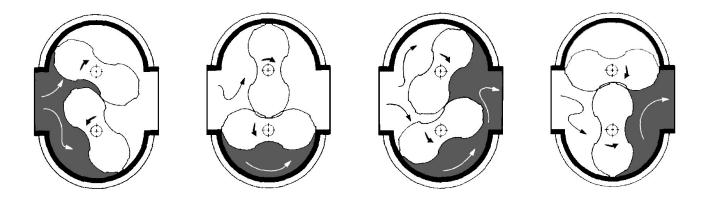
Industrial and Commercial Measurement

Ohio Gas Association Technical Seminar March 2014 Ron Walker Dresser Meters & Instruments

Overview

Application Guidelines


Sizing

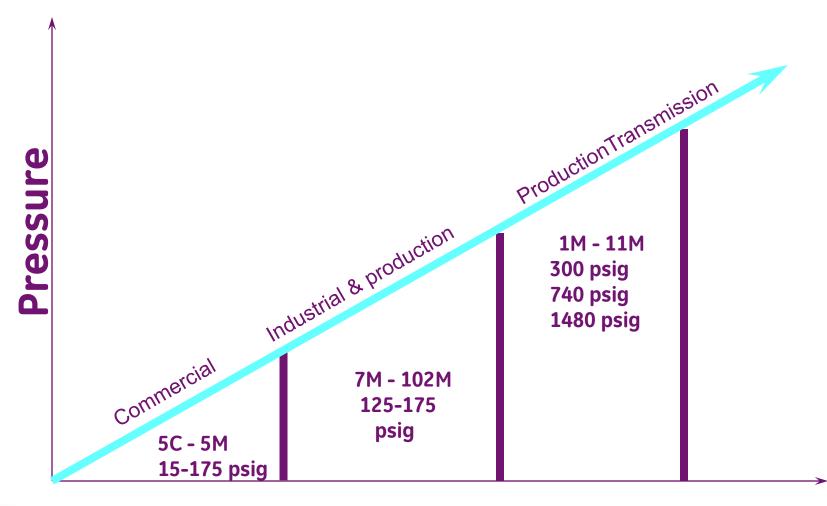
Installation Recommendations

- Meter set design
- Mounting & start-up
- **Maintenance Techniques**
- Inspection
- Testing

Rotary Meter Operating Principle

- Gas enters meter, turning the impellers, and fills the cylinder.
- Bottom & top impellers trap fixed volumes of gas.
- With each full turn of the impeller shafts, four measured volumes of gas are swept through the meter to the right.
- As impeller RPM increases, gas slippage rapidly decreases

Application Guidelines


Production

Transmission

Distribution

Rotary Meter Applications

Sizing Rotary Meters

Minimum parameters:

- Minimum operating pressure
- Total connected load

Apply diversity factors when permissible and/or required

Sizing Example

For 4,400 scfh (4.4 million BTU/hr.) load at 25 psig, select meter:

- a. 5M175
- b. 3M175
- c. 2M175
- d. 15C175
- e. 8C175

Imperial Sizing Charts

Line Mounted														
Model	8C175*	110175*	150175*	2M175*	3M175*	5M175*	7M175	11M175	16M175	23M175	23M232	38M175	56M175	102M125
	*Also available in 200 PSIG Rating													
Rating	800	1100	1500	2000	3000	5000	7000	11000	16000	23000	23000	38000	56000	102000
PSIG	Corrected Capacity at Metering Pressure – in MSCFH													
1	0.84	1.15	1.57	2.09	3.1	5.2	7.3	11.5	16.7	24.0	24.0	39.7	58.5	106.6
3	0.95	1.30	1.77	2.36	3.5	5.9	8.3	13.0	18.9	27.2	27.2	44.9	66.2	120.5
5	1.05	1.45	1.98	2.63	4.0	6.6	9.2	14.5	21.1	30.3	30.3	50.0	73.8	134.3
10	1.33	1.82	2.48	3.31	5.0	8.3	11.6	18.2	26.5	38.1	38.1	62.9	92.8	168.9
15	1.60	2.20	2.99	3.99	6.0	10.0	14.0	22.0	31.9	45.9	45.9	75.8	111.8	203.6
20	1.87	2.57	3.50	4.67	7.0	11.7	16.3	25.7	37.4	53.7	53.7	88.7	130.8	238.2
25	2.14	2.94	4.01	5.35	8.0	13.4	18.7	29.4	42.8	61.5	61.5	101.6	149.8	272.9
30	2.41	3.32	4.52	6.03	9.0	15.1	21.1	33.2	48.2	69.3	69.3	114.5	168.8	307.4
40	2.95	4.06	5.54	7.39	11.1	18.5	25.9	40.6	59.1	84.9	84.9	140.3	206.8	376.7
50	3.50	4.81	6.56	8.74	13.1	21.9	30.6	48.1	70.0	100.6	100.6	166.1	244.8	445.9
60	4.04	5.56	7.58	10.10	15.2	25.3	35.4	55.6	80.8	116.2	116.2	191.9	282.9	515.2
70	4.58	6.30	8.59	11.46	17.2	28.6	40.1	63.0	91.7	131.8	131.8	217.7	320.9	584.5
80	5.13	7.05	9.61	12.82	19.2	32.0	44.9	70.5	102.5	147.4	147.4	243.5	358.9	653.7

