

CRITICAL DESIGN REVIEW

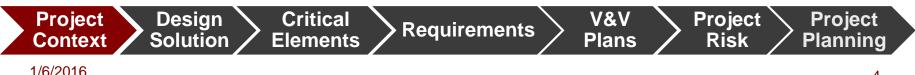
INtegrated Flight-Enabled Rover For Natural disaster Observation

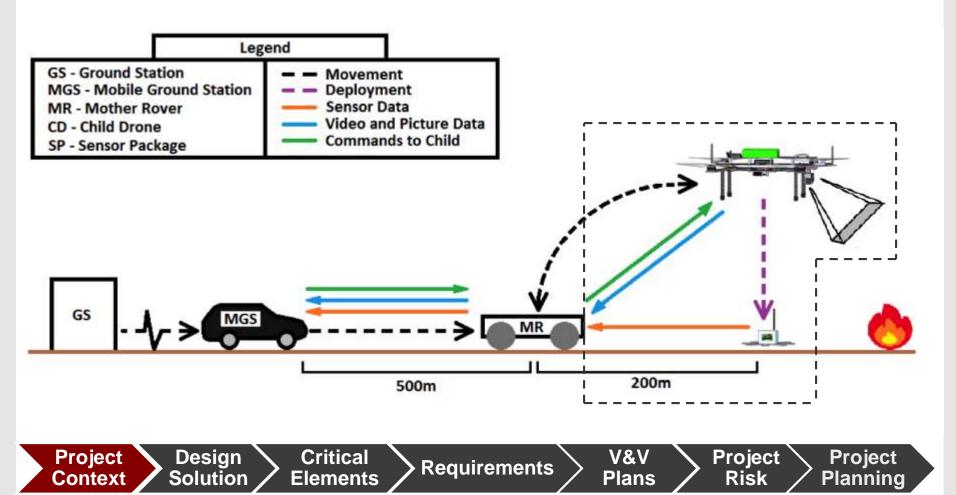
Customer: Barbara Streiffert, Jet Propulsion Laboratory Faculty Advisor: Jelliffe Jackson

Adam Archuleta, Devon Campbell, Tess Geiger, Thomas Jeffries, Kevin Mulcair, Nick Peper, Kaley Pinover, Esteben Rodriguez, Johnathan Thompson

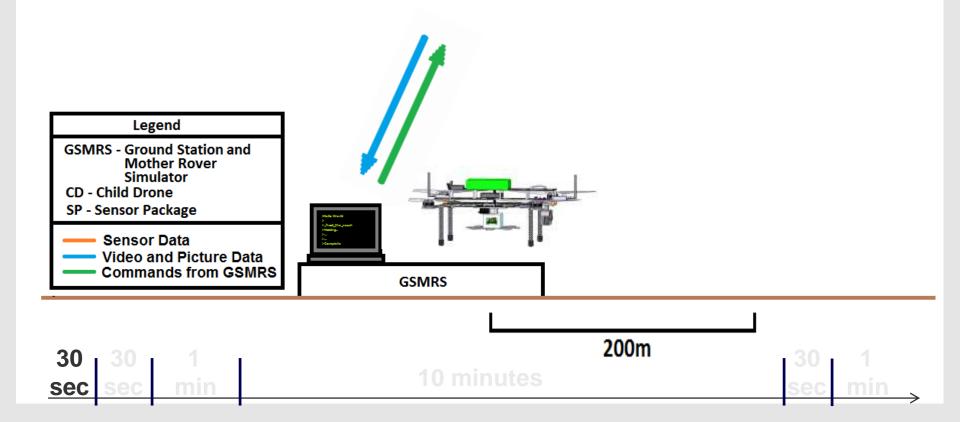
PRESENTATION OUTLINE

- Project Purpose and Objectives
- Design Solution
- Critical Project Elements
- Design Requirements and Satisfaction
- Verification and Validation
- Project Risk Assessment
- Project Planning

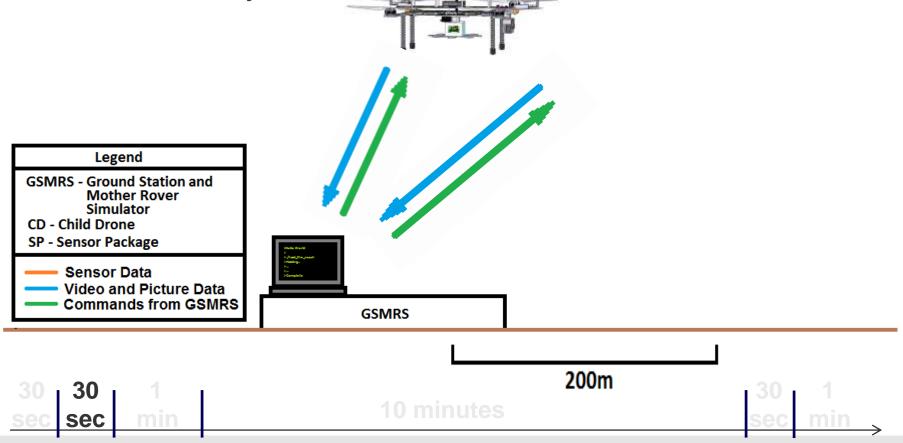

PROJECT PURPOSE AND OVERVIEW


INFERNO MISSION STATEMENT

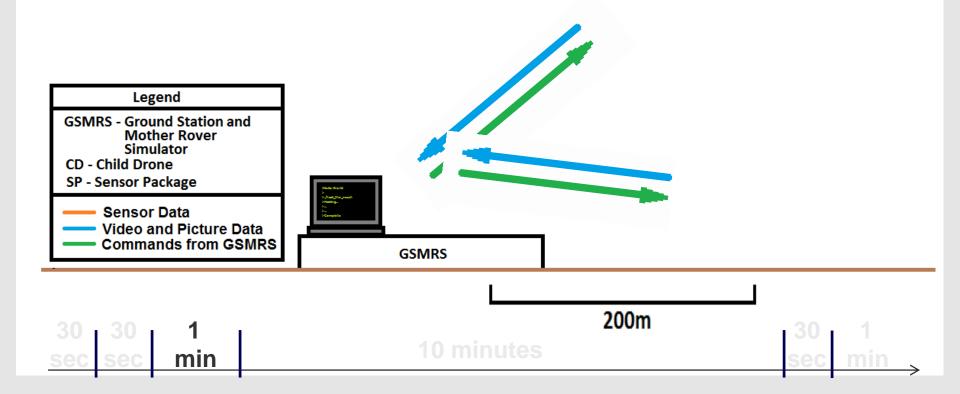
Design and create an **aerial sensor package delivery system** for future integration with a natural disaster observation system.



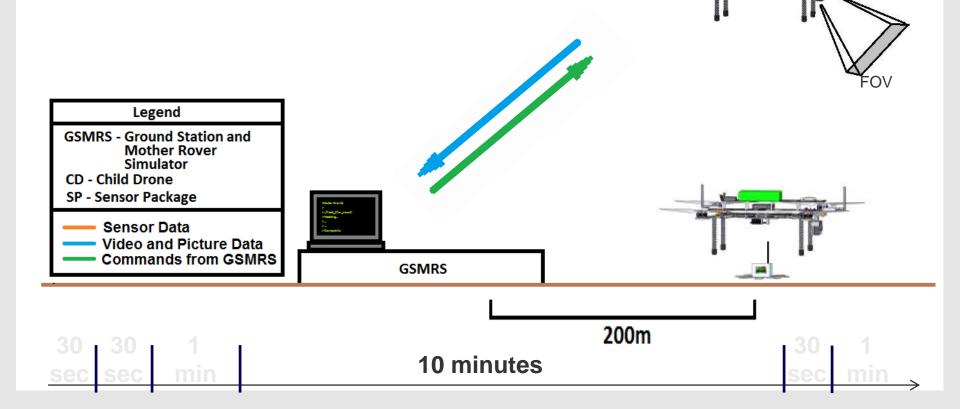
FIRE TRACKER SYSTEM



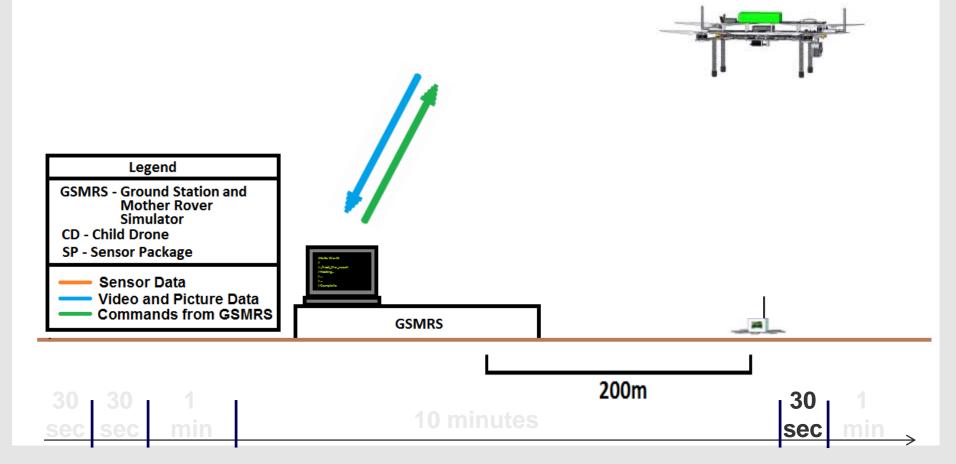
The CD takes off from the GSMRS using autopilot.



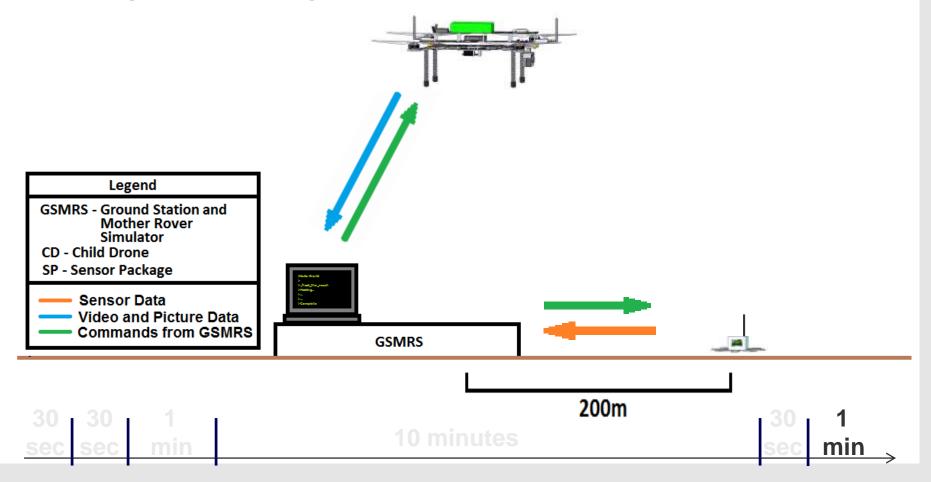
The CD flies to a GPS waypoint up to 200 meters away using autopilot. The CD then maintains its commanded position to 5 meter accuracy.



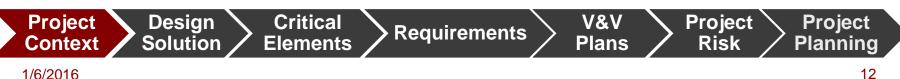
Using autopilot, the CD lands and deploys the SP which begins collecting and storing 1 hour of data.



The CD returns to hover using autopilot. It may be commanded to capture video and/or still images at any time. This data is transmitted to the GSMRS.

