observe that the simulated protocol
behaviour will be consistent to A with respect to any choice of b.

In the second phase, A; chooses a bit d’ and sends sy to A. If A replies
that this is the actual nonce used, then A; finishes by outputting d = d/,
otherwise it outputs d = d’ and finishes. The advantage of A; against the
|IC|-IND-CCA challenger is:

Advik-inp-coaa (m) = Prld=0b=0] - Pr[d=0[b=1] (1)

Since A has a non-negligible advantage at distinguishing s from random, the
quantity on the RHS must be non-negligible. Therefore the advantage in
the LHS must be non-negligible and hence we are done. O

If a protocol is an (s, K)-secretive protocol where K is a set of level 0
keys, then we will call s a level-1 key for the protocol, protected by K. We
provide below an example of a protocol with level-1 keys and then state a
theorem establishing key usability for level-1 keys.
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Example. Consider the following two party protocol KeyEx:
Initiator A’s program for a session with B:

new n;
m :=enc n,ky p;

send m;

receive u;
v :=dec u,n;

match v as B;
Responder B’s program for a session with A:

receive p;
r:=dec p,ka,B;
t:=enc B,r;

send t;

Consider an (s, {kpg})-adversary A which picks a thread of principal P
to execute the initiator role with responder () and names the nonce generated
by P as s and the shared key between P and @ as kpg. We claim that
KeyEx is an (s, {kpg}) secretive protocol for A. The informal proof is as
follows: The thread P encrypts s by the key kpg. Only a thread of P or Q
can decrypt this message. As can be seen from the protocol structure, any
thread that decrypts with the key kp g, does not send out part of the result
of the decryption as a payload in another message. Note that () uses the
key s to encrypt and produce the term ENC(s|(Q) to be sent out. Theorem
4.9 establishes that s satisfies key usability against A.

Theorem 4.9 (CCA security - Keying - level 1) Assume that a prob-
abilistic poly-time (s, K)-adversary A interacts with an (s, K)-secretive pro-
tocol with IC consisting of level-0 keys only. Homest principals are allowed
to use a term of value X(s) as a key in every trace (e, \). The adversary
has negligible advantage at winning an IND-CCA game against a symmetric
encryption challenger, using the key A(s), over the set of all traces (e, \),
after the interaction if the encryption scheme is IND-CCA secure. In other
words, the protocol satisfies IND-CCA key usability for s against A.

Proof. We will show that if .4 has non-negligible advantage at winning
an IND-CCA game against a symmetric encryption challenger, using the
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key A(s), after the interaction then we can construct either a |K|]-IND-CCA
adversary A or an IND-CCA adversary Ay with non-negligible advantages
against the encryption scheme.

We proceed as in the proof of theorem 4.8 to construct the adversary
Ai. The situation becomes different when encryption or decryption of a
term is required with a nonce or a key n which has different (v() and rv()
values. As we saw in the proof of lemma 4.6, this can only happen when
lv(n) = so and rv(n) = s1. In this case S encrypts or decrypts with lv(n),
that is, sg. Again, as in the proof of theorem 4.8, terms to be sent out by the
honest principals will have identical lv() and rv() values by lemma 4.4 and
by lemmas 4.6 and 4.7, unpairings, decryptions and matchings will succeed
or fail consistently on both sides of the simulation.

In the second phase, A; uniformly randomly chooses a bit " and provides
oracles &, (LR(-,-,V')) and Dy, () to A for an IND-CCA game. A finishes
by outputting a bit d’. If ¥’ = d’, A; outputs d = 0 else outputs d = 1. The
advantage of A; against the |IC|-IND-CCA challenger is:

Advi|-inp-coaa (n) = Prid=0[b=0] - Prld=0b=1]  (2)

Observe that if b = 0 then s was consistently represented by sp in mes-
sages sent to A. Hence, the first probability is precisely the probability of
A winning an IND-CCA challenge with A(s) as the key after interacting
with an (s, KC)-secretive protocol. We will now bound the second probabil-
ity. We start by constructing a second adversary .As which interacts with
an alternate simulator &’ (described in Table 4) which has all the keys in
IC, randomly generates a nonce s; and has access to an encryption oracle
Eso(LR(+,-,b1)) and a decryption oracle Dy (-). It has a similar behaviour
towards A as S had except that when constructing terms with s, it uses s;
but when required to encrypt or decrypt using s, it queries E,(LR(, -, b1)) or
Ds, (). In the second phase, Az uses the oracles E,(LR(-,-,b1)) and Dg, ()
to provide the IND-CCA challenger to A. A finishes by outputting a bit d;.
As outputs di. We observe here that if b = 1 for the earlier LR oracle, it
makes no difference to the algorithm A whether it is interacting with 4; or
As. Thus we have:

(1/2)Advinp—cca,a,(n) = Pridi =b1]—1/2=Prid =0/b=1]—-1/2 (3)
By the equations 2 and 3 we have:

Prid=0|b=0]-1/2 = Adv|x—_inp-cca,a, (M) +(1/2)AdviND-cca 4, (1)
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As the probablity in the LHS is non-negligible, at least one of the advantages
in the RHS must be non-negligible and hence we are done. O

Now we state a theorem establishing the integrity of encryptions done
with level-1 keys. The security definition INT-CTXT for ciphertext integrity
is due to [10] and also referred to as existential unforgeability of ciphertexts
in [37].

