# Making Sense of Clusters

Joe Cortright



### Clusters in three words:

- Ideas
- Relationships
- Place

## Roadmap

- Definition: What are Clusters? Why do firms cluster?
- Analysis: Finding clusters
- Action: Working with clusters

## I. Why Cluster(s)?

What are they? How do they work?

## What Kind of Economy?

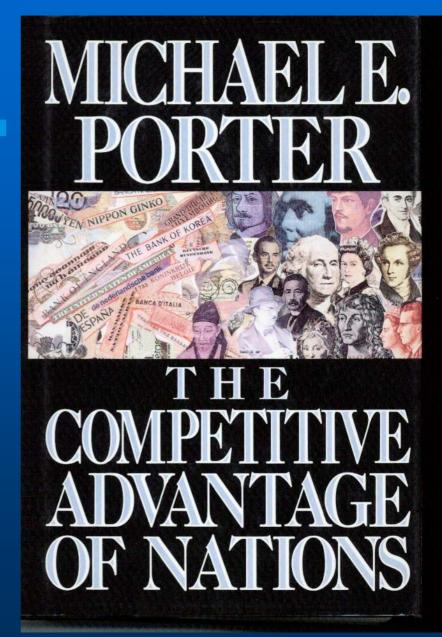
- While most jobs and businesses in every state area are the same
- Restaurants, grocery stores, hospitals, beauty salons,
- About a third differs: Traded sector

### **Traded Sector Drives Growth**

Most jobs are here: schools, hospitals, grocery stores, restaurants



But firms in this sector drive the economy


## Defining Industry Clusters

Clusters are geographic concentrations of interconnected companies and institutions in a particular field, including:

- suppliers of specialized inputs, machinery, services
- distribution channels and customers
- manufacturers of complementary products
- companies related by skills, technologies or common inputs
- related institutions such as research organizations, universities, standard-setting organizations, training entities, and others

### Porter: Clusters

- Starts from the business strategy standpoint
- Says Economic success isn't random
- Similar and related businesses draw advantages from proximity
- Clustering holds for most "traded" goods: autos, carpets, RVs, others



