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Abstract   

According to the development of Industry 4.0 and increase the integration of digital, physical and human worlds, reliability 

engineering must evolve for addressing the existing and future challenges about that. In this paper, the principle of Industry 4.0 is 

presented and some of these challenges and opportunities for reliability engineering are discussed. New directions for research in 

system modeling, big data analysis, health management, cyber-physical system, human-machine interaction, uncertainty, jointly 

optimization, communication, and interfaces are proposed. Each topic can be investigated individually, but this paper summarizes them 

and prepared a vision about reliability engineering for consideration and discussion by the interested scientific community.  
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Introduction1 

The increasing integration of the digital, physical and 

human worlds makes a deep transformation in the 

industry and we are witnessing the fourth industrial 

revolution that it is called Industry 4.0. It provides 

opportunities to make the factories as an open platform 

and distributed systems with the dynamic structure that 

they are more efficient and faster, and more flexible 

and resilient the complex supply chains [1]. The term 

Industry 4.0 was first publicly introduced in 2011 as 

“Industries 4.0” to enhance the German 

competitiveness in the manufacturing industry [2,3]. 

The German federal government adopted the idea in its 

High-Tech Strategy for 2020. Today, this concept is 

becoming increasingly ubiquitous. Several researches 

have been performed to explain this idea and introduce 

its challenges and benefits, but more research in this 

field is necessary. In this study, some challenges and 

opportunities of industry 4.0 from the reliability 

engineering point of view is investigated. 

The Industry 4.0 concept 

According to change in the manufacturing environment 

and competition increasing among companies, we need a 
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new concept to define and make manufacturing factory, 

because the future industrial factories need a new 

paradigm to work as resilience and flexible system with 

reasonable cost. In this section, the past industrial 

revolutions are reviewed to illustrate this new concept 

better.  

In the eighteenth century, the first industrial 

revolution caused major changes in industries by utilizing 

steam power. Electric power and the assembly line for 

mass production made the second industrial revolution. 

Computers and information technology were integrated 

into manufacturing and the different computer-aided 

systems were produced in the third industrial revolution. 

Now, the fourth industrial revolution involves the heavy 

use of automation and data exchange in manufacturing 

environments. The new systems utilize the advanced 

technologies, such as cyber-physical systems, the Internet 

of Things (IoT), 3D printing, digital twinge, and 

advanced analytics, and cloud computing, and so on [4]. 

Fig. 1 shows the transformation that happens. 

Therefore, industrial systems need to process 

digitalization, cyber-physical system integration and 

smart control on factory shop floors. Also, the efficiency 

increasing needs the integration of the supporting systems 

into the main system, such as maintenance, logistics and 

supply change.  

https://dx.doi.org/10.30699/ijrrs.2.1.4
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Fig. 1. Industrial revolution through the years [1] 

In the other worlds, we deal with a smart system that 

it is a system of the systems with dynamic structure. This 

change in industry improves the manufacturing 

environment and increase system speed and flexibility. 

Thus, investment level in smart manufacturing and 

industry 4.0 has been rising rapidly and several countries 

attend to this topic. Also, several types of research have 

been conducted to introduce and analysis industry 4.0 and 

smart manufacturing systems. The brief review of 

industry 4.0 and smart manufacturing is presented as 

follows. 

The first paper about industry 4.0 was published in 

2012 [4] and the abstract level description of Industry 4.0 

was given by Lasi et al. [5]. Stock and Seliger presented 

extensive background research on the development of 

Industry 4.0 [6]. They also discussed the macro and micro 

perspectives of Industry 4.0 with regard to sustainable 

manufacturing and provided future scope in this domain. 

Mueller et al. [7] extensively studied industry 4.0 and 

focused on the bottlenecks associated with the 

implementation of Industry 4.0.  They proposed a 

modulated architecture constituted of products, system 

software, processing, and manufacturing process. Lee et 

al. [8] proposed the implementation of cyber-physical 

systems (CPSs) in industry 4.0. CPSs provide the 

framework for close connections between physical 

devices and the cyber world. Condry and Nelson [9] 

proposed a more secure and efficient model for the IoT 

approaches as compared to traditional models. Their 

model considered the challenges and threats in the real-

world scenarios and modeled them in the smart IoT 

devices. 

Wang et al. [10] proposed a novel algorithm to 

perform the operations of the smart factory. They 

simulate intelligent manufacturing products that can 

communicate and cooperate with each other without 

human intervention. Further, this setup was made 

reliable, by preparing a better decision making 

environment to prevent deadlocks. The approach was 

validated through some numerical experimentations. 

Kadera and Novák [11] worked on the chilled water 

management system as an example to propose some key 

points to overcome the problems about communications 

between the interconnected devices in the industry. 