Theorem 4.10 (CTXT integrity - level 1) Assume that a probabilistic
poly-time (s, K)-adversary A interacts with an (s, K)-secretive protocol with
K consisting of level-0 keys only. In any trace (e, ), if an honest prin-
cipal decrypts a ciphertext with a key of value \(s) successfully, then with
overwhelming probability, over the set of all traces (e, \), the ciphertext was
produced by an honest principal by encryption with a key of value \(s) if the
encryption scheme is IND-CCA and INT-CTXT secure.

Proof.  Suppose during the protocol run, an honest party decrypts a
ciphertext with a key of value A(s) successfully which was not produced
by an honest party by encryption with A(s). We build a |K|-IND-CCA
adversary A; against set of keys IC in the lines of the proof of theorem 4.9.
However, this new A; computes d in a different way. Recall that S uses sg
when it intends to encrypt or decrypt using s. In the course of interaction
with A1, if S succeeds in decrypting a ciphertext with key sg which was not
produced at a previous stage by S by encryption with sg, 4; outputs d = 0.
Otherwise, it outputs d = 1. The simulator does not get stuck due to any
send, deconstruction or matching action as we have seen in the previous two
proofs. The advantage of A; against the |IC|-IND-CCA challenger is:

Advc|_iNp-coaa () = Prld=0[b=0 - Prld=0[b=1]  (4)

Now, Pr[d = 0]b = 0] is the probability of S succeeding in decrypt-
ing a ciphertext with a key of value A(s) which was not obtained through
encryption by S. Pr[d = 0|b = 1] is the probability of A; succeeding in
decrypting a ciphertext with level-0 key sg (as in this case syp was only used
as a key). Therefore, using a similar idea as proof of theorem 4.9 we can
build an INT-CTXT adversary Ay against sg. Therefore,

Prid=0[b =0] = Adv|c|_inp-cca,a, (1) + AdViNT-cTXT A4, (1)

As the encryption scheme is both IND-CCA and INT-CTXT secure, both
the probabilities on the RHS must be negligible and hence the theorem. [J
We now extend theorems 4.8-4.10 to directed key hierarchies. This ex-
tension is motivated by the fact that many key distribution protocols (e.g.
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Kerberos) have key hierarchies with keys protected by lower level keys in
the hierarchy. We again mandate that the nonces and keys in the set K are
indicated by the adversary while executing the threads.

Recall that for a finite directed graph, the immediate predecessors of a
node is the set of nodes that have edges to it.

Definition 4.11 (Key Graph) Let K be a set of terms of type nonce or
key in a trace (e, \). A directed graph I" with elements of K as vertices is
a key graph for IC for the trace if the following holds: for every node k and
the set of its immediate predecessors K', the trace is (k, K')-secretive. If T
is a set of traces, then I' is a key graph for IC for T if it is a key graph for
K for each trace in T.

Recall that K is a set of symbolic names. When K only has level-0
keys, the names are globally agreed upon. For example, sk jice, Bop may be
the name of the symmetric key shared by Alice and Bob. The adversary
just knows how to represent the key symbolically, but he may not know
the bitstring value of it. When K has nonces as well, the name of a specific
nonce n may not be the same across different threads. The adversary decides
which thread generates n - the generating thread will call the nonce by the
name n; same for the putative secret nonce s. This decision is taken during
the run. The nonce generating threads can all be distinct.

In a directed acyclic graph, a root is a node that has no predecessor.
The level of a node in the graph is its maximum distance from a root, over
all roots from which it is reachable.

Definition 4.12 (Key Level) Let K be a set of terms of type nonce or key
in a set of traces T'. Let I" be a directed acyclic key graph for IC for T. The
level of a key is its level in graph I.

Definition 4.13 (Key Basis) Let K be a set of terms of type nonce or key
in a set of traces T'. Let I" be a directed acyclic key graph for IC for T. We
define its basis, B(I'), to be the set of all keys at the root, i.e., B(I') is the
set of level 0 keys in K.