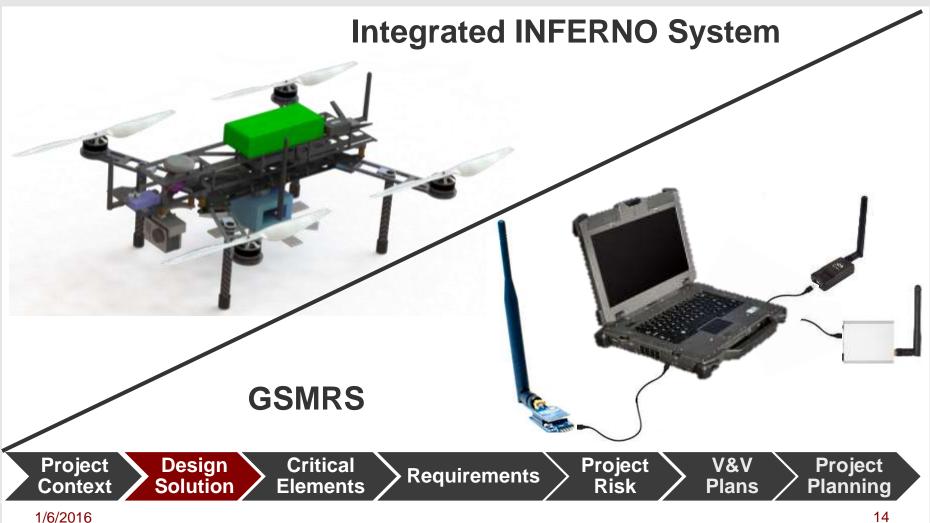


The CD returns to the GSMRS after a 15 minute maximum flight duration using autopilot.

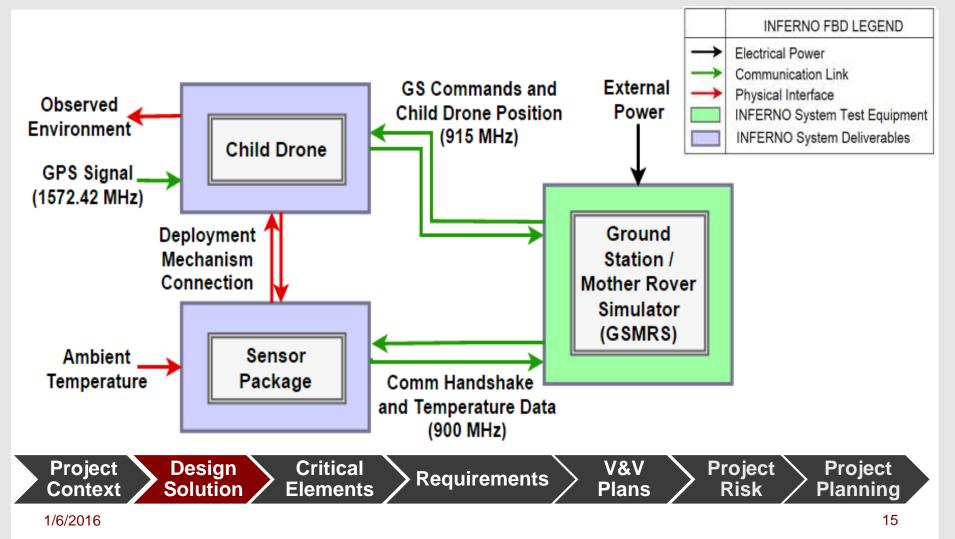

The CD lands on the GSMRS under pilot control and the SP begins transmitting to the GSMRS.

SYSTEM FUNCTIONAL REQUIREMENTS

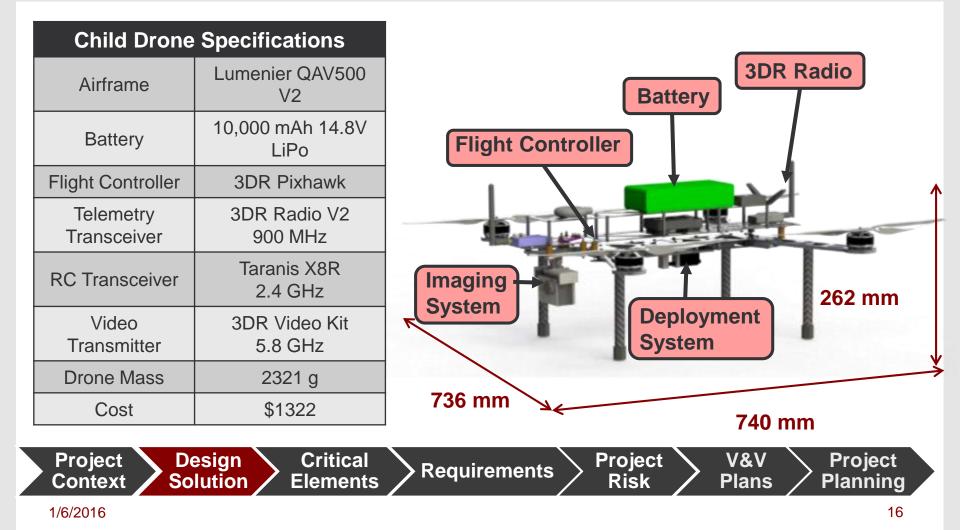
Functional Requirement	Description
FR 1.0	The system shall collect 1 Hz ambient temperature data at ground level for 60 minutes at the LOI.
FR 2.0	The system shall collect 1080p aerial video at 30 FPS with TBD quality for 15 minutes.
FR 3.0	The system shall collect 8 MP aerial pictures.
FR 4.0	The system shall wirelessly receive commands at a minimum horizontal range of 200 meters.
FR 5.0	The system shall wirelessly transmit data at a minimum horizontal range of 200 meters.
FR 6.0	The system shall have a maximum footprint of 0.545 m ² .



