Inductors and Capacitors

* Inductor is a Coil of wire wrapped around a supporting (mag or non mag) core

« Inductor behavior related to magnetic field

« Current (movement of charge) is source of the magnetic field

« Time varying current sets up a time varying magnetic field

« Time varying magnetic field induces a voltage in any conductor linked by the field

 Inductance relates the induced voltage to the current

« Capacitor is two conductors separated by a dielectric insulator

« Capacitor behavior related to electric field

« Separation of charge (or voltage) is the source of the electric field

« Time varying voltage sets up a time varying electric field

« Time varying electric field generates a displacement current in the space of field
« Capacitance relates the displacement current to the voltage

« Displacement current is equal to the conduction current at the terminals of capacitor



Inductors and Capacitors (contd)

» Both inductors and capacitors can store energy (since both magnetic fields and
electric fields can store energy)

» EXx, energy stored in an inductor is released to fire a spark plug
» Ex, Energy stored in a capacitor is released to fire a flash bulb

» L and C are passive elements since they do not generate energy



Inductor

* Inductance symbol L and measured in Henrys (H)

 Coil is a reminder that inductance is due to conductor L
linking a magnetic field e—"YYV —eo

di (a)

vl I
ail
L
« First, if current is constant, v=0 e—YYY\—@
* Thus inductor behaves as a short with dc current T v B
B

* Next, current cannot change instantaneously inL i.e. I
current cannot change by a finite amount in O time since an
infinite (i.e. impossible) voltage is required (b)

Figure: 06-01a,b

* In practice, when a switch on an inductive circuit is opened,
current will continue to flow in air across the switch (arcing)
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Inductor: Voltage behavior
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Figure: 06-04Ex6.1
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« Why does the inductor voltage
change sign even though the
current is positive? (slope)

» Can the voltage across an
inductor change

instantaneously? (yes)



Inductor: Current, power and energy

V= L% p=v y
di !
p= (L —)i
vt = (d’ )dr dt
df l !
vdt = Ldi p=v| [y +it )]

Ldi = vdt ! _
i ) = d_W - Liﬂ
dt dt

Lfd\ f\d‘r

W)

- dw=(Li)di
o l » w i

() = - f vdt +i(t,) f dy=1 f«"" dy
0 0

1 | 5
t, =0i(1) =Z.{vdr+i(0) SoW= %Li‘



Inductor: Current behavior

v (V)
v=0, t<0

= 0.736 |- — — -
v <_> il 100 mH |

|
v=20te "V, >0

| I I
Figure: 06-05Ex6.2
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« Why does the current approach a constant
value (2A here) even though the voltage across .

the L is being reduced? (lossless element)



Inductor: Example 6.3, | source

+ i=20, t<0
i v <4100 mH

— i =10te™A, >0

Figure: 06-02Ex6.1
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* In this example, the excitation comes from a
current source

« Initially increasing current up to 0.2s is storing
energy in the inductor, decreasing current after
0.2 s is extracting energy from the inductor

* Note the positive and negative areas under the
power curve are equal. When power is positive,
energy is stored in L. When power is negative,
energy is extracted from L

i (mA)

800 —

400

1.0

0.5~

—0.5 -
p (mW)

200

100

w (m])
30 —

15
| | | |

0 02 04 06 08 10
Figure: 06-081-4Ex6.3 -C

t(s)

t(s)

t(s)

t(s)

Copyright © 2008 Pearson Prentice Hall, Inc.



Inductor: Example 6.3, V source

v=0, t<0

+
v <_> il %100 mH
v =20t "V, >0

Figure: 06-05Ex6.2
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* In this example, the excitation comes from a
voltage source

 Application of positive voltage pulse stores
energy in inductor

« |deal inductor cannot dissipate energy — thus a
sustained current is left in the circuit even after
the voltage goes to zero (lossless inductor)

* In this case energy is never extracted
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Figure: 06-091-4
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Capacitor
<
» Capacitance symbol C and measured in Farads (F)

« Air gap in symbol is a reminder that capacitance occurs
whenever conductors are separated by a dielectric

o
—~0
O

« Although putting a V across a capacitor cannot move
electric charge through the dielectric, it can displace a (a)
charge within the dielectric - displacement current

proportional to v(t)

C
» At the terminals, displacement current is similar to |/
conduction current y o |\ .
. . d
i=( + () —
at .

