

Industrial IoT & Big Data Analytics:

Capturing Value in the PLM Environment

Agenda

- ☐ About LNS Research
- ☐ What is the IoT and Digital Transformation?
- ☐ A New Model for System Architecture
- ☐ Closing the Data Science Divide
- ☐ Actionable Recommendations

About LNS Research

Our Mission is Driving Industrial Transformation

We are thought leaders and trusted advisors for Business, IT, and Automation executives

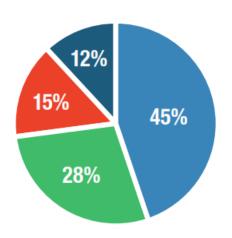
Our differentiators:

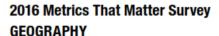
- Experienced analysts
- Primary social research
- Deep industry contacts
- ☐ Interactive data visualizations

LNS Research's Council Members Include

Corbion

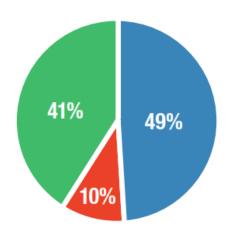
DAIKIN



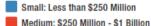


Research Demographics: Metrics that Matter Survey

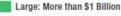
300+ executives and senior leaders took LNS Research's MtM Survey in 2015 & 2016

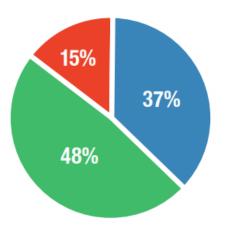

COLOR BY HQ LOCATION

Europe


Asia/Pacific

Rest of World




2016 Metrics That Matter Survey REVENUE

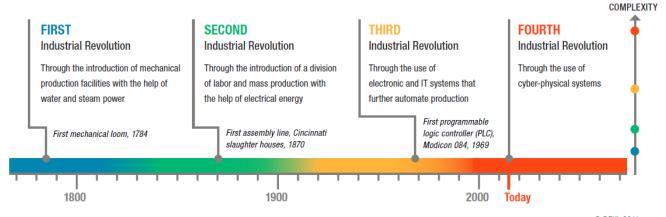
COLOR BY COMPANY REVENUE

Medium: \$250 Million - \$1 Billion

2016 Metrics That Matter Survey INDUSTRY

COLOR BY INDUSTRY

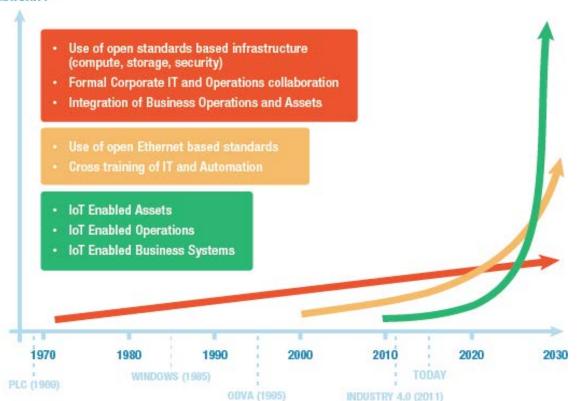
What is the IoT and Digital Transformation?



Initiatives, Forums, and Associations

In 2011 we saw the emergence of Industry 4.0 as a concept.

From Industry 1.0 to Industry 4.0


- Governments of U.S. and Germany have invested \$1B+
 - Smart Manufacturing Leadership Coalition
 - Industry 4.0 (Steam, Division of Labor, Automation, Cyber-Physical Systems)
- Industry Associations
 - Industrial Internet Consortia
 - IoT World Forum

DEGREE OF

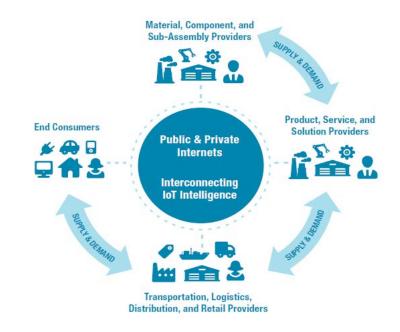
IT-OT Convergence

MATURITY

OT is new name for Industrial Automation.