Theorem 4.14 (CCA security - No Keying) Assume that a probabilis-
tic poly-time (s, K)-adversary A interacts with an (s, K)-secretive protocol
such that there is a key graph ' for IC which is a DAG. Also assume that
a key of value X\(s) is never used as a key by the honest principals in every
trace (e, \). The adversary has negligible advantage at distinguishing A(s)
from random, over the set of all traces (e, \), after the interaction, if the
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encryption scheme is IND-CCA secure. In other words, the protocol satisfies
key indistinguishability for s against A.

Proof. We will prove this by induction over the maximum level of I'. If
IC consists only of level 0 keys then the result follows from theorem 4.8.
Suppose the maximum level in I" is (n + 1) and assume that the theorem
holds for maximum level n. Let K’ be B(T').

We will show that if A has non-negligible advantage at distinguishing
A(s) from a random bitstring of the same length, after the interaction, then
we can construct either a |[K'|-IND-CCA adversary A; to the encryption
scheme or contradict the induction hypothesis.

We will construct an adversary A; which has access to a modified bilat-
eral simulator S (described in Table 5) which, in turn, has access to multi-
party LR encryption oracles &, (LR(, -, b)) and decryption oracles Dy, (-) for
all k; € K’ parameterized by a bit b chosen uniformly randomly. For keys
st of level > 0, S chooses random values 56, si1 and for s, S chooses random
values sg, s1. Intuitively, S constructs messages to be sent to A as follows:

e to encrypt the term f(s,s',s?, ...) with k; € K, use response to oracle

query
Ek; (LR(f(s0, sé, 3(2), ), f(s1,81,8%,..),b)).

e to encrypt f(s,s!,s?,...) with s?, use Esé(f(so,sé,sg, 2.

Decryption operations are served analogously. The same idea of the proof
for lemma 4.4 still applies to the operational semantics in this setting, hence
terms to be sent out by the honest principals will have identical lv() and
rv() as the protocol is (s, C)-secretive with respect to A. The proofs of
lemmas 4.6 and 4.7 are similar to the ones with semantics for level 0 keys
in . Therefore, unpairings, decryptions and matchings will succeed or fail
consistently on both sides of the simulation.

In the second phase, A; chooses a bit d’ and sends sy to A. If A replies
that this is the actual nonce used, then A; finishes by outputting d = d/,
otherwise it outputs d = d’ and finishes. The advantage of A; against the
|K'|-IND-CCA challenger is:

Adv_inp-ccan, (n) = Prld=0[b=0] — Prld = 0[b= 1]
= (Prl[d=0[b=0]—1/2)
(Prld=1[b=1] - 1/2) (5)

The first probability in the RHS is precisely the probability of A breaking
the indistinguishability of sy or equivalently of s. In the case when b = 1,
the terms were constructed in the following manner:
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e encrypt f(s,st,s%,...) with k; € K': &, (f(s1, 51,53, ...)).
e encrypt f(s,st,s?,...) with s 586(]”(30,3(1),33,...)).

We observe here that S simulated the execution of another secretive
protocol G’ with keys of level < n - 36,5%,... protecting so (operational
semantics described in Table 6). This is because the root level keys no
longer protect the other keys in the DAG - we obtain a transformed DAG
with the roots of the earlier DAG removed, and hence of maximum level one
less. Therefore, we have:

Prid=1[b=1]-1/2 = (1/2)Advg a(n), (6)

where Advg 4(n) is the advantage of A in breaking the indistinguishability
of s against the protocol G'.
By the equations 5 and 6 we have:

Prld=0[b=0] - 1/2 = Adv|x/|—inp-cca,a, (1) — (1/2)Advg 4(n)

As the probablity in the LHS is non-negligible, at least one of the advantages
in the RHS must be non-negligible and hence we are done. O

Theorem 4.15 (CCA security - Keying) Assume that a probabilistic poly-
time (s, K)-adversary A interacts with an (s, K)-secretive protocol such that
there is a key graph T for IC which is a DAG. Honest principals are allowed
to use a key of value \(s) as a key in every trace (e,\). The adversary
has negligible advantage at winning an IND-CCA game against a symmetric
encryption challenger, using the key A(s), over the set of all traces (e, \),
after the interaction if the encryption scheme is IND-CCA secure. In other
words, the protocol satisfies IND-CCA key usability for s against A.

Proof. We will again prove this by induction over the maximum level
I'. If IC consists only of level 0 keys then the result follows from theorem 4.9.
Suppose the maximum level in I" is (n + 1) and assume that the theorem
holds for maximum level n. Let K’ be the basis B(K) of the set of keys K.

We will show that if .4 has non-negligible advantage at winning an IND-
CCA game against a symmetric encryption challenger, using the key A(s),
after the interaction then we can construct either a |K'|-IND-CCA adversary
A; or contradict the induction hypothesis.