Smart manufacturing is an essential component in 

Industry 4.0 paradigm which has fundamentally changed 

the production industry. Smart manufacturing has helped 

factories achieve productivity gains of 17–20% whilst 

simultaneously achieving quality gains of 15–20% [12]. 

Challenges and bottlenecks in smart manufacturing from 

the past to now should be discussed and the future 

researches and improvement are introduced [13]. Huang 

et al. [14] described the latest work in the growth of the 

community energy system planning (CESP) and 

discussed the basis of the smart industry techniques 

applied in CESP. They used a case study and declared that 

CESP is the next big thing for energy systems in the 

future industry for which they have developed a platform. 

Andrew Kusiak [15] described the fundamentals of smart 

manufacturing as a multi-thread perspective. He studied 

manufacturing resiliency and sustainability and explained 

their differentiators with smart manufacturing.  

Several papers have been explained the industry 4.0 

and smart manufacturing, but reliability engineering 

challenges, bottlenecks, and opportunities have received 

less attention. The lecture shows that Zio discussed 

challenges and opportunities in reliability engineering 

faced in big data [1]. He focused on knowledge, 

information and data application to analysis systems and 

only discussed the challenges of prognostic health 

management and degradation models. He extended his 

work and explained the framework for risk assessment in 

the new environment of industries [16]. This paper 

extends the previous study and covers other aspects of 

industry 4.0 challenges and opportunities for reliability 

engineers. 

Industry 4.0 Challenges and Opportunities  

All future factories should work based on Industry 4.0 

paradigm. This concept was introduced based on 

manufacturing systems but this idea can be applied in 

different industries, such as oil and gas, chemical plants 

and power plants. Industry 4.0 has several benefits; 

increase production volume, fast response to customer 

requirement, production waste reduction. But, the 

implementation of industry 4.0 will need to satisfy several 

fundamental requirements for manufacturing [17]: 

 Enterprise integration and interoperability  

 Distributed organization 

 Model-based monitoring and control  

 Heterogeneous systems and environments  

 Open and dynamic structure  

 Cooperation and Collaboration 

 Integration and interoperability of humans with 

software and hardware systems 

 Agility, scalability and fault tolerance 

 Interdependent networks 

 Service-oriented collaborative manufacturing 

platforms  
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 Data-driven analysis, modeling, control, and 

learning systems for decision-making support. 

Also, different types of technology should be set to 

build a smart factory [18-20]. These technologies include 

several software, advanced collaborative robotics, 

modular and adaptable configuration, high-speed systems 

for data transfer, and other. To obtain a fully smart 

system, we need smart supply chains, smart maintenance 

system, smart labor and so on. This type of system deals 

with several challenges from the technical point of view. 

Thus, some companies could not implement this idea and 

it is still a long way to go.   

We know every manufacturing system should be reliable 

and its availability is reasonable. Also, security, safety and 

maintainability should be considered in the design, 

implementation and utilization steps. Thus, when a smart 

factory or industry 4.0 idea is studied, these challenges and 

opportunities from the reliability engineering view of point 

have to be considered. In the rest of the paper, the main 

challenges and opportunity are discussed. 

Challenges and Opportunity for Reliability 

Engineering 

Reliability engineering as a sub-discipline of system 

engineering includes the systematic application of the 

engineering principles and techniques throughout a 

product lifecycle so reliability should be considered from 

concept plan to wear out of the system/product. 

Reliability engineer defines reliability requirements, 

predict, analysis, assess and optimize system 

performance via reliability techniques.  

 Industry 4.0 makes the new opportunity for thought 

leaders and engineers to create new systems and innovate 

smart devices and instruments. These innovations 

facilitate infrastructures for industry development, but 

also generate new and unknown failure mechanisms, new 

and unknown economic, functional, technical and 

structural dependencies among system components, and 

eventually new and unknown hazards and risks. On the 

other hand, with complexity and dependence increasing, 

the implementation of new concepts, and the 

advancements in knowledge, methods and techniques, 

such as big data, internet of things and quick response to 

changes, make new opportunities for developing 

reliability engineering techniques and improve reliability 

prediction capability. In the rest of this study, some 

subjects related to reliability and industry 4.0 interactions 

are discussed. 

System Modeling 

Industry 4.0 integrates different engineering systems and 

disciplines. A system built based on this concept includes 

adaptive systems with differing levels of autonomy and 

all human activities are interconnected by a lot of 

communication systems at the moment [21]. This system 

often has multi-components, open, resilience and 

dynamic structure managed based on online data 

collection and analysis. The first challenge is the system 

modeling and the system definition for this type of system 

investigation. Although different researchers tried to 

system modeling via reliability engineering techniques, 

this type of system modeling and analyzing is an 

interesting topic for reliability engineers. Several 

advanced methods and techniques have been developed, 

such as dynamic fault tree [22], dynamic Bayesian [23], 

dynamic reliability block diagram [24], Markov chain 

[25] and Monte Carlo simulation [26]; but this topic needs 

more attention. The system that used in Industry 4.0 

context consists of the new aspects and deal with the new 

challenges such as Cyber-Physical Systems (CPSs), 

reliance structure, supporting systems, multi-state 

components, distributed structure and so on. These 

challenges are discussed in the next sections. 