Sizing Example

For 4,400 scfh (4.4 million BTU/hr) load at 25 psig, select meter using chart

- **5M175** Oversize
- **3M175** Oversize
- **2M175**
 - 15C175 10% Over-speed OK*

8C175 Undersize

Í

Imperial Sizing Charts

Line Mounted														
Model	8C175*	110175*	150175*	2M175*	3M175*	5M175*	7M175	11M175	16M175	23M175	23M232	38M175	56M175	102M125
	*Also available in 200 PSIG Rating													
Rating	800	1100	1500	2000	3000	5000	7000	11000	16000	23000	23000	38000	56000	102000
PSIG	Corrected Capacity at Metering Pressure – in MSCFH													
1	0.84	1.15	1.57	2.09	3.1	5.2	7.3	11.5	16.7	24.0	24.0	39.7	58.5	106.6
3	0.95	1.30	1.77	2.36	3.5	5.9	8.3	13.0	18.9	27.2	27.2	44.9	66.2	120.5
5	1.05	1.45	1.98	2.63	4.0	6.6	9.2	14.5	21.1	30.3	30.3	50.0	73.8	134.3
10	1.33	1.82	2.48	3.31	5.0	8.3	11.6	18.2	26.5	38.1	38.1	62.9	92.8	168.9
15	1.60	2.20	2.99	3.99	6.0	10.0	14.0	22.0	31.9	45.9	45.9	75.8	111.8	203.6
20	1.87	2.57	3.50	4.67	7.0	11.7	16.3	25.7	37.4	53.7	53.7	88.7	130.8	238.2
25	2.14	2.94	4.01	5.35	8.0	13.4	18.7	29.4	42.8	61.5	61.5	101.6	149.8	272.9
30	2.41	3.32	4.52	6.03	9.0	15.1	21.1	33.2	48.2	69.3	69.3	114.5	168.8	307.4
40	2.95	4.06	5.54	7.39	11.1	18.5	25.9	40.6	59.1	84.9	84.9	140.3	206.8	376.7
50	3.50	4.81	6.56	8.74	13.1	21.9	30.6	48.1	70.0	100.6	100.6	166.1	244.8	445.9
60	4.04	5.56	7.58	10.10	15.2	25.3	35.4	55.6	80.8	116.2	116.2	191.9	282.9	515.2
70	4.58	6.30	8.59	11.46	17.2	28.6	40.1	63.0	91.7	131.8	131.8	217.7	320.9	584.5
80	5.13	7.05	9.61	12.82	19.2	32.0	44.9	70.5	102.5	147.4	147.4	243.5	358.9	653.7

Gas Quality

Line Pressure

Line Temperature

Flow Rate

Gas Quality

Clean & dry

Meter Selection

Standard version meter

Wet or sour gas

Stainless Steel components

Frozen condensation

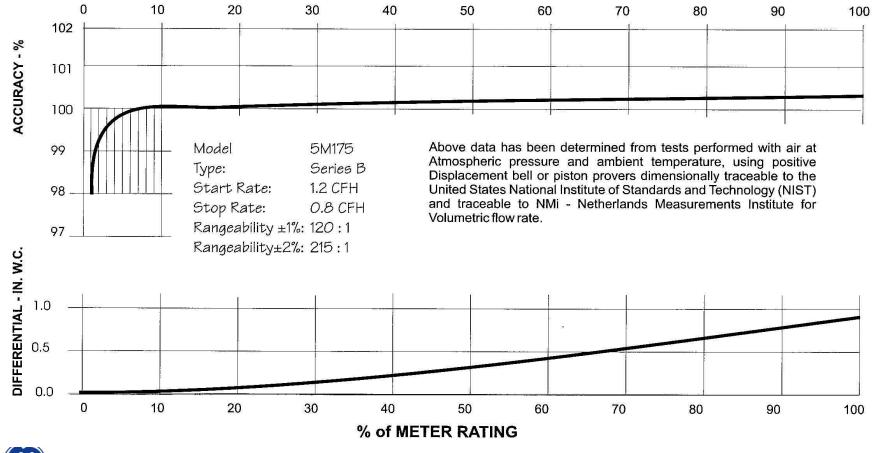
Heavy solids

Catalytic Heater

Fluid shut-off device

Line Pressure

Maximum meter operating pressure Factor in meter pressure rating


Minimum meter operating pressure Factor in maximum flow rate (capacity)

