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Inelastic neutron scattering studies of YFeO3
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Spin waves in the rare-earth orthorferrite YFeO3 have been studied by inelastic neutron scattering and analyzed
with a full four-sublattice model including contributions from both the weak ferromagnetic and antiferromagnetic
orders. Antiferromagnetic exchange interactions of J1 = −4.23 ± 0.08 (nearest neighbors only) or J1 = −4.77 ±
0.08 meV and J2 = −0.21 ± 0.04 meV lead to excellent fits for most branches at both low and high energies.
An additional branch associated with the weak antiferromagnetic order was observed. This work paves the way
for studies of other materials in this class containing spin reorientation transitions and magnetic rare-earth ions.
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I. INTRODUCTION

The rare-earth orthorferrites RFeO3 are an important family
of materials whose magnetic properties remain a focus
of considerable research due to promising applications in
innovative spintronic devices [1]. Furthermore, they contribute
to an emerging class of materials, i.e., multiferroics with
strong magnetoelectric (ME) coupling [2,3]. In multiferroic
materials, the coupling between magnetic and ferroelectric
order gives rise to magnetization on the application of an
electric field or to electric polarization on the application
of a magnetic field. Their complex noncollinear structures
and magnetic phase transitions are due to the combination
of the antiferromagnetic (AFM) exchange interaction with
the Dzyaloshinsky-Moriya (DM) antisymmetric exchange
interaction [4,5].

In general materials in the RFeO3 family contain two
magnetic subsystems consisting of either iron or rare-earth
ions. With decreasing temperature or an applied magnetic field,
most of these materials undergo a spin reorientation transition
from �4(Ga,Fc), where the net moment is along the c axis,
to �2(Gc,Fa), where the net moment is along the a axis (for
notation, see Appendix A) [6]. This transition occurs over a
finite temperature range where the spins rotate continuously
in the lower symmetry phase �24(Gac,Fca). No structural
change is observed in ErFeO3 and YbFeO3, suggesting that
this is purely a magnetic transition [7,8]. The rotation of
the iron moments leads to a change in the magnitude of the
magnetization on the rare-earth subsystem, which must be
included in the calculation of the rotation angle and absolute
magnetization. At lower temperatures an additional magnetic
transition occurs when the rare-earth moments order.

The nonmagnetic yittrium sublattice in YFeO3 enables
us to focus only on the magnetic interactions of the iron
sublattices. The lack of a spin reorientation transition with
temperature considerably simplifies the modeling of spin

dynamics and makes YFeO3 a good stepping stone to studying
other materials in this class with more complex dynamics.

YFeO3 adopts an orthorhombic structure with space group
Pbnm. Below 640 K, YFeO3 is a noncollinear antiferromagnet
whose four Fe3+ ions are in the state �4(Ga,Fc,Ab), shown in
Fig. 1. A dominant antiferromagnetic order occurs along the
a axis. A weak ferromagnetic component along the c axis is
associated with the spin canting with respect to the ab plane and
exists in both models. In the two-sublattice model, the spins
(1–3) and (2–4) are equivalent, whereas they become inequiv-
alent in the four-sublattice model. This doubles the periodicity
along the c axis, yielding a modulation of the ferromagnetic
component along c and a weak antiferromagnetic component
along b. The ratio of Ab/Ga , which determines the canting
angle along b, was found to be 1.59(7) × 10−2 [9]. Values for
Fc/Ga range from 8.9 × 10−3 to 1.29 × 10−2 where the lower
values may be due to ferromagnetic impurities. These values
set limits on the canting angle along c.

Spin waves in similar systems TmFeO3 and ErFeO3

were previously measured and modeled with a combination
of four-sublattice and two-sublattice models for the short-
wavelength and long-wavelength dispersion, respectively [10].
For TmFeO3, the exchange constant for nearest neighbors
only (J2 ≡ 0) was found to be J1 = −4.22 meV. With next-
nearest neighbors included, the exchange constants were J1 =
−5.02 meV and J2 = −0.324 meV. A four-sublattice model
containing only exchange predicts reasonable energies for the
observed spin wave branches. The two easy-axis anisotropy
parameters are approximately equal near the transition and an
additional term proportional to the fourth power of the spin
controls the rotation angle over the temperature range of the
transition.