« As per above eqn, voltage cannot change :

instantaneously across the terminals of a capacitor i.e. (b)
voltage cannot change by a finite amount in 0 time since an rloue o088
infinite (i.e. impossible) current would be produced
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* Next, for DC voltage, capacitor current is O since
conduction cannot happen through a dielectric (need a time
varying voltage v(t) to create a displacement current).
Thus, a capacitor is open circuit for DC voltages.



Capacitor: voltage, power and energy

i= c% p=n
dv
dv [7=\-’(C—\)
idt = C(—)a’t | dt
dt )
: | |
idt = Cdv =j|— [idt + v(1
| p=i|= f (1)
dv=—idt -
C dw
v(r) ' =
[dx= 1 fide g
vity) C s Sodw= (C\")d\f‘
I ! w v
l-’(f) =— idt + \"(fu) dx — C y(]y
cf &=

| 1 .,
t,=0:v(t)=— [idt +v(0 Sow=—Cy"
o =05v(1) C-{ (0) >



Capacitor: Example 6.4, V source

M) =07 = 0s
e dt st <ly;

)mde " Viramls

* In this example, the excitation comes from a
voltage source

* Energy is being stored in the capacitor
whenever the power is positive and delivered
when the power is negative

Voltage applied to capacitor returns to zero with
increasing time. Thus, energy stored initially (up
to 1 s) is returned over time as well
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Figure: 06-111-4Ex6.4-C
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Capacitor: Example 6.5, | source

i (mA)

i) =0 < Oy,
) e SO0, D =2 = 20,
) 02 =S000 2008 =7 = 40,

ey 7w S

* In this example, the excitation comes from a
current source

* Energy is being stored in the capacitor
whenever the power is positive

» Here since power is always positive, energy is
continually stored in capacitor. When current
returns to zero, the stored energy is trapped
since ideal capacitor. Thus a voltage remains on
the capacitor permanently (ideal lossless
capacitor)

» Concept used extensively in memory and
imaging circuits
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Figure: 06-121-4Ex6.5-C
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Series-Parallel Combination (L)

Ly L, Ls
+ v -+ vV - + vV —
| —

i —f\dr-i»i,(l(,) " A

L P i

‘e (I' l‘)l V. - ,
V, = 1 — b, - f . ; ; d
ll’ r !

I :
i, = f\dr+t:(l“)
Ly, U SR S Pl { AR Ay iy
‘ ' dit

. 1’ .
i, = 5 f\dt +i,(1,)

17,

=i +i,+i

: - o
i = f l + L O L vdT H (1) + L)+ i(1,)  + i1 i s

L LI L.’ LS f . . .

o o v L1l ih(to) in llz(fo) L3l ll3(t0)
i = IL vdt +(1,) -

L L"“' e ¢ Figure: 06-15

l l + I + l . i(, ) i (’ ) + l- (’ ) + i (’ ) Copyright © 2008 Pearson Prentice Hall, Inc.
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Series Combination (C)

@
s
i N
C; =1 (%)
+
v Cy =2 (f)
_|_
C, ==, (to)
°
(a)

l /ﬁf Fon(0) 4+ — [ id ()
v = T+ v . (™
bt TOEIYE .fu Fr +12(0) +

) ] 't |
w= [(-] ' Cs ¢ ] {) tdr 4+ v (0) + 0} 4 - - -

i .
®
¥
+

(% Ceq;:v(tO)

o

1o_ 1,1, 1
Ceq_C1+C2+ +Cn

v(ty) = vi(t) + va(tp) + - + V(1)

(b)

Figure: 06-17a,b
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Parallel Combination (C)

e
@ L L
+
v /< G, =~ C,~
® ® ®
(a)
. v . dv dv
- ¢ - +C—+ =0, 4+ Cy 4 | —
L T T Cr+Cat]
‘ T ) ' -
—|—— ]'_4'10'[!_"!' (_.,_‘ = y (-’ S BOI.'KHI.‘K' the rnp‘u;um, wee in PHXHU‘"'. the
initial voltage on ewwry capacitor must be the same. This initial voltage would
v gy Ceq appear on C,.
@ Ceq:C1+C2++Cn

Figure: 06-18a,b
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First Order RL and RC circuits

 Class of circuits that are analyzed using first order
ordinary differential equations

 To determine circuit behavior when energy is
released or acquired by L and C due to an abrupt
change in dc voltage or current.