Pressure control

Impact meter accuracy

Typical Accuracy Curve

Rotary Accuracy Characteristics

- At the start rate, meter accuracy is typically at 80 to 90%
- As flow increases, the accuracy curve quickly flattens out at a nominal 100.35%
- Displacement accuracy is permanent, it never changes

Line Temperature

Actual flow increases 1% for each 5° F. increase

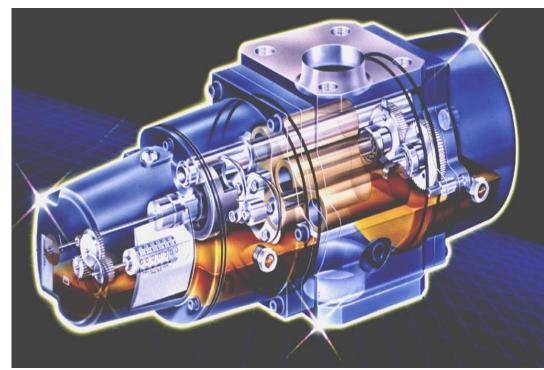
Meter temperature operating range

TC operating range

Temperature compensated indexes

-40° to +140° F.

-20° to +100° F.


Flow Rate

Over-speed protection

- Restricting flow orifice
 plate
 - Request Dresser Form RM-52

Splash Lubrication

• 10% of flow once every few weeks

Sizing Summary

Identify minimum operating pressure and maximum flow rate

Consider selecting smallest possible meter for your load

Include adequate equipment in your meter set design

Installation Suggestions

Basic meter set design ideas

Mounting the meter in your set

Starting-up your rotary meter

Meter Set Design

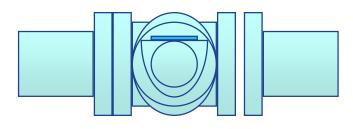
Adequate support piping for meter flanges

