Inductors and Capacitors

- Inductor is a Coil of wire wrapped around a supporting (mag or non mag) core
- Inductor behavior related to magnetic field
- Current (movement of charge) is source of the magnetic field
- Time varying current sets up a time varying magnetic field
- Time varying magnetic field induces a voltage in any conductor linked by the field
- Inductance relates the induced voltage to the current
- Capacitor is two conductors separated by a dielectric insulator
- Capacitor behavior related to electric field
- Separation of charge (or voltage) is the source of the electric field
- Time varying voltage sets up a time varying electric field
- Time varying electric field generates a displacement current in the space of field
- Capacitance relates the displacement current to the voltage
- Displacement current is equal to the conduction current at the terminals of capacitor

Inductors and Capacitors (contd)

- Both inductors and capacitors can store energy (since both magnetic fields and electric fields can store energy)
- Ex, energy stored in an inductor is released to fire a spark plug
- Ex, Energy stored in a capacitor is released to fire a flash bulb
- L and C are passive elements since they do not generate energy

Inductor

- Inductance symbol L and measured in Henrys (H)
- Coil is a reminder that inductance is due to conductor linking a magnetic field

$$
v=L \frac{d i}{d t}
$$

- First, if current is constant, v = 0
- Thus inductor behaves as a short with dc current
- Next, current cannot change instantaneously in L i.e. current cannot change by a finite amount in 0 time since an infinite (i.e. impossible) voltage is required
- In practice, when a switch on an inductive circuit is opened, current will continue to flow in air across the switch (arcing)

(a)

(b)

Figure: 06-01a,b
Copyright © 2008 Pearson Prentice Hall, Inc.

Inductor: Voltage behavior

- Why does the inductor voltage change sign even though the current is positive? (slope)
- Can the voltage across an inductor change
instantaneously? (yes)

Inductor: Current, power and energy

$$
\begin{array}{ll}
v=L \frac{d i}{d t} & p=v i \\
v d t=L\left(\frac{d i}{d t}\right) d t & p=\left(L \frac{d i}{d t}\right) i \\
v d t=L d i & p=v\left[\frac{1}{L} \int_{t_{0}}^{t} v d \tau+\right. \\
L d i=v d t & p=\frac{d w}{d t}=L i \frac{d i}{d t} \\
L \int_{i\left(t_{0}\right)}^{i(t)} d x=\int_{t_{0}}^{t} v d \tau & \therefore d w=(L i) d i \\
\therefore i(t)=\frac{1}{L} \int_{t_{0}}^{t} v d \tau+i\left(t_{0}\right) & \int_{0}^{w} d x=L \int_{0}^{i} y d y \\
t_{0}=0 ; i(t)=\frac{1}{L} \int_{0}^{t} v d \tau+i(0) & \therefore w=\frac{1}{2} L i^{2}
\end{array}
$$

Inductor: Current behavior

 the L is being reduced? (lossless element)

Inductor: Example 6.3, I source

- In this example, the excitation comes from a current source
- Initially increasing current up to 0.2 s is storing energy in the inductor, decreasing current after 0.2 s is extracting energy from the inductor
- Note the positive and negative areas under the power curve are equal. When power is positive, energy is stored in L . When power is negative, energy is extracted from L

Copyright © 2008 Pearson Prentice Hall, Inc.

Inductor: Example 6.3, V source

- In this example, the excitation comes from a voltage source
- Application of positive voltage pulse stores energy in inductor
- Ideal inductor cannot dissipate energy - thus a sustained current is left in the circuit even after the voltage goes to zero (lossless inductor)
- In this case energy is never extracted

Copyright © 2008 Pearson Prentice Hall, Inc.