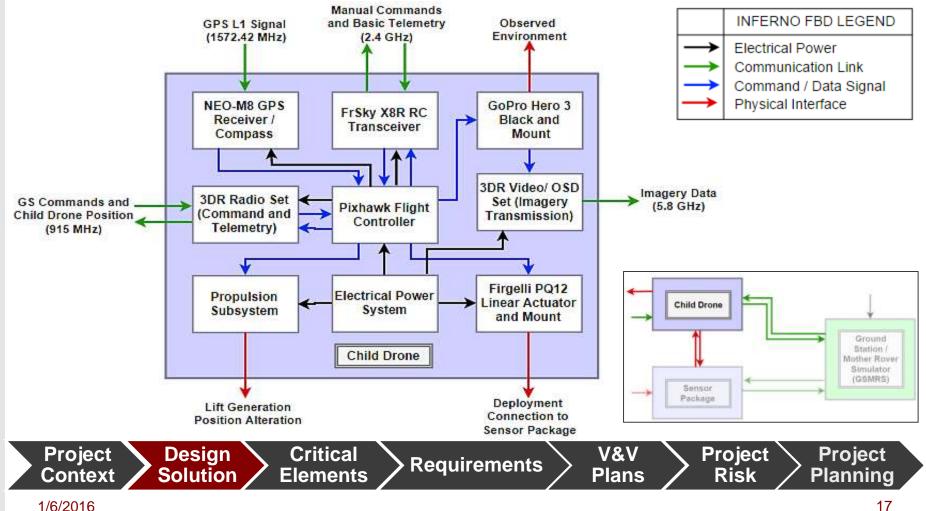
DESIGN SOLUTION



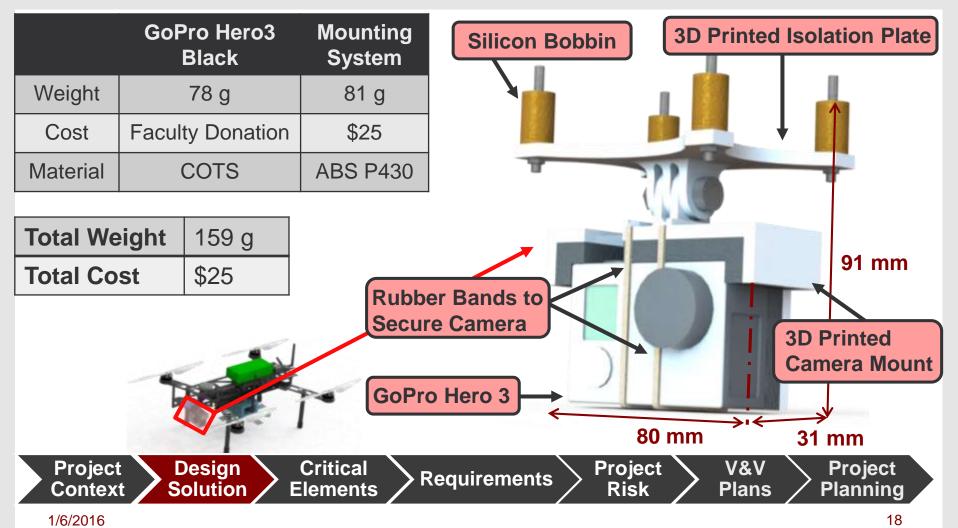
SYSTEM DESIGN



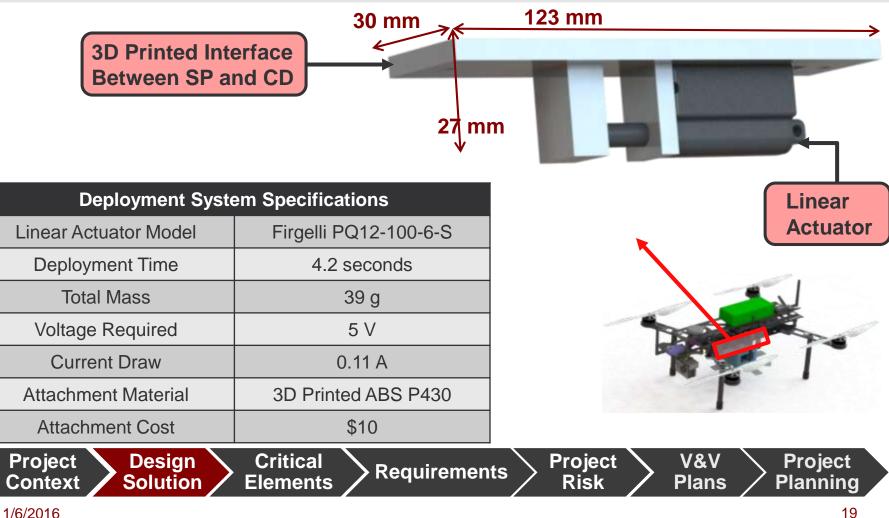
SYSTEM FUNCTIONAL BLOCK DIAGRAM



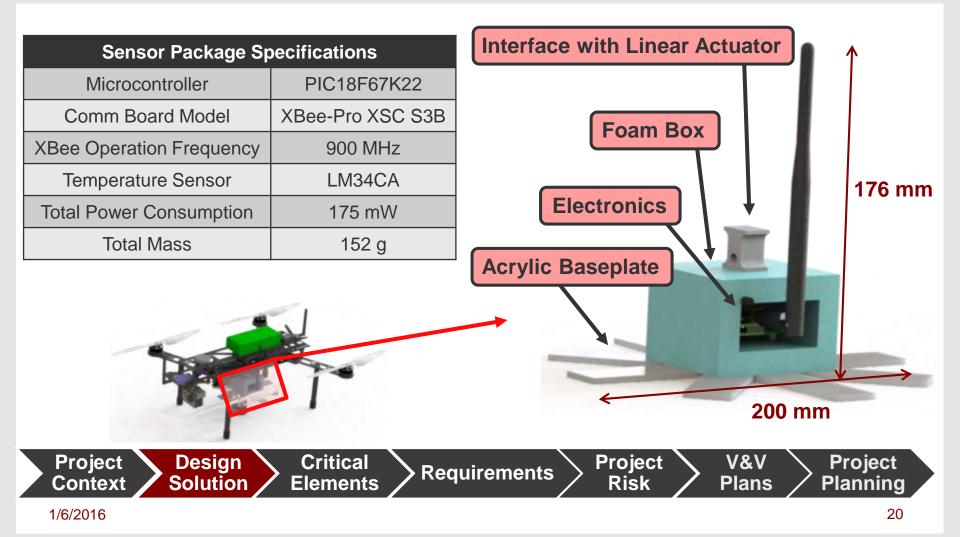
CHILD DRONE



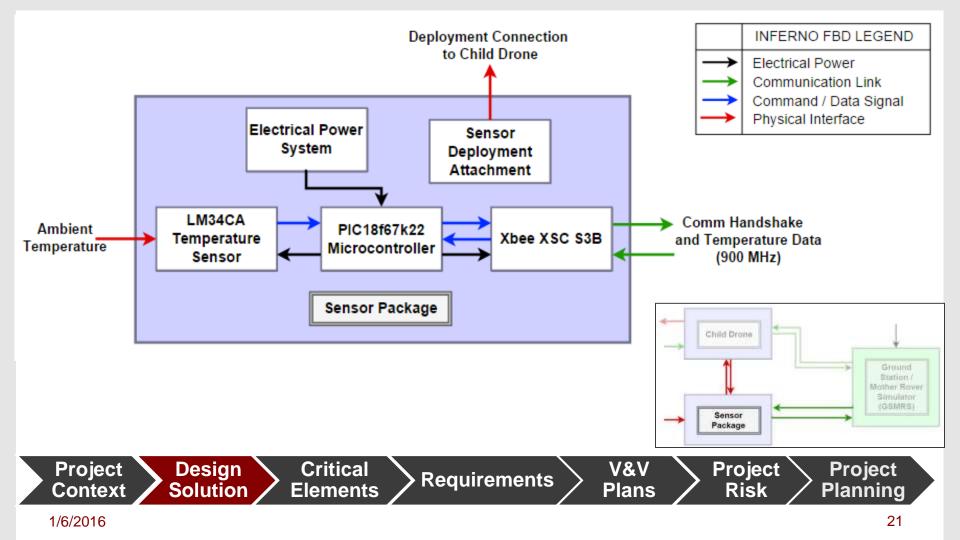
FUNCTIONAL BLOCK DIAGRAM: CHILD DRONE



IMAGING SYSTEM

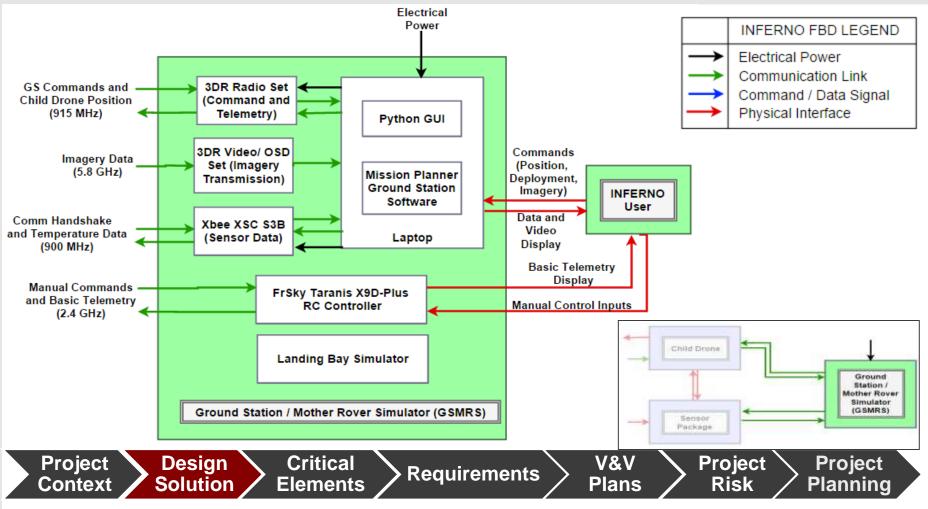


DEPLOYMENT SYSTEM



SENSOR PACKAGE

FUNCTIONAL BLOCK DIAGRAM: SENSOR PACKAGE


GROUND STATION MOTHER ROVER SIMULATOR (GSMRS)

Xbee Specifi	cations
Model	Pro XSC X3B
Frequency	900 MHz
Cost	\$42 each
Software	Custom Python Gui
3DR Radio Set Sp	ecifications
Frequency	915 MHz
Cost	\$100
Software	Mission Planner
3DR Video Set Sp	ecifications
Frequency	5.8 GHz
Cost	\$190
Software	Mission Planner
XBee-	Pro XSC Transce

Laptop Project Design Critical Project V&V Project Requirements Context Solution **Elements** Risk **Plans** Planning 1/6/2016

FUNCTIONAL BLOCK DIAGRAM: GSMRS

CRITICAL PROJECT ELEMENTS

CRITICAL PROJECT ELEMENTS

Critical Element

Design

Solution

Critical

Elements

Mission Influence

Project

Risk

V&V

Plans

	Subsystems must be able to send and receive commands and data to ensure mission success and safety.
Software Integration	Responsible for command and execution of all systems.
Subsystem Integration	
FAA Centificate of Authorization (COA)	

Requirements

Project Context

1/6/2016

Project

Planning

DESIGN REQUIREMENTS AND SATISFACTION

CHILD DRONE

CHILD DRONE STRUCTURE REQUIREMENTS

Requirement	Description
DR 1.2.2	The system shall contain a drone with a minimum airspeed of 10 meters per second.
DR 2.2	The drone shall have a minimum flight endurance of 15 minutes
FR 6.0	The system shall have a maximum footprint of 0.545 m ²
DR 6.1	The drone shall have a maximum footprint of 0.545 m ² with the imaging system and sensor package attached

CHILD DRONE - STRUCTURE

QAV500 V2 Specifications		
COTS Kit Assembled by Team		
Modification Friendly for Easy Integration		
Airframe Mass	600 g	
Airframe Dimensions	456 mm x 519 mm	
Ground Clearance with Landing Gear	150 mm	

42 mm

Tiger MN3508 Motors Specifications With 330 mm Propellers

Total Motor/Prop Mass	400 g
Total Thrust (70%)	3677 g
Maximum Thrust (100%)	5253 g
Total Footprint with Props	740 mm x 736 mm
Total Footprint Area with Props	0.545 m ²

Conclusion:

FR 6.0 satisfied by Total Footprint Area

• 3677 g Structure-Imposed Max Takeoff Mass

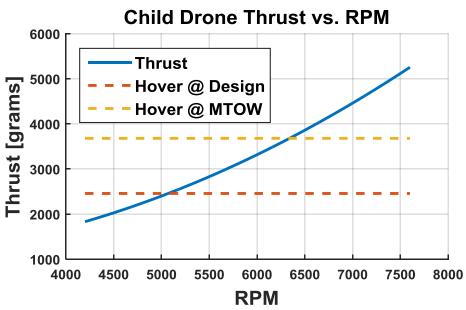
Project Context Design Solution

n Critical on Elements

Requirements

V&V Plans Project Risk

Project Planning



CHILD DRONE – MASS BUDGET

• CD must carry payload and imaging

Component	Mass [g]
Airframe/Propulsion/Battery	1927
Flight Electronics	197
Imaging System	158
Deployment System	39
Sensor Package	134

Total Mass	2455
Max Takeoff Weight	3677
Margin vs. MTOW	1222
Margin vs. Max Thrust	2798

Conclusion:

- 33% thrust margin from MTOW
 - 50% thrust margin from max thrust
 - DRs 1.2, 2.1, and 3.1 satisfied

Design Critical Solution

Requirements

•

Ō

V&V Plans Project Risk

Project Planning

CHILD DRONE – POWER BUDGET

- 10,000 mAh, 14.8V, 10C battery
 - 8,000 mAh usable

NEERNO

• 15 minute endurance

Component	Current [A]	Charge Used [mAh]
Propulsion @ Hover	24.8	6,190
Pixhawk/Radios	0.2	45
Video Transmitter	0.7	175
Deployment System	0.1	~0

Total	25.8	6,410
Endurance	32.0	8,000

Conclusion:

- 20% charge margin @ 15 minute hover
- DR 2.2 satisfied

CHILD DRONE COMMUNICATIONS REQUIREMENTS

Requirement	Description
DR 4.1	The drone shall possess a communication system capable of receiving commands at a minimum horizontal range of 200 meters.
FR 5.0	The system shall wirelessly transmit data at a minimum horizontal range of 200 meters.
DR 5.1	The drone shall possess a communication system capable of transmitting position data at a minimum horizontal range of 200 meters.
DR 5.2	The drone shall possess a communication system capable of transmitting TBD quality video data at a minimum horizontal range of 200 meters.
DR 5.3	The sensor package shall possess a communication system capable of transmitting data at a minimum horizontal range of 200 meters.

Requirements

Project

Context

Design

Solution

Critical

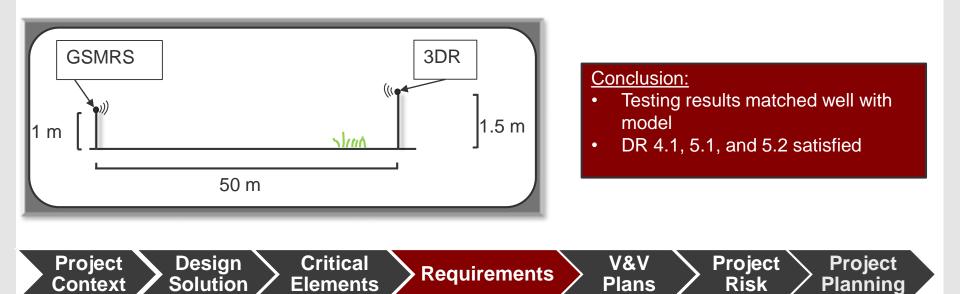
Elements

Project

Planning

Project

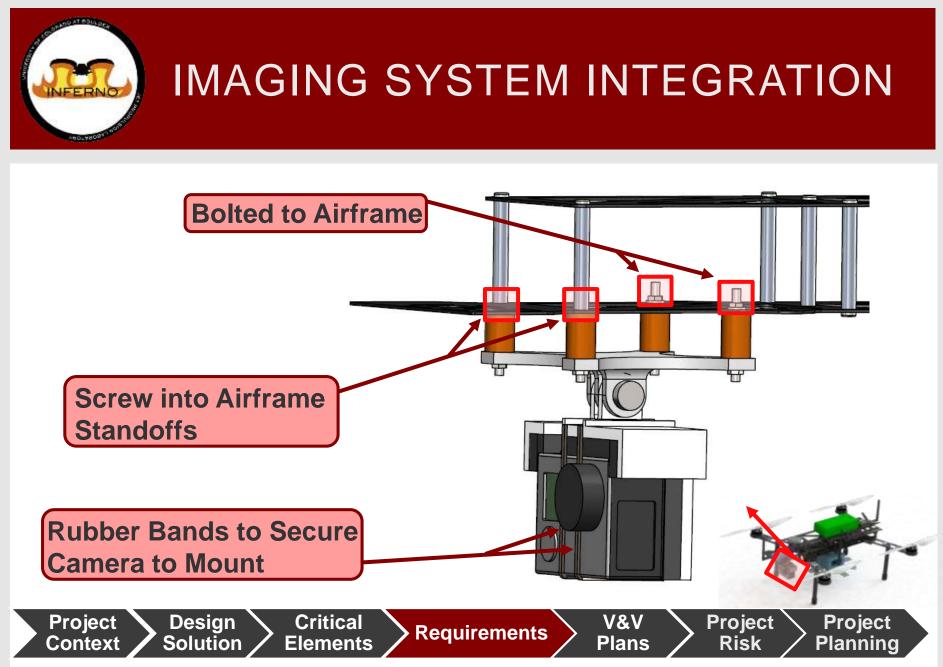
Risk


V&V

Plans

CHILD DRONE - COMMUNICATIONS

	3DR Radio Set	3DR Video Set
Predicted Link Margin	~ 50 dB	~ 35 dB
RSSI from Testing	~ -65 dBm	
3DR Sensitivity	~ -117 dBm	 Unable to test without video set
Actual Margin	~ -65 dBm – (-117 dBm) = 52 dB	301


IMAGING SYSTEM REQUIREMENTS

Derived Requirement	Description			
DR 2.1	The camera shall collect 1080p aerial video at 30 FPS with TBD quality for 15 minutes.			
DR 2.1.1	The imaging system shall have a minimum FOV of 90°.			
DR 2.1.2	The imaging system shall have a maximum mass of 200 g.			
DR 2.1.3 & 3.1.1	The imaging system shall have a minimum storage capacity of 1.35 GB.			
DR 3.1	The drone shall carry an imaging system capable of capturing 8MP pictures.			
Project Context Design Solution Critical Elements Requirements V&V Project Project Project Project Planning 1/6/2016 1/6/2016 34				