We proceed as in the proof of theorem 4.14 to construct the adversary
Aji. The only additional operation is that to encrypt or decrypt the term m
with s, § uses sg as the key.
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In the second phase, A; randomly chooses a bit  «— {0,1}. A sends
pairs of messages mg,m; to Aj. Aj replies with &,(my). Decryption
requests are also served by decrypting with key sg ciphertexts not obtained
by a query in this phase. A finishes by outputting a bit d’. If v/ = d’, A;
outputs d = 0 else outputs d = 1.

The advantage of A; against the |K'|-IND-CCA challenger is:

Advic—iNp-ccaa () = Prld=0[b=0]-Prld=0b=1] (7)

The first probability is precisely the probability of A breaking the ‘good-
key’-ness of sg or equivalently of s. In the case when b = 1, the terms were
constructed in the following manner:

e encrypt f(s,st,s,...) with k; € K': &, (f(s1, 51,53, ...)).
e encrypt f(s,st,s?,...) with s Ssé(f(so,s(l),sg,...)).
e encrypt term m with s: E,(m).

Again, as in the proof of theorem 4.8, terms to be sent out by the honest
principals will have identical lv() and rv() values by an extension of lemma
4.4 and by lemmas 4.6 and 4.7, unpairings, decryptions and matchings will
succeed or fail consistently on both sides of the simulation.

We observe here that S simulated the execution of another secretive
protocol G’ with keys of level < n - sé, s%, ... protecting sg. This is because
the root level keys no longer protect the other keys in the DAG - we obtain
a transformed DAG with the roots of the earlier DAG I'" removed, and hence
of maximum level one less. Therefore, we have:

PT[d:0|b: 1] - 1/2 = (1/2)AdVg/7A(’I7) (8)
By the equations 7 and 8 we have:

Prid=0[b =0] = 1/2 = Advjc|-np-cca.a, (n) + (1/2)Advgr a(n)

As the probablity in the LHS is non-negligible, at least one of the advantages
in the RHS must be non-negligible and hence we are done. U

Theorem 4.16 (CTXT integrity) Assume that a probabilistic poly-time
(s, KC)-adversary A interacts with an (s, K)-secretive protocol such that there
is a key graph T for K which is a DAG. In any trace (e, \), if an honest
principal decrypts a ciphertext with a key of value A(s) successfully, then with
overwhelming probability, over the set of all traces (e, \), the ciphertext was
produced by an honest principal by encryption with \(s) if the encryption
scheme is IND-CCA and INT-CTXT secure.
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Proof. We will prove this by induction over the maximum level of T'.
If K consists only of level 0 keys then the result follows from theorem 4.10.
Suppose the maximum level in I" is (n+1) and assume that the theorem holds
for maximum level n. Let K’ be the basis B(K) of the set of keys . Suppose
during the protocol run, an honest party decrypts a ciphertext with key \(s)
successfully which was not produced by an honest party by encryption with
A(s). The simulator does not get stuck due to any send, deconstruction or
matching action as we have seen in the previous two proofs.

We build a |[K'|-IND-CCA adversary A; against set of keys K along the
lines of the proof of theorem 4.15. In the course of interaction with A, if S
succeeds in decrypting a ciphertext with key sg which was not produced at
a previous stage by S by encryption with sg, A1 outputs d = 0. Otherwise,
it outputs d = 1. The advantage of A; against the |[K’|-IND-CCA challenger
is:

Advic_iNp-ccaa, (n) = Prld=0[b=0] - Prld=0b=1] (9)

Now, Pr[d = 0|b = 0] is the probability of .4; succeeding in producing
a ciphertext with key A(s) which was not obtained through encryption by
Aj. Prld = 0|b = 1] is the probability of A; succeeding in decrypting a
ciphertext with level-(n — 1) key so (Same argument as in proof of theorem
4.15 - the DAG reduces by one level) which was not produced by encryption
with sg. Therefore,

P’I”[d = O|b = 0] = AdV|IC/|fINDfCCA,A1 (77) + PT‘[d = O‘b = 1]

As the encryption scheme is IND-CCA secure, the first probability on
the RHS must be negligible. The second probability is negligible due to
the induction hypothesis as the encryption scheme is both IND-CCA and
INT-CTXT secure. Hence the theorem. O

5 Diffie-Hellman

In this section, we formulate a trace property for protocols that use the
Diffie-Hellman primitive and prove that, under the Decisional Diffie-Hellman
assumption, any protocol that satisfies this condition produces keys that are
suitable for keying chosen plaintext (IND-CPA) secure encryption schemes.
The motivating application for this result is the fact that many Diffie-
Hellman-based key exchange protocols (e.g., IKEv2 [17]) set up keys for use
in secure sessions protocols. Such protocols typically provide the desired
security with IND-CPA encryption schemes and do not require IND-CCA
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secure encryption. However, we also state a stronger theorem assuming
IND-CCA encryption schemes.

