INDUSTRIAL ELECTRICITY

TODAY'S TOPICS:

Introduction (cont)
Scientific Notation

DUE Mon 1/13 11:00am
HOMEWORK 1

- Reading quizzes 1 \& 2
- Worksheet 1

QUESTIONS??

Scantron

- Use for reading quizzes only
- Don't staple
- Erase thoroughly
- Turn in only the scantron

Website

- Schedule
- Class documents

Labs

- Meet in Mechatronics Lab
- Bring a copy of the lab with you
- BYOMIYW

ELECTRIC CIRCUITS

Primary components needed to make an electrical circuit:

Power (Voltage) Source FORCE

- Schematic Symbol: (varies, here is one) $\stackrel{-1}{\boldsymbol{T}}$
- Electrical Symbol: E
- Unit of Measure: (Volt) V

Connecting Wires (Current) FLOW

- Schematic Symbol: None
- Electrical Symbol: I
- Unit of Measure: (Ampere) \mathbf{A}

Load (Resistance) FRICTION

Mathematical Relationship
Ohm's Law

$$
\mathrm{I}=\mathrm{E} / \mathrm{R}
$$

- Electrical Symbol: R
- Unit of Measure: (Ohm) $\boldsymbol{\Omega}$

MULTIMETERS

ANALOG METERS (VOM)

 DIGITAL METERS (DMM)

At the minimum, these meters measure:
VOLTS (V), OHMS (Ω), and AMPS (A)
(Plus some other "stuff")

Conductors

Conductor: Substance that readily allows its electrons to move.
[Easy to ionize]

Examples:
Aluminum
Copper
Zinc
Steel

Current: The movement of charge through a substance.

Insulators

Insulator: A substance that does not freely allow its electrons to move.
[Hard to ionize]

EXAMPLES:
 Glass
 Air
 Wood Silicon

Resistance: The opposition to the movement of electrons.

Semiconductors

Semiconductor: A substance that will, with a little coaxing, allow its electrons to move.

EXAMPLES:
Germanium
Selenium
Carbon
Silicon

Quantities \& Definitions

- Coulomb: Unit of charge
- 6.24×10^{18} electrons $=1$ coulomb (C)
- Current: Rate that charge moves
[flowrate of electrons] I = q/t (A)
- Voltage - The force that provides the "push" to move the electrons
- Resistance: Opposition to flow of current For wires: $R=\rho^{*} L / A(\Omega)$

ELECTRIC CIRCUITS

Primary components needed to make an electrical circuit:

Power (Voltage) Source FORCE

- Schematic Symbol $\boldsymbol{\text { T }}$
- Electrical Symbol E
- Unit of Measure (Volt) V

Connecting Wires (Current) FLOW

- Schematic Symbol
- Electrical Symbol I
- Unit of Measure (Ampere) A

Load (Resistance) FRICTION

- Schematic Symbol - MW-

Mathematical Relationship
Ohm's Law

$$
I=E / R
$$

- Electrical Symbol R
- Unit of Measure (Ohm) $\boldsymbol{\Omega}$

Scientific Notation

- Scientific notation is a way of expressing really large or really small numbers in a more compact (concise) way.

$$
6,240,000,000,000,000,000=6.24 \times 10^{18}
$$

$0.000000000000000000000000000000911=9.11 \times 10^{-31}$

- It is often used in "scientific" calculations where standard numbers would be too cumbersome to work with.