IMAGING SYSTEM

Imaging Sp	ecifications	Isolation		
Total Mass (Camera & Mount)	159 g	Plate	29 mm	
Video Specs	1440p @ 48 FPS		All the second s	
FOV	122.6º H & 94.4º V	Camera	62 mm	
Photo Resolution	12 MP	Mount		
Battery Life	1 hr			
Storage Capacity	2.25 hr (32 GB)			
Conclusion: • Satisfies DR 2.1, 2.1.1, 2.1.2, 2.1.3 & 21 mm 59 mm				
Project ContextDesign Design SolutionCritical ElementsRequirementsV&V PlansProject RiskProject 				

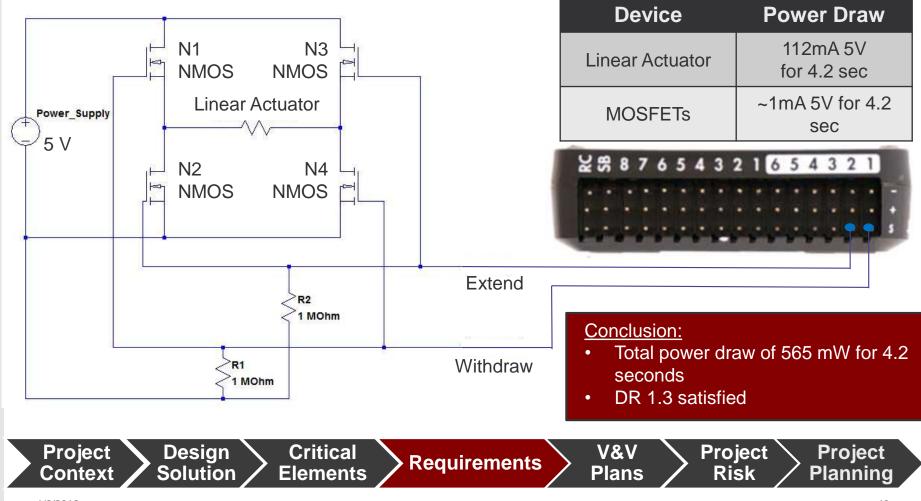
1/6/2016

DEPLOYMENT SYSTEM REQUIREMENTS

Derived Requirement	Description
DR 1.2	The system shall be capable of carrying a disposable sensor package a minimum horizontal range of 200 meters to the LOI.
DR 1.3	The system shall deploy a disposable sensor package at the LOI maximum error of 5 horizontal meters.
DR 1.3.2	The drone shall possess a deployment system capable of deploying the sensor package to the LOI with a maximum horizontal error of 5 meters.

DEPLOYMENT MECHANISM -STRUCTURE

Deployment Interface St Assuming 1 g Ac		Airframe Bottom Plate
ABS Tensile Strength	31 MPa	
Maximum Tensile Load	4 KPa	
ABS Flexure Strength	35 MPa	
Horizontal Flexure Load	6 KPa	
Vertical Flexure Load	10 KPa	
<	123 mm	<
C Linear Actuator	↓ ↓ ↓ ↓ ↓ ↓ ↓	Plastic Interface
Project Design Context Solution	Critical Elements	Requirements V&V Project Project Plans Risk Planning


CHILD DRONE SUBSYSTEM INTEGRATION

DEPLOYMENT MECHANISM -ELECTRICAL

SENSOR PACKAGE

SENSOR PACKAGE – DESIGN REQUIREMENTS

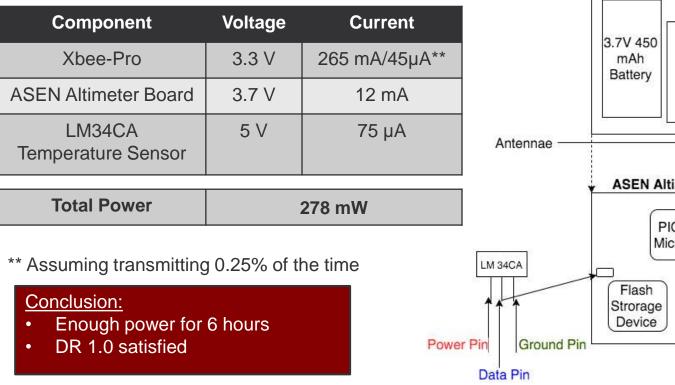
Requirement	Description
FR 1.0	The system shall collect 1 Hz ambient temperature data at ground level for 60 minutes at the LOI.
DR 1.1	The system shall contain a disposable sensor package capable of collecting 1 Hz ambient temperature data for 60 minutes.
DR 1.1.2	The sensor package shall be capable of operating continuously for a minimum of 60 minutes.
DR 1.1.3	The sensor package shall contain a CDH system capable of sampling the temperature sensor at a minimum frequency of 1 Hz.
FR 5.0	The system shall wirelessly transmit data at a minimum horizontal range of 200 meters.
DR 5.3	The sensor package shall possess a communication system capable of transmitting data at a minimum horizontal range of 200 meters.

Critical

Project Risk

VALIDATION OF COMMUNICATIONS

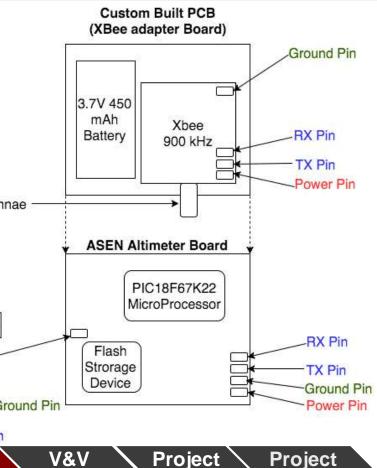
XBee-Pro		Percent 94.4		-58			
Predicted Link Margin	~ 50 dB	R	01.1	R			
RSSI from Testing	~ -60 dBm	n g		S			
XBee Sensitivity	~ -110 dBm	e		S			
Actual Margin	Actual Margin $\sim -60 \text{ dBm} - (-110 \text{ dBm}) = 50 \text{ dB}$						
GSMRS 1 m [200 m	SP 	hed well	Good 117 Bad 7 with model	M			



SENSOR PACKAGE - ELECTRICAL

• 3.7 V, 450 mAh battery

Design


Solution

Critical

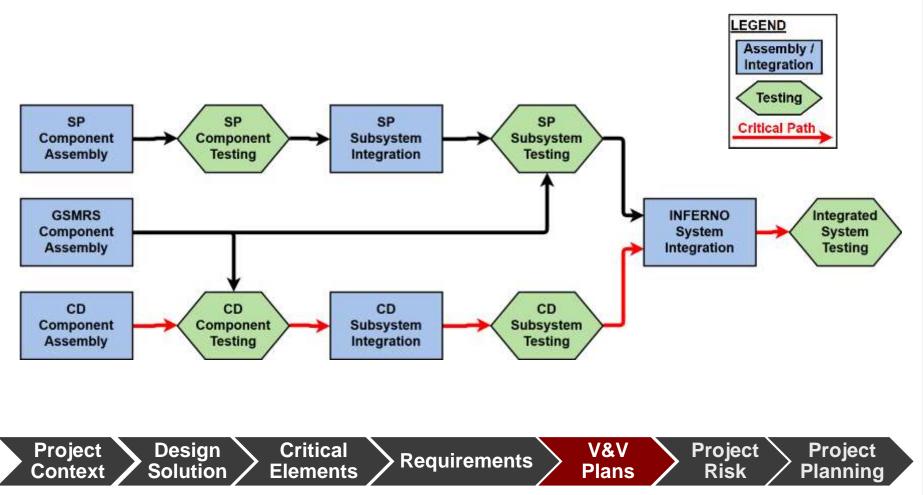
Elements

Requirements

Risk

Plans

Project

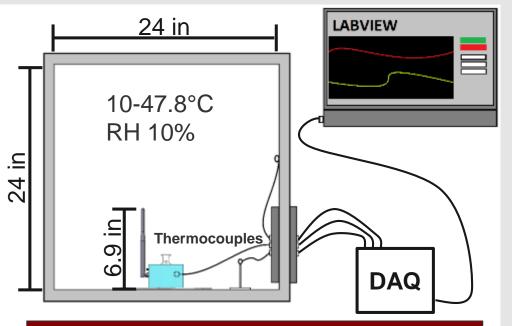

Context

VERIFICATION AND VALIDATION

ASSEMBLY, INTEGRATION & TEST (AI&T) FLOW

V&V – SENSOR PACKAGE THERMAL TEST

- Executed at Dr. Nabity's climate chamber
- Verify sample rate, accuracy, precision, and storage of temperature sensor/software
 - DRs 1.1, 1.1.1
- Verify SP thermal model
- Requires electrical/structural integration
- Overview:
 - Chamber temperature 10-47.8°C
 - Integrated SP subsystem collects/stores/transmits data for 1 hour
 - Thermocouples measure chamber and sensor temperature
 - Computer records temperature data


Design

Solution

Key errors include temperature control calibration, and line losses

Critical

Elements

Project

Risk

Conclusions:

Testing facilities available

V&V

Plans

Can be off-ramped

1/6/2016

Project

Context

Project

V&V – CHILD DRONE FLIGHT TEST

- Executed at Table Mountain
- Verify CD flight/telemetry/command communications range
 - DRs 4.1, 5.1
- Verify CD command/telemetry link budget model
- Assess and refine flight dynamics prior to addition of payload/imaging
- Overview:
 - 1. CD commanded to takeoff
 - 2. Pilot flies maneuvers w/ manual control
 - CD commanded to fly to GPS waypoint >205m from GSMRS
 - 4. Pilot flies maneuvers w/ manual control
 - 5. CD commanded to return to GSMRS and land
 - 6. RSSI and position assessed by telemetry logs (10 Hz sample rate)

Project Context Design Critical Solution Elements

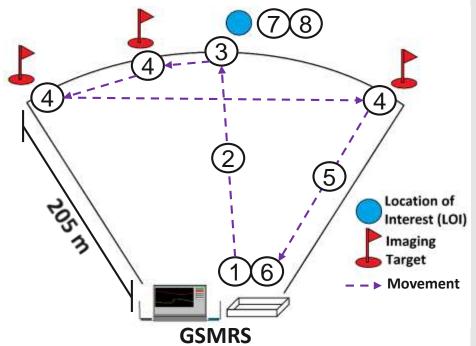
Requirements

V&V Plans

GSMRS

Conclusions:

Project Risk


Verifies CD command/telemetry range

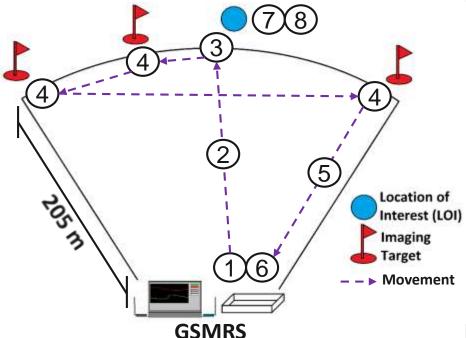
Assess CD flightworthiness

Project Planning

V&V – SYSTEM VALIDATION TEST

- Executed at Table Mountain
- Location of Interest (LOI) and Imaging Targets
 - All >205m from GSMRS
 - Placed along a single 90° arc
- Integrated CD/SP system is validated against system functions through baseline mission profile

V&V – SYSTEM VALIDATION TEST


- Procedure Outline:
 - 1. T+0:00 Takeoff from GSMRS (FR 6.0)
 - 2. T+0:30 Flight to LOI
 - 3. T+1:00 Deployment of SP (FR 1.0)
 - T+2:00 Visual Reconnaissance (FRs 2.0, 3.0)
 - 5. T+12:00 Return to GSMRS
 - 6. T+15:00 Land on GSMRS (FRs 2.0, 6.0)
 - T+15:00 Verify GSMRS Receiving Sensor Data (FR 1.0)
 - 8. T+75:00 Verify GSMRS Still Receiving Sensor Data (FR 1.0)
- Data post-processed to ensure within acceptable limits

