Inference in Multiple
 Regression: Part 1

> Test for Significant Overall Regression
$>$ Type I Sum of Squares

- Type III Sum of Squares

Partial F-Test
Confidence Intervals About Regression Coefficients

Three Types of Tests in Multiple Regression

1. Overall Test: Does the entire set of independent variables contribute significantly to the prediction of Y ?
2. Test for Addition of a Single Variable: Does the addition of one particular independent variable add significantly to the prediction of Y after considering all other predictors already in the model?
3. Test for Addition of a Group of Variables: Does the addition of some group of independent variables add significantly to the prediction of Y after considering all other predictors already in the model?

Test for Significant Overall Regression

- Goal: Determine if the entire set of predictors $X_{1}, X_{2}, \ldots, X_{k}$ contributes significantly to the prediction of Y
- Procedure: Test the full model against the model with no predictors where \bar{Y} is the best prediction for all observations
- Hypotheses: $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0$ vs. H_{A} : At least one $\beta_{i} \neq 0$
- Test Statistic: $F=\frac{M S R}{M S E}=\frac{(S S Y-S S E) / k}{S S E /(n-k-1)}$
- Has k and $n-k-1 d f$
- Equivalent Test Statistic: $F=\frac{R^{2} / k}{\left(1-R^{2}\right) /(n-k-1)}$

Example: Test for Significant Overall Regression

- Scenario: Examine how patient satisfaction (1-100) is related to age (in years), severity of illness (1-100), and anxiety level (1-10)
- Task: Perform the test for overall regression.
- Model:
- X_{1} : \qquad
- X_{2} : \qquad
- X_{3} : \qquad
- Hypotheses:
- H_{0} : \qquad
- H_{A} : \qquad

$\boldsymbol{+}$	C1	C2	C3	

Example: Test for Significant Overall Regression

- Scenario: Examine how patient satisfaction (1-100) is related to age (in years), severity of illness (1-100), and anxiety level (1-10)
- Task: Perform the test for overall regression.

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	3	9120			0.000
Error	42	4249			
Total	45	13369			

- Test Statistic:

$F=$

- Critical Value: \qquad ; P-Value: \qquad
- Conclusion: \qquad and conclude that the model is \qquad ..

Review: Fundamental Equation of Regression Analysis

- Recall the Fundamental Equation of Regression Analysis:

$$
S S Y=S S R+S S E
$$

where $S S R$ is the amount of variability explained by the regression and SSE is the unexplained variability.

- In multiple regression, every time another predictor is inserted into the model, it helps to explain the response better.
- Result: Some of the \qquad becomes \qquad

Type I Sum of Squares

- Type I Sum of Squares: the amount of explained variability contributed to SSR by a predictor when it is added into a model after considering the contributions to the SSR by the other predictors already added to the model
- Referred to as variables added in order or sequential sums of squares
- The types of Type I sums of squares are dependent upon the order in which the variables enter the model. For example:
- $\operatorname{SS}\left(X_{1}\right)$: Sum of squares explained using only X_{1}
- X_{1} is the first predictor added to the model
- $\operatorname{SS}\left(X_{2} \mid X_{1}\right)$: Sum of squares added to SSR by X_{2} after X_{1} has already been added into the model
- $\operatorname{SS}\left(X_{3} \mid X_{1}, X_{2}\right)$: Sums of squares added to SSR by X_{3} after both X_{1} and X_{2} have been added into the model

Type I Sum of Squares

- Every combination in which predictors are added has its own set of Type I sum of squares
- For a regression with 3 predictors, there are 12 Type I SS:
- $\operatorname{SS}\left(X_{1}\right), \operatorname{SS}\left(X_{2}\right), \operatorname{SS}\left(X_{3}\right)$
- $\operatorname{SS}\left(X_{1} \mid X_{2}\right), \operatorname{SS}\left(X_{1} \mid X_{3}\right), \operatorname{SS}\left(X_{2} \mid X_{1}\right), \operatorname{SS}\left(X_{2} \mid X_{3}\right), \operatorname{SS}\left(X_{3} \mid X_{1}\right), \operatorname{SS}\left(X_{3} \mid X_{2}\right)$
- $\operatorname{SS}\left(X_{1} \mid X_{2}, X_{3}\right), \operatorname{SS}\left(X_{2} \mid X_{1}, X_{3}\right), \operatorname{SS}\left(X_{3} \mid X_{1}, X_{2}\right)$
- Regardless of the order the variables are added, the Type I SS will always sum to the total sum of squares for the regression.
- $\operatorname{SSR}=\operatorname{SS}\left(X_{1}\right)+\operatorname{SS}\left(X_{2} \mid X_{1}\right)+\operatorname{SS}\left(X_{3} \mid X_{1}, X_{2}\right)$
- When another predictor is added, its Type I SS comes out of the SSE to guarantee that $S S Y=S S R+S S E$ always holds.