Capacitor

- Capacitance symbol C and measured in Farads (F)
- Air gap in symbol is a reminder that capacitance occurs whenever conductors are separated by a dielectric
- Although putting a V across a capacitor cannot move electric charge through the dielectric, it can displace a charge within the dielectric \rightarrow displacement current proportional to $\mathrm{v}(\mathrm{t})$
- At the terminals, displacement current is similar to conduction current

$$
i=C \frac{d v}{d t}
$$

- As per above eqn, voltage cannot change instantaneously across the terminals of a capacitor i.e. voltage cannot change by a finite amount in 0 time since an

(a)

(b)

Figure: 06-10a,b
Copyright © 2008 Pearson Prentice Hall, Inc. infinite (i.e. impossible) current would be produced

- Next, for DC voltage, capacitor current is 0 since conduction cannot happen through a dielectric (need a time varying voltage $\mathrm{v}(\mathrm{t})$ to create a displacement current). Thus, a capacitor is open circuit for DC voltages.

Capacitor: voltage, power and energy

$$
\begin{array}{ll}
i=C \frac{d v}{d t} & p=v i \\
i d t=C\left(\frac{d v}{d t}\right) d t & p=v\left(C \frac{d v}{d t}\right) \\
i d t=C d v & p=i\left[\frac{1}{C} \int_{t_{0}}^{t} i d \tau+v\left(t_{0}\right)\right] \\
d v=\frac{1}{C} i d t & p=\frac{d w}{d t} \\
\int_{v\left(t_{0}\right)}^{v(t)} d x=\frac{1}{C} \int_{t_{0}}^{t} i d \tau & \therefore d w=(C v) d v \\
\therefore v(t)=\frac{1}{C} \int_{t_{0}}^{t} i d \tau+v\left(t_{0}\right) & \int_{0}^{w} d x=C \int_{0}^{v} y d y \\
t_{0}=0 ; v(t)=\frac{1}{C} \int_{0}^{t} i d \tau+v(0) & \therefore w=\frac{1}{2} C v^{2}
\end{array}
$$

Capacitor: Example 6.4, V source

$$
\begin{aligned}
& v(t)=0, t \leq 0 s \\
& v(t)=4 t, 0 \leq t \leq 1 s \\
& v(t)=4 e^{-(t-1)} ; t \geq 1 s
\end{aligned}
$$

- In this example, the excitation comes from a voltage source
- Energy is being stored in the capacitor whenever the power is positive and delivered when the power is negative
- Voltage applied to capacitor returns to zero with increasing time. Thus, energy stored initially (up to 1 s) is returned over time as well

Copyright © 2008 Pearson Prentice Hall, Inc.

Capacitor: Example 6.5, I source

$$
\begin{aligned}
& j(t)=0, t \leq 0 r \\
& j(t)=5000 r, 0 \leq t \leq 20 \mu s ; \\
& j(t)=0.2-5000 r, 20 \mu s \leq t \leq 40 \mu s ; \\
& f(t)=0, t \times 40 \mu s
\end{aligned}
$$

- In this example, the excitation comes from a current source
- Energy is being stored in the capacitor whenever the power is positive
- Here since power is always positive, energy is continually stored in capacitor. When current returns to zero, the stored energy is trapped since ideal capacitor. Thus a voltage remains on the capacitor permanently (ideal lossless capacitor)
- Concept used extensively in memory and imaging circuits

Copyright © 2008 Pearson Prentice Hall, Inc.

Series-Parallel Combination (L)

$$
\begin{aligned}
& v_{1}=L_{1} \frac{d i}{d t} \quad v_{2}=L_{2} \frac{d i}{d t} \quad v_{3}=L_{3} \frac{d i}{d t} \\
& v=v_{1}+v_{2}+v_{3}=\left(L_{1}+L_{2}+L_{9}\right) \frac{d t}{d t} \\
& i_{3}=\frac{1}{L_{3}} \int_{t_{0}}^{\prime} v d \tau+i_{3}\left(t_{0}\right) \\
& i=i_{1}+i_{2}+i_{3} \\
& i=\left(\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}\right) \int_{t} v d \tau+i_{1}\left(t_{0}\right)+i_{2}\left(t_{0}\right)+i_{3}\left(t_{0}\right) \\
& i=\left(\frac{1}{L_{\text {eq }}}\right)^{\prime} \int_{0}^{\prime} v d \tau+i\left(t_{0}\right) \\
& \therefore \frac{1}{L_{\text {eq }}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}} ; i\left(t_{0}\right)=i_{1}\left(t_{0}\right)+i_{2}\left(t_{0}\right)+i_{3}\left(t_{0}\right)
\end{aligned}
$$