Critical

Elements

Design

Solution

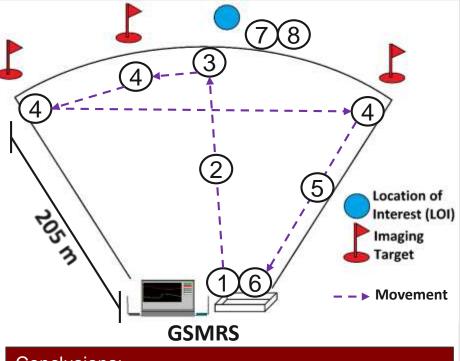
Project

Risk

V&V

Plans

Requirements


Project

Context

Project

V&V – SYSTEM VALIDATION TEST

- All targets >205 m from GSMRS
 - Positions measured by GPS and marked
 - Sample for 1 hr @ 1 Hz
 - Evaluate means, standard deviations
- 90° arc evaluated by compass
 - ±1° error
- SP must land within 5 m of LOI
 - Evaluated by tape measure
- Times measured by stopwatch
 - · Initiated upon takeoff command
 - Human-error dependent
- Video must be recorded for entire mission profile
- Photos and video must capture all 8 numbered signs of each Imaging Target

Conclusions:

- Verifies and validates system
- Test site available
- Procedure in progress

Design Critical Solution

Requirements

ents V&V Plans

Project Risk Project

V&V – OFF-RAMPS

Problem	Requirements Off-Ramped	Solution
SP Software Integration	DRs 1.1.1, 1.1.2, 1.1.2.1, 1.1.2.2, 1.1.3, 5.3	Individual testing of SP comm, microcontroller, temperature sensor, power system.
GSMRS Data Interpretation Software	DR 5.3	SP comm assessed by RSSI testing.
GSMRS Mission Planner Software Integration	DRs 1.3, 1.3.1, 1.3.2, 5.1, 5.2	Test MAVProxy, APM Planner, and/or DroneKit. Utilize manual control and alternate video receiver.
Unstable CD Flight Control	DRs 1.2.1, 1.2.2, 1.3.2, 2.1, 3.1, 4.1, 5.1, 5.2	Static testing of CD comms, deployment, and power. CFD analysis to verify airspeed.
CD Imagery Integration	DRs 1.2, 1.2.1, 1.2.2, 1.3, 1.3.1, 1.3.2, 2.1, 2.1.1, 2.1.2, 2.1.3, 2.2, 3.1, 3.1.1, 5.2, 6.1	Static testing of image quality/transmission. Verify CD performance with mass simulator. Verify CD footprint with CAD analysis.
CD Payload Integration	DRs 1.2, 1.2.1, 1.2.2, 1.3, 1.3.1, 1.3.2, 2.2, 6.1	Static testing of deployment system. Verify CD performance with mass simulator. Verify CD footprint with CAD analysis.

Design Solution Critical

Elements

Requirements

V&V **Plans**

Project

Risk

1/6/2016

Project

V&V – OFF-RAMPS

Problem	Requirements Off-Ramped	Solution
Environmental Chamber	DR 1.1.1	Test SP precision/accuracy/sample rate under ambient indoor/outdoor conditions only.
Video Vibration and/or Latency	FR 2.0 DRs 5.2	Test alternative vibration isolation materials. Utilize CCD camera for video transmission.
Outdoor Flight	FRs 1.0, 2.0, 3.0, 4.0, 5.0 DRs 1.2, 1.2.1, 1.2.2, 1.3, 1.3.1, 1.3.2, 2.1, 2.2, 3.1, 4.1, 5.1, 5.2	Tethered flight testing of CD position-hold, imaging, and deployment. Endurance verified by hovering flight.

Conclusions:

Design

Solution

• Off-ramps available for high-risk contingency scenarios

Critical

Elements

• Flexible test flow allows maximum in parallel with the critical path

Requirements

Project

Planning

Project

Risk

V&V

Plans

PROJECT RISKS

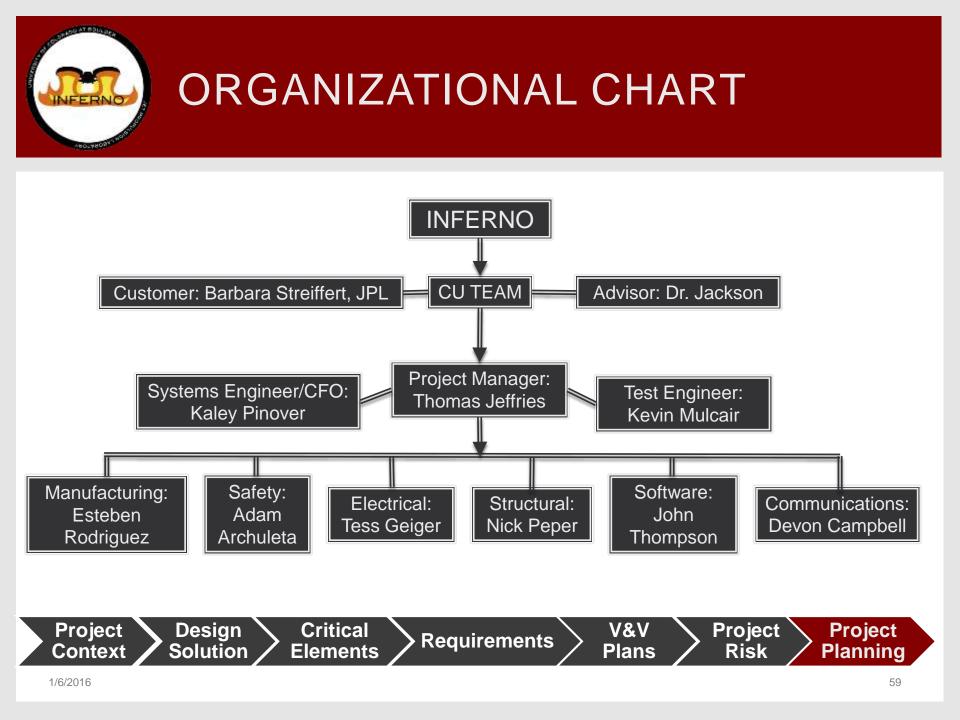
ORIGINAL RISK MATRIX

	Risk Mana	agemen	Accepta	ble	Tolerable	Intolerable				
	Severe				(3)					
	Significant			(4)			(2)(5)(6)	(1)		
RISK	Moderate									
	Minor									
	Negligible									
		Very I	Unlikely	Unlikely	Possib	le	Likely	Very Likely		
					Likelihood					
				Legend						
(1) Softw	vare development	t delay	(2) Crash	ning Child Dron	e	(3)	Failure to obta	in COA		
(4) Came Failur	era Mount Structu e	ural	ckage	(6)	Airframe Integ	ration Issues				
	FailureOrientation(o) Project Project Project Project PlansProject Project PlansProject 									

RISK MITIGATION

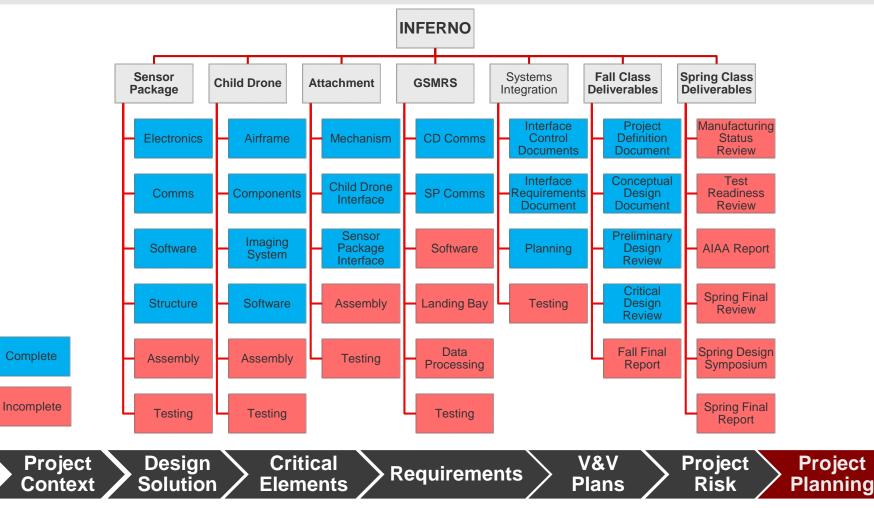
			Mitigation		
(1)	Software version control and internal code reviews. Large schedule uncertainty allocated.	(2)	Using experienced pilots for flying. Having spare parts on hand.	(3)	Early Application. Working with RECUV.
(4)	Manufacture multiple versions. Proper testing.	(5)	Design sensor package structure for stability. Land child drone to deploy sensor package.	(6)	Clear design with RECUV before purchase. Work with faculty during the assembly process.

	Legend	
(1) Software development delay	(2) Crashing Child Drone	(3) Failure to obtain COA
(4) Camera Mount Structural Failure	(5) Improper Sensor Package Orientation	(6) Airframe Integration Issues
	N Rediliremente	&V Project Project ans Risk Planning



UPDATED RISK MATRIX

	Risk Mana	agement Matrix	Accepta	ble	Tolerable	Intolerable		
	Severe	(3)						
	Significant		(5)	(1) (6))			
RISK	Moderate	(4)		(2)				
	Minor							
	Negligible							
		Very Unlikely	Unlikely	Possib	le	Likely	Very Likely	
				Likelihoo	d			
			Legend					
(1) Softw	vare development	t delay (2) Cras	shing Child Dron	e	(3) Failure to obtain COA			
(4) Came Failur	era Mount Structu e		roper Sensor Pa entation	ickage	(6)	Airframe Integ	ration Issues	
Project Design Critical Requirements V&V Project Project Project Elements Plans Plans Plans Planning								

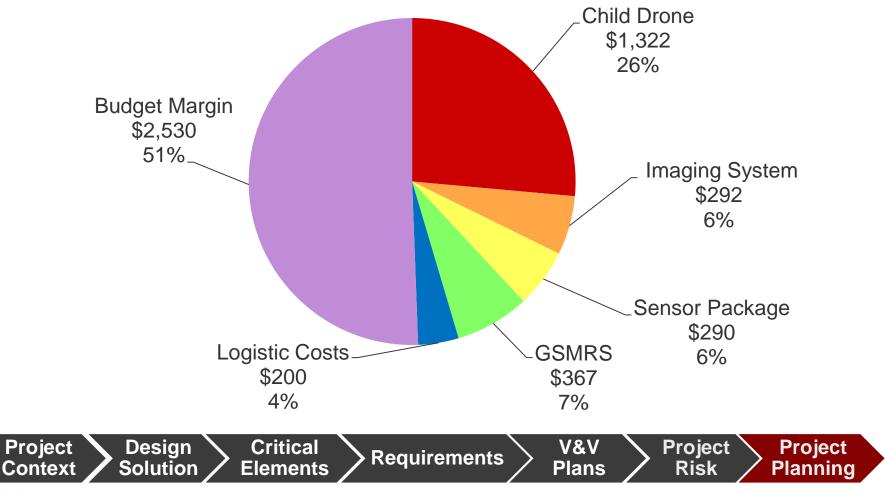

PROJECT PLANNING

WORK BREAKDOWN STRUCTURE

WORK PLAN

Jan							Mar			Apr						
Jan 10 Jan 17	Jan 24	Jan 31	Feb 7	Feb 14	Feb 21	Feb 28	Mar 6	Mar 13	Mar 20	Mar 27	Apr 3	Apr 10	Apr 17	Apr 24	May 1	May 8
Classes Start																
Pro	ocurement															
		MSR														
		/		SI	ubsystem M	anufacturing										
			/			TRR										
									Sub Syster	m Testing						
									Child Dron	e						
									Sensor Pa	ckage						
											s	ystem Testir	g			
									S	oring Break						
										AIAA Paper	s					
												♦ A	ES Industry	Symposium	n	
			I	I	I I		I	I	1 1	1				Sprin	g Final Revi	ew
															Final Report	s

Project Design Critical Context Solution Elements Requirements V&V Project Project Plans Plans


TEST PLAN

1	-eb				Mar					Apr				
Feb 7	Feb 14	Feb 21	Feb 28	Mar 6	Mar 13	Mar 20	Mar 2	27	Apr 3	Apr 10	Apr 17	Apr 24		
						Sub Syster	m Testin	g						
						Child Dron	e							
Pov	wer													
Cor	mms													
			Flight											
			i			Full Subsy	stem							
					, 	Sensor Pa	ckage							
Har	rdware													
		Software												
	Co	omms												
						Full Subsy	stem							
									\$	ystem Testin	g			
					t	S)	stem Int	tegr	ation					
							In	itial	Testing					
							+		F	ull System V	alidation Te	sting		

COST PLAN

"Orange RC Bobbins," GetFPV, URL: http://www.getfpv.com/orange-rc-bobbins.html [cited 30 November 2015]. 0

"GoPro Hero3 Specifications," CBS Interactive, URL: http://www.cnet.com/products/gopro-hero3/specs/ [cited 30 November 2015].