The additional operations for Diffie-Hellman are tabulated in Table 7.
The group G and the group element g are fixed, given the security parameter
7, and are available to all principals. The bit-strings corresponding to nonces
are sampled uniformly randomly from Zg,.

Definition 5.1 (DHSafe Trace) Let x and y be two terms of type nonce
in a trace (e, \). We say that (e, \) is an (x,y)-DHSafe trace if the following
properties hold for every thread belonging to honest principals:

e the thread which generates nonce X, ensures that it appears only expo-
nentiated as g* in any message sent out. Similarly fory.

e the thread generating x is allowed to generate a key by exponentiating a
term m such that A\(m) = g’\(Y) to the power x and using an appropriate
key generation algorithm. However, this key (¢) is only used in the
protocol for encrypting messages, not sent as the payload of a message.
A similar restriction applies to the thread generatingy.

The key generation algorithm referred to in the definition is assumed to
map from the uniform distribution of group elements ¢g" to a distribution
computationally indistinguishable from the key distribution required by the
symmetric encryption scheme. The second bullet in the definition is not a
syntactic condition and can be non-trivial to prove. One usual way proto-
cols achieve this sort of authentication is by using digital signatures. The
discussion of proof methods to ensure the conditions required for DH Sa fe-
ness is outside the scope of this paper. Please refer to [28, 48] to see these
proof methods and how the results of this paper fit into a larger context for
proving security properties of DH protocols.

Definition 5.2 (DHSafe Protocol) Letx andy be two terms of type nonce.
Let Ay, be a probabilistic poly-time adversary which decides which nonces
in a trace to designate x and y. A protocol Q is an (x,y)-DHSafe proto-
col for Ay if for all sufficiently large security parameters n, the probability
that a trace t(Axy, Q,n), generated by the interaction of Ay, with principals
following roles of Q, is a DHSafe trace with respect to x andy is overwhelm-
ingly close to 1, the probability being taken over all adversary and protocol
randomness. Formally,

(1 — Pr[t(Axy, Q,n) is DHSafe wrt x and y |) is a negligible function of n
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As in the case of secretive protocols, here also we implicitly look at the
subset of all traces that are DHSafe among all possible traces. Since the
set of non-DHSafe traces is a negligible subset of all traces, by definition,
any advantage the adversary obtains against the non-DHSafe traces will be
cumulatively negligible.

We consider two scenarios involving the usage of the Diffie Hellman key to
demonstrate the flexibility of our approach. In the first scenario, the results
of decryption using the key do not produce any observable difference on
subsequent sends. One useful instance may be when the results of decryption
are some non-protocol data that are used internally by the principal. In
these cases we make the point that we do not require IND-CCA; IND-CPA
is sufficient. In the second scenario, the results of decryption may affect
subsequent sends - here we use the IND-CCA assumption.

Theorem 5.3 (DH-CPA security) Assume that a probabilistic poly-time
adversary Ay, interacts with an (x,y)-DHSafe protocol. Suppose the encryp-
tion scheme used by the protocol is IND-CPA secure and the DDH assump-
tion holds for the group containing g. Then the adversary has negligible
advantage at winning an IND-CPA game against a symmetric encryption
challenger, using the key k such that A(k) = keygen(g*®*¥), after the
interaction provided the results of decryptions with key k are not used to
construct any message sent out. In other words, the protocol satisfies IND-
CPA key usability for k against Ay if the results of decryptions with key k
are not used to construct any message sent out.

Proof. We will show that if A(= Ay,) has non-negligible advantage at
winning an IND-CPA game against a symmetric encryption challenger, using
the key k, after the interaction then we can construct either a DDH adversary
A1 with non-negligible advantage against DDH in the group containing g
or an IND-CPA adversary Ay with non-negligible advantage against the
encryption scheme.

Adversary A; is provided, at the outset, with a triple (g%, g% ¢¢) and
has to determine if ¢ = ab. It proceeds by simulating the execution of the
protocol to adversary A. Following the definition of DHSafe protocols, if an
honest principal sends out a message containing x or y, then it has to be
constructed from ¢* or ¢¥. A; uses ¢® and ¢® as the bitstring values of g%
and ¢¥ respectively. When an honest principal exponentiates a term to the
power x or y and generates a key, A; uses k = keygen(g°) as the bitstring
value of the key.

In the second phase, A; uniformly randomly chooses a bit b’ and provides
oracle & (LR(-,-,V')) to A for an IND-CPA game. A finishes by outputting
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abit d'. If b’ = d’, A; outputs 1 else outputs 0. The advantage of A; against
the DDH challenger is:

Advppm.a,(n) = PrlA; outputs 1 | ¢ = ab] — Pr[A; outputs 1 | c # ab]
(10)

Observe that if ¢ = ab then k is the bitstring value keygen (g ).
Hence, the first probability is precisely the probability of A winning an
IND-CPA challenge with k as the key after interacting with an (x,y)-DHSafe
protocol. We will now bound the second probability.