Three ongoing and accelerating trends.

- Automation and Industrial Software on Windows/Linus
- Automation on Standard unmodified Ethernet
- Devices on Internet


Also refers to enterprise organization – hybrid IT and automation groups.

(Industrial) Internet of Things

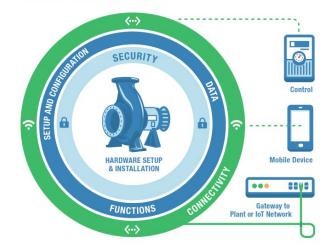
- IoT refers to network of networks enabling new cyber-physical systems
- By 2020, over 50 billion devices expected to be connected via IoT (Cisco)
- Digital Transformation refers to the social and business disruption

IoT for Extended Manufacturing Enterprise Value Chains

Digital Transformation Framework

Setting Strategic Objectives: Role of PLM = V+R

Internal


 Smart Connected Enterprise: Real Time->Predictive->Autonomous

External

 Smart Connected Products: Product->Service->Experience

SMART CONNECTED DEVICE

A New Model for System Architecture

Enabling Tech: Industrial Internet of Things Platform

CONNECTIVITY

- Network Infrastructure -Wired, Wifi, and Cellular
- Standards Serial/ Proprietary > Ethernet/Open
- Machine 2 Machine/Data Acquisition - Embedded, Gateways, APIs, Web Services, OPCUA, Modbus TCP/IP, MQTT, etc.
- · Device Management
- Complex Event Processing
- Alarms, Condition Based Monitoring
- Data Transport and Speed
- Security Authentication, Access Control, Intrusion Detection/Prevention, Firewalls, Application Whitelisting, Antivirus/Spyware, Cryptography, Logging, Data Tagging, Compliance, etc.

CLOUD

- · Private/Public/Hybrid
- · laaS Compute, Storage, Network
- PaaS Run Time, Queue, Traditional DB/DW | Data Historian | In-Memory Database | Hadoop/Data Lake
- SaaS Traditional Enterprise Applications, Next-Gen IoT Enabled Applications
- Security Authentication, Access Control, Configuration Management, Antivirus/Spyware, Cryptography, Logging, Data Tagging, Compliance

BIG DATA ANALYTICS

- Statistical Programming: R, SAS, SPSS
- . Search, Text Mining, Data Exploration
- Analytics: Image/Video, Time Series, Geospatial, Predictive Modeling, Machine Learning, etc.
- Statistical Process Control
 Optimization and Simulation
- Metrics and KPIs
 Visualization

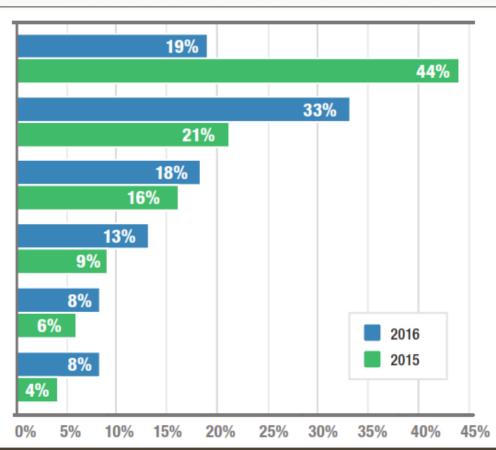
APPLICATION DEVELOPMENT

- Integrated Development Environment: JAVA, HTML5
- IIoT Data Model and Execution Engine
- Workflow and Business Logic Modeler
- · Collaboration, Social
- Mobile
- Search
- Security Authentication, Access Control, Configuration Management, Cryptography, Logging, Compliance

- Still an ecosystem play today.
- Space still needs definition.