"HERO3 Camera Battery-life," GoPro, Inc., URL: https://gopro.com/support/articles/hero3-battery-life [cited 30 November 2015].

"HERO3 Recording Time in Each Video Setting," *GoPro, Inc.*, URL: <u>https://gopro.com/support/articles/hero3-recording-time-in-each-video-setting</u> [cited 30 November 2015].

"Wireless Link Budget Analysis," Tranzeo Wireless Technologies Inc., 19473 Fraser Way, Pitt Meadows, BC, Canada

T. Michael. "Link Budget," Slides for "Wireless Communications," [online], 2011/9/22

"The Monopole Antenna," [online], 2011 http://www.antenna-theory.com/antennas/monopole.php

[17] Blake, L. V. "Antenna And Receiving-System Noise-Temperature Calculation." URL: <u>http://www.dtic.mil/dtic/tr/fulltext/u2/265414.pdf</u> [cited 11 October 2015].

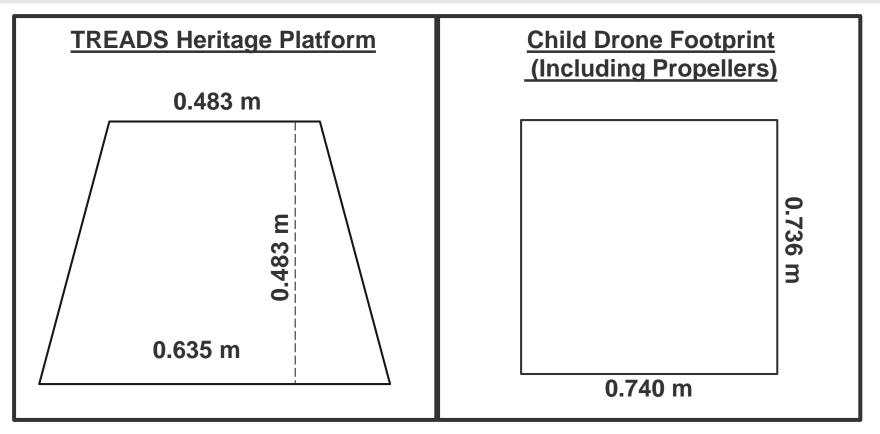
[] "Tech Stuff-Wireless-Fresnel Zones and their Effects" URL: http://www.zytrax.com/tech/wireless/fresnel.htm [cited 11 October 2015].

[] "XBee Buying Guide" URL: <u>https://www.sparkfun.com/pages/xbee_guide[</u>cited 11 October 2015] [17] Blake, L. V. "Antenna And Receiving-System Noise-Temperature Calculation." URL: <u>http://www.dtic.mil/dtic/tr/fulltext/u2/265414.pdf</u> [cited 11 October 2015].

[] "Tech Stuff-Wireless-Fresnel Zones and their Effects" URL: http://www.zytrax.com/tech/wireless/fresnel.htm [cited 11 October 2015].

[] "XBee Buying Guide" URL: <u>https://www.sparkfun.com/pages/xbee_guide</u>[cited 11 October 2015]

Questions?

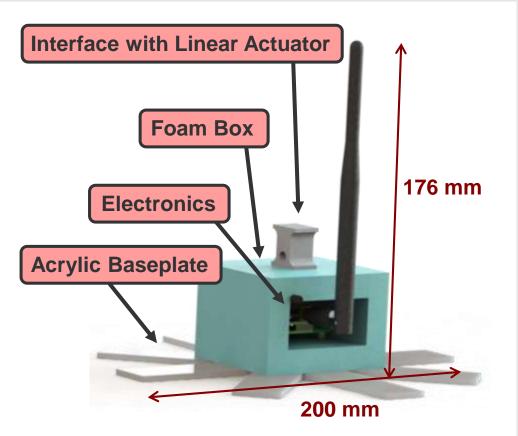


INFERNO BACKUP SLIDES

FOOTPRINT DETERMINATION

Suggested by RECUV: 50% area margin for landing

 $(0.736 \times 0.74)^{*}1.5^{2} = 1.104 \times 1.110 \text{ m} = 1.225 \text{ m}^{2}$


ACCARGE AND A THE AND A TH

SENSOR PACKAGE – STRUCTURE

Component	Mass [g]
Foam	10
3D Printed Attachment	15
Acrylic Base	63
Electronics	44
Antenna	20

Total 152

Sensor Package		
Package Height	75.1 mm	
Height w/ Antenna	164.9 mm	
Ground Clearance	74.76 mm	
Footprint Radius	97.2 mm	

CHILD DRONE - SOFTWARE

- Pixhawk Capabilities
 - GPS
 - Telemetry transmission
 - Video transmission
 - Motors
 - PWM signal
- Development Needs
 - Gain Tuning for our specific aircraft
 - Shut down 3DR radio set to avoid interference with Xbee's

DERIVED REQUIREMENTS

FR 1.0	The s LOI.	ystem sha	II collect 1 Hz ambient temperature data at ground level for 60 minutes at the
	DR 1.1 The system shall contain a disposable sensor package capable of collecting 1 Hz ambient temperature data for 60 minutes.		
		DR 1.1.1	The sensor package shall contain a sensor capable of measuring temperature between 10° C and 47.8° C with a minimum accuracy of ±2.78°C.
		DR 1.1.2	The sensor package shall be capable of operating continuously for a minimum of 60 minutes.
		DR 1.1.2.1	The sensor package shall contain a power system capable of sustaining operations for 60 minutes.
		DR 1.1.2.2	The sensor package shall have a minimum storage capacity of 10.8 kilobytes.
		DR 1.1.3	The sensor package shall contain a CDH system capable sampling the temperature sensor at a minimum frequency of 1 Hz.
	DR 1		em shall be capable of carrying a disposable sensor package a minimum horizontal range of ers to the LOI.
		DR 1.2.1	The system shall contain a drone with a minimum horizontal range of 200 meters.
		DR 1.2.2	The system shall contain a drone with a minimum airspeed of 10 meters per second.
	DR 1	.3 The system meters.	em shall deploy a disposable sensor package at the LOI with a maximum error of 5 horizontal
		DR 1.3.1	The drone shall be capable of holding translational position at the LOI with a maximum horizontal error of 5 meters.
		DR 1.3.2	The drone shall possess a deployment system capable of deploying the sensor package to the LOI with a maximum horizontal error of 5 meters.
1/6/20	16		70

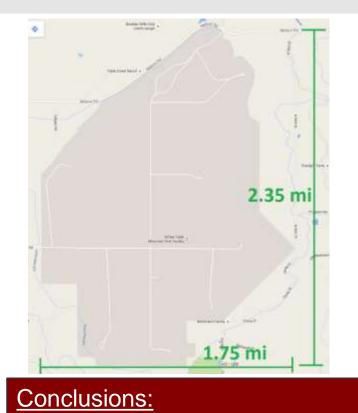
DERIVED REQUIREMENTS

FR 2.0	The drone shall carry an imaging system capable of capturing 1080P video at 30 fps with TBD quality for 15 minutes.		
	DR 2.1	The drone shall carry an imaging system capable of capturing 1080P video at 30 fps with TBD quality for 15 minutes.	
	DR 2.1.1	The imaging system shall have a minimum FOV of 90°.	
	DR 2.1.2	The imaging system shall have a maximum mass of 200 g.	
	DR 2.1.3	The imaging system shall have a minimum storage capacity of 1.35 GB.	
	DR 2.2	The drone shall have a minimum flight endurance of 15 minutes.	
FR 3.	FR 3.0 The system shall collect 8MP aerial pictures.		

DI		R 3.1	The drone shall carry an imaging system capable of capturing 8MP
		1. 3.1	pictures.
	DR 3.1.1		The imaging system shall have a minimum storage capacity of 1.351.1GB.

DERIVED REQUIREMENTS

FR 4 0	The system shall wirelessly receive commands at a minimum horizontal		
	range of 200 meters.		
		The drone shall possess a communication system capable of receiving commands at a minimum horizontal range of 200 meters.	
		commands at a minimum horizontal range of 200 meters.	


FR 5.0	The system shall wirelessly transmit data at a minimum horizontal range of	
FK 3.0	200 meters.	
	DR 5.1	The drone shall possess a communication system capable of transmitting position data at a minimum horizontal range of 200 meters.
	DR 5.2	The drone shall possess a communication system capable of transmitting TBD quality video data at a minimum horizontal range of 200 meters.
	DR 5.3	The sensor package shall possess a communication system capable of transmitting data at a minimum horizontal range of 200 meters.
	1	
FR 6.0	The system shall have a maximum footprint of 0.545 m ² .	
	DR 6.1	The drone shall have a maximum footprint of 0.545 m ² with the imaging system and sensor package attached.
		The drope shall have a maximum length of 0.740 m with the imaging

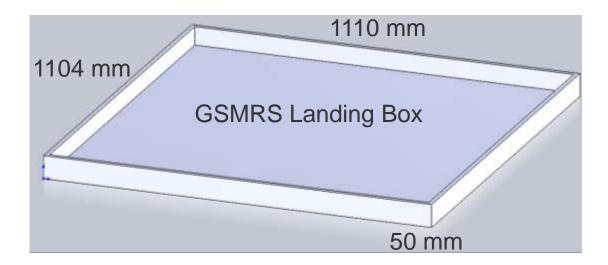
DR 6.1.1 The drone shall have a maximum length of 0.740 m with the imaging system and sensor package attached.

1/6/2016 DR 6.1.2 The drone shall have a maximum width of 0.736 m with the imaging system and sensor package attached.

CERTIFICATE OF AUTHORIZATION

- FAA COA required for outdoor flight testing
 - Submitted 4 November 2015 through RECUV
 - Approved 9 November 2015
- Flight testing authorized at Table Mountain Test Facility
 - North of Boulder, CO
 - Require FAA-licensed Private Pilot
- Future work
 - Multiple Pilots available for flight testing
 - FAA Class 2 Medical for Observers
 - COA Renewal in December/January
 - Aircraft registration

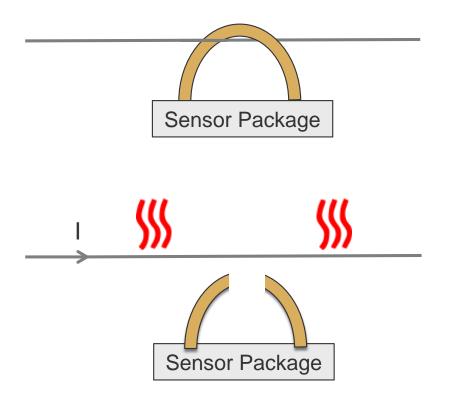
COA and test site approved



GSMRS - STRUCTURE

Landing box size determination:

Based on James Mack's recommended safety margin.


50% additional margin added to aircraft's size.