Example: Type I Sums of Squares

- Scenario: Examine how patient satisfaction (1-100) is related to age (in years), severity of illness (1-100), and anxiety level (1-10)
- Question: How can we tell that these are Type I sums of squares?
- Answer: Sums of squares for individual predictors \qquad
-
- Question: In what order were the predictors added?
- Answer:

1.
2.
3.

\qquad
.
\qquad

Source	DF	Seq SS	Seq MS	F-Value	P-Value
Regression	3	9120.5	3040.15	30.05	0.000
Age	1	8275.4	8275.39	81.80	0.000
Severity	1	480.9	480.92	4.75	0.035
Anxiety Level	1	364.2	364.16	3.60	0.065
Error	42	4248.8	101.16		
Total	45	13369.3			

Example: Type I Sums of Squares

- Scenario: Examine how patient satisfaction (1-100) is related to age (in years), severity of illness (1-100), and anxiety level (1-10)
- Question: What do the Type I sums of squares mean?

- Answer:

Source	DF	Seq SS	Seq MS	F-Value	P-Value
Regression	3	9120.5	3040.15	30.05	0.000
Age	1	8275.4	8275.39	81.80	0.000
Severity	1	480.9	480.92	4.75	0.035
Anxiety Level	1	364.2	364.16	3.60	0.065
Error	42	4248.8	101.16		
Total	45	13369.3			

- Age: \qquad of the 9120.5 SSR is explained by \qquad
- Severity: After \qquad severity of illness explains an of the 9120.5 SSR (or \qquad SSR)
- Anxiety Level: After accounting for \qquad anxiety level explains \qquad of the 9120.5 SSR (which is

Example: Type I Sums of Squares

- Scenario: Compare the model that include only age and severity of illness with the model that includes all three predictors.
- Question: What happened to the sums of squares?

| Source | DF | Seq SS | Seq MS | F-Value | P-Value | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Regression | 2 | 8756.3 | 4378.15 | 40.81 | 0.000 | |
| Age | 1 | 8275.4 | 8275.39 | 77.14 | 0.000 | |
| Severity | 1 | 480.9 | 480.92 | 4.48 | 0.040 | |
| Error | 43 | 4613.0 | 107.28 | | | |
| Total | 45 | 13369.3 | | | | |

- Answer: Sum of squares that were
\qquad in the model with two predictors got \qquad in the model with all three predictors

Type III Sum of Squares

- Type III Sum of Squares: the amount of explained variability contributed to SSR by a predictor assuming it is the last predictor added and all others are already in the model
- Referred to as variables added last or adjusted sums of squares
- For a regression with 3 predictors, there are 3 Type III SS:
- $\operatorname{SS}\left(X_{1} \mid X_{2}, X_{3}\right)$: Sum of squares added to SSR by X_{1} after X_{2} and X_{3} are already in the model
- $\operatorname{SS}\left(X_{2} \mid X_{1}, X_{3}\right)$: Sum of squares added to SSR by X_{2} after X_{1} and X_{3} are already in the model
- $\operatorname{SS}\left(X_{3} \mid X_{1}, X_{2}\right)$: Sum of squares added to SSR by X_{3} after X_{2} and X_{3} are already in the model
- Important: $S S R \neq \operatorname{SS}\left(X_{1} \mid X_{2}, X_{3}\right)+\operatorname{SS}\left(X_{2} \mid X_{1}, X_{3}\right)+\operatorname{SS}\left(X_{3} \mid X_{1}, X_{2}\right)$

Example: Type III Sum of Squares

- Scenario: Examine how patient satisfaction (1-100) is related to age (in years), severity of illness (1-100), and anxiety level (1-10)
- Question: How can we tell that these are Type III sums of squares?

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	3	9120.5	3040.15	30.05	0.000
Age	1	2857.6	2857.55	28.25	0.000
Severity	1	81.7	81.66	0.81	0.374
Anxiety Level	1	364.2	364.16	3.60	0.065
Error	42	4248.8	101.16		
Total	45	13369.3			

- Answer: Sums of squares for individual predictors sum to \qquad
-
- Each adjusted sum of squares assumes the other variables are \qquad

Example: Type III Sum of Squares

- Scenario: Want to investigate how weight is related to height, age, and age squared for children with a nutritional deficiency.
- Question: What do the Type III sums of squares mean?