Series Combination (C)

$$
\begin{aligned}
& v=\frac{1}{C_{1}} \int_{0}^{t} i+v_{1}(0)+\frac{1}{C_{2}} \int_{0}^{t} i d x+v_{2}(0)+\cdots \\
& v=\left[\frac{1}{C_{1}}+\frac{1}{C_{2}}+\cdots\right] \int_{0}^{t} i d x+v_{1}(0)+v_{2}(0)+\cdots \\
& +\quad \stackrel{i}{\longrightarrow} \\
& +\quad C_{\mathrm{eq}} \frac{+}{v}\left(t_{0}\right) \\
& v \\
& \frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\cdots+\frac{1}{C_{n}} \\
& v\left(t_{0}\right)=v_{1}\left(t_{0}\right)+v_{2}\left(t_{0}\right)+\cdots+v_{n}\left(t_{0}\right)
\end{aligned}
$$

(a)
(b)

Parallel Combination (C)

(b)

Figure: 06-18a,b
Copyright © 2008 Pearson Prentice Hall, Inc.

First Order RL and RC circuits

- Class of circuits that are analyzed using first order ordinary differential equations
- To determine circuit behavior when energy is released or acquired by L and C due to an abrupt change in dc voltage or current.
- Natural response: $i(t)$ and $v(t)$ when energy is released into a resistive network (i.e. when L or C is disconnected from its DC source)
- Step response: $i(t)$ and $v(t)$ when energy is acquired by L or C (due to the sudden application of a DC i or v)

(a)

(b)

Figure: 07-02
Copyright © 2008 Pearson Prentice Hall, Inc.

Natural response: RL circuit

- Assume all currents and voltages in circuit have reached steady state (constant, dc) values

Prior to switch opening,

- L is acting as short circuit (i.e. since at DC)
- So all I_{s} is in L and none in R

- We want to find $v(t)$ and $i(t)$ for $t>0$
$L \frac{d i}{d t}+R i=0$
$\frac{d i}{d t} d t=-\frac{R}{L} i d t$
$\frac{d i}{i}=-\frac{R}{L} d t$
$\int_{\left(t_{0}\right)}^{(t)} \frac{d x}{x}=-\frac{R}{L} \int_{t_{0}}^{\prime} d y y t_{0}=0$
$\ln \frac{i(t)}{i(0)}=-\frac{R}{L} t$
$\therefore i(t)=i(0) e^{-\left(\frac{R}{L}\right)}$
- Since current cannot change instantly in $\mathrm{L}, \mathrm{i}\left(0^{-}\right)=\mathrm{i}\left(0^{+}\right)=\mathrm{I}_{0}$

$$
\begin{aligned}
& \therefore i(t)=I_{0} e^{-\left(\frac{\pi}{L}\right)} ; t \geq 0 \\
& v=i(t) R=R I_{0} e^{-\left(\frac{\pi}{L}\right)} ; t \geq 0^{+}
\end{aligned}
$$

- $\mathrm{v}\left(0^{-}\right)=0$ but $\mathrm{v}\left(0^{+}\right)=\mathrm{I}_{0} \mathrm{R}$

$$
p=v i=i^{2} R=\frac{v^{2}}{R}=R I_{0}^{2} e^{-2\left(\frac{R}{R}\right)} ; t \geq 0^{+}
$$

$$
w=\int_{0}^{1} p d x=\frac{1}{2} L I_{0}^{2}\left(1-e^{-2\left(\frac{R}{L}\right)}\right) ; t \geq 0
$$

Copyright © 2008 Pearson Prentice Hall, Inc.