* Natural response: i(t) and v(t) when energy is
released into a resistive network (i.e. when L or C is
disconnected from its DC source)

« Step response: i(t) and v(t) when energy is
acquired by L or C (due to the sudden application of a

DCiorv)
@ L 4
_|_
Lo TIO SRy Cegm= Vo 2 Req
@ @
(a) (b) Figure: 07-02

Figure: 07-01
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Natural response: RL circuit

« Assume all currents and voltages in circuit
have reached steady state (constant, dc) values

Prior to switch opening,
L is acting as short circuit (i.e. since at DC)
« Soall lgisinLand none in R

« We want to find v(t) and i(t) for t>0

di .  Since current cannot change
L—+Ri=0( . . : .

dt instantly in L, i(0") =i(0*) =1,
T {Z)
dt L S =1le ' =0
di R LAY
T=_Zd’ v=i(f)R=Rle'" =0
“ g. ! . -) = +) =
f dx _ —Efafv:t,;, 0 v(0-) = 0 but v(O.) LR .-
i) X L fo .3 Vv N -3 [ "

p=vi=i"R=—=RI]
) __R, .
i(0) L [ ' "'1.

16

) - +
t=0 i
R, L R?U
*.» +
l
i(0)=IST L REv
0




Natural response time constant

- t
« Bothi(t) and v(t) have aterm € (L)

 Time constant t is defined as
Lity=1e"it=0

W) =RIe ;120

p= Rl,fe'- Tzl

Y
\\'-—Ll,,‘(l-c ’
)

Lad

=0

Think of T as an integral parameter

R

\ —
t=20 I
R, L
*.» _I_
l
m»=gT L REv

i.e. after 1 <, the inductor current has been reduced to e! (or

0.37) of its initial value. After 5 <, the current is less than 1%

of its original value (i.e. steady state is achieved)

The existence of current in the RL circuit is momentary —

transient response. After 5t, cct has steady state response



Extracting t

]
[
 |f R and L are unknown

I
» 1 can be determined from a plot of the nature "

response of the circuit

» For example,

l ' R l,

ol
e L e N e
(I ! 4 ’ 4 O F;re: 07-06
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* If i starts at |, and decreases at |/, i becomes

- I,,--,"-(

« Then, drawing a tangent at t = 0 would yield T at the x-axis intercept

« And if |, is known, natural response can be written as,

i()ymf e’



Example 7.1

t=0 -

« To find i (t) for t =0, note that since cct is in > 29 o,
steady state before switch is opened, L is a short \ +
and all currentis in it, i.e. I (0*) =1,.(0") = 20A 20A 30107 32H 10 Q v0§4og
* Simplify resistors with R,, = 2+40]([10 = 10Q —
e Thent=L/R = 0_23’ i!.(’) - 20(,_0,: At=0 Copyright@;?J:i;tif:;:ticeHal[,|nc.
« With switch open, i eoi (10 Y o9

10440 o

s =—de A r=0"

t

voltage across 40 Q and 10 €, , (1) = 40i (1) = ~160e "2Vt = 0"

power dissipated in 10 Q v (1)’

Proa(t) = =2560e "W t=0"

Energy dissipated in 10 Q Wyg (1) =f2560e-" 'dt = 256J
0

w(0) = %Li“‘(’O) =400

Yo (1)

%~ - 64%
w(0)



Example 7.2

+ Initial 1 in L, and L, already . "y
established by “hidden sources” iil i [:g
o o _ SAH 4AT ! o) 3400 150

« To get iy, i, and i, find v(t) (since LyGH) OL,(20H) B
parallel cct) with simplified circuit ——

L - 4H‘ R - SQ. opyrig earson rFrentice nall, Inc.

@

L) =12¢ 4,120 +

v, (1) = 8i, (1) =96 >V 1= 0" 12 AH“ H @) 280

v (1) =0,1<0 ;Ex

ey ] [ I 1
Si(f) = zfu T+ilt,) Note inductor current i, and i, are

{ 0 valid from t = 0 since current in
(1) = %f%" 2 g8 inductor cannot change

instantaneously

i()=1.6-9.6¢At=0 « However, resistor current i is valid
() =-1.6-24¢"A.120 only from t = 0* since there is 0

: B current in resistoratt=0 (all | is
i(1)= w0 15 =576 At =0" shorted through inductors in steady

10 25 State)



Example 7.2 (contd)