Ensure meter is level

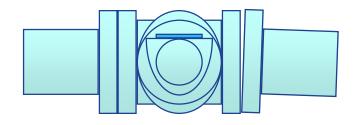
Include hard bypass

When possible design top inlet flow

Meter Set Design

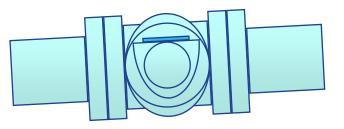


Install strainer or filter when conditions merit

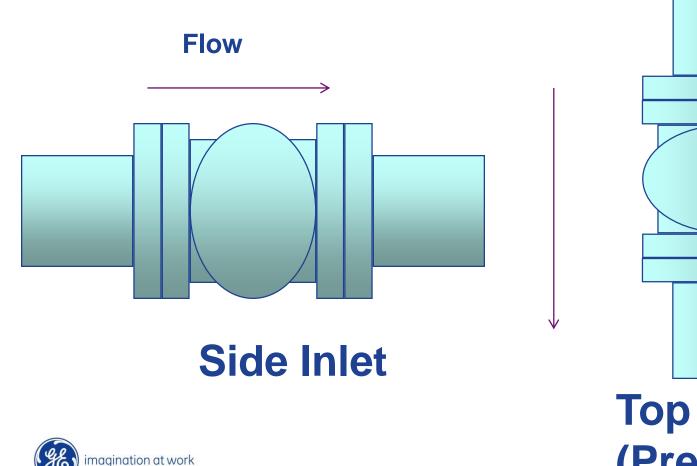

Avoid placing meter at the low point of a meter set

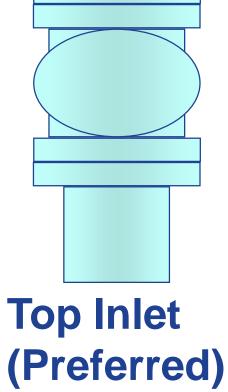
Meter Set Design support piping

Hange Spacing

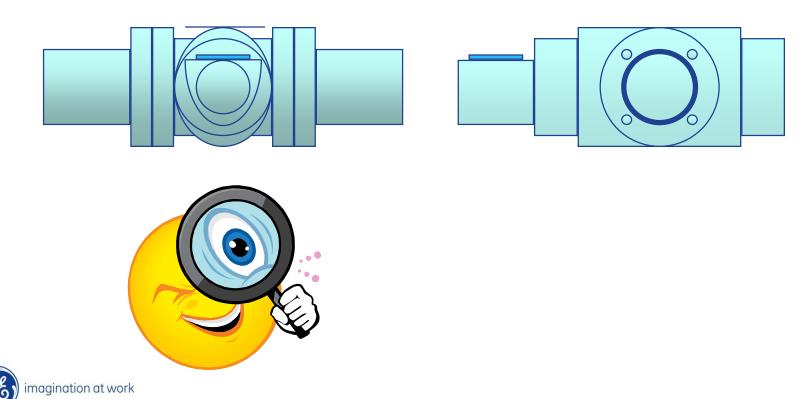


Hanges Parallel




Pipe Level

Meter Set Design

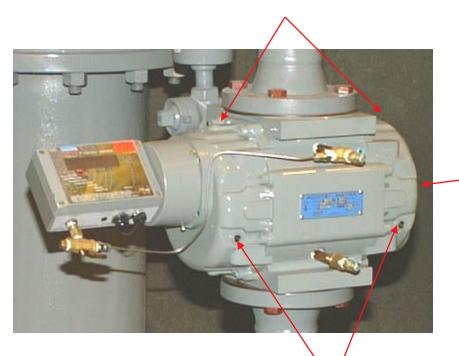


23

Meter Set Design

Level within 1/16"/ft.

Mounting In Your Set

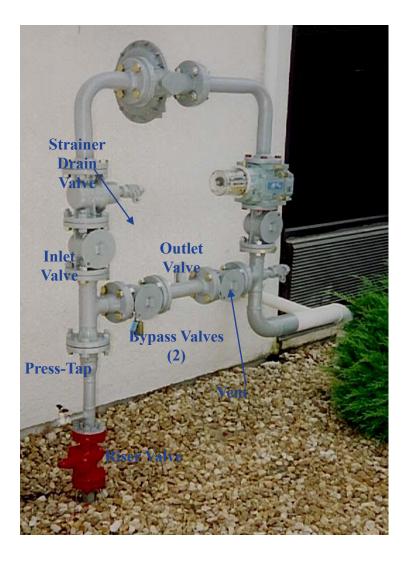

Blow down the meter set

Utilize proper flange gaskets

Follow manufacturer's torque recommendations

Start-up preparation

Oil Fill Plugs (2)



Access Plug (on Right-End Cover) Rotate Impeller Shaft <u>clockwise</u> using Screwdriver or Allen Wrench to check for free rotation

Remote

Oil Sight Glasses (2) Carefully Fill to Center

Start-Up

Close all valves, taps, & vents

Open riser & inlet valves and check for leaks

Slowly open outlet valve

Close bypass valves

Don't pressurize more than 5 psig per second

Maintenance

Routine Maintenance

Drain Excess Liquids as Needed Check Oil Level & Color Drain & Replace

Remove Bowl & Clean Screen as Needed

Oil sight gauge showing proper level and condition of oil

Routine Maintenance

- Meter registration
- Oil color & level
- Oil leaks
- Condensation in index
- Abnormal meter noise
- Meter set level
- Strainer sump
- Gas leaks