We start by constructing a second adversary A, which has access to
an encryption oracle (LR(-,-, b)) with k& randomly generated from the
symmetric encryption scheme’s key generation algorithm. It has a similar
behaviour towards A as A; had except when required to encrypt using the
generated key, it queries Ex(LR(+,+,b1)). Decryption queries are not required
as results of decryptions are not used to construct any message sent. In the
second phase, A; uses the & (LR(+, -, b1)) to provide the IND-CPA challenger
to A. A finishes by outputting a bit d; which is what As also outputs. Thus
we have:

(1/2)Advinp—cpa,a,(n) = Pridy = b;] —1/2 (11)

Now suppose Asg instead has access to an encryption oracle E(LR(-, -, b))
with k& randomly generated from the Diffie-Hellman key generation algo-
rithm. Let d} be the output of Ay and let Adv;np_cpa—pm,4, denote the
advantage:

(1/2)Advinp-—cPa-pH,A, (1) = Prldy = bj] —1/2 (12)

The difference €(n) = Pr{dy = b}] — Pr[d; = b1] is negligible in the security
parameter since otherwise Ay could be used to distinguish between the dis-
tribution of keys generated by the two key generation algorithm, which is a
contradiction as per our assumption.

We observe here that if ¢ # ab for the first LR oracle, it makes no
difference to the algorithm 4 whether it is interacting with A; or As.

(1/2)Advinp-cra—pH,A,(n) = Pr[A; outputs 1 | ¢ # ab] —1/2  (13)
By the equations 10, 11, 12 and 13 we have:

Pr[A wins IND-CPA challenge with k as the key ] —1/2
= Pr[A; outputs 1 | ¢ = ab] —1/2
= Advpppr 4, (1) + (1/2)AdviNDp-cPA-DH, A, (1)
= Advppu,a,(n) + (1/2)Advinp-cpra.4,(n) +€(n)
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If the probablity in the LHS is non-negligible, at least one of the advantages
in the RHS must be non-negligible and hence we are done. O

Theorem 5.4 (DH-CCA security) Assume that a probabilistic poly-time
adversary Ay interacts with an (x,y)-DHSafe protocol. Suppose the encryp-
tion scheme used by the protocol is IND-CCA secure and the DDH assump-
tion holds for the group containing g. Then the adversary has negligible
advantage at winning an IND-CCA game against a symmetric encryption
challenger, using the key k such that A\(k) = keygen(g*®*¥), after the in-
teraction. In other words, the protocol satisfies IND-CCA key usability for
k against Ay .

The proof is almost identical to the proof for theorem 5.3 with IND-
CCA replacing IND-CPA — IND-CCA allows decryption with the key in
consideration.

6 Conclusion

We develop foundations for inductive proofs of computational security prop-
erties by proving connections between selected trace properties and useful
non-trace properties. In particular, we prove that all secretive protocols
have computational secrecy and authentication properties, assuming the en-
cryption scheme used provides chosen ciphertext security and ciphertext
integrity. In addition, we prove a similar theorem for computational secrecy
assuming Decisional Diffie-Hellman and a chosen plaintext secure encryption
scheme.

While several approaches are possible, we do not present methods for
proving that a protocol is secretive. In related work using Protocol Compo-
sition Logic (PCL), we develop a form of secrecy induction general enough
to cover Kerberos [47] and a DH-induction general enough to address prop-
erties of IKEv2 and the DH initialized version of Kerberos [48]. The seman-
tic soundness of the proof systems presented in those papers rests on the
results presented in this paper. Together they provide a foundation for prov-
ing computational secrecy, in a setting that uses direct reasoning about the
computational model and does not require a semantic equivalence between
symbolic and computational models.
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(keys) K == k pre-shared symmetric key
n nonce
(atomic terms) wu = =z atomic term variable
K keys
N name
M data payload
(terms) t =y term variable
U atomic term
t.t tuple of terms
ENC[K](t)  term encrypted with key K
(actions) a == send ¢ send a term ¢
receive y receive term into variable y
new n generate nonce n
match t as ¢ match a term to a pattern
y :=pair ¢,t pair terms
y:=1fst t first component of a pair
y:=snd t second component of a pair
y:=enc t,K encrypt term
y:=dec t,K decrypt term
(program) P = q single action
Pa; sequence of actions
(thread) X == (P,N) program executed by N

Table 1: Syntax of the Protocol Programming Language - terms and actions
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Assignment actions:

ACTION

m in the static list, m ¢ K

receive m;

m#s

m=s

new m;

new m;

. / "

m := pair m’',m";
’
m:=fst m’;

!
:=snd m’;

3

ke K

qdby, + qdby U {lv(m)}
dec) (lv(m)) «— lv(m’)

dec}.(lv(m)) — rv(m’)