Natural response time constant

- Both $i(t)$ and $v(t)$ have a term

$e^{-\left(\frac{R}{L}\right) t}$

$\tau=\left(\frac{L}{R}\right)$

$$
\begin{aligned}
& \therefore i(t)=I_{0} e^{-\frac{t}{\tau}} ; t \geq 0 \\
& v(t)=R I_{0} e^{-\frac{1}{\tau}} ; t \geq 0^{+} \\
& p=R I_{0}^{2} e^{-\frac{2 t}{\tau}} ; t \geq 0^{+} \\
& w=\frac{1}{2} L I_{0}^{2}\left(1-e^{-\frac{2 t}{\tau}}\right) ; t \geq 0
\end{aligned}
$$

- Think of τ as an integral parameter

- i.e. after 1τ, the inductor current has been reduced to e^{-1} (or 0.37) of its initial value. After 5τ, the current is less than 1% of its original value (i.e. steady state is achieved)
- The existence of current in the RL circuit is momentary transient response. After 5τ, cct has steady state response

Extracting τ

- If R and L are unknown
- τ can be determined from a plot of the nature response of the circuit
- For example,

$$
\frac{d i}{d r}\left(0^{*}\right)=-\frac{1}{\tau} I_{5} e^{-\frac{t^{\prime}}{\tau}}=-\frac{R}{L} I_{4}=-\frac{I_{0}}{\tau}
$$

- If i starts at I_{0} and decreases at I_{0} / τ, i becomes

$$
\therefore i=I_{0}-\frac{I_{0}}{\tau} t
$$

- Then, drawing a tangent at $\mathrm{t}=0$ would yield τ at the x -axis intercept
- And if I_{0} is known, natural response can be written as,

$$
f(t)=I_{4} e^{-\frac{t}{\tau}}
$$

Example 7.1

- To find $i_{L}(t)$ for $t \geq 0$, note that since cct is in steady state before switch is opened, L is a short and all current is in it, i.e. $\mathrm{I}_{\mathrm{L}}\left(0^{+}\right)=\mathrm{I}_{\mathrm{L}}\left(0^{-}\right)=20 \mathrm{~A}$
- Simplify resistors with $\mathrm{R}_{\text {eq }}=2+40| | 10=10 \Omega$

- Then $\tau=L / R=0.2 s$,

$$
\therefore i_{L}(t)=20 e^{-\frac{t}{0.2}} A, t \geq 0
$$

- With switch open,

$$
\begin{aligned}
& i_{0}=-i_{L}\left(\frac{10}{10+40}\right)=-0.2 i_{L} \\
& \therefore i_{0}(t)=-4 e^{-\frac{1}{0.2}} A, t \geq 0^{+}
\end{aligned}
$$

- voltage across 40Ω and $10 \Omega, v_{0}(t)=40 i_{0}(t)=-160 e^{-\frac{t}{02}} V, t \geq 0^{+}$
- power dissipated in 10Ω

$$
p_{102}(t)=\frac{v_{0}(t)^{2}}{10}=2560 e^{-\frac{t}{0.1}} W, t \geq 0^{+}
$$

- Energy dissipated in 10Ω

$$
\begin{aligned}
& w_{10 \Omega}(t)=\int_{0}^{\infty} 2560 e^{-\frac{t}{0.1}} d t=256 \mathrm{~J} \\
& w(0)=\frac{1}{2} L i^{2}(0)=400 \mathrm{~J} \\
& \% \frac{w_{10 \Omega}(t)}{w(0)}=64 \%
\end{aligned}
$$

Example 7.2

- Initial I in L_{1} and L_{2} already established by "hidden sources"
- To get i_{1}, i_{2} and i_{3}, find $v(t)$ (since parallel cct) with simplified circuit

$$
\begin{aligned}
& L=4 H, R=8 \Omega, \\
& \therefore i(t)=12 e^{-2 t} A, t \geq 0 \\
& v_{0}(t)=8 i_{0}(t)=96 e^{-2 t} V, t \geq 0^{+} \\
& v_{0}(t)=0, t<0 \\
& \because i(t)=\frac{1}{L} \int_{0}^{\prime} v d \tau+i\left(t_{0}\right) \\
& i_{1}(t)=\frac{1}{L} \int_{0}^{t} 96 e^{-2 x} d x-8 \\
& i_{1}(t)=1.6-9.6 e^{-2 t} A, t \geq 0 \\
& i_{2}(t)=-1.6-2.4 e^{-2 t} A, t \geq 0 \\
& i_{3}(t)=\frac{v(t)}{10} \frac{15}{25}=5.76 e^{-2 t} A, t \geq 0^{+}
\end{aligned}
$$

