

UiO **Department of Informatics**University of Oslo

INF5350/IN9350 – CMOS Image Sensor Design Lecture 1 – Camera systems overview

CMOS camera signal chain

Source: A.E.Gamal, et al. "CMOS Image Sensors", IEEE Circuits and Device Magazine, May. 2005

Camera focal length and field of view

Focal length = distance from 'optical centre of lens' to focal point where image sensor chip is placed

Focal length + sensor size defines the angle of view (aka field of view)

Light flux on image sensor chip

E_{sc}=scene illumination (lux or W/m²)

 ρ_{sc} =scene reflectivity (no unit)

T_{int}=camera exposure time (s)

F=lense F-nummer (=f/D_{obi})

h=Plancks constant (6.6x10-34 J s)

c=speed of light (3x10⁸ m/s)

D_{obi}= lens aperture (m)

f = lens focal length (m)

A_d=detector area (m²)

E_d=detector illumination (lux or W/m²)

λ=light spectral wavelength (m)

S_d=detector photon count (no unit)

$$S_d = \frac{T_{\text{int}} A_d}{hc4F^2} E_{sc} \rho_{sc}$$

Digital picture

 Consists of 2D array of pixels each containing three numbers (R+G+B or Y+U+V) to describe the pixel color and its brightness (luminous intensity)

Zoom-in on LCD monitor w/RGB pixels

Zoom-in to see individual pixel elements

RGB vs YUV

Mixing primary colors (RGB)

YUV image along with its

Y,

U, and

V components.

From RGB to YUV, and vice-versa

$$Y' = 0.299R + 0.587G + 0.114B$$
 $U = 0.492(B - Y')$
 $V = 0.877(R - Y')$

$$\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.2988 & 0.5869 & 0.1143 \\ -0.1689 & -0.3311 & 0.5000 \\ 0.5000 & -0.4189 & -0.0811 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.402 \\ 1 & -0.3441 & -0.7141 \\ 1 & 1.772 & 0.00015 \end{bmatrix} \begin{bmatrix} Y \\ U \\ V \end{bmatrix}$$

Electromagnetic Spectrum

From light in to digital pictures out

CMOS image sensor chip

CMOS image sensor signal chain

Microlenses enhance light sensitivity

Source: Hamamatsu

Microlenses enhance light sensitivity

Source: Hamamatsu

19.08.2020

Figure 3

Photodiodes

CIS chip floorplan

CMOS Image Sensor Integrated Circuit Architecture

http://www.olympusmicro.com/primer/digitalimaging/cmosimagesensors.html

UiO Department of Informatics

Chip area breakdown (example)

Chip area breakdown (example)

Chip area breakdown (example)

Chip area breakdown (example)

Digital camera signal chain

CIS evaluation HW and SW

 Used for design validation/debug, image capture and performance measurements

Not shown: FPGA board + USB interface to PC

Signal, Noise and Dynamic Range

FIGURE 3.19 Example of photoconversion characteristics. $A_{pix} = 25 \,\mu\text{m}^2$; C.G. = $40 \,\mu\text{V/e}^-$, $N_{sat} = 20,000 \,\text{e}^-$, $n_{read} = 12 \,\text{e}^-$.

Source: Nakamura et.al.

MSc project: CMOS camera-on-a-chip

MSc project: CIS design and characterization

APPLICATIONS AND TRENDS

Automotive camera (20bits/pixel)

Security camera (low light, <0.1lux)

Machine vision (high-speed, 1000Hz) applications

CMOS image sensor applications

Pill camera (low power, <10mW)

Digital still camera (high resolution, >20Mpixels)

High Dynamic Range Imaging

 The dynamic range of the typical scene is usually greater than the dynamic range a sensor can capture in one frame

HDR techniques enable better image quality by combining multiple captures into one image

Combined HDR image

HDR images contain more scene information

HDR Motion Artifacts

 Multi-capture HDR scheme introduces motion artifacts ("ghosting") due to motion in scene, as objects are in different position for each capture

19.08.2020 26

RnD - Encryption in CMOS image sensors

More pixels give better resolution

- Enables more detail at longer distances
- Enables digital zoom-in
- Requires faster readout, ADCs, ISPs
- Requires low-power design and innovation

Kilde: Wikipedia

Technology Trend - 3D Stacked Die

Thanks!