« Initial energy stored in inductors . e
iil i, =i zgi
4A7Y" :
l SAHLl 51 T Laom X 10 3400 150 3100
wa=—Li'iw,, =W, + W, o
2 ' o Figure: 07-08Ex7.2
I I opyrig earson rFrentice Hall, Inc.
Viai -—(\)(64)4—("0)(1()%320./ —
l
If(t = =i — 1.6.4.!3 —» =]1.64) 12AT34H v(?) 280
| 1. : i
W (<){l 6) + (‘-’0)(-1 6) =327 (S

(n\

Wy '}pdl'ﬂ W) i f[ (J(c' ) ) * Note Wi + Wg o = Wi

* Wg indicates energy dissipated in
resistors after switch opens

: _fl 182~ dt =1 IS?. =288 * W IS €nergy reta?ned by inductors
-4 due to the current circulating between

»
J

the two inductors (+1.6A and -1.6A)
when they become short circuits at

steady state again



Natural Response of RC circuit

L]
e Similar to that of an RL circuit

« Assume all currents and voltages in circuit

have reached steady state (constant, dc) values

Prior to switch moving from a to b,

« C is acting as open circuit (i.e. since at DC)

* So all of V; appears across C since | =0
+ We want to find v(t) for t>0

* Note that since voltage across capacitor
cannot change instantaneously, V, =V, the
initial voltage on capacitor

Solving.,

W)= \1(lk'A"" d=0

WO )= (D)= W' )=V, =¥

T =RC
—t

VU)=Kﬁ7JZO

L)

i(1) = vir) _

p=vi=—Le "it=0"

I gr2 2y

w=jpd.r=f’)é e "dx
U

U

1.: \

l '\' -
we—CV, [ l-e T );1 =0
)

Figure: 07-12
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Example 7.3

« To find v(t) for t =0, note that since cct is in
steady state before switch moves from xtoy, Cis
charged to 100V. The resistor network can be
simplified with a equivalent 80k resistor.

» Simplify resistors with R,, = 32+240]|60 = 80kQ

Then t = RC = (0.5uF)(80k€2)=40 ms,

v ()= 100e ™V 120

voltage across 240 kQ2 and 60 k€,

r,.(l)--l‘.-(”‘

) -60e V.1 20"
32 + 48

current in 60 kQ resistor

v ’ 5 "~ -
()= olf) e mA gtz

604$2

power dissipated in 60 kQ
,m.u(’)-f (1) (()()A‘S!)—()”{ "l”",lkﬂ.

Energy dissipated in 60 kQ2 Wi (1) -fi..(r):((vﬂkﬂklr-l It



Example 7.4: Series capacitors

W) =20e"V,t 20 . Initial voltages N tLO ii([)
v(7)

i(1) = = 80¢™ ud,t = 0" established by 4V—=CiGuE) vi(0)
2504€2 ‘ “hidden” sources +

_|_

l ¢
vy (1) = =—— [(80e ™ ud)dx - 4,1 2 0
"(7) s.w'[( -t == G5 (20 uF) v:(1)

Figure: 07-14Ex7.4
ight © 2008 Pearson Prentice Hall, Inc.

v(1)=(16e" =20/, t=0

v,(f) =~ Tud)dx+ 24,120

vy (1) = (de” +20)/,1 20

w. =05CV* =0.5(5uF ) 4V)" =40 N — oV i .
| it
we, = 0.5(20uF )(24V )" = 57604 20 V=<4 uF v(t)§250 o

w, = 5800/ - -

t =y — =20V, v, =20V

w, = 0.5(25uF)(20)° = sooo,u

Wisoia ’f f(zoe

dt =800/



Step response of RL circuits

KVL:V, =iR+Lﬂ
| dt n

di -Ri+V, -R i—ﬁ

dt L L R

2'AA% * +
tr=0
- D L 3v()
Copvriaht © 2008 Pearson Prentice Hall. Inc.
i(t)
i(t)y = % t
Vel _
R |
| Ve V
i(t)==— Fe
Vil — R R
0.632 R :
|
|
I
' | | | L
0 T 27 37 47 5t
v
(R/L)t
Ly
S5t




Example 7.5: RL step response

z:o\
'%N(\l, bﬁ a4
T +
=25V e $00 54

t (ms)
_4Z/ 100 200 300 400 500
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Step response of RC circuits

Figure: 07-21



Example 7.6: RC Step Response

20 kQ 8kQ  40kQ
WL 1 = 0 A2
Lo
_|_ —
<_> 40V T60KQ | + 2160 k0 CD 75V
0.25 uF v
S NN
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