Cyber-Physical Systems are electronic control 

systems that control physical machines, and the main 

structure of the industry 4.0 [17,27]. CPSs provide the 

framework for close connections between the cyber world 

and physical devices. Thus, modeling and analysis of 

CPS as an embedded system is very crucial. 

Resilience system is the new types of engineering 

systems which have recently raised significant interest 

among both practitioners and researchers due to its role in 

reducing the risks associated with the inevitable 

disruption of systems [28]. Dinh et al. [29] identified six 

factors that enhance the resilience engineering of 

industrial processes, including minimization of failure, 

limitation of effects, administrative controls/procedures, 

flexibility, controllability, and early detection. Different 

definitions have been proposed for resilience systems 

[28], but most of them emphasize the system dynamic, 

adaptive control and recoverability. Adaptive control, 

online decision and re-configuration of the structure are 

essential portions of industry 4.0. In this condition, each 

sub-systems duty is defined based on its state and other 

sub-systems conditions. This dynamic dependence 

modeling is complicated and makes the big challenge for 

system modeling. A recent trend in resilience measures 

has been accounting for aleatory and epistemic 

uncertainty with stochastic approaches [28]. Also, 

addressing larger temporal and spatial scale, integrating 

more human and social aspects and employing more 

smart resources and solutions [30] and develop a new 

model to the time-dependent characteristic of system 

resilience are the new directions for resilience system 

modeling [31].  

In industry 4.0, often, we deal with a system of systems 

that covers all aspects which impress system efficiency and 

performance. Then, system modeling is complex and 

different disciplines and supporting systems such as 

maintenance, spare parts inventory, logistics, warranty and 

after sale service, and others should be jointly considered. 

Supply chain and maintenance recently have been 

investigated by researchers [32-34]. Supplier selection, 

quality, logistics, storage management, spare parts 
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inventory, and cost are studied and jointly optimization of 

supply chain and maintenance is considered. But study about 

the integration of maintenance, supply chain, and production 

planning is rare. When we talk about the factory for future, 

this necessity is being more highlighted.  

A multi-state system is a kind of system in which 

both the system and its components may display multiple 

performance levels, and it can be utilized to the modeling 

of the complicated and practical systems. Future 

engineering systems may use this scheme as a base 

structure or performance of this system according to the 

degradation of the system outcome is modeled by multi-

state system techniques. When this structure is dynamic 

and includes software and hardware systems, the system 

complexity is increased and we deal with explosive states. 

Also, different components of the system have different 

behavior and follow a specified probability distribution. 

Thus, hybrid methods should be developed [35]. Study 

about the hybrid approaches especially hybrid Bayesian 

application as an advanced method to solve reliability 

problems is rare, and according to big data and a lot of 

evidence, Bayesian infer can be investigated more 

especially in reliability prediction, diagnosis and fault 

detection, and risk reduction of the system. A recent trend 

in the multi-state system has been accounting for 

dependence modeling among components [36-37]. 

Practical systems consist of the different 

components, so multi-component systems assessment 

recently receive more attention. Several dependencies can 

exist among the system components; the dependencies 

can be grouped into four types [38]: structural, resource, 

stochastic, and economic dependence. An optimal and 

reasonable plan to reliability assessment should consider 

these dependencies and the relations among the different 

components. Also, different levels of uncertainty in 

system components, different environment condition, 

exchange information among the components, the 

difference among components ages and different levels of 

technology are the main problems of the system. 

Recently, dependence modeling is a portion of the new 

researches about reliability engineering. 

Today, companies attend to build new sites in other 

countries to optimize their performance, for instance, in 

developing countries. International cooperation is 

increased in business. Thus, we deal with the multi-

national company and distributed system. In traditional 

form this relation is low, but when smartness is increased, 

the new problem and challenges appear.  Today, the business 

model and supply chain management are studied [39]. Sub-

systems are assumed as independent components, and 

arranged individually based on local regulation and 

requirements. But the factory of the future needs more 

integration. Security, dependency and reliability, the 

effective management of a diversified business, 

encompassing diversity in human resource, technical 

capacity, and technical problems are their challenges which 

must be navigated in ensuring business success.  

Other challenges in system modeling are modeling 

tools and techniques, also interfaces among reliability 

engineering and other system engineering aspects such as 

safety, risk. Therefore, advanced methods especially 

Bayesian approaches [40] should be more considered and 

new concepts for system modeling is developed. 