The Impact of IIoT Today

Do not understand or know about IoT


We are still investigating the impact

We understand/are aware and see value to our operators/customers or both

We understand and our customer demands are driving us

We understand but see no impact at this time

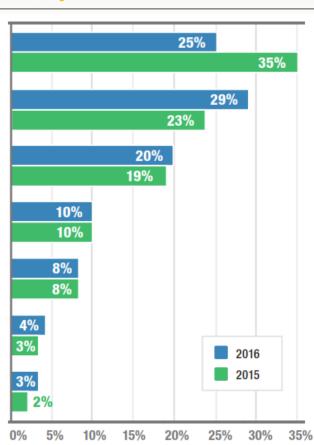
> We understand and have already seen dramatic impact

- Lack of education is diminishing rapidly
- Strong correlation between lack of education and adoption plan

Current IIoT Adoption

We do not expect to invest in loT technologies in the foreseeable future

We expect to start investing in IoT technologies in the next 12 months but are still establishing a budget


We do not expect to invest in IoT technologies in the next 12 months

We have made significant investment already and expect it to increase in the future

We have established a budget for IoT technology investment in the next 12 months

We have made significant investment already and expect it to stay the same for the foreseeable future

We have made significant investment already and expect it to decrease in the future

- 3/4 of market is eventually expecting to Invest in IIoT
- 51% of market making investment in next 12 months

Crossing the Chasm

LNS

N=680

- We are at the tipping point of IIoT adoption
- Early
 adopters are
 spread
 across
 industries

Traditional Enterprise Architecture (ERP) View

CORPORATE SYSTEMS - Defined by Sites and Organizational Structure

HR, Procurement, Finance and Accounting, IT Management

HR, Procurement, Finance and Accounting, IT Management

HR, Procurement, Finance and Accounting, IT Management

MANAGEMENT SYSTEMS - Defined by Sites and Organizational Structure

Quality, Environment, Health, Safety, Energy, Sustainability, Risk

Quality, Environment, Health, Safety, Energy, Sustainability, Risk

Quality, Environment, Health, Safety, Energy, Sustainability, Risk

VALUE CHAIN SYSTEMS - Defined by Sites and Organizational Structure

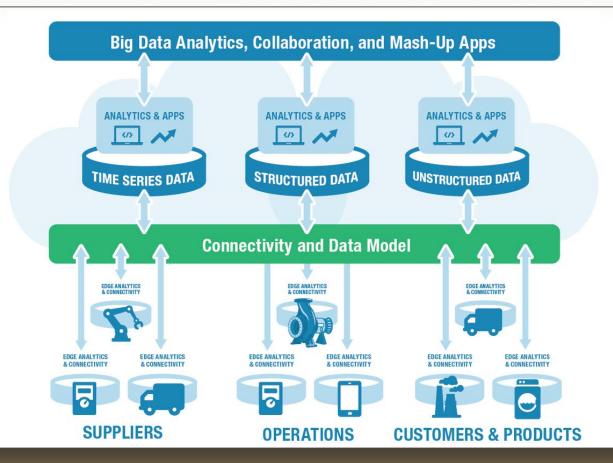
✓ ANALYTICS	Marketing	Sales	Engineering	Suppliers	Asset Management	Manufacturing	Warehousing	Distribution	Retail	Service
PLANNING	Marketing	Sales	Engineering	Suppliers	Asset Management	Manufacturing	Warehousing	Distribution	Retail	Service
EXECUTION	Marketing	Sales	Engineering	Suppliers	Asset Management	Manufacturing	Warehousing	Distribution	Retail	Service

- Enterprise
 Architecture
 has
 traditionally
 been managed
 by IT
- No room for loT or cyberphysical systems