### What makes Clusters Tick?

### **Rivalry & Cooperation**



### **Suppliers**

Source: Michael Porter, Harvard Business School

## Oregon's Microbrew Cluster

### Rivalry

Competition & Brewer's Guild

### **Inputs**

Hops, Water, Brewmasters

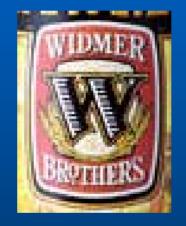


#### **Customers**

Savvy Beer Drinkers, Homebrewers Small Restaurants

Equipment Makers, Creative Services

### **Suppliers**


www.impresaconsulting.com

## An Oregon Cluster

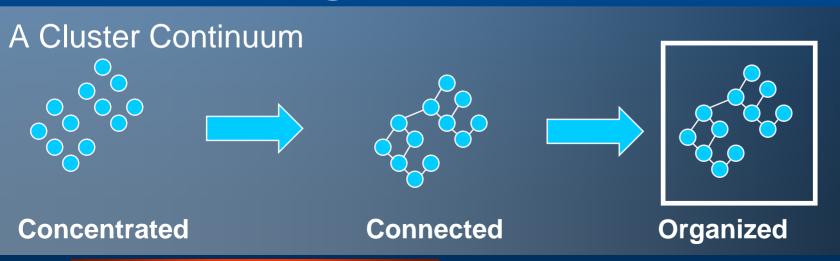













### Micro-foundations of Clusters

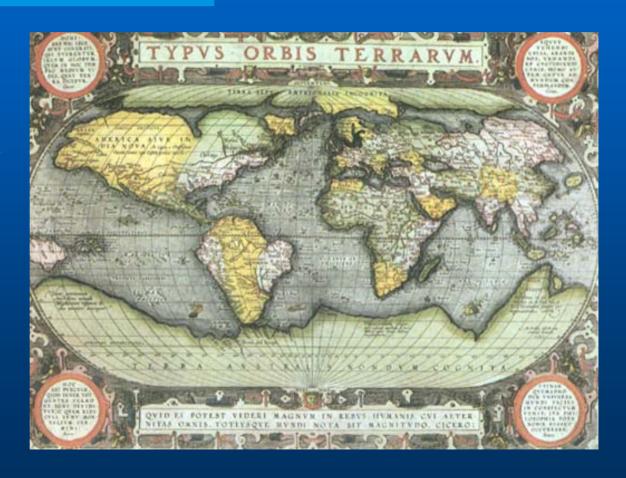
- Labor Market Pooling
- Supplier Specialization
- Knowledge Spillovers
- Entrepreneurship
- Path Dependence and Lock-In
- Culture
- Local Demand

# Stages of Clustering

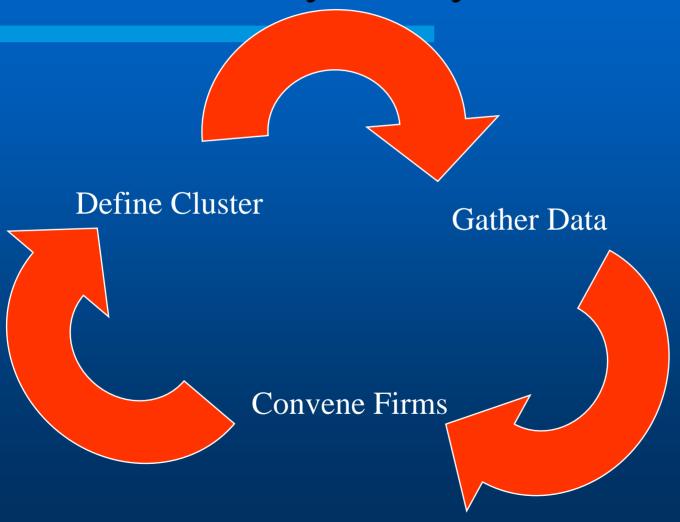
- Concentrations of firms and workers
- Awareness, Conscious Action & Communication
- Formal Organization



## Many Different Kinds of Clusters


- Buyer-Supplier and Value Chain
- Inter-Firm Relationships
- Geographic Extent
- Level of Activation/Awareness
  - Working, Latent, Potential
- Cluster Life Cycle- Phase
  - Embryonic, Growing, Mature/Declining, Renewing
- Other Issues

## II. Finding Clusters


- Applying our definition to the real world
- Quantitative and Qualitiative
  Techniques are complementary

## Cluster Mapping

- A few places are well explored
- Outlines are (mostly) clear
- Much detail is still unknown