Big Data and Data Processing 

Advanced instruments and facilities are applied in the 

smart systems and data at different stages of a product’s 

life, such as raw materials, machines’ operations, facility 

logistics, quality control, product utilization and warranty 

duration is collected and analyzed. This data’s role in 

industry 4.0 and smart systems is crucial and big data 

empowers companies to utilize data-driven strategies to 

become more flexible and powerful for market 

competition. Data collected from manufacturing systems 

are very important and must be stored and analyzed. In 

the past, data was documented on paper, with industrial 

development and the integration of information 

technology and manufacturing, also computerized 

systems utilization, data is collected and saved on a 

machine. Recently, the capability of information 

technology is quickly grown up and advanced 

technologies (e.g., Internet of Things, cloud computing, 

big data analytics, and artificial intelligence) are 

introduced and simultaneously applied in industrial and 

business systems. Systems integration with IT leads to 

use of a new paradigm as industry 4.0. Fig. 2 shows the 

evolution of data in manufacturing systems, similar 

integration for other systems can be assumed. 

 

Fig. 2. Evolution of data in manufacturing systems [41] 

Big data collected have to be processed and applied 

to improve system performance. This data consists of 

different type of parameters with different quality and 

form because several sensors and sources are applied. 

Some part of data may be collected as voice, video, 

image, electronic signal and other, these data should be 

pre-processed, processed and analyzed for application. 

Crude data is not useful and it may include noisy data, 

thus, this data should be translated into concrete 

information content and context that can be directly 

understood by users. Thus, we need advanced methods 
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such as cloud computing, neural networks and deep 

learning [42].  

Cloud-Based Big-Data processing techniques as an 

interesting topic have been investigated in the past 

decades, different computing models have been proposed 

based on different platform and focus, such as batch-

based, stream-based, graph-based, directed acyclic graph 

based, Interactive-Based and Visual-Based processing 

[43]. 

Neural networks are a useful tool in reliability 

engineering, especially for remain useful lifetime 

prediction [43], Farsi and Hosseini used ANN to reduce 

noise effect and estimated a bearing lifetime [44].  

Although ANN is a useful tool for data processing, deep 

learning is more effective. Deep learning benefits include 

reducing operating costs, keeping up with changing 

consumer demand, improving productivity and reducing 

downtime, gaining better visibility and extracting more 

value from the operations for global competitiveness 

[42]. Different models have been developed in 

manufacturing, as shown in the table below. 

Table 1. The deep learning models and application in 

manufacturing [42]. 

Deep learning model Application Scenarios 
Convolutional Neural Network Surface integration inspection 

Machinery fault diagnosis 
Deep Belief Network Machinery fault diagnosis 

Predictive analytics & defect 

prognosis 
Auto Encoder Machinery fault diagnosis 
Recurrent Neural Network Predictive analytics & defect 

prognosis 

 

 The advance in computing techniques and data 

processing impress design methods and computer-aided 

engineering systems, for example, different types of 

failures in the system can be modeled and evaluated by 

simulations. This capability increases knowledge about 

the failure mechanism to avoid them in the utilization 

stage. Reliability engineer can use these capabilities to 

improve reliability prediction of a new product in the 

design step. On the other hands, designers incorporate 

Artificial intelligence (AI) and deep learning into new 

products and in their own design processes. Design engineers 

will be challenged to use these tools in their own design 

processes to more quickly optimize final designs [45]. 

Xue et al. use deep learning to accelerated search for 

materials with targeted properties by adaptive design 

[46]. 

Another challenge in big data processing is the 

dynamic behavior of the system. The used model to 

system modeling should be adapted based on the system 

age, degradation behavior and condition. Because data 

collected real-time, may change the pre-defined model of 

the system. Therefore, model updating can be considered 

as an interesting topic in this field [1]. 

Big data and data-driven methods are almost applied 

to improve maintenance management. Maintenance is a 

method to keep a system or component in a good and 

acceptable state. Different maintenance disciplines are 

applied to avoid catastrophic and unexpected failure, for 

instance, condition based maintenance (CBM) is 

frequently applied in modern systems, such as locomotive 

engines, aircraft engines, aircraft bodies, dams, power 

distribution transformers, and wind turbines. 

 In CBM policy, critical components are monitored 

and controlled; data are collected and processed to make 

the best decision for system holding. In a CBM system 

degradation is monitored and controlled to decrease the 

degradation processes develop. Thus, degradation 

modeling is an important topic for reliability engineers so 

different models have been proposed about that. During 

the last two decades, a number of degradation models 

have been developed to analyze the degradation dynamics 

of a product. These models are categorized as follows [1]: 

 Statistical models of time to failure 

 Stochastic process models 

 Physics-based models (PBMs) 

 Multi-state models (MSMs). 