TbFeO3 has generated renewed interest since measure-
ments in an applied magnetic field found an unusual incom-
mensurate phase with a periodic array of widely separated
domain walls. The ordering of domain walls is due to a
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FIG. 1. (Color online) Magnetic unit cell of YFeO3, showing
only the positions of the Fe3+ atoms. The four sublattices show
weak ferromagnetism and antiferromagnetism along the c and b
directions, respectively. Exchange interactions between nearest (J1)
and next-nearest (J2) neighbors are shown by the solid purple and
dashed green arrows, respectively.

long-range force from the exchange of magnons propagating
through the iron sublattice [11]. Spin waves in TbFeO3 were
previously measured and modeled with a four-sublattice model
containing only exchange interactions [12]. In principle, the
distortion from cubic symmetry leads to different exchange
constants for nearest and next-nearest neighbors within the ab
plane and between planes. The measured distances between
Fe3+ ions are, however, within 2% and 6% of each other for
nearest neighbors and next-nearest neighbors, respectively. In
each of these cases, the exchange parameters within the ab
plane and between planes can be treated as equal. With only
nearest neighbors, J1 = −4.34 meV and with both nearest
and next-nearest neighbors the exchange constants were
J1 = −4.95 meV and J2 = −0.241 meV.

In YFeO3, spin waves were measured at 1.4 and
2.2 meV in the long-wavelength limit with Raman scatter-
ing at room temperature [13]. A two-sublattice model was
then used to obtain estimates for the anisotropy constants,
defined in Eq. (1), of Ka = 4.6 × 10−3 meV and Kc = 1.13 ×
10−3 meV. In this work, we measured spin waves in YFeO3

by inelastic neutron scattering on two different energy scales
and analyzed them simultaneously with a quantitative model
considering contributions from both the weak ferromagnetic
and antiferromagnetic orders present in the full four-sublattice
model.

II. EXPERIMENT

Polycrystalline YFeO3 was prepared by a solid state
reaction. The starting materials of Y2O3 and Fe2O3 with
99.99% purity were mixed and ground followed by a heat
treatment in air at 1000–1250 ◦C for at least 70 hours
with several intermediate grindings. The phase purity of
the resulting compound was checked with a conventional
x-ray diffractometer. The resulting powder was hydrostatically
pressed into rods (8 mm in diameter and 60 mm in length) and
subsequently sintered at 1400 ◦C for 20 hours.

The crystal growth was carried out using an optical float-
ing zone furnace (FZ-T-10000-H-IV-VP-PC, Crystal System
Corp., Japan) with four 500 W halogen lamps as heat sources.
The growing conditions were as follows: the growth rate was
5 mm/h, the feeding and seeding rods were rotated at about
15 rpm in opposite directions to ensure the liquid’s homo-

geneity, and an oxygen and argon mixture at 1.5 bar pressure
was applied during growth. The lattice constants in the Pbnm
space group were a = 5.282 Å, b = 5.596 Å, and c = 7.605 Å.
The sample was orientated in the (H0L) plane for neutron
measurements.

Inelastic neutron scattering measurements were done using
the Cold Neutron Chopper Spectrometer (CNCS) [14] and the
Fine Resolution Chopper Spectrometer (SEQUOIA) [15,16]
at the Spallation Neutron Source (SNS) at Oak Ridge National
Laboratory. The data were collected using fixed incident
neutron energies 99.34 meV (SEQUOIA) and 3.15 meV
(CNCS), which allowed for the measurement of excitations up
to energy transfers of �ω ∼ 80 meV (SEQUOIA) and 2.5 meV
(CNCS). In these configurations, a full width at half maximum
(FWHM) resolution of 5.5 meV (SEQUOIA) and 0.06 meV
(CNCS) was obtained at the elastic position. The sample was
cooled to 4 K on SEQUOIA and base temperature (<2 K)
on CNCS. The MANTIDPLOT [17] and DAVE [18] software
packages were used for data reduction and analysis.

III. THEORETICAL MODELING OF SPIN WAVES

Our model Hamiltonian, given in Eq. (1), contains isotropic
exchange constants J1 and J2 coupling nearest-neighbor and
next-nearest-neighbor Fe3+ spins, two DM antisymmetric
exchange constants D1 and D2 responsible for the canting
along c and b and two easy-axis anisotropy constants Ka and
Kc along the a and c axes

H = −J1

∑
〈i,j〉

Si · Sj − J2

∑
〈i,j〉′

Si · Sj

−D1

∑
Rj =Ri+a(x̂±ŷ)

ŷ · Si × Sj

−D2

∑
Rj =Ri+a(x̂±ŷ)

ẑ · Si × Sj

−Ka

∑
i

(
Sx

i

)2 − Kc

∑
i

(
Sz

i

)2
. (1)

The DM interaction was only considered among nearest
neighbors within the ab plane, which is the minimum necessary
to explain the canting of all four sublattices. A third DM
interaction is possible along b with nearest neighbors between
planes, but is not needed to describe the spin structure and
would add additional complexity to our model.

