INDUSTRIAL ELECTRICITY

TODAY'S TOPICS:

Introduction (cont)

Scientific Notation

DUE Mon 1/13 11:00am

HOMEWORK 1

- Reading quizzes 1 & 2
- Worksheet 1

QUESTIONS??

Scantron

- Use for reading quizzes only
- Don't staple
- Erase thoroughly
- Turn in only the scantron

Website

- Schedule
- Class documents

Labs

- Meet in Mechatronics Lab
- Bring a copy of the lab with you
- BYOMIYW

ELECTRIC CIRCUITS

Primary components needed to make an electrical circuit:

Power (Voltage) Source FORCE

- Schematic Symbol: (varies, here is one)
- Electrical Symbol: **E**
- Unit of Measure: (Volt) V

Connecting Wires (Current) FLOW

- Schematic Symbol: None
- Electrical Symbol: I
- Unit of Measure: (Ampere) A

Load (Resistance) **FRICTION**

- Schematic Symbol: (varies , here is one)______
- Electrical Symbol: **R**
- Unit of Measure: (Ohm) Ω

Mathematical Relationship

Ohm's Law

I = E/R

MULTIMETERS

ANALOG METERS (VOM)

DIGITAL METERS (DMM)

At the minimum, these meters measure:

VOLTS (V), OHMS (Ω), and AMPS (A)

(Plus some other "stuff")

Conductors

Conductor: Substance that readily allows its electrons to move.

[Easy to ionize]

Examples:

Aluminum

Copper

Zinc

Steel

Current: The movement of charge through a substance.

Insulators

Insulator: A substance that does not freely allow its electrons to move.

[Hard to ionize]

EXAMPLES:

Glass

Air

Wood

Silicon

Resistance: The opposition to the movement of electrons.

Semiconductors

Semiconductor: A substance that will, with a little coaxing, allow its electrons to move.

EXAMPLES:
Germanium
Selenium
Carbon
Silicon

Quantities & Definitions

- Coulomb: Unit of charge
 - 6.24×10^{18} electrons = 1 coulomb (C)
- Current: Rate that charge moves
 [flowrate of electrons] I = q/t (A)
- Voltage The force that provides the "push" to move the electrons
- Resistance: Opposition to flow of current For wires: $R = \rho^* L/A (\Omega)$

ELECTRIC CIRCUITS

Primary components needed to make an electrical circuit:

Power (Voltage) Source FORCE

- Schematic Symbol
- Electrical Symbol E
- Unit of Measure (Volt) V

Connecting Wires (Current) FLOW

- Schematic Symbol
- Electrical Symbol I
- Unit of Measure (Ampere) A

Load (Resistance) FRICTION

- Schematic Symbol
- Electrical Symbol R
- Unit of Measure (Ohm) Ω

Mathematical Relationship

Ohm's Law

I = E/R

Scientific Notation

 Scientific notation is a way of expressing really large or really small numbers in a more compact (concise) way.

 $6,240,000,000,000,000,000 = 6.24X10^{18}$

 It is often used in "scientific" calculations where standard numbers would be too cumbersome to work with.

POSITIVE EXPONENTS REPRESENT "LARGE" NUMBERS
NEGATIVE EXPONENTS REPRESENT "SMALL" NUMBERS

METRIC PREFIXES & SYMBOLS

Metric				Metric	
Multiple	Prefix	Abbrev	Multiple	Prefix	Abbrev
10^{24}	yotta	Y	10^{-1}	deci	d
10^{21}	zetta	Z	10^{-2}	centi	c
10^{18}	exa	E	10-3	milli	m
10^{15}	peta	P	10-6	micro	μ
10^{12}	tera	\mathbf{T}	10 -9	nano	n
10^9	giga	\mathbf{G}	10-12	pico	p
10^6	mega	\mathbf{M}	10^{-15}	femto	f
10^3	kilo	k	10^{-18}	atto	a
10^{2}	hecto	h	10^{-21}	zepto	Z
10^{1}	deka	da	10^{-24}	yocto	y

Blue indicates favored powers/prefixes/abbreviations used in electricity and electronics. USE ONLY THOSE WHEN COMPLETING WORK FOR THIS CLASS

Scientific Notation consists of two parts:

- A number between 1 and 9.99... (represented by the '#' symbol below)
- A power of 10 (represented by the 'n' below)

X 10ⁿ

For example, the mass of an proton is:

0.000000000000000000000000167kg

Or, in scientific notation:

9.11X10⁻³¹kg

POSITIVE EXPONENTS REPRESENT "LARGE" NUMBERS

NEGATIVE EXPONENTS REPRESENT "SMALL" NUMBERS

To change Standard Form to Scientific Notation...

- 1. Place the decimal point so that there is one non-zero digit to the left of the decimal point.
- 2. Count the number of decimal places the decimal point has "moved" from the original number. This will be the exponent on the 10.
- 3. Compare the two numbers

If you have made the number smaller, then compensate by "tacking on" a positive exponent.

If you have made the number larger, then compensate by "tacking on" a negative exponent.

One kilowatt-hour is equivalent to:

3600000 Joules

Move the decimal between the 3 and the 6

3.60X10^{??}

Count the number of places the decimal was moved

6

Is the number smaller or larger than the original?

Smaller

Compensate by multiplying by a small number, i.e., use negative exponent.

3.60 X 10⁶ Joules

POSITIVE EXPONENTS REPRESENT "LARGE" NUMBERS

NEGATIVE EXPONENTS REPRESENT "SMALL" NUMBERS

Given: 289,800,000

Write: 2.898 X 10??

- The decimal was moved 8 places, so the exponent will be 8.
- The "new number" is smaller, so we need the exponent to be positive.

Answer: 2.898 x 108

Given: 0.000567

Write: 5.67 X10??

- The decimal was moved 4 places, so the exponent will be 4.
- The "new number" is larger, so we need the exponent to be negative.

Answer: 5.67 x 10⁻⁴

To change Scientific Notation to Standard Form...

- Move the decimal point to the right for positive exponent.
 Remember, positive exponents mean big numbers
- Move the decimal point to the left for negative exponent.
 Remember, negative exponents mean small numbers,
 NOT negative numbers

(Use zeros to fill in places.)

Given: 5.093 x 10⁶

- The exponent tells you to move the decimal six places.
- The positive exponent tells you to move it to the right.

Answer: **5,093,000**

- Given: 1.976 x 10⁻⁴
- The exponent tells you to move the decimal four places.
- The negative exponent tells you to move it to the left.
- Answer: 0.0001976

Examples: Express in Scientific Notation

1		5	8	0	0
_	_	_	$\overline{}$	_	_

$$5.8 \times 10^{3}$$

$$4.5 \times 10^{5}$$

$$8.6 \times 10^{10}$$

$$5.08 \times 10^{-4}$$

$$8.5 \times 10^{2} A$$

Examples: Express in Standard Notation

1	. 6	3	Y	1	N 3
	. U	. •	Λ		U

6,300

9,723,000,000

 $3.5.8 \times 10^{1}$

58

4. 4.75 x 10⁻⁴

0.000475

5. 3.56 x 10⁻⁷

0.00000356

 $6.6.3 \times 10^{-1}$

0.63

Challenge Problem

The width of a human hair is 100μ m. The diameter of an electron is 1 fm.

How many electrons would fit within the width of a human hair?

NOTE: No calculator needed!

$$\mu = 10^{-6}$$
 f = 10⁻¹⁵

The **MOST IMPORTANT** use of electricity:

TIME TRAVEL!!!

END