Ye and Xie [5] have given an excellent review of this 

area. In the lecture, very few studies have considered 

degradation dependence in a system whose degradation 

processes are modeled by PBMs and MSMs, and several 

factors which can influence degradation evolution, thus, 

research about degradation modeling must be continued. 

All these models need data and their accuracy 

depends on the data volume and quality. Industry 4.0 

produces big data. Therefore, we can increase the 

prediction accuracy of these models. Also, big data helps 

to modify these models based on actual conditions or 

provide an opportunity to develop a new model as new 

directions of research.  

Different types of components are used in a system, 

some components are critical and their role is crucial. The 

influence of some components on the system is low, and 

continuous monitoring isn’t reasonable from technical or 

economical points of view. These are inspected or 

checked based on time tables. The optimal duration for 

inspection impresses data integrity as well as the cost. It 

is obvious that data integrity is very important and big 

data without integrity is not applicable. Therefore, 

determine optimal inspection times are important for 

holding the system at the desired level of 

reliability/availability and risk reduction. Several studies 

have been carried out in this field [47-48], recently 

dynamic framework for inspection has been received 

more attention [49], but we need more research in this 

field.   

Sometimes system suddenly failed because of 

environmental conditions variation and excessive 

loading. Industry 4.0 improve system capability, but 

random failures can’t be eliminated. Also, according to 

our lack of knowledge about a failure, we may not detect 

and prevent a failure.  This event randomly occurs by 

external shocks same as mechanical, thermal or electrical 

shock. For example, the data in a computer system are 



28 / IJRRS / Vol. 2/ Issue 1/ 2019 

 

 

                                                                   M.A. Farsi and  E. Zio 

frequently updated by adding or deleting them and are 

stored in secondary media. However, data files are 

sometimes broken by several errors due to human errors, 

incompatibility, noises, and hardware faults. According 

to the severity of the damage and its risk, research about 

these events modeling needs to be conducted. In a shock 

model, a system (or component) is subject to shocks 

occurring randomly in time. Over the past several 

decades, various shock models have been introduced and 

studied. Basically, those shock models fall into five 

categories [48]: Cumulative shock model, extreme shock 

model, run shock model, δ-shock model (delta-shock 

model) and mixed shock model. Recently, the healing 

ability of systems is considered by some researchers who 

study shock models. This topic includes ‘curable’ shock 

process and self-healing mechanism. The reliability 

modeling and assessment of multiple components and 

multiple self-healing abilities could be developed [50]. 

Mixed shock model [51], Joint optimization of 

maintenance policy and spare parts inventorying the 

system could also be further studied. 

Prognostics and Health Management and big data 

Prognostics and Health Management (PHM) is a field of 

reliability engineering that consists of the detection of the 

engineering component degradation, the fault type 

diagnosis, the failure time prediction and proactively 

managing of their failures. In other words, it is a process 

that predicts the future reliability for systems or products 

by determining the amount of the deviation or 

degradation of them from their expected normal 

situations. Remained useful lifetime (RUL) is the most 

important portion of PHM that it is estimated by the data-

driven, physical model, experimental based and hybrid 

methods [52]. Most of these methodologies depend on 

data. In traditional PHM methods, data volume is limit 

because this data is collected from a single element or 

data acquisition isn’t a continuing process. Then, these 

methods can not satisfy Industry 4.0 requirements and 

new and modern methods should be developed to use big 

data and predict system future, such as deep learning [53], 

health index similarity [54], on-line method [55]. Another 

problem is drift concept because we deal with a dynamic 

and resilience system and the relation between inputs and 

outputs of the system continuously changed. Thus, we 

need dynamic models updated using new input-output 

data collected in the new situations, especially, when 

there is multi dependence among components or failure 

modes. Several concepts are developed to drift detection 

and model updating [56-57], but it is necessary to more 

research in this field.  

Another challenge for PHM methods is their 

capability to scale-up their results to the whole of the 

system. Fleet management deals with similar challenges 

to implement a distributed intelligent dynamic 

maintenance management system. Fleet maintenance 

programming is difficult [58] and different environment, 

different culture, oriented to mission reliability and 

different age of facilities and etc. increase this case 

complexity and make interesting topics for future 

research. On the other hand, the similarity in function and 

structure of this case cannot be ignored and data diffusion 

is an interesting subject for research.  

Cyber-physical system  

Since the decade 1950 that the first computerized 

machine was introduced and then software controlled a 

hardware (mechanical or electrical elements) [59], the 

interaction between hardware and software has appeared 

a challenge. This interaction has raised up with IT and 

cyber-physical systems (CPSs) developing so that today 

they are the foundation of Industry 4.0. The first 

definition that can be found about CPS dates from 2006, 

during a workshop with the American National Science 

Foundation (NSF). In the past decades, many types of 

research carried out about notions and concepts that have 

been at the origin of current CPS. Fig. 3 shows the 

principle of CPS. CPS promotes intensive connection and 

coordination between physical elements and 

computational software providing and using data 

accessing and data-processing services simultaneously. 