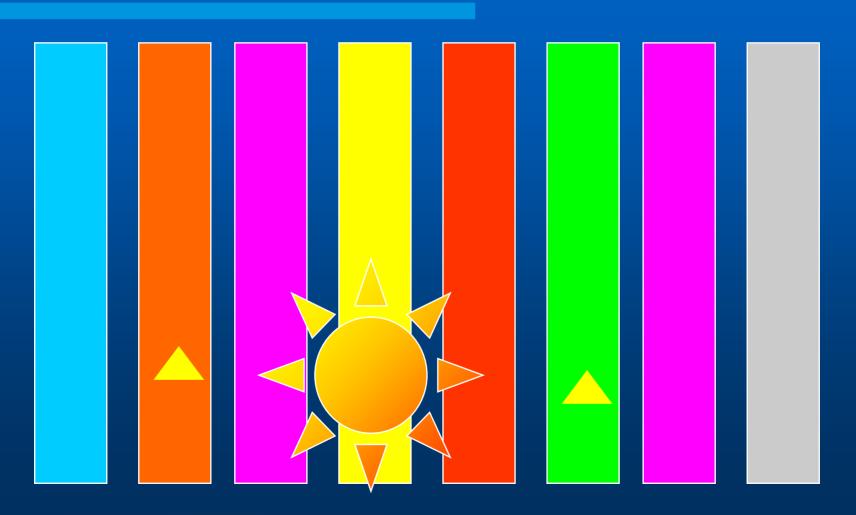
# Cluster Analysis Cycle



### Sectors are not Clusters

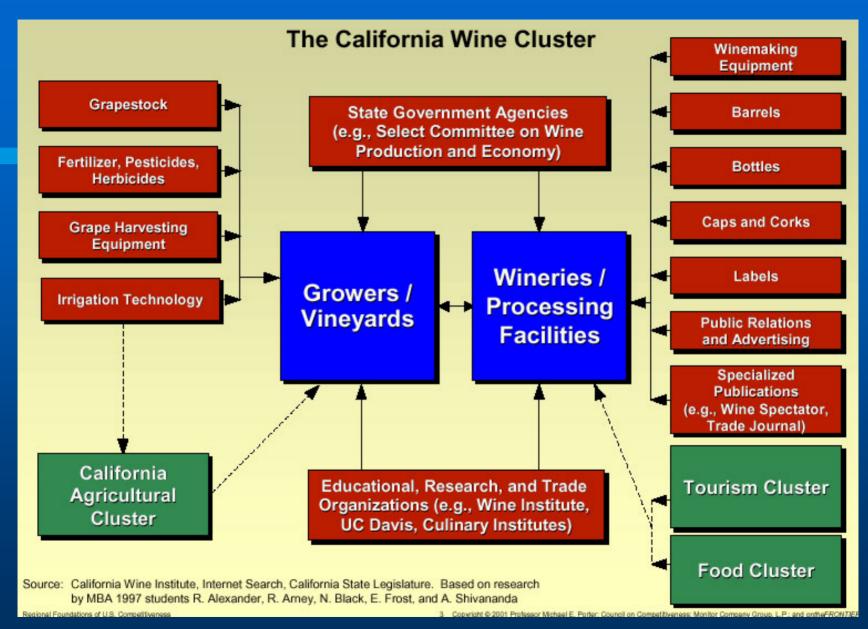
#### **SECTORS**

Most quantitative analysis relies on data organized according to the SIC or NAICS classification schemes to define industries


#### **CLUSTERS**

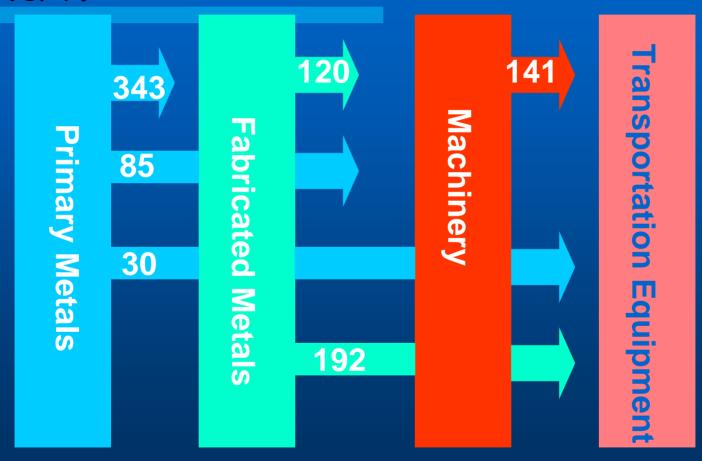
Qualitative analyses define clusters according to local relationships. Cluster theory maintains that clusters cut across sector lines; many clusters are highly specialized

## Sectors




# A Cluster can span sectors




# Or be a small part of a larger sector





Source: Michael Porter

## Metals Industry Value Added Chain



Estimated Inter-Industry Purchases, \$ Millions, 1992

# Athletic Apparel & Footwear

- Nike, Adidas, Columbia
- Nearly 10,000 employees
- Leading center for design
- Attracting others, creating startups