METRIC PREFIXES \& SYMBOLS

Multiple	Metric			Metric	
	Prefix	Abbrev	Multiple	Prefix	Abbrev
10^{24}	yotta	Y	10^{-1}	deci	d
10^{21}	zetta	Z	10^{-2}	centi	c
10^{18}	exa	E	10^{-3}	milli	m
10^{15}	peta	P	10^{-6}	micro	μ
10^{12}	tera	T	10^{-9}	nano	n
10^{9}	giga	G	10^{-12}	pico	p
10^{6}	mega	M	10^{-15}	femto	f
10^{3}	kilo	k	10^{-18}	atto	a
10^{2}	hecto	h	10^{-21}	zepto	z
10^{1}	deka	da	10^{-24}	yocto	y

Blue indicates favored powers/prefixes/abbreviations used in electricity and electronics. USE ONLY THOSE WHEN COMPLETING WORK FOR THIS CLASS

Scientific Notation consists of two parts:

- A number between 1 and 9.99... (represented by the '\#' symbol below)
- A power of 10 (represented by the ' n ' below)

$$
\# \times 10^{n}
$$

For example, the mass of an proton is:
0.00000000000000000000000000167 kg

Or, in scientific notation:

$$
9.11 \times 10^{-31} \mathrm{~kg}
$$

POSITIVE EXPONENTS REPRESENT "LARGE" NUMBERS NEGATIVE EXPONENTS REPRESENT "SMALL" NUMBERS

To change Standard Form to Scientific Notation...

1. Place the decimal point so that there is one non-zero digit to the left of the decimal point.
2. " m ount the number of decimal places the decimal point has "moved" from the original number. This will be the exponent on the 10.
3. Compare the two numbers

If you have made the number smaller, then compensate by "tacking on" a positive exponent.

If you have made the number larger, then compensate by "tacking on" a negative exponent.

Example

One kilowatt-hour is equivalent to:

$$
3600000 \text { Joules }
$$

Move the decimal between the 3 and the 6

$$
3.60 \times 10 ? ?
$$

Count the number of places the decimal was moved

6

Is the number smaller or larger than the original?
Smaller
Compensate by multiplying by a small number, i.e., use negative exponent.

$$
\text { 3.60 X } 10^{6} \text { Joules }
$$

POSITIVE EXPONENTS REPRESENT "LARGE" NUMBERS

NEGATIVE EXPONENTS REPRESENT "SMALL" NUMBERS

Example

Given: 289,800,000

Write: $2.898 \times 10^{?}$?

- The decimal was moved 8 places, so the exponent will be 8 .
- The "new number" is smaller, so we need the exponent to be positive.

Answer: 2.898×10^{8}

Example

- The "new number" is larger, so we need the exponent to be negative.

Answer: 5.67×10^{-4}

To change Scientific Notation to

Standard Form...

- Move the decimal point to the right for positive exponent. Remember, positive exponents mean big numbers
- Move the decimal point to the left for negative exponent. Remember, negative exponents mean small numbers, NOT negative numbers
(Use zeros to fill in places.)

Example

Given: 5.093×10^{6}

- The exponent tells you to move the decimal six places.
- The positive exponent tells you to move it to the right.

Answer: 5,093,000

Example

- Given: 1.976×10^{-4}
- The exponent tells you to move the decimal four places.
- The negative exponent tells you to move it to the left.
- Answer: 0.0001976

Examples: Express in Scientific Notation

1. 5800
2. 450,000
3. $86,000,000,000 \quad 8.6 \times 10^{10}$
4. 0.000508
5. 0.000360
6. 850000 mA
5.8×10^{3}
4.5×10^{5}
5.08×10^{-4}
3.60×10^{-4}
$8.5 \times 10^{2} \mathrm{~A}$

Examples: Express in Standard Notation

1. 6.3×10^{3}
2. 9.723×10^{9}
3. 5.8×10^{1}
4. 4.75×10^{-4}
5. 3.56×10^{-7}
6. 6.3×10^{-1}

6,300

9,723,000,000
58
0.000475
0.000000356
0.63

Challenge Problem

The width of a human hair is $100 \mu \mathrm{~m}$. The diameter of an electron is 1 fm .

How many electrons would fit within the width of a human hair?

NOTE: No calculator needed!

$$
\mu=10^{-6} \quad \mathrm{f}=10^{-15}
$$

The MOSt ImPORTANT use of electricity:

TIME TRAVEL !!!

END