Each of the four spins are written in spherical coordinates
as

Si = S(sin θi cos φi,sin θi sin φi,cos θi), (2)

where S = 5/2. The angle θi is defined with respect to the
c axis. The angle φi is defined with respect to the a axis
when the spin is projected into the ab plane. As a first step
in this analysis, one must find the angles associated with the
minimum classical energy. By assuming that θi = θ for all
sublattices and φ1 = π + φ, φ2 = φ, φ3 = π − φ, and φ4 =
2π − φ, the number of independent angles is reduced to two.
Assuming small angles, one can linearize the problem and find
the expressions in Eqs. (3) and (4) for θ and φ to lowest order
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as a function of J1, J2, D1, D2, Ka , and Kc

θ = π

2
+ 2D1

6J1 + Kc − Ka

, (3)

φ = − 2D2

4J1 − 8J2 − Ka

. (4)

In the above expressions, θ � π
2 and φ > 0. Next these

expressions were then used to find values for D1 and D2 that
produce the experimentally determined canting angles. The
ratio of Fc/Ga = 1.29 × 10−2 and Ab/Ga = 1.59 × 10−2

were used to fix the angles θ = 1.5656 (89.70◦) and φ =
0.0032 (0.18◦) [9].

The inelastic neutron cross section for undamped spin
waves is

S(q,ω) =
∑
α,β

(δαβ − qαqβ/q2)Sαβ(q,ω) (5)

=
∑
n,α

[1 − (qα/q)2]δ(ω − ωn(q))S(n)
αα (q), (6)
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FIG. 2. (Color online) Measured spin wave dispersion along (a)
(2,ξ,−3) and (b) (3,0,ξ ) and calculated spin wave dispersion along (c)
(2,ξ,−3) and (d) (3,0,ξ ). The background contains phonon modes
not included in our model. (e) Enlargement of the region outlined
by the white box in (a). (f) Enlargement on the region outlined by
the white box in (c) and with the intensity multiplied by 104. In all
figures, the white dots show energies used for fitting. Black pixels
show regions where no data were collected.

where α and β are the Cartesian directions x,y,z and n

enumerates the individual branches [19]. Sαβ(q,ω) is the spin-
spin correlation function describing undamped spin waves at
low temperature. The spin-spin correlation function is diagonal
when there is no net moment and antisymmetric otherwise,
meaning that off-diagonal elements do not contribute to
the intensity. The energies ωn(q) and terms contributing to
the scattering intensities S(n)

αα (q) were solved using the 1/S

formalism outlined in Ref. [20] and Appendix A of Ref. [21].
For direct comparison to experimental intensities, the effects of
the magnetic form factor, instrumental resolution function, and
integration width were included in our calculations according
to Appendix B.

To find the set of parameters that best fits the data, the energy
with the highest intensity was taken at eight points in reciprocal
space that described the shape of the spin wave dispersion. Our
model finds two branches with similar energies contributing to
the highest intensity branch. The energy differences range from
0.8 meV at the zone center to 0.01 meV at the zone boundary.
These branches are, however, too close in energy to be resolved
separately in the cuts shown in Figs. 2(c) and 2(d), so the
energy bin with the highest intensity was compared against
the average of the two energies weighted by their intensities.

At the zone center we used the observed energies from
Ref. [13] of 1.4 and 2.2 meV. The lower value is in good
agreement with measurements from CNCS shown in Fig. 3,
though we were not able to independently verify the frequency
of the second mode. The variance was estimated by a
Gaussian fit to the measured data. The exchange and anisotropy
parameters J1,J2,Ka , and Kc were fitting parameters, D1 and
D2 were adjusted for each calculation using Eq. (3), and the
canting angles θ in φ remained fixed. The NLOPT nonlinear-
optimization package [22] was used for the least-squares
fitting. Error bars indicate when the reduced χ2 increases by
1.0. For D1 and D2 we propagated the error assuming a 10%
error in the canting angles.

The parameters determined from this fit along with data
from similar work on YFeO3 and similar materials is given
in Table I. The values for J1 are considerably lower than

FIG. 3. (Color online) Spin wave energy gap in YFeO3 measured
by inelastic neutron scattering.
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TABLE I. Best fit parameters used in this work and compared to other work on YFeO3 and similar materials. In the second line only nearest
neighbors were included (J2 = 0.0). All values are in meV.