The main benefits that can be expected from the 

application of CPSs in manufacturing are summarized as 

[60-62]: optimization of production processes, optimized 

product customization, resource-efficient production, and 

human-centered production processes.  

 

Fig. 3. The CPS principle [17] 

CPS has three basic capabilities [62-64]: 

Intelligence (computation), Connectedness 

(communication), and Responsiveness (control). Each 

capability deals with challenges that should be solved and 

these capabilities need to be developed in future 

researches. IoT, FOG computing and high-speed 

networks have been developed, but the communication 

standards and increase data transfer capacity between 

different sub-systems need more research.  From 

overview; grand-challenges for the manufacturing of the 

future and industry 4.0 implementation can be 

categorized as follows [17]:  
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1- CPPS-based Manufacturing Plant Control 

2- Resilient digital manufacturing networks, 

collaborative control for Industry 4.0 and 

cyber-physical supply chains 

3- Cyber-physical System-of-Systems 

interoperability  

4- Interdependent networked systems and data 

analytics for decision support  

These challenges influence reliability engineering. 

In manufacturing plant control as the lowest level of the 

system, we deal with hardware elements and sensors that 

collected data. So real-time communication and 

cooperation between humans, machines, smart equipment 

and sensors are important. Digital twin as a real mapping 

of all components in the product life cycle using physical 

data, virtual data and interaction data between them [64], 

is created at this level of the system, and in the past, 

digital twin is mostly used for fault diagnosis, predictive 

maintenance and performance analysis [65-67]. Self-

awareness, self-prediction and self-reconfiguration in the 

face of internal and external changes are also the system 

challenges. This concept helps the designer to increase 

the system reliability, but reliability assessment of this 

new context is difficult since interaction among physical 

and virtual items. Also, reliability, robustness and (cyber) 

security of data produced and consumed at the shop floor 

level with respect to control objectives are reliability 

engineering challenges. 

The fourth industrial revolution is a customer base 

idea and CPPS increases system resilient and flexibility 

to satisfy customer requirements and needs. So, the 

system has a dynamic-complex configuration with 

different dependencies (structural, economic, stochastic 

and resource). In this situation, define the correct model 

of the system and communication networks, and supply 

chain management is essential. Also, the system includes 

different disciplines, machines, humans, data and 

software, and different types of flows exist in the system 

such as control flows, data flows, and physical flows. The 

need for these different types of flows increases the 

complexity of the models; on the other hands, this model 

should be flexible and dynamic. Thus, reliability 

modeling and assessment are interesting topics for 

research. 

The factory of the future has an open platform with 

interdependency among components. Risk analysis and 

control for this dynamic system are necessary. Risk 

models and techniques developed until now often derived 

based on static state or simple dynamic condition. 

Therefore, increase dependencies and dynamic of the 

system lead to propose the new concept and tools for risk 

management and control. Zio [16] proposed a structure to 

risk analysis critical of infrastructures such as the electric 

power grid that this structure can be developed and used 

as an initial model for risk analysis.  

Human role 

Different concepts have been proposed for industry 4.0 

and smart factory, these models involve human resource 

and need intervention. In industry 4.0 concept, the human 

role has been changed, but human as a significant portion 

of the system cannot be eliminated. Human Reliability 

(HR) and error impress the system reliability and safety; 

therefore, this subject should be more considered. Human 

education and training, resistance to change and his/her 

interaction with machine are the main challenges to 

industry 4.0 implementation from human resource aspect. 

Human and human-machine interface is one of the 

challenges for future factory, because of human error and 

human safety.  Human influence on quality management in 

the era of Industry 4.0 is also important. [68] According to 

the human role within the industry context, we need smart 

labors and operators. The human may be defined as a 

supervisor or human is guided by the CPS [62,68,69]. In 

these scenarios, it is the combination of calculation abilities 

of CPS and communication with human capacities that 

enable the enhancement of the performance of the 

cooperation system. Fig. 4 shows generic architecture with 

H-CPPS control loop. 

The human-machine interface is changed from a 

simple push button to advance devices (touch interfaces, 

voice interfaces, gesture interfaces, and Virtual and 

augmented reality glasses). For instance, in maintenance 

and repair, an operator who uses smart VR/AR glasses is 

able to walk along a line of factory machines, see their 

performance parameters, and adjust each machine 

without physically touching it. These modern and smart 

devices strictly change human role in the industry, and 

increase the system complexity. On the other side, the 

reliability and availability of these modern devices are 

challenges that reliability engineers deal with that.  

