Inference in Multiple Regression: Part 1

- > Test for Significant Overall Regression
- > Type I Sum of Squares
- ➢ Type III Sum of Squares
- ➢ Partial F-Test
- Confidence Intervals About Regression Coefficients

Lecture 8 Sections 9.1 – 9.3, 9.5

Three Types of Tests in Multiple Regression

- **1. Overall Test:** Does the entire set of independent variables contribute significantly to the prediction of *Y*?
- **2. Test for Addition of a Single Variable:** Does the addition of one particular independent variable add significantly to the prediction of *Y* after considering all other predictors already in the model?
- **3. Test for Addition of a Group of Variables:** Does the addition of some group of independent variables add significantly to the prediction of *Y* after considering all other predictors already in the model?

Test for Significant Overall Regression

- **Goal:** Determine if the entire set of predictors $X_1, X_2, ..., X_k$ contributes significantly to the prediction of Y
 - **Procedure:** Test the full model against the model with no predictors where \overline{Y} is the best prediction for all observations

• **Hypotheses:**
$$H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$$
 vs. $H_A:$ At least one $\beta_i \neq 0$

• Test Statistic:
$$F = \frac{MSR}{MSE} = \frac{(SSY-SSE)/k}{SSE/(n-k-1)}$$

• Has k and n - k - 1 df

• Equivalent Test Statistic: $F = \frac{R^2/k}{(1-R^2)/(n-k-1)}$

• Result: Some of the ______ becomes ______

Total Unexplained Variation: $Y_i - \overline{Y}_i$

Type I Sum of Squares

• **Type I Sum of Squares:** the amount of explained variability contributed to SSR by a predictor when it is added into a model after considering the contributions to the SSR by the other predictors already added to the model

• Referred to as **variables added in order** or **sequential** sums of squares

- The types of Type I sums of squares are dependent upon the order in which the variables enter the model. For example:
 - SS(X₁): Sum of squares explained using only X₁
 X₁ is the first predictor added to the model
 - $SS(X_2|X_1)$: Sum of squares added to SSR by X_2 after X_1 has already been added into the model
 - $SS(X_3|X_1, X_2)$: Sums of squares added to SSR by X_3 after both X_1 and X_2 have been added into the model

Type I Sum of Squares

- Every combination in which predictors are added has its own set of Type I sum of squares
- For a regression with 3 predictors, there are 12 Type I SS:
 - $SS(X_1)$, $SS(X_2)$, $SS(X_3)$
 - $SS(X_1|X_2)$, $SS(X_1|X_3)$, $SS(X_2|X_1)$, $SS(X_2|X_3)$, $SS(X_3|X_1)$, $SS(X_3|X_2)$

• $SS(X_1|X_2, X_3), SS(X_2|X_1, X_3), SS(X_3|X_1, X_2)$

• Regardless of the order the variables are added, the Type I SS will always sum to the total sum of squares for the regression.

• $SSR = SS(X_1) + SS(X_2|X_1) + SS(X_3|X_1, X_2)$

• When another predictor is added, its Type I SS comes out of the SSE to guarantee that SSY = SSR + SSE always holds.

Example: Type I Sums of Squares

- Scenario: Examine how patient satisfaction (1-100) is related to age (in years), severity of illness (1-100), and anxiety level (1-10)
- Question: How can we tell that these are Type I sums of squares?

• Answer: Sums of squares for individual predictors _____

• Question: In what of	order were the pred	e the predictors added?					
• Answer:	Source	DF	Seq SS	Seq MS	F-Value	P-Value	
Allower	Regression	3	9120.5	3040.15	30.05	0.000	
1	Age	1	8275.4	8275.39	81.80	0.000	
2.	Severity	1	480.9	480.92	4.75	0.035	
	Anxiety Level	1	364.2	364.16	3.60	0.065	
3	Error	42	4248.8	101.16			
	Total	45	13369.3				