/
m :=enc m’,k;

do

m:=dec m’,k; keK

m :=enc m’,n;

n¢kK,

n tagged nonce (including s) or key

’
m:=dec m,n;

né¢K,

n tagged nonce (including s) or key

lv(m)

value from initial input

receive from adversary

generate nonce

S0

pair(lv(m’),lv(m’))
Fst(lv(m”))
snd(lv(m”))

Ep(LR(lv(m’), rv(m’), b))

Dy (lv(m')),

if lv(m’) ¢ qdby,
decd (lv(m’)),

if lu(m’) € qdby,

enc(lv(m’), lv(n))

dec(lv(m’), lv(n))

ru(m)

equal to lv(m)
equal to lv(m)

equal to lv(m)
S1
pair(rv(m’), ro(m’))
fst(ro(m”))
snd(rv(m’))

EL(LR(lv(m"), rv(m’), b))

Dy (rom'),
if ro(m’) ¢ qdby
decd (rv(m’)),
if ro(m’) € qdby,

enc(rv(m’),lv(n))

dec(rv(m’), lv(n))

Non-assignment actions:

ACTION RESULT

continue

match m as m';

stop thread

if (lu(m) = lv(m’)) A (rv(m) =
if (lv(m) # lv(m’)) A (rv(m) # rv(m’))

stop simulation otherwise

4 send lv(m) to adversary
send m;
’ stop simulation

ro(m’)

if lv(m) = rv(m)
otherwise

Table 2: Operational Semantics of the Simulator with Parameters s,
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Algorithm parse-get-s(m)
if (8 :m’:=fst m;) succeeds then  [m’is a new symbol]
r « parse-get-s(m’)
if (r# 1) return r
else §':m” :=snd m; [m” is a new symbol]

return parse-get-s(m”)

else do
for all k evaluated so far and k ¢ K
if(8" : m' ;= symdec m, k;) succeeds then [m” is a new symbol]

return parse-get-s(m’)
else do
if(match m as s) succeeds on exactly one side
m « result(S’ : send m;)
if match succeeded on left side then b« (0 else b« 1
return (b, m)
else return L

else return L

Table 3: Algorithm parse-get-s
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Assignment actions:

ACTION v(m)

m in the static list, m ¢ K value from initial input
receive m; receive from adversary
new m; m#s generate nonce

newm; m=s s1

m := pair m’,m”; pair(v(m’),v(m’))
m:= fst m’; fst(v(m”))

m := snd m’; snd(v(m’))

m:=enc m’ k; wv(n)=s; Eso (LR(v(m’),v(m’), b))

qdb — qdb U {v(m)}
decg (v(m)) « v(m")

Dso (v(m”)),

if v(m’) ¢ qdb
decg, (v(m”)),

if v(m’) € qdb

m:=dec m’ k; ov(n)=s1

m:=enc m’ k; wv(k)# s1 enc(v(m’),v(k))
m:=dec m’ k; wv(k)# s1, dec(v(m’),v(k))

n tagged nonce or key

Non-assignment actions:

ACTION RESULT

!/
match m as m’;

continue if v(m) = v(m’)
stop thread otherwise

send m; {send v(m) to adversary

Table 4: Operational Semantics of the Alternate Simulator with Parameters
s, K in the case b =1
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ACTION lv(m) ru(m)

new m; m¢ {s} U (K- B(K)) generate nonce equal to lv(m)
new m; m € {s} U (K — B(K)) generate nonce generate another nonce
m:=enc m’ k; k& B(K) EL(LR(w(m'),rv(m’),b))  equal to lv(m)

dec? (lv(m)) « lv(m’)

{qdbk — gdby, U {lv(m)}
do
dec}.(lv(m)) — rv(m’)

Dy (lv(m')), Dy (rv(m’)),
moe dec m’ k: if lv(m’) ¢ qdby, if ro(m’) ¢ qdby
=d ki ke B(K) decd (lv(m”)), dec) (rv(m’)),

if lv(m’) € qdby if ro(m’) € qdby
m:=enc m’,n; neK-B(K) enc(lv(m’), lv(n)) equal to lv(m) ()
m:=dec m’,n; ne€ K- B(K) dec(lv(m’), lv(n)) dec(rv(m’),lv(n)) (%)
m:=enc m’,n; n¢K enc(lv(m’), lv(n)) enc(rv(m’),lv(n)) (x)
m:=dec m’,n; n¢K dec(lv(m’), lv(n)) dec(rv(m’),lv(n)) (x)

(*) Note that we are only using lv(n) as the key here.