Traditional Enterprise Architecture (Automation) View

Purdue/ISA95 Model

- No Value Chain View
- Limited integration and adoption across hierarchy


Traditional Enterprise Architecture (PLM) View

- Enabling the Digital Thread and Digital Twin
- Bring together the virtual and real across the value chain.
- Limited view of business and transactions

Operational Architecture: Managing IT/OT Convergence

Operational Architecture broadens scope for IT-OT Convergence

Aligns automation, engineering, business

Next-Generation Manufacturing Systems Architecture

L5 loT Enabled Governance and Planning Systems

L4 loT Enabled Business Systems

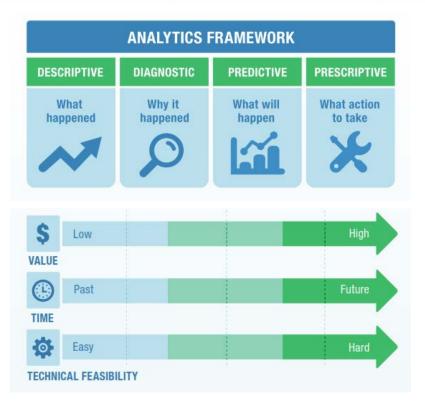
L3 Smart Connected Operations - IIoT Enabled Production, Quality, Inventory, Maintenance

L2 L1 L0 Smart Connected Assets -

IIoT Enabled Sensors, Instrumentation, Controls, Assets, and Materials

IIoT Enabled Next-Gen Systems

- No Value Chain View
- Limited integration and adoption across architecture

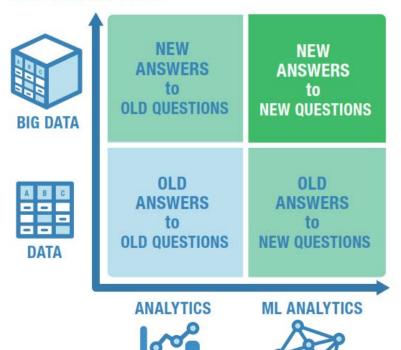

Trends in Big Data and Analytics

The Data Science Divide: Engineers and Data Scientists

- Analytics are understood in terms questions answered
- Predictive and prescriptive analytics traditionally delivered as physics based by engineers with PLM.
- Big Data and Machine Learning is delivered by Data Scientists and driving technical feasibility shifts

Understanding Big Data and Machine Learning

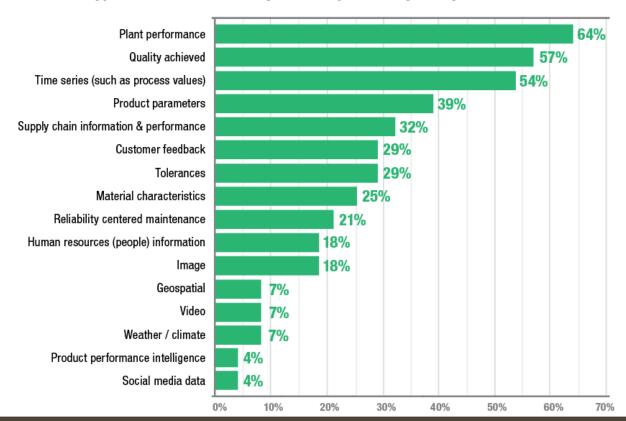
BIG DATA is most simply understood not just in terms of size, but in terms of the ability to manage volume, velocity, and variety of data, including structured, semi-structured, and unstructured.



MACHINE LEARNING is most simply understood as the set of models and algorithms that don't rely on the analyst to presuppose relationships between variables and different data elements.