Type III Sum of Squares

- **Type III Sum of Squares:** the amount of explained variability contributed to SSR by a predictor assuming it is the last predictor added and all others are already in the model
 - Referred to as **variables added last** or **adjusted** sums of squares
- For a regression with 3 predictors, there are 3 Type III SS:
 - $SS(X_1|X_2, X_3)$: Sum of squares added to SSR by X_1 after X_2 and X_3 are already in the model
 - $SS(X_2|X_1, X_3)$: Sum of squares added to SSR by X_2 after X_1 and X_3 are already in the model
 - $SS(X_3|X_1, X_2)$: Sum of squares added to SSR by X_3 after X_2 and X_3 are already in the model
- <u>Important</u>: $SSR \neq SS(X_1|X_2, X_3) + SS(X_2|X_1, X_3) + SS(X_3|X_1, X_2)$

Example: Type III Sum of Squares

- Scenario: Examine how patient satisfaction (1-100) is related to age (in years), severity of illness (1-100), and anxiety level (1-10)
- Question: How can we tell that these are Type III sums of squares?

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	3	9120.5	3040.15	30.05	0.000
Age	1	2857.6	2857.55	28.25	0.000
Severity	1	81.7	81.66	0.81	0.374
Anxiety Level	1	364.2	364.16	3.60	0.065
Error	42	4248.8	101.16		
Total	45	13369.3			

• Answer: Sums of squares for individual predictors sum to _____

• Each adjusted sum of squares assumes the other variables are ____

Example: Type III Sum of Squares

• Scenario: Want to investigate how weight is related to height, age, and age squared for children with a nutritional deficiency.

• Ouestion : What do the Type	Source	DF	Adj SS	Adj MS	F-Value	P-Value
Question: what do the Type	Regression	3	9120.5	3040.15	30.05	0.000
III sums of squares mean?	Age	1	2857.6	2857.55	28.25	0.000
	Severity	1	81.7	81.66	0.81	0.374
	Anxiety Level	1	364.2	364.16	3.60	0.065
	Error	42	4248.8	101.16		
• Answer:	Total	45	13369.3			
• Age: After			aı	e inser	ted inte	o the
model, age explains						
• Severity: After		a	re inse	erted in	to the i	nodel,
severity of illness explains						
• Anxiety Level: After				are ins	erted ir	nto the
model, anxiety level explains						

Partial F-Test

- **Goal:** Determine if adding a single variable X^* significantly improves the prediction of Y given that $X_1, X_2, ..., X_p$ are already in the model
 - **Procedure:** Test the full model against the reduced model
 - **Full Model:** Includes $X_1, X_2, ..., X_p$ as well as X^*
 - **Reduced Model:** Includes only $X_1, X_2, ..., X_p$ (but not X^*)
 - **Hypotheses:** $H_0: \beta^* = 0$ vs. $H_A: \beta^* \neq 0$
 - *Null Hypothesis:* "X^{*} does not significantly add to the prediction of Y given that $X_1, X_2, ..., X_p$ are already predictors in the model so the regression $Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + E$ is sufficient."
 - Alternative Hypothesis: " X^* significantly adds to the prediction of Y given that $X_1, X_2, ..., X_p$ are already predictors in the model so the regression $Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \beta^* X^* + E$ is better than the one without X^* ."

Partial F-Test

- Sum of Squares: Regression $SS(X^*|X_1, X_2, ..., X_p) =$ Regression SS $(X_1, X_2, ..., X_p, X^*)$ – Regression SS $(X_1, X_2, ..., X_p)$
 - "Extra sum of squares from adding *X*^{*} into the model **equals** regression sum of squares when $X_1, X_2, ..., X_p$, and X^* are all in the model **minus** regression sum of squares when only $X_1, X_2, ..., X_p$ are in the model."
- Test Statistic: $F(X^*|X_1, X_2, \dots, X_p) = \frac{\operatorname{Regression} SS(X^*|X_1, X_2, \dots, X_p)}{MSE(X_1, X_2, \dots, X_p, X^*)}$
 - Has 1 and n p 2 df
 - "Test statistic **equals** the sum of squares added by X^* given $X_1, X_2, ..., X_p$ are already in the model divided by the mean squared error from the full model that includes X_1, X_2, \dots, X_n , and X^* ."