Table 5: Modification of the Operational Semantics with Parameters s, C
for Key DAGs
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ACTION

m ¢ {s} U (K — B(K))
m € {s} U (K — B(K))

v(m)

generate nonce

mi

:=enc m’, k; k¢ {s}U(K—-B(K))

new m;

new m;

m

m :=dec m’,k;
/

m:=-enc m’,n;

m := dec m', n;

k¢ {s} U (K- B(K))

n € {s}U (K — B(K))
n € {s}U (K — B(K))

enc(v(m’),v(k))
dec(v(m’),v(k))

Table 6: Operational Semantics of Alternate Simulator for b = 1 with Pa-
rameters s, K for Key DAGs

(keys) pyr

(terms) ppy

(actions) p 5

Kpn

tpa

apH

Kpn

tpa- tpH
ENC[KDH](tDH)

expg n

ESOE SIS

exp g",n

keys from table 1
DH key

terms from table 1
exponentiated term
keys

tuple of terms

term encrypted with key K

actions from table 1
exponentiating a nonce
exponentiating an

exponentiated term

Table 7: Extension of the Protocol Programming Language with DH Oper-

ations
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Assignment actions:

ACTION v(m)

m in the static list, m ¢ K value from initial input
receive m; receive from adversary
new m; m#x,m#y generate nonce

new m; m=xorm=y do nothing

m := pair m’,m”; pair(v(m’), v(m’))
m:=fst m’; fst(v(m/))

m := snd m’; snd(v(m’))

m:=expg n; n#EX,n#y g'™

m:=exp m’,n; n#xn#y v(m")rm

m := expg X; g®

m := expg V; 9

m:=exp m’y; w(m’)=g* g°

m:=exp m’,x; v(m')=g® g°¢

m:=exp m’,y; wv(m’)# g% stop simulation
m:=exp m’,x; v(m')#g® stop simulation
m :=enc m’ k; enc(v(m’),v(k))
m :=dec m’ k; dec(v(m’),v(k))

Table 8: Operational Semantics of the Simulator with Parameters x,y and
DDH inputs ¢%, ¢°, g¢
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new s
m := pair a, S
e:=encm,Kk,
« send e

———| B | receive m’

| :=dec m’, k,
t:=pairl, c
Adversary: r:=enct, k,
Prob. Poly Time | send r
> C | receive ¢’

j:=dece’, k,

4l

Sp Generate s,
Choose b « {0,1}

Ly

Figure 1: The adversary interacts with the protocol participants A, B, and
C whose programs are written out. This is an (s, K)-secretive protocol,
where IC = {k1, ko, k3} because A sends out s encrypted with k; and B after
decrypting m’ with k; sends out the result [ encrypted under k. At the end
of the execution of the protocol, the indistinguishability test is carried out
by generating a random number s; and a bit b and then sending s; to the
adversary (here the secret s = sp). The adversary wins if the bit b’ that she
outputs is equal to b with non-negligibly greater probability than 1/2.
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n-IND-CCA
Challenger
Choose
Ky, . Ky < K(m)
Choose
b « {0, 1}

new s So Sy 1, as,, a.s,
m = pair a, s a.s, a.s; >
E (as e:=encm,k; Eq(a.s,) .
a(@-5,) send e E.(a.s,)
m’
> receive m’ m’ (=E,,(1,.))

Adversary: | := dec m', k, 1, I, 2, lp.c, 1.
Prob. t:=pairl,c lo-C l,.c >
Poly E.(a.s,) r:=enct,k, E(,-C) ¢
Time — send r Ero(lp-C)

e’ ,
> receive e’ e’ 3. e »
j:=dece’, k; D.,(€) .
D.,(e)
54 Choose d « {0, 1};
> If ‘real’ then b’ = d else b’ = 1-d
d

ugs

bl

Figure 2: The simulator simulates the execution of the protocol to the adversary, maintaining
two copies of the secret s. The left half of the simulator shows the protocol actions it simulates and
the right half shows the two values for the bitstrings (lv(m) and rv(m)) following the operational
semantics in Table 2. The new s action produces two random bitstrings so and si. The pairing
action then produces a left value a.sg and a right value a.s;. The subsequent encryption action is
simulated by making a call to the encryption oracle with the message pair (a.so, a.s1); the index
1 indicates that the key is k1. The enryption oracle outputs the encryption Ej, (a.s,) using its
internal random bit b. This encryption is then sent to the protocol adversary. The important
point to note is that although there are two values of terms involving the secret, there is a unique
value for messages that are sent to the adversary because terms containing the secret are always
encrypted using the encryption oracle before transmission; this is guaranteed by the definition
of secretive protocol. The rest of the simulation proceeds in a similar manner. At the end, a
random bit d is generated and s4 is sent to the protocol adversary. If the protocol adversary says
that sg is the real secret, then the IND-CCA adversary outputs b’ = d else it outputs b’ = 1 —d.
Thus, if the protocol adversary wins the indistinguishability test with non-negligible advantage,
the IND-CCA adversary wins that game with the same advantage.
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