Rotary Meter Testing

Differential testing

Transfer prover testing

In-service performance testing


Differential Testing

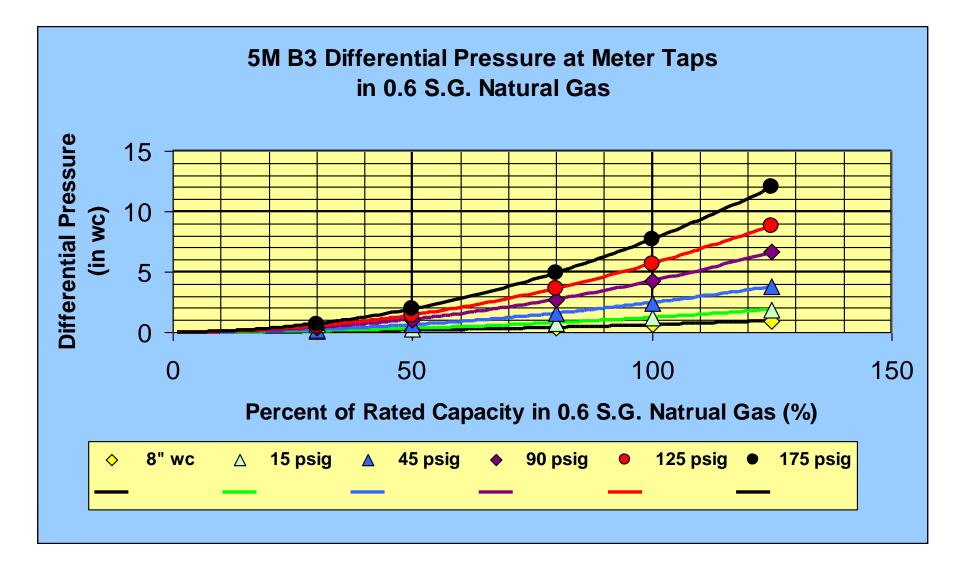
- Low Equipment Cost
- Quick & Easy
- Reliable
- An Inferential Test (i.e. Spin Testing for Turbines)
- Recognized by NIST since 1948
- Recognized by AGA (ANSI B109.3)
- Used by Gas Companies across the U.S.

Differential Pressure

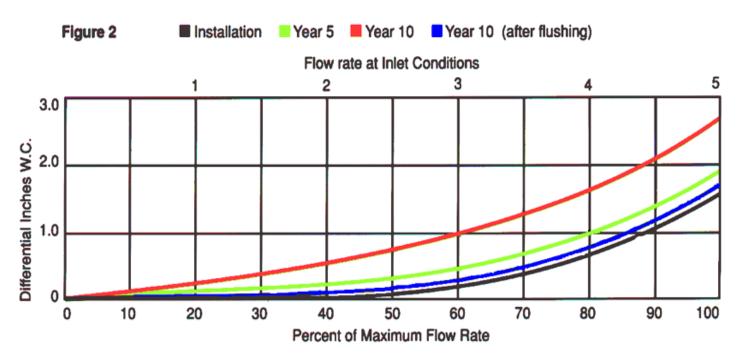
ANSI B109.3: "pressure loss across a rotary meter at specified index rate, specific gravity, & pressure is indicative of the meter's condition."

Differential Pressure Varies With:

Flow rate


Pressure

Specific gravity


Internal friction

Differential Pressure

Differential Testing

Look for 50% increase

Try flushing meter with approved solvent to restore meter condition and accuracy

Transfer Proving

imagination at work

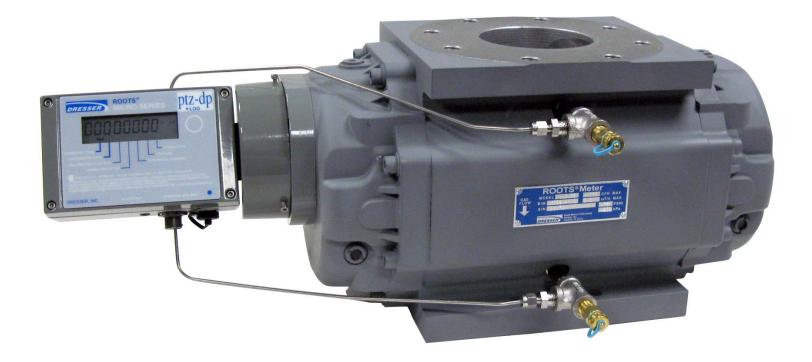
- Higher equipment cost than Differential Testing
- Limited to 10 MACFH
- Not for Hazardous Locations
- Reliable
- A Volumetric rather than an Inferential Test providing direct Accuracy results
- Compares volume of Master Meter to Field Meter
- Measures and compensates for inlet pressures and temperatures
- Tertiary Standard
 traceable to NIST

Rotary Meter Advantages

Compact installations.

Accurate operational range.

Maintains accuracy after several years of service.


Mechanical design provides long service life.

Low cost maintenance.

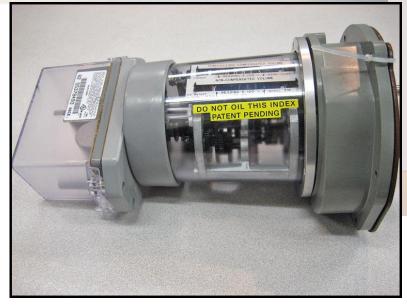
Large number of installations throughout the world.

What's New?

Self Diagnostics IMC-DPX

Electronic TC Meter

Dresser ETC


D800 and D1000 Commercial Service Meter

AMR Devices

Series B3 meter with Itron Residential AMR

ERT can be mounted on either LMMA or S3A Accessory Units

Thank you.