Example: Partial F-Test

- Scenario: Examine how patient satisfaction (1-100) is related to age (in years), severity of illness (1-100), and anxiety level (1-10)
- **Task:** Test if age (X_1) contributes significantly to the model after severity (X_2) and anxiety level (X_3) have already been included.
- Models:
 - Full Model: ______
 - Reduced Model: ______

• **Hypotheses:** *H*₀: ______ vs. *H*_A: ______

• Need:

• ______ F = _____

Examp	ble	: Pa	rtial	F-Te	st						
• Outpu	ts v	with '	Гуре	I SS:							
Source	DF	Seq SS	Seq MS	F-Value	P-Value	Source	DF	Seq SS	Seq MS	F-Value	P-Value
Regression	3	9120.5	3040.15	30.05	0.000	Regression	2	6262.9	3131.5	18.95	0.000
Age	1	8275.4	8275.39	81.80	0.000	Severity	1	4860.3	4860.3	29.41	0.000
Severity	1	480.9	480.92	4.75	0.035	Anxiety Level	1	1402.7	1402.7	8.49	0.006
Anxiety Level	1	364.2	364.16	3.60	0.065	Error	43	7106.4	165.3		
Error	42	4248.8	101.16			Total	45	13369.3			
Total	45	13369.3									
• Test St • Critica	ati l V	stic: alue:	F =			; P-Valu	1e:				
• Conclu					and	concludo	+h	h			
• Conciu	1510)11:		a	and fter	conclude	una	at			
have be	een	inclu	ided.								

- Scenario: Examine how patient satisfaction (1-100) is related to age (in years), severity of illness (1-100), and anxiety level (1-10)
- **Task:** Test if severity (X_2) contributes significantly to the model after age (X_1) and anxiety level (X_3) have already been included.

	Source	DF	Adj 55	Adj IVIS	F-value	P-value
	Regression	3	9120.5	3040.15	30.05	0.000
• Iest Statistic:	Age	1	2857.6	2857.55	28.25	0.000
	Severity	1	81.7	81.66	0.81	0.374
• Critical Value:	Anxiety Level	1	364.2	364.16	3.60	0.065
	Error	42	4248.8	101.16		
• P-Value	Total	45	13369.3			
Conclusion:	and conclude	tha	t sevi	eritv	of illr	less
		uiu		c.		1000
				after	age a	na
anxiety level have					-	

t-Test and Confidence Interval

- **Goal:** Determine if adding a single variable X^* significantly improves the prediction of Y given that $X_1, X_2, ..., X_p$ are already in the model
 - **Hypotheses:** $H_0: \beta^* = 0$ vs. $H_0: \beta^* \neq 0$
 - **Test Statistic:** $t = \frac{\hat{\beta}^*}{S_{\hat{\beta}^*}}$ which has n p 1 df
 - Equivalent to the partial F-test because only one parameter is being tested and $t_{n-p-1}^2 = F_{1,n-p-1}$.
 - **Confidence Interval:** A $100(1 \alpha)$ % confidence interval for the coefficient β^* for the predictor X^* after $X_1, X_2, ..., X_p$ have been added is:

$$\hat{\beta}^* \pm t_{n-p-1,1-\alpha/2} \times S_{\hat{\beta}^*}$$

Example: t-Test

• **Task:** Test if anxiety level (X_3) contributes significantly to the model after age (X_1) and severity (X_2) have already been included.

	Term	Coef	SE Coef	T-Value	P-Value	VIF
	Constant	151.8	18.3	8.30	0.000	
	Age	-1.142	0.215	-5.31	0.000	1.63
	Severity	-0.442	0.492	-0.90	0.374	2.00
	Anxiety Level	-3.37	1.77	-1.90	0.065	2.01
Models:						
• Full Model: _						
Reduced Mo	del:					
• Hypotheses: A	H ₀ :		vs. <i>H</i> _A :			
Test Statistic:						

Example: t-Test

• **Task:** Test if anxiety level (X_3) contributes significantly to the model after age (X_1) and severity (X_2) have already been included.

after age and severity of

	Term	Coef	SE Coef	T-Value	P-Value	VIF
	Constant	151.8	18.3	8.30	0.000	
	Age	-1.142	0.215	-5.31	0.000	1.63
	Severity	-0.442	0.492	-0.90	0.374	2.00
	Anxiety Level	-3.37	1.77	-1.90	0.065	2.01
Critical Values:				_; P-V a	lue:	
Confidence Ir	nterval: _					
Conclusion :			and c	conclue	de that	z anz

illness have been included.

• Confidence interval _____ \rightarrow ___