Human Reliability Assessment (HRA) is a structured 

and systematic way of estimating the probability of human 

errors in specific tasks.   Different approaches are proposed 

for traditional complex systems such as nuclear power plant, 

chemical plant, and air-traffic control. These approaches lie 

on the probability of human failure estimation such as 

THERP and HEART [70]. When dealing with CPSs or 

industry 4.0, firstly the integration level of human and 

system should be defined and then appropriated model and 

approach is driven. Because the human role can be varied 

from the supervision of the system (which is able to take all 

the necessary decisions without any intervention of the 

human) to the core of the system (he/she charge of all the 

decisions).  Thus, the new generation may be created for 

HRA in this new context.  

Recently, some researchers proposed operator 4.0 to 

discuss physical and cognitive interactions of operators 

and highlighting the role of a smart operator in 

manufacturing. Operator 4.0 was already divided into 

eight groups by Romero et al. [69, 71] as follows: 

 Super-Strength Operator – operator uses his/her hands, 

foot, or another body organ (physical interaction), 
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 Collaborative Operator – a collaborative robot helps 

to operator (physical interaction), 

 Virtual Operator – operator utilizes virtual reality 

(cognitive interaction), 

 Augmented Operator – operator uses augmented 

reality (cognitive interaction), 

 Smarter Operator – intelligent personal assistant, 

helps to operator (cognitive interaction), 

 Social Operator – social networks are used by 

operator (cognitive interaction), 

 Analytical Operator – big data analytics is used 

(cognitive interaction), 

 Healthy Operator – operator uses a wearable tracker 

(physical and cognitive interaction). 

Operator 4.0 needs advanced devices and 

technology to make interaction between machines and 

human, also smart and skilled operator.  The simple case 

for operator 4.0 implementation is described by Iveta et 

al. [69], real and practical condition is more complicated 

than laboratory situation. This idea improves interaction 

among human and machines, but operator training and 

mistake reduction in a complex context are crucial.  

On the other hands, labors and operators who work 

in a traditional factory should be employed and engaged 

in the factory of the future. Therefore, find a reliable 

method for smart labor training and draw a road-map for 

this matter is still a long way to go. 

It should be mentioned that researches in some 

countries shown that for successful implementation of 

Industry 4.0, human resource constraints and parameters 

must be carefully considered [72]. 

 

Fig. 4. Generic architecture with H-CPPS control loop [69] 

Optimization 

Optimization is defined by Merriam-Webster dictionary 

as an act, process, or methodology of making something 

(such as a design, system, or decision) as fully perfect, 

functional, or effective as possible [73]. Different 

optimization methods and algorithms have been 

proposed to find the optimal situation of a 

system/product, such as iterative methods, global 

convergence, heuristics. Heuristic algorithms recently 

have been more considered by researchers because of 

their speed to approximate the optimal situation [74]. 

Complex system reliability optimization is at the heart of 

reliability engineering [75], and the determination of 

optimal situation for real systems is necessary for 

Industry 4.0 implementation. 

Recently, the advance in computational algorithm 

and computer science have helped to solve and optimize 

the complicated problem [76-77], but the number of 

parameters is finite and simulation time isn’t acceptable 

for some of the real-time systems. Industry 4.0 context 

provides big data and on the other hands, dynamic and 

resilience structures need the real-time response; thus 

optimization algorithms must be improved. Moreover, 

different disciplines, hardware, and software are 

integrated into Industry 4.0, thus the modern complex 

systems reliability optimization deal with the following 

challenges [78]: 

i. Integration and response to continuous streams of 

data proving new and updated information, 

ii. Accounting for both aleatory and epistemic 

uncertainties within the decision-making framework 

of system reliability optimization, 

iii. Cooperative optimization of multi-agent systems, 

with individual objectives to be optimized within an 

overall system optimization, 

iv. Integrated optimization of reliability design, 

maintenance, spare parts inventory, and logistics 

management, 

v. Dynamic optimization of evolving systems under 

changing conditions, 

Also, on-line optimization needs high-speed 

computation and time-consuming reduction. Thus, these 

topics should be more considered for complex and 

resilience system optimization.   

Interfaces and Compatibility  

A system includes different elements from software to 

hardware. Interaction and interface among elements are 

the main challenges for system engineering, and at least 

50% of problems occur at the interfaces among system 

elements [78]. To solve interface problems; firstly, 

system elements should be clearly defined and their input, 

output, and failure modes are described. Then, P-diagram, 

Function block diagram, fault tree, and interface matrix 

be used to manage the interfaces and reduce related 

failures.  

In system modeling, system boundaries and 

material, dependencies, data and energy flows must be 

clearly defined. Compatibility among system elements is 

a crucial problem that impresses the system outcome. 

Different elements use different protocol and standard for 

data, material and energy production or consumption. 