DEPLOYMENT MECHANISM – BURN WIRE

- Burn Wire
 - Nylon/Dacron Rope
 - Melting point: 220°C
 - Nichrome Wire
 - Melting point: 1400°C
 - Mass: <2 g

DEPLOYMENT MECHANISM – BURN WIRE TESTING

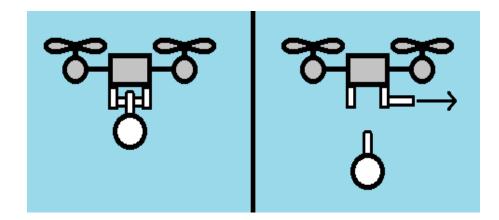
• 3cm of Mystery wire with Nylon chord (1/8") Results:

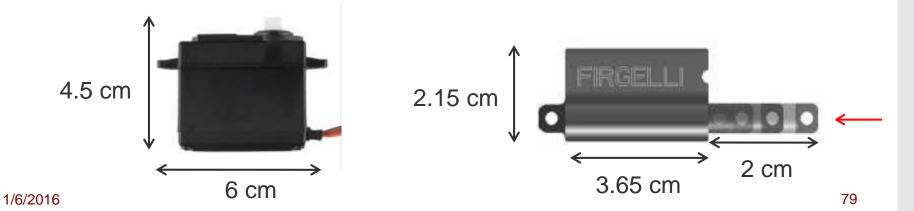
Current (A)	Voltage (V)	Power (W)	Time (s)	Energy (J)
2.0	0.68	1.36	-	-
3.0	1.06	3.18	8	25
3.5	1.27	4.45	7	31
4.0	1.42	5.68	5	28
4.5	1.75	7.88	3	24

DEPLOYMENT MECHANISM – BURN WIRE TESTING

• 3cm of Mystery wire with Dacron chord (3/64") Results:

Current (A)	Voltage (V)	Power (W)	Time (s)	Energy (J)
2.0	0.68	1.36	-	-
3.0	1.02	3.06	5.9	18
3.5	1.18	4.13	3.9	16
4.0	1.36	5.44	3.1	17
4.5	1.50	6.75	1.7	11




DEPLOYMENT MECHANISM – BURN WIRE

Advantages	Disadvantages
 Advantages All parts are available from labs on campus at no cost Lightweight 	 Disadvantages Can't solder wire – need mechanical connection Wire becomes brittle after multiple uses Cord needs to be replaced for every use Difficult to securely attach to CD
	 Individual power converter circuit required ~4A of current draw

DEPLOYMENT MECHANISM – SERVO MOTOR

DEPLOYMENT MECHANISM – PULL PIN

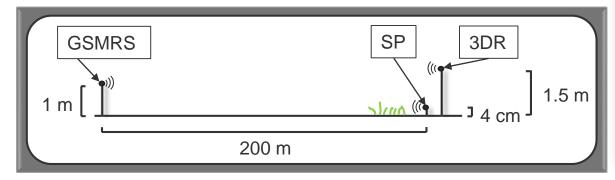
	Advantages		Disadvantages
•	Flight controller has built in	•	Must design mechanical
	PWM control		interface for the pull pin
•	Secure connection to CD and		
	SP		

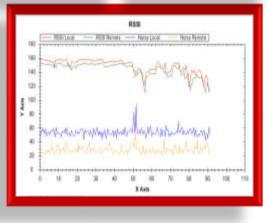
	Advantages		Disadvantages
•	Reusable – likely won't need	•	Will need extra circuitry for
	to replace any parts		withdraw/extend commands
•	Mechanically simple to		
	interface with CD & SP		
•	Secure connection to CD and		
	SP		

DEPLOYMENT MECHANISM – TRADE STUDY

		Servo motor Pull Pin		Linear Actuat	or Pull Pin	Burn Wire	
Criteria	Weight	Rating	Score	Rating	Score	Rating	Score
Mechanical Complexity	40%	3	1.2	5	2	4	1.6
Electrical Complexity	5%	3	0.15	3	0.15	1	0.05
Effects on CD	20%	4	0.8	4	0.8	1	0.2
Aquirability of Supplies	10%	3	0.3	1	0.1	5	0.5
Reusability	25%	5	1.25	5	1.25	3	0.75
Total	100%	3.7		4.3		3	.1

DEPLOYMENT MECHANISM – TRADE STUDY


Criteria	1	2	3	4	5	Weight	Justification
Number of Parts	5+ mechaniclaly separate parts to interface with CD and SP	4 mechaniclaly separate parts to interface with CD and SP	3 mechaniclaly separate parts to interface with CD and SP	2 mechaniclaly separate parts to interface with CD and SP	1 part interfaces with the CD controller and the SP	40%	Extra mechanical components will require integration, more mass, and higher risk of failure.
Electrical Complexity	The mechanism will need its own power converter circuit	-	The mechanism will need to be plugged into the CD controller as well as an external power supply	-	The design can be "plugged in" to the CD controller	5%	Extra circuit components will require more mass and labor. Additionally, a more complex circuit will add another chance for the deployment mechanism to fail. However, this is not weighted high because circuit elements do not weigh much and have low chances of failure.
	The SP will be loosely connected to the drone and will be able to sway and effect the motion of the CD	-	SP does not shake but experiences vibrations during flight	-	SP can be designed to not shake during flight and experiences no vibration	20%	A secure attachment will allow for favorable flight characteristics for the CD. Less swaying will increase the flight efficiency and increase flight duration as a result.
Aquirability of Supplies	All parts need to be ordered online	-	All parts can be aquired at stores within 30 minutes	All but 1-2 parts can be found on campus; others can be acquired at stores within 30 minutes	All parts are available	10%	If any parts break, the INFERNO team needs to be able to replace them quickly in order to continue being able to perform testing. However, the team can order multiple of each part ahead of time.
Reusability 1/6/2016	All parts must be replaced for each test	Half of the parts must be replaced for each test	No parts will last the duration of the project	1-2 parts will need to be replaced throughout the year	All parts can be re-used throughout duration of project with no need to replace	25%	While all parts will be less than 1% of the budget, the constant need to replace parts will require labor. Additionally, if the CD and SP are to be used in the coming years, future operators might have problems replacing


3DR/XBEE INTERFERENCE

INFERNO Simultaneous SP/CD Comms Testing Results

Top Left 📃	XBee link with 3DR turned on			
Top Right	XBee link with 3DR turned off			
Bottom Right	3DR link with XBee communication			
Bottom Middle	Communications testing setup			
Conclusion	Significant interference between systems; wait to transmit from XBees until CD returns to GSMRS			

CHILD DRONE – COMMUNICATIONS

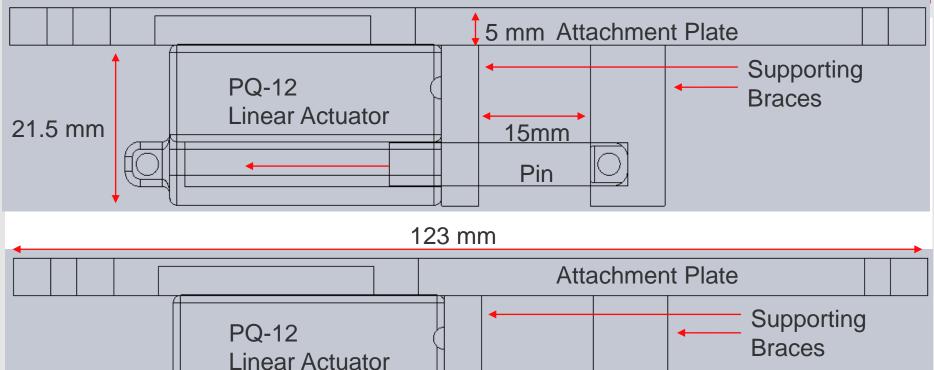
3DR Radio Set

3DR Radio Set Specifications							
Interfacing Mode	UART						
Transmit Current Draw	100 mA						
Receive Current Draw	25 mA						
Supply Voltage	3.3 VDC						
Power output [P _t]	20 dBm						
Dipole Antenna Gain	2 dBi (+2 dB of P _t)						

INFERNO:

- 3DR Radio Set will integrate with CD system
- 3DR Radio Set meets following requirements:
 - DR 4.1, DR 5.1

3DR Video Set


3DR Video Set Specifications							
Transmit Current Draw	850 mA						
Receive Current Draw	150 mA						
Supply Voltage	12 VDC						
Power Output [P _t]	33 dBm						
Dipole Antenna Gain	2 dBi (+2 dB of P _t)						

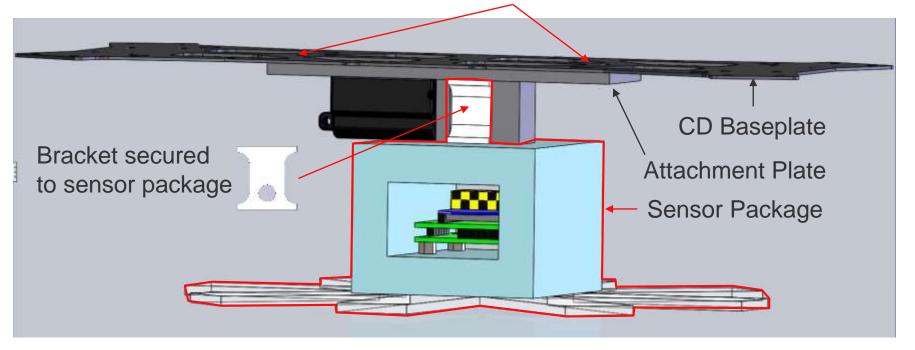
INFERNO:

- 3DR Video Set will integrate with CD system
- 3DR Video Set meets following requirements:
 - DR 5.2

DEPLOYMENT MECHANISM -STRUCTURE

Pin

IMAGING SYSTEM – CONTROL SWITCH

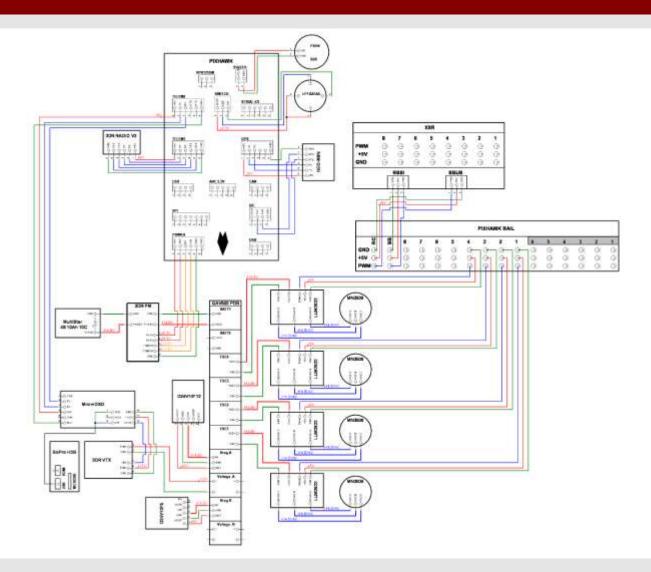

- MOSFET n-channel switch to power on/off
- Initiated by voltage sent by Pixhawk relay
- Can be controlled through Mission
 Planner or with Taranis
 RC transceiver

CHILD DRONE SUBSYSTEM INTEGRATION – IMAGE SYSTEM

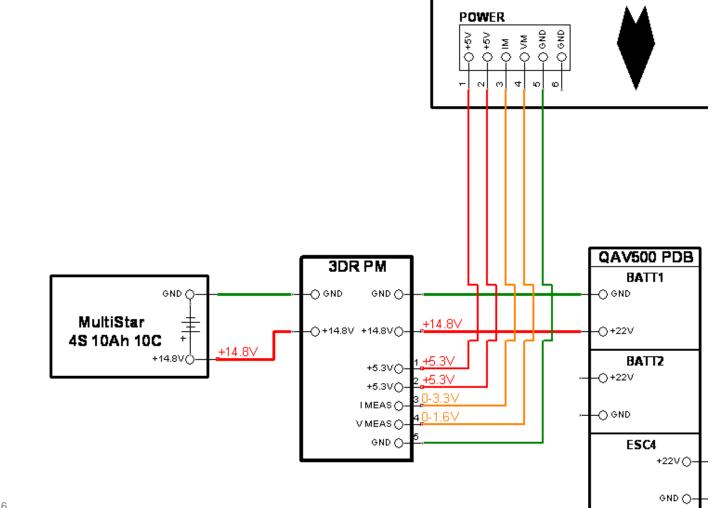
M3x5 mm screws attaching CD baseplate & deployment mechanism structure