- Answer:

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	3	9120.5	3040.15	30.05	0.000
Age	1	2857.6	2857.55	28.25	0.000
Severity	1	81.7	81.66	0.81	0.374
Anxiety Level	1	364.2	364.16	3.60	0.065
Error	42	4248.8	101.16		
Total	45	13369.3			

- Age: After \qquad are inserted into the model, age explains \qquad
- Severity: After \qquad are inserted into the model, severity of illness explains \qquad
- Anxiety Level: After \qquad are inserted into the model, anxiety level explains

Partial F-Test

- Goal: Determine if adding a single variable X^{*} significantly improves the prediction of Y given that $X_{1}, X_{2}, \ldots, X_{p}$ are already in the model
- Procedure: Test the full model against the reduced model
- Full Model: Includes $X_{1}, X_{2}, \ldots, X_{p}$ as well as X^{*}
- Reduced Model: Includes only $X_{1}, X_{2}, \ldots, X_{p}\left(\right.$ but not $\left.X^{*}\right)$
- Hypotheses: $H_{0}: \beta^{*}=0$ vs. $H_{A}: \beta^{*} \neq 0$
- Null Hypothesis: " X^{*} does not significantly add to the prediction of Y given that $X_{1}, X_{2}, \ldots, X_{p}$ are already predictors in the model so the regression $Y=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}+E$ is sufficient."
- Alternative Hypothesis: " X^{*} significantly adds to the prediction of Y given that $X_{1}, X_{2}, \ldots, X_{p}$ are already predictors in the model so the regression $Y=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}+\beta^{*} X^{*}+E$ is better than the one without X^{*}."

Partial F-Test

- Goal: Determine if adding a single variable X^{*} significantly improves the prediction of Y given that $X_{1}, X_{2}, \ldots, X_{p}$ are already in the model
- Sum of Squares: Regression $\operatorname{SS}\left(X^{*} \mid X_{1}, X_{2}, \ldots, X_{p}\right)=$

Regression $\operatorname{SS}\left(X_{1}, X_{2}, \ldots, X_{p}, X^{*}\right)$ - Regression $\operatorname{SS}\left(X_{1}, X_{2}, \ldots, X_{p}\right)$

- "Extra sum of squares from adding X^{*} into the model equals regression sum of squares when $X_{1}, X_{2}, \ldots, X_{p}$, and X^{*} are all in the model minus regression sum of squares when only $X_{1}, X_{2}, \ldots, X_{p}$ are in the model."
- Test Statistic: $F\left(X^{*} \mid X_{1}, X_{2}, \ldots, X_{p}\right)=\frac{\text { Regression } \operatorname{SS}\left(X^{*} \mid X_{1}, X_{2}, \ldots, X_{p}\right)}{\operatorname{MSE}\left(X_{1}, X_{2}, \ldots, X_{p}, X^{*}\right)}$
- Has 1 and $n-p-2$ df
- "Test statistic equals the sum of squares added by X^{*} given $X_{1}, X_{2}, \ldots, X_{p}$ are already in the model divided by the mean squared error from the full model that includes $X_{1}, X_{2}, \ldots, X_{p}$, and X^{*}."

Example: Partial F-Test

- Scenario: Examine how patient satisfaction (1-100) is related to age (in years), severity of illness (1-100), and anxiety level (1-10)
- Task: Test if age $\left(X_{1}\right)$ contributes significantly to the model after severity (X_{2}) and anxiety level (X_{3}) have already been included.
- Models:
- Full Model:
- Reduced Model: \qquad
- Hypotheses: H_{0} : \qquad vs. H_{A} : \qquad
- Need:
-

Example: Partial F-Test

- Outputs with Type I SS:

Source	DF	Seq SS	Seq MS	F-Value	P-Value	Source	DF	Seq SS	Seq MS	F-Value	P-Value
Regression	3	9120.5	3040.15	30.05	0.000	Regression	2	6262.9	3131.5	18.95	0.000
Age	1	8275.4	8275.39	81.80	0.000	Severity	1	4860.3	4860.3	29.41	0.000
Severity	1	480.9	480.92	4.75	0.035	Anxiety Level	1	1402.7	1402.7	8.49	0.006
Anxiety Level	1	364.2	364.16	3.60	0.065	Error	43	7106.4	165.3		
Error	42	4248.8	101.16			Total	45	13369.3			
Total	45	13369.3									

- Test Statistic: $F=$
- Critical Value: \qquad ; P-Value: \qquad
- Conclusion: \qquad and conclude that \qquad
have been included.

Example: Partial F-Test

- Scenario: Examine how patient satisfaction (1-100) is related to age (in years), severity of illness (1-100), and anxiety level (1-10)
- Task: Test if severity $\left(X_{2}\right)$ contributes significantly to the model after age $\left(X_{1}\right)$ and anxiety level $\left(X_{3}\right)$ have already been included.