These elements are made by different factories with 

different capability and experiment. When they are 

integrated into a system, compatibility and their influence 

on others are very important, because of compatibility 

weakness. For example, two elements work perfectly, 

when they are jointed, an element impresses others and 

make instability in its work by Electromagnetic 
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interference (EMI) and electromagnetic compatibility 

(EMC) effects.   Thus, compatibility and interface control 

is very important for reliability engineering and physical 

based model and finite element methods are very 

effective to better understand and control incompatibility 

among different types of hardware [79-81]. Compatibility 

between mechanical elements is usually covered by 

design for assembly scheme. But, compatibility between 

electrical elements is more complex. Compatibility for 

software engineers is crucial, and several tests are 

performed as the type of non-functional testing. These 

tests control compatibility with hardware, operating 

system element, communication network, other software, 

versions, and human-interface device.  

The lecture shows that interfaces among 

components, especially electrical components in Nano 

and Microscale needs to be continued for reliability 

improvement for the future industry.   

Uncertainty  

Uncertainty is one of the main challenges in both 

computational and real-world applications. Uncertainty 

cannot be eliminated because of knowledge lack and 

uncontrollable processes, but it can be managed. When a 

new problem or system created, our knowledge about that 

can be classified into types: Known and unknown. Each 

of them also categorized into two states; known 

(cognizable) and unknown (in-cognizable). When our 

knowledge state is known-known, we face a good state 

and we can overcome the problems. When it is known-

unknown; we have a problem and try to solve that by 

increase knowledge and prepare evidences by sensors 

installation and data collection. In some cases, we deal 

with different data and information, but we are confused 

and cannot utilize these, this state is called unknown-

known. In this situation, if the problem is restudied or 

reconstructed, the challenges would be reduced.  In the 

worst state: unknown-unknown. It is a weakness or 

vulnerable point of the system and can make a significant 

risk. Risk assessment is necessary, and the new 

framework should be applied for this [16]. 

Uncertainty is the main portion of our unknown 

knowledge. Uncertainty can be accounted for models, 

computation, and measurement in various contexts. The 

sources of uncertainty are different and often is produced 

by parameter, parametric variability, algorithms and 

techniques, structural, experimental, interpolation and 

extrapolation [82].  

Uncertainty analysis involves identifying and 

studying the sources of uncertainty and propagating the 

effects onto the output of the model. Uncertainty analysis 

is considered to obtain a system with large confidence and 

low uncertainty in the estimation. Thus it must be 

conducted to system optimization. 
Industry 4.0 prepares different types of data as big 

data; this can provide an opportunity for uncertainty 

reduction because it can increase our knowledge and the 

domain of the known. But, some of the uncertainty 

sources are increases or remained. System resilience and 

dynamic behavior are the main challenges and when 

uncertainty is integrated into them, challenges are raised 

up.  Also, the new devices, instruments, and software 

have been added to the system, new failure mechanisms 

and fault states appear. These may increase our unknown 

domain and make a new risk. Thus, increase knowledge, 

develop traditional methods and create a new paradigm 

for uncertainty analysis and risk assessment are 

necessary.  

Miscellaneous 

Sustainable development [6] and zero carbon [83], and so 

on, which recently introduced impress the future industry. 

Thus, the fourth revolution of the industry must consider 

these agreements. Their requirements are added to a 

system as regulations, constraints, and goals. For 

example, energy saving and environment effect have 

been studied by several researchers and they attended to 

make the system with maximum energy efficiency. 

Supply change, spare parts, and maintenance policies 

have good potential for optimization based on these 

criteria [83-85]. Industry 4.0 and related technologies 

influence the sustainability of manufacturing systems and 

this topic has been considered by different researchers 

[6,86-89]. Develop a new risk framework and define the 

reliability of the system based on sustainability characters 

can be considered as the new directions of research.  

From the past decade, these subjects have been 

considered, but it is necessary to more research in these 

fields.    

Conclusion 

The fourth generation of the industry prepared an 

opportunity for reliability engineering to increase the 

system reliability by making big data, internet of things 

and quick response to changes. On the other hand, 

complexity increment, dependencies and interconnects 

among components, dynamic behavior, advanced 

components such as CPS and sensors, and so on make 

challenges for reliability engineering. Traditional 

methods must be updated and a new framework for 

reliability, risk, safety, and security must be developed. 

In this paper, Industry 4.0 is introduced and some 

opportunities and challenges are discussed. It is not pure 

or perfect review, or not focuses on specified aspects of 

industry 4.0 and reliability engineering, but we attend to 

make a perspective about these topics. Some interesting 

subjects same as system modeling, big data, CPS, 

uncertainty, interface problem, human-machine 

interaction, optimization and miscellaneous are 

considered. In each section, the principle of the object is 

explained and some of the new directions of research are 

proposed. In conclusion, today multi-component system 

modeling, dependence among them, jointly optimization 

of the supply chain, maintenance and production, and 

resilience modeling have been received more attention. 
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