- Note inductor current i_{1} and i_{2} are valid from $\mathrm{t} \geq 0$ since current in inductor cannot change instantaneously
- However, resistor current i_{3} is valid only from $t \geq 0^{+}$since there is 0 current in resistor at $\mathrm{t}=0$ (all I is shorted through inductors in steady state)

Example 7.2 (contd)

- Initial energy stored in inductors

$$
\begin{aligned}
& w=\frac{1}{2} L i^{2} ; w_{\text {miv }}=w_{5 H}+w_{20 H} \\
& w_{\text {mint }}=\frac{1}{2}(5)(64)+\frac{1}{2}(20)(16)-320 J \\
& I f\left(t \rightarrow \infty, i_{1} \rightarrow 1.6 A, i_{2} \rightarrow-1.6 A\right) \\
& w_{\text {fhan }}=\frac{1}{2}(5)(1.6)^{2}+\frac{1}{2}(20)(-1.6)^{2}=32 J
\end{aligned}
$$

$w_{R}=\int_{0}^{\infty} p d t=\int_{0}^{=}\left(\frac{v(t)^{2}}{R_{\text {vq }}}\right) d t=\int_{0}^{\infty}\left(\frac{\left(96 e^{-2 t}\right)}{8}\right) d t=$

- Note $\mathrm{w}_{\mathrm{R}}+\mathrm{w}_{\text {final }}=\mathrm{w}_{\text {init }}$
- w_{R} indicates energy dissipated in resistors after switch opens
$w_{k}=\int_{0}^{\infty} 1152 e^{-4 t} d t=\left.1152 \frac{e^{-4 c}}{-4}\right|_{0} ^{x}=288 \mathrm{~J}$
- $\mathrm{w}_{\text {final }}$ is energy retained by inductors due to the current circulating between the two inductors (+1.6A and -1.6A) when they become short circuits at steady state again

Natural Response of RC circuit

- Similar to that of an RL circuit
- Assume all currents and voltages in circuit have reached steady state (constant, dc) values
Prior to switch moving from a to b,
- C is acting as open circuit (i.e. since at DC)
- So all of V_{g} appears across C since $\mathrm{I}=0$
- We want to find $v(t)$ for $t>0$
- Note that since voltage across capacitor cannot change instantaneously, $\mathrm{V}_{\mathrm{g}}=\mathrm{V}_{0}$, the initial voltage on capacitor
$C \frac{d v}{d t}+\frac{v}{R}=0$
Solving,
$v(t)=v(0) e^{-\frac{1}{x c}} ; t \geq 0$
$v\left(0^{-}\right)=v(0)=v\left(0^{+}\right)-V_{x}=V_{0}$
$\tau=R C$
$v(t)=V_{0} e^{\frac{-t}{\tau}} ; t \geq 0$

$$
i(t)=\frac{v(t)}{R}=\frac{V_{0}}{R} e^{-\frac{1}{\tau}} ; t \geq 0^{+}
$$

$$
p=v i=\frac{V_{0}^{2}}{R} e^{-\frac{2 t}{\tau}} ; t \geq 0^{+}
$$

$$
w=\int_{0}^{1} p d x=\int_{0}^{1} \frac{V_{0}^{2}}{R} e^{-\frac{2 x}{\tau}} d x
$$

$$
w=\frac{1}{2} C V_{0}^{2}\left(1-e^{-\frac{2 t}{\tau}}\right) ; t \geq 0
$$

Example 7.3

- To find $v_{C}(t)$ for $t \geq 0$, note that since cct is in steady state before switch moves from x to y, C is charged to 100 V . The resistor network can be simplified with a equivalent 80k resistor.
- Simplify resistors with $\mathrm{R}_{\text {eq }}=32+240| | 60=80 \mathrm{k} \Omega$