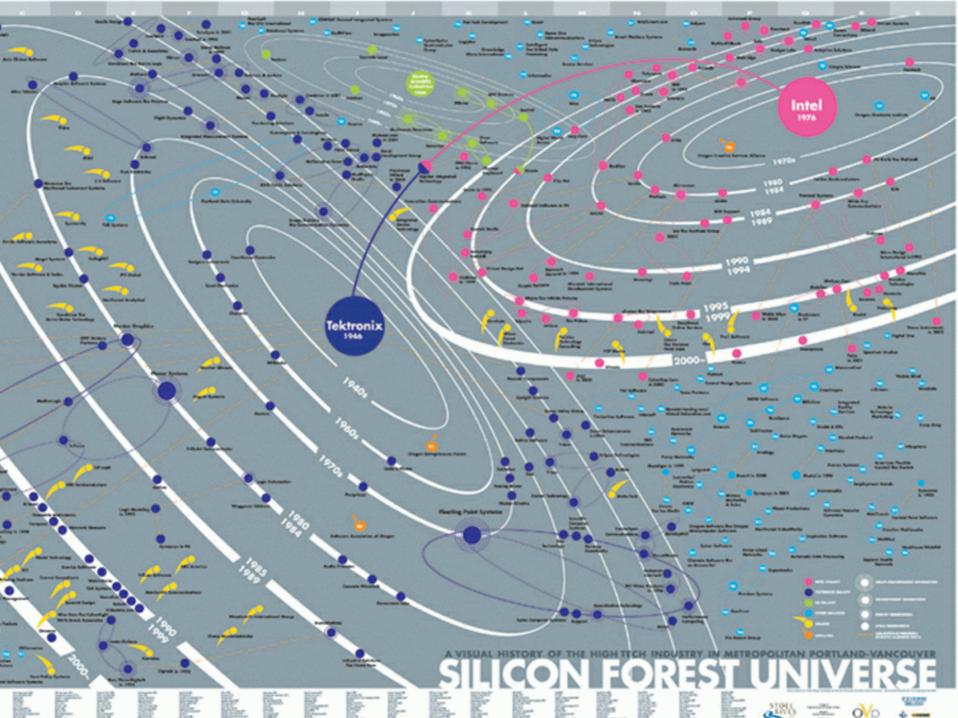


## Nursery Products

- \$800 million annual sales
- 1,000 producers
- Economies of scope



### Micro foundations


- Relatively little effort to characterize the different sources of cluster advantages across clusters, over time and among geographies
- The "Murder on the Orient Express" problem: All factors potentially contribute to clustering

# Different Explanations for the Same Clusters

- Silicon Valley Explanations
  - Subsidies from defense spending (Markusen)
  - Local higher education spillovers (Rogers and Larsen)
  - Unique business culture and relationships (Saxenian)
  - Extraordinary academic leader (Krugman)
  - Long history of radio & television (Sturgeon)

### Top Down v. Bottom Up Approaches

| Characteristic       | Top Down              | Bottom-Up        |
|----------------------|-----------------------|------------------|
| Approach             | Quantitative          | Qualitative      |
| Principal Data       | Secondary Data        | Primary Data     |
| Methodology          | Statistical Modeling  | Case Studies     |
| Industrial Proximity | Classification System | Descriptive      |
| Scope                | Nationwide,           | Local,           |
|                      | Multi-Industry        | Single-Cluster   |
| Dominant Logic       | Deductive             | Inductive        |
| Measures             | Employment, Patents,  | Relationships,   |
|                      | Wages, Sales          | Institutions     |
| Findings             | Broadly Applicable    | Narrowly Limited |



# The universe is expanding



## III. Action

Working with clusters

## Clusters as a Framework for Policy

- An organizing principle for engaging a region in a discussion of its economic strengths and weaknesses
- A flexible tool at the intersection of analysis and policy-making
- Best efforts integrate quantitative and qualitative methods

### Policy Measures and Micro-Foundations

- Labor Market Pooling: Labor market information, specialized training
- Supplier Specialization: Brokering, recruiting, entrepreneurship, credit
- Knowledge-spillovers: Networking, public sector R&D support
- Entrepreneurship: Assistance for start-ups, spinoffs
- Lock-In: Work to extend and refine (and recombine) existing distinctive specializations
- Culture: Acknowledge and support cluster Organization
- Local Demand: Aggregate and strengthen local demand

## Wishful Thinking

- Generally not possible to create a cluster where none exists
- Policy should focus on conditions for cluster growth, revival, and creation
- Identifying emerging clusters should be a priority

### Get Real

- Assess your cluster's competitive strength
- Benchmark against leading clusters elsewhere
- How is your cluster different or better?