CHILD DRONE TESTING – DEPLOYMENT MECHANISM

Voltage	Time	Current
6 V	2.0 s	0.09 A
5 V	2.6 s	0.07 A

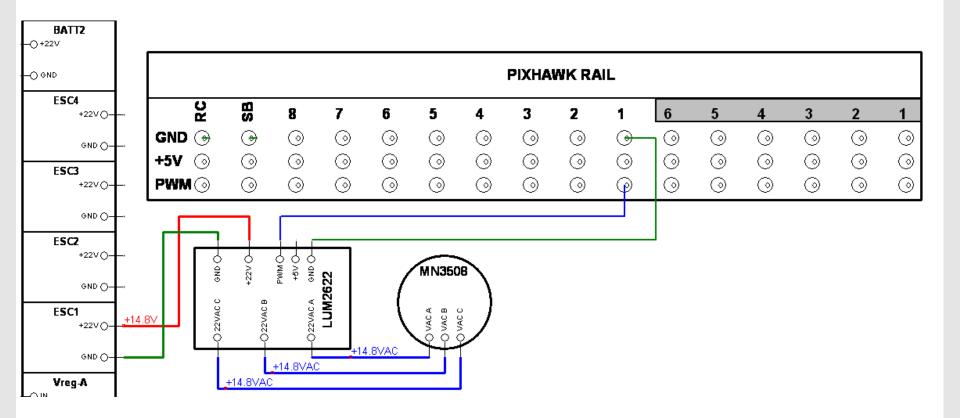

Trials: 10 at each voltage

All trials were successful


CHILD DRONE WIRING – FULL

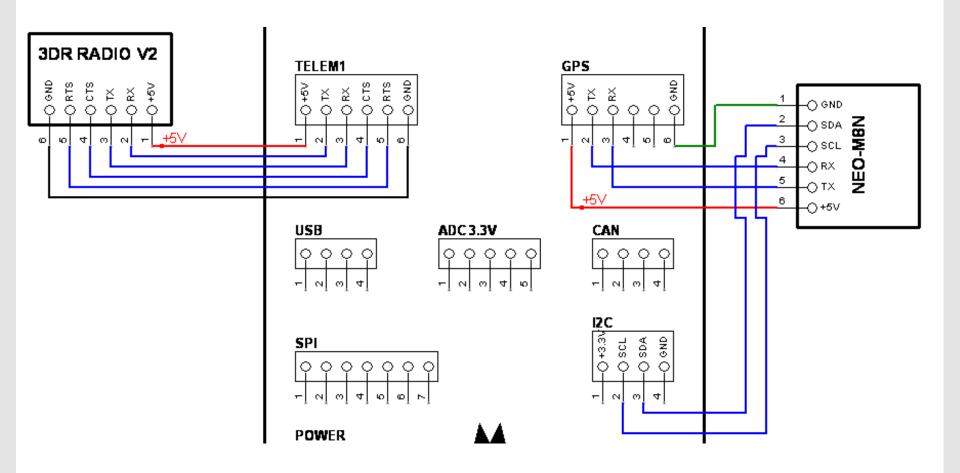
1/6/2016

CHILD DRONE WIRING – PRIMARY POWER

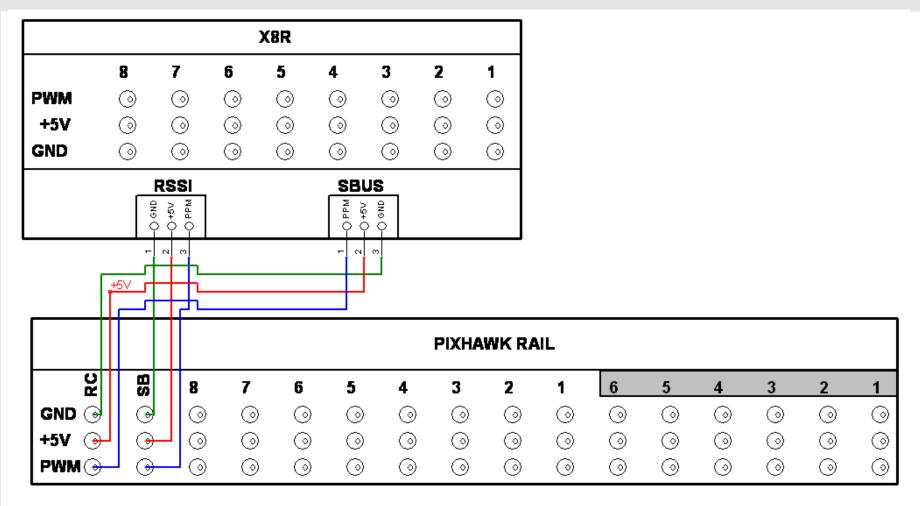


1/6/2016

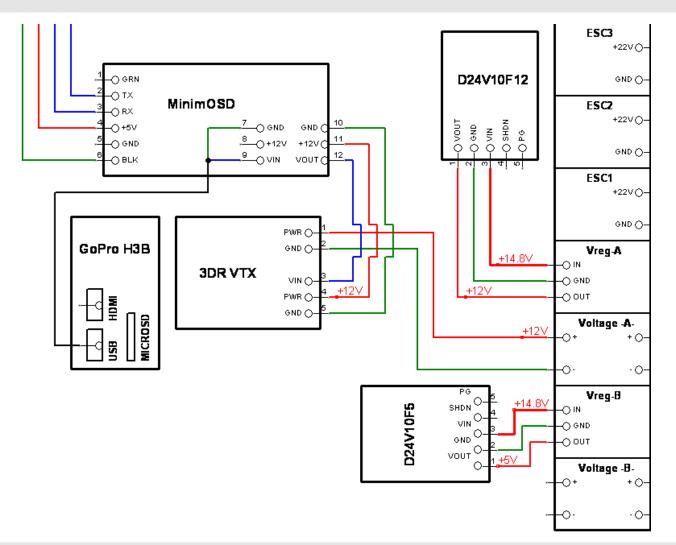
91



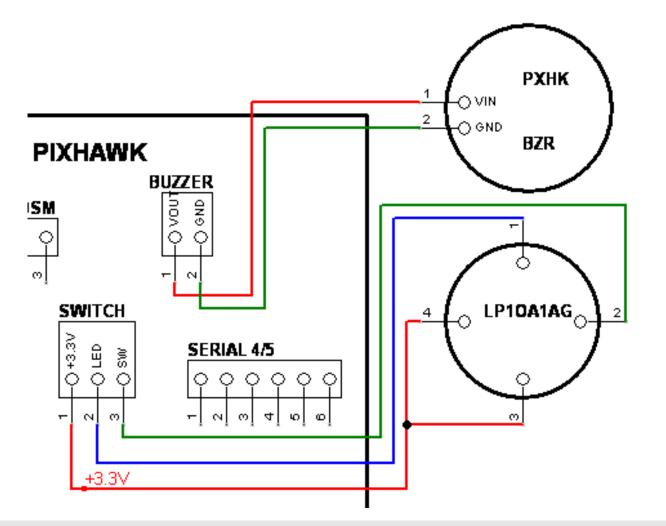
CHILD DRONE WIRING – MOTORS



CHILD DRONE WIRING – 3DR RADIO AND GPS

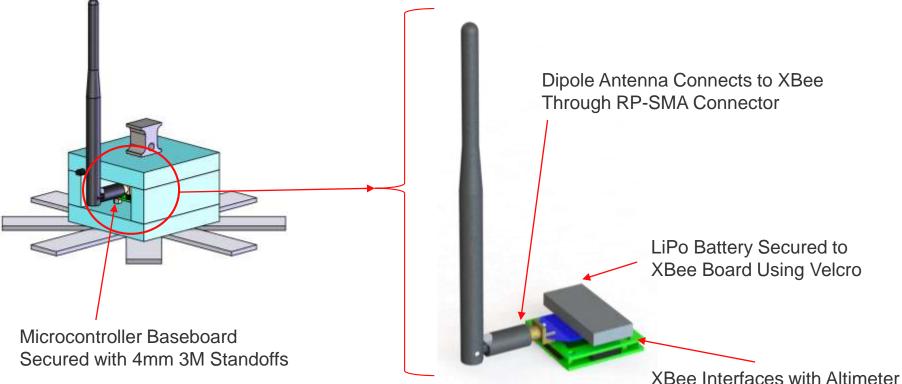


CHILD DRONE WIRING – RC TRANSCEIVER



CHILD DRONE WIRING – VIDEO AND VOLTAGE REGULATORS

CHILD DRONE WIRING – PIXHAWK SWITCH AND BUZZER

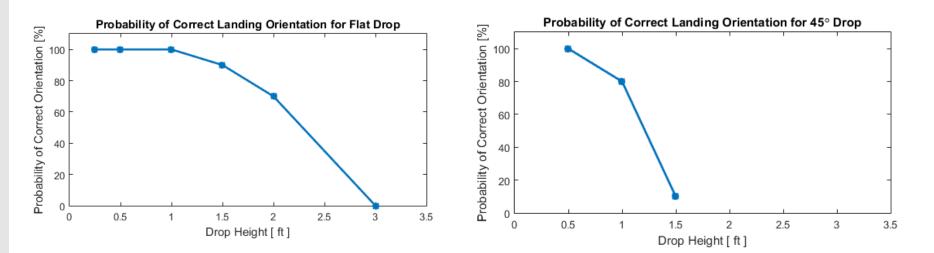


TEMPERATURE SENSOR SELECTION

		LN	I34CA	ד	NP 37	LN	134AH									
Criteria	Weight	R	w	R	w	R	w	4.8 mm								
Accuracy	30%	2	0.6	1	0.3	3	0.9									
Current Draw	40%	2	0.8	3	1.2	1	0.4	Г								
Range	15%	1	0.15	1	0.15	3	0.45	18.4 mm								
CU Experience	15%	3	0.45	1	0.15	1	0.15	18.4 mm								
Total	100%		2	1	1.8		1.9									
R: R	aw Score			W: Weighted Score		e										
Feature	INFE	RNO	Requirer	nent	c	haract	eristic	INFERNO:								
Accuracy		5°C [[DR 1.1.1]		2°	F	Use one LM34CA on SP								
Range	10°C -	- 47.8	3°C [DR	DR 1.1.1] -40°			R 1.1.1]		1.1.1]		-40°F – 230°F		-40°F – 230°F	-40°F – 230°F		Able to fall back on other options
Conclusion	The LM34CA meets all ser and package cor							necessary due to close trade stue results → Multiple viable options								

SENSOR PACKAGE SUBSYSTEM INTEGRATION

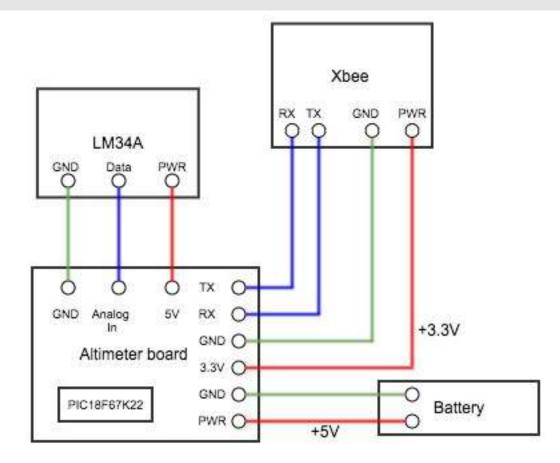
XBee Interfaces with Altimeter Board Through Custom PCB


TEMPERATURE SENSOR SELECTION

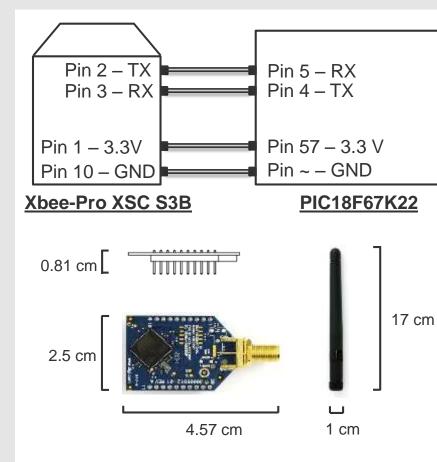
Criteria	Weight	Justification	
Accuracy	30%	Sensor must have adequate range for data to be meaningful	
Current Draw	40%	Each component must draw minimal power due to small SP battery	
Range	15%	Must be capable of collecting useful data within possible temperature range	
CU Experience	15%	Previous knowledge of functionality/reliability beneficial	

Criteria	R: 1	R: 2	R: 3	
Accuracy	4 ⁰ F	3 ºF	2 ⁰ F	
Current Draw	120 A	120 < A 70	A < 70	
Range	-40 < ⁰ F < 230	-45 < ⁰ F < 260	-50 < ⁰ F < 300	
CU Experience	No Experience	Faculty Experience	Faculty/INFERNO Experience	

SENSOR PACKAGE – LANDING


- Tests conducted on hard surface
 - High impact force
 - High coefficient of restitution