Material Num. SL J1 J2 D1 D2 Ka Kc

YFeO3 4 −4.77 ± 0.08 −0.21 ± 0.04 0.074 ± 0.008 0.028 ± 0.003 0.0055 ± 0.0002 0.00305 ± 0.0002
4 −4.23 ± 0.08 0.0 0.066 ± 0.007 0.028 ± 0.003 0.0063 ± 0.0002 0.0036 ± 0.0002

YFeO3 Ref. [13] 2 −4.96 0.0 0.11 0.0046 0.0011
TmFeO3 Ref. [10] 4 −5.01 −0.32

4 −4.22 0.0
TbFeO3 Ref. [12] 4 −4.94 −0.24

4 −4.34 0.0

those published by White et al., possibly because their fit
considered only the long wavelength limit. Our results are
similar to those of Shapiro et al. [10] and Gukasov et al. [12]
in similar materials. Anisotropy parameters are not equal
in the two-sublattice and four-sublattice models because the
weak antiferromagnetic order is absorbed into renormalized
anisotropy parameters [23]. Therefore anisotropy parameters
should not be directly compared between two and four
sublattice models.

IV. DISCUSSION

Overall, excellent fits are obtained for most branches.
Figures 2(a) and 2(c) show the measured and calculated
spin wave dispersion along (2, ξ , −3). Both show a dip
in frequency and intensity at (2, 0, −3) and the integration
range and experimental resolution explain the line width.
The intensity around 70 meV near ξ = −1,1 appears to be
magnetic scattering and is not visible in our calculation on this
intensity scale. Figure 2(e) enlarges the region in Fig. 2(a) near
ξ = −1 outlined by the white box. Spin wave branches in this
region are also reported elsewhere [10,12]. The two-sublattice
model does not contain any branches near ξ = −1,1 that
could explain this intensity. Two-magnon scattering occurs
around 120 meV, well above the range of energy transfers we
measured [24]. A full four-sublattice model doubles the unit
cell, leading to zone folding and consequently two additional
branches close to those energies. The weak antiferromagnetic
order gives these additional branches some intensity, moti-
vating us to model this system with the full four-sublattice
model.

When φ = 0 this branch has zero intensity, consistent with
zone folding in a supercell. A nonzero value of φ makes
sublattices 1,3 and 2,4 unequal and gives this branch some
intensity. Figure 2(f) shows this same region in our calculation,
though with the intensity multiplied by 105. At these small
angles, changing D2, and consequently the φ angle, has the
greatest effect on the intensity of this branch whereas chaining
D1, or the θ angle, has little if any effect. The ratio of the
intensities of these two branches is more than four orders
of magnitude too weak compared to the measured ratio of
0.07. Small changes in these angles alone are not enough to
account for this difference. In addition, measured energies are
up to 9 meV higher than what would be expected from zone
folding. Quantum fluctuations are missing from this model and
may have an effect on these energies and intensities.

Agreement remains excellent along other directions.
Figures 2(b) and 2(d) show the calculated and measured
spin wave dispersion along (3,0,ξ ). The calculated energies
agree well with the measured values. The integration range
and resolution function accounts for the observed widths,
especially at low energies. Aluminum and phonon scattering
have not been subtracted and may account for any structure
seen in the background.

To show how the spin wave intensities depend on the
location in reciprocal space, Figs. 4(a) and 4(c) show the
calculated and observed spin wave dispersion along (2, ξ , −2).
Despite identical energies, the intensity is dramatically dif-
ferent from that observed along (2, ξ , −3) in Fig. 2. Along
(2, ξ , −2) the intensity approaches the background at low
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FIG. 4. (Color online) (a) Measured spin wave dispersion along
(a) (2, ξ , −2) and (b) (3, 1, ξ ) and calculated spin wave dispersion
along (c) (2, ξ , −2) and (d) (3, 1, ξ ). The phonon mode with double
periodicity was not included in our model. Black pixels show regions
where no data were collected.
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energies and increases dramatically with energy. The change
from L = −3 to L = −2 changes the reciprocal lattice points
from Q type, (h,k,l) = (even, odd, odd), to O type, (h,k,l) =
(even, even, even) [10].

Figures 4(b) and 4(d) show the calculated and observed spin
wave dispersion along (3,1,ξ ). In this direction the intensity
also approaches background at low energies and increases
dramatically with energy. The change from K = 0 to K = 1 also
changes the reciprocal lattice points from Q type, (h,k,l) =
(odd, even, odd), to O type, (h,k,l) = (odd, odd, even).