## General Policy Approaches

- Improve the technical support services
- Invest in social capital and social infrastructure
- Empower and listen to cluster leaders
- Encourage cross-fertilization of ideas across clusters
- Recruit companies that fill gaps in cluster development
- Develop and organize supply chain associations
- Support employee/entrepreneurs

After Rosenfeld (2002)

## Gaps remain in many cluster efforts

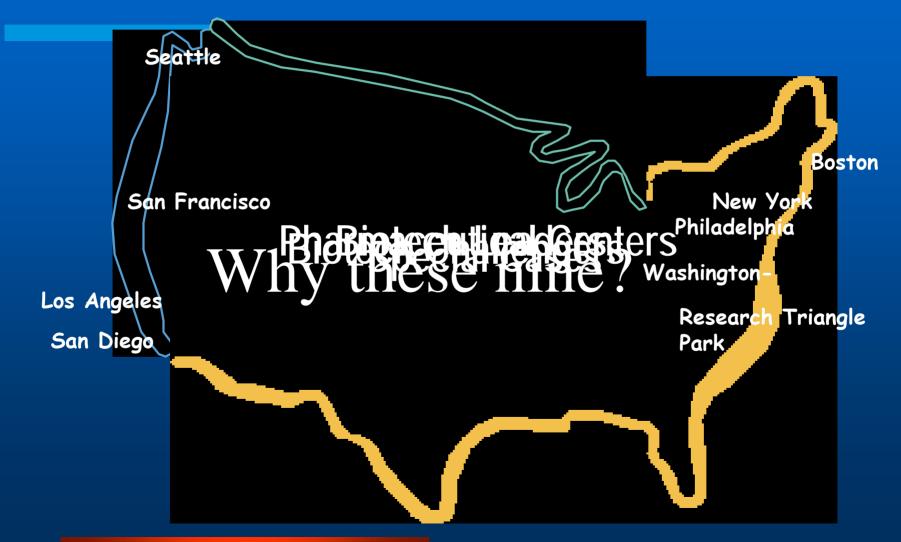
- Goals of economic development not aligned with clusters
- Programs still oriented to "one business at a time"
- Staff and management not recognized or rewarded for cluster work
- Cluster information is ad hoc, not systemic

# Integrating clusters into economic development

- Make cluster success an economic goal
- Design programs that reward collaboration
- Reward and recognize managers and employees for cluster successes
- Provide ongoing information and training
- Create a cluster network to share ideas

# IV. Biotechnology

## **Industry Segmentation**


### **Pharmaceuticals**

- **♦ Very large, global firms** 
  - Top ten average \$15 billion sales
- Assets are products, distribution, manufacturing expertise
- **♦ Very Profitable**

### **Biotechnology**

- ♦ Small, mostly single establishment firms
  - ◆Top ten average \$700 million sales
- ◆ Principal assets are people, research and future potential
- **♦ Lose Money**

### Nine Metros Dominate



## Two Pillars of Biotech Development

Research

NIH GrantsPatents

Commercialization

Venture Capital

- R&D Partnerships
- Startup Firms
- **Established Firms**

### Leaders vs. the Pack

### **Average Levels of Activity**

|                  | Top 9   | Bottom |
|------------------|---------|--------|
| Metric           | Centers | 42     |
| NIH\$ (millions) | 812     | 104    |
| Patents          | 2,641   | 263    |
| Venture Capital  | 957     | 27     |
| R&D Alliances    | 1,089   | 11     |
| New Firms        | 35      | 2.3    |
| Large Firms      | 24      | 1.5    |
|                  |         |        |
| Biotech VC Firm  | ns 47   | 4      |

## Research Dispersing

**Top 9 Centers Share** 

|         | 1980s | <u>1990s</u> |
|---------|-------|--------------|
| NIH\$   | 63%   | 59%          |
| Patents | 71%   | 68%          |

## Commercialization Concentrating

**Top 9 Centers Share** 

| 1980s | 1990s |
|-------|-------|
|       |       |

Venture Capital\* 81% 86%

R&D Alliances\* 89% 96%

New Firms 61% 77% 1

<sup>\*</sup>Base data from early to mid-1990s www.impresaconsulting.com



## For More Information

www.ImpresaConsulting.com