- Then $\tau=R C=(0.5 \mu \mathrm{~F})(80 \mathrm{k} \Omega)=40 \mathrm{~ms}$,

$$
\therefore v_{C}(t)-100 e^{-255} V, t \geq 0
$$

- voltage across $240 \mathrm{k} \Omega$ and $60 \mathrm{k} \Omega$,
- current in $60 \mathrm{k} \Omega$ resistor

$$
\begin{aligned}
& v_{0}(t)=-v_{C}(t)\left(\frac{48}{32+48}\right)-60 e^{-25 t} V, t \geq 0^{+} \\
& i_{0}(t)=\frac{v_{0}(t)}{60 k \Omega}=e^{-25 t} m A, t \geq 0^{+}
\end{aligned}
$$

- power dissipated in $60 \mathrm{k} \Omega$

$$
\begin{aligned}
& p_{\text {tota }}(t)=i_{0}(t)^{2}(60 k \Omega)=60 e^{-500} m W, t \geq 0^{+} \\
& = \\
& w_{\text {toto }}(t)=\int_{0}^{=} i_{0}(t)^{2}(60 k \Omega) d t=1.2 m J
\end{aligned}
$$

- Energy dissipated in $60 \mathrm{k} \Omega$

Example 7.4: Series capacitors

$$
\begin{aligned}
& \therefore v(t)=20 e^{-t} V, t \geq 0 \\
& i(t)=\frac{v(t)}{250 k \Omega}=80 e^{-t} \mu A, t \geq 0^{+} \\
& \therefore v_{1}(t)=-\frac{1}{5 \mu F} \int_{0}^{t}\left(80 e^{-x} \mu A\right) d x-4, t \geq 0 \\
& v_{1}(t)=\left(16 e^{-t}-20\right) V, t \geq 0 \\
& v_{2}(t)=-\frac{1}{20 \mu F} \int_{0}^{t}\left(80 e^{-x} \mu A\right) d x+24, t \geq 0 \\
& v_{2}(t)=\left(4 e^{-t}+20\right) V, t \geq 0 \\
& w_{C_{1}}=0.5 C V^{2}=0.5(5 \mu F)(4 V)^{2}=40 \mu J \\
& w_{C_{2}}=0.5(20 \mu F)(24 V)^{2}=5760 \mu J \\
& w_{0}=5800 \mu J \\
& t \rightarrow \infty, v_{1} \rightarrow-20 V, v_{2} \rightarrow 20 V \\
& w_{\infty}=0.5(25 \mu F)(20)^{2}=5000 \mu J \\
& w_{250 k \Omega}=\int_{0}^{\infty} p d t=\int_{0}^{\infty} \frac{\left(20 e^{-t}\right)^{2}}{250 k \Omega} d t=800 \mu J
\end{aligned}
$$

- Initial voltages established by "hidden" sources

Step response of RL circuits

$$
\begin{aligned}
& K V L: V_{s}=i R+L \frac{d i}{d t} \\
& \frac{d i}{d t}=\frac{-R i+V_{s}}{L}=\frac{-R}{L}\left(i-\frac{V_{s}}{R}\right) \\
& d i=\frac{-R}{L}\left(i-\frac{V_{s}}{R}\right) d t \\
& \frac{d i}{i-\frac{V_{s}}{R}}=\frac{-R}{L} d t \\
& \int_{I_{0}}^{i(t)} \frac{d x}{x-\frac{V_{s}}{R}}=\frac{-R}{L} \int_{0}^{t} d y \\
& \ln \frac{i(t)-\frac{V_{s}}{R}}{I_{0}-\frac{V_{s}}{R}}=\frac{-R}{L} t \\
& i(t)=\frac{V_{s}}{R}+\left(I_{0}-\frac{V_{s}}{R}\right) e^{-\frac{R}{L} t}
\end{aligned}
$$

Example 7.5: RL step response

Copyright © 2008 Pearson Prentice Hall, Inc.

Step response of RC circuits

Copyright © 2008 Pearson Prentice Hall, Inc.

Example 7.6: RC Step Response