An additional phonon mode is observed below 25 meV
with twice the periodicity of the spin wave. The change
in periodicity can be explained by the different unit cells
corresponding to the crystallographic and magnetic structures.
Ignoring small distortions of the yittrium and oxygen atoms
from their ideal positions, treating the two iron sublattices as
inequivalent atoms doubles the length of the unit cell along c.
Views of the powder average show nondispersive modes at 15,
32, and 82 meV. The intensity of the 15 and 32 meV modes
increases with higher Q, suggesting phonon excitations. The
82-meV mode was only measured over a very narrow range in
Q that was insufficient to identify its Q dependence.

V. CONCLUSION

In conclusion, the inelastic spin wave spectrum was mea-
sured in the rare-earth orthoferrite YFeO3 and analyzed with
a quantitative model considering contributions from both the
weak ferromagnetic and antiferromagnetic orders present in
the full four-sublattice model. Excellent fits were obtained that
agree well with most observed energies and intensities at both
high and low energies. In addition, we observe weak magnetic
scattering associated with the weak antiferromagnetic order
along b. Future work will explore changes in the spin wave
spectrum with spin reorientation as well as materials where
the rare earth also contains magnetic interactions.
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APPENDIX A: SYMMETRY ANALYSIS

The magnetic symmetry of the rare-earth orthoferrites is de-
scribed by linear combinations of the spins on four sublattices.
The linear combination Gxi

= − �M1 + �M2 − �M3 + �M4 de-
scribes the primary G-type antiferromagneticordering, Fxi

=
�M1 + �M2 + �M3 + �M4 describes the weak ferromagnetism,

and Axi
= − �M1 + �M2 + �M3 − �M4 describes the weak anti-

ferromagnetism. The subscript xi gives the direction of these
vector quantities. In YFeO3, the G-type antiferromagnetic

ordering is along a, the weak ferromagnetism is along c, and
the weak antiferromagnetism is along b.

APPENDIX B: RESOLUTION CONVOLUTION

For direct comparison to experimental intensities, the
effects of the magnetic form factor and the instrumental
resolution were included in the calculation. The total intensity
is given by

I ( Q0,ω0) =
∫ ∫

F 2
Q S( Q,ω)R( Q − Q0,ω − ω0)d Q dω,

(B1)

where Q = q + G differs by the reciprocal lattice vector
G and may be outside the first Brillouin zone. The Fe3+
magnetic form factor results in a lower intensity at higher
values of Q and can be approximated as FQ = j0(Q),
where j0(Q) = A0e

−a0s
2 + B0e

−b0s
2 + C0e

−c0s
2 + D0 and

s = sinθ/λ = Q/(4π ). The coefficients are A0 = 0.3972
(a0 = 13.2442), B0 = 0.6295 (b0 = 4.9034), C0 = −0.0314
(c0 = 0.3496), and D0 = 0.0044 from Ref. [25].

The experiment resolution shape was approximated by
a Gaussian encapsulating a simulated resolution volume.
For various points along the dispersion, the resolution was
calculated using a full model of the incident beam line of
SEQUOIA [15,16] followed by a second model that consists
of the Resolution Sample and Resolution Monitor components.
Both simulations were performed using the MCSTAS [26]
Monte Carlo package. First, 36 × 1010 neutron packets were
propagated down the incident beamline simulation. Neutron
packets that succeeded in making it to the sample position
were stored for later use in the secondary spectrometer
simulation. Next, for each desired value of Q all of the stored
neutrons from the upstream simulation were sent through
the downstream simulation. The results from this second
simulation provides a probability function of t and detector
pixel that is transformed to ω and Q based on the kinematics
of the measurement and the orientation of the crystal [27]
for several points along the dispersion. The projections of
these ellipsoids were taken for planes of the data and a
two-dimensional Gaussian was fit around the 50% level of
the observed projection of the distribution.

In two dimensions the Gaussian function is proportional
to f (x) = exp(−ζ T Aζ ), where ζ = (Qω) and A = (a b

b c). For
cuts along K , the constants describing the Gaussian were
a = 1109.0 rlu−2, b = 0.0 (rlu·meV)−1, and c = 0.48 meV−2.
For cuts along L, the constants describing the Gaussian
were a = 579.7 rlu−2, b = −20.0 (rlu·meV)−1, and c =
1.3 meV−2. This result was then convoluted with the model.

During the data reduction and analysis, the measured spin
wave dispersion is binned and integrated over two directions
and the remaining two directions plotted with the intensity
given by the pixel color. To simulate this step, we integrated
the calculated intensity over a volume of length ±0.2 rlu. in the
integrated directions and 0.05 rlu. (representing the bin size)
in the remaining direction.
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