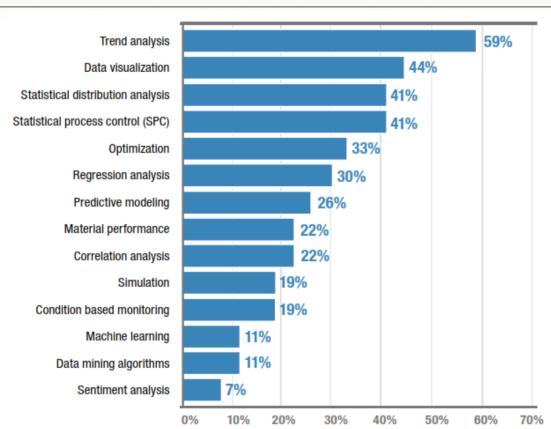
A Different View of the Questions to be Answered

IIOT ANALYTICS



- Crossing the Data Science divide is about being open to new tools and methodologies
- Think about traditional FMEA for a product and how this will change with IIoT?
- But is it happening today?

Data Used in Corporate Analytics


What types of data are used in your enterprise analytics system?

• Companies include very little unstructured data in corporate analytics programs.

Algorithms Used in Manufacturing

- Most adoption is for structured data and Descriptive or Diagnostic analytics
- Adoption of Big Data analytics is still woefully low

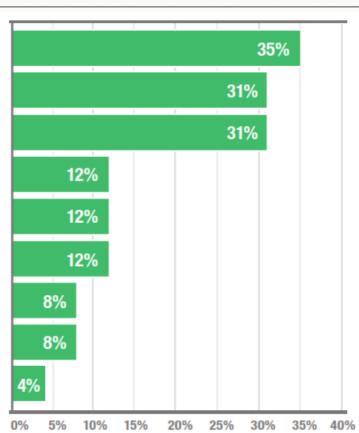
Sharing Data Outside the Enterprise

For suppliers to check quality, delivery, and related

For customers to check quality, delivery, and related

We will not share manufacturing data outside the enterprise

Customer relationship management

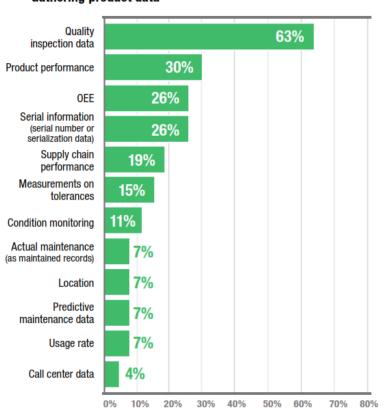

For end users or communicate with our enterprise

Product updates

For end user information

For equipment providers' maintenance and quality processes

> Product tracking and genealogy

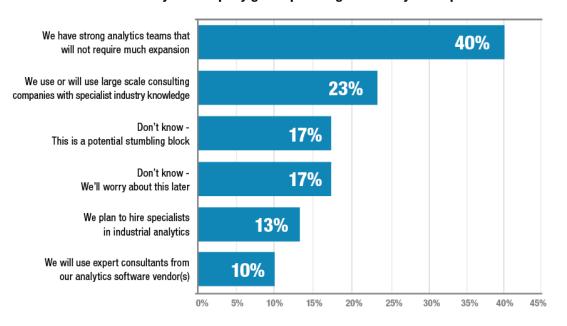


- Data is largely shared outside the enterprise for supply chain collaboration.
- Business model transformation and enabling new strategic objectives is still a long way off.

Connected Product Data

LNS

Gathering product data



- Quality is by far the number one use of collected product data
- Analytics and closing the loop on quality for new experiences will drive success

Analytics Expertise

From where does your company get or plan to get its analytics expertise?

- Many Companies already feel mature with current analytics capabilities.
- Limited scope and definition of analytics
- Engineering and Data Scientists collaboration still coming

Recommended Actions

Actionable Recommendations

LNS

- Institute a formal Digital Transformation framework that ties together all levels of the organization with a strategic vision.
- Deployed an IoT enabled Big Data architecture that shares data outside of the enterprise and breaks down internal hierarchy and silo's
- Enable Digital Transformation by bringing together engineers and data scientists for prescriptive and predictive PLM analytics
- View the business case as a journey that delivers value across the product lifecycle.

Thank You!!