- Models:

- Full Model:
- Reduced Model: \qquad
- Hypotheses: H_{0} : \qquad vs. H_{A} : \qquad
- Question: Rather than finding the sums of squares from two different models, how could we find the test statistic?
- Answer: Use \qquad

Example: Partial F-Test

- Scenario: Examine how patient satisfaction (1-100) is related to age (in years), severity of illness (1-100), and anxiety level (1-10)
- Question: How can the Type III sum of squares be found for severity of illness?
- Answer: Change to \qquad
- $S S(S \mid A, A L)=$ \qquad

	Type I (Sequential)						Type I Seq MS
Source	DF	Seq SS	Seq MS	Source	DF	Seq SS	
Regression	3	9120.5	3040.15	Regression	2	9038.8	4519.40
Age	1	8275.4	8275.39	Age	1	8275.4	8275.39
Severity	1	480.9	480.92	Anxiety Level	1	763.4	763.42
Anxiety Level	1	364.2	364.16	Error	43	4330.5	100.71
Error	42	4248.8	101.16	Total	45	13369.3	
Total	45	13369.3					

Source	DF	Adj SS	Adj MS
Regression	3	9120.5	3040.15
Age	1	2857.6	2857.55
Severity	1	81.7	81.66
Anxiety Level	1	364.2	364.16
Error	42	4248.8	101.16
Total	45	13369.3	

Example: Partial F-Test

- Scenario: Examine how patient satisfaction (1-100) is related to age (in years), severity of illness (1-100), and anxiety level (1-10)
- Task: Test if severity $\left(X_{2}\right)$ contributes significantly to the model after age $\left(X_{1}\right)$ and anxiety level $\left(X_{3}\right)$ have already been included.

- Test Statistic:

\qquad

- Critical Value:
- P-Value: \qquad
\qquad and conclude that severity of illness and conclude that severity of illness
after age and

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	3	9120.5	3040.15	30.05	0.000
Age	1	2857.6	2857.55	28.25	0.000
Severity	1	81.7	81.66	0.81	0.374
Anxiety Level	1	364.2	364.16	3.60	0.065
Error	42	4248.8	101.16		
Total	45	13369.3			

- Conclusion: anxiety level have \qquad -

t-Test and Confidence Interval

- Goal: Determine if adding a single variable X^{*} significantly improves the prediction of Y given that $X_{1}, X_{2}, \ldots, X_{p}$ are already in the model
- Hypotheses: $H_{0}: \beta^{*}=0$ vs. $H_{0}: \beta^{*} \neq 0$
- Test Statistic: $t=\frac{\widehat{\beta}^{*}}{S_{\vec{\beta}^{*}}}$ which has $n-p-1 \mathrm{df}$
- Equivalent to the partial F-test because only one parameter is being tested and $t_{n-p-1}^{2}=F_{1, n-p-1}$.
- Confidence Interval: A $100(1-\alpha) \%$ confidence interval for the coefficient β^{*} for the predictor X^{*} after $X_{1}, X_{2}, \ldots, X_{p}$ have been added is:

$$
\hat{\beta}^{*} \pm t_{n-p-1,1-\alpha / 2} \times S_{\widehat{\beta}^{*}}
$$

Example: t-Test

- Task: Test if anxiety level $\left(X_{3}\right)$ contributes significantly to the model after age $\left(X_{1}\right)$ and severity $\left(X_{2}\right)$ have already been included.

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	151.8	18.3	8.30	0.000	
Age	-1.142	0.215	-5.31	0.000	1.63
Severity	-0.442	0.492	-0.90	0.374	2.00
Anxiety Level	-3.37	1.77	-1.90	0.065	2.01

- Models:

- Full Model:
- Reduced Model: \qquad
- Hypotheses: H_{0} : \qquad vs. H_{A} : \qquad

- Test Statistic:

\qquad

Example: t-Test

- Task: Test if anxiety level (X_{3}) contributes significantly to the model after age $\left(X_{1}\right)$ and severity $\left(X_{2}\right)$ have already been included.

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	151.8	18.3	8.30	0.000	
Age	-1.142	0.215	-5.31	0.000	1.63
Severity	-0.442	0.492	-0.90	0.374	2.00
Anxiety Level	-3.37	1.77	-1.90	0.065	2.01

- Critical Values: \qquad ; P-Value: \qquad
- Confidence Interval: \qquad
- Conclusion: \qquad and conclude that anxiety level \qquad after age and severity of
illness have been included.
- Confidence interval \qquad \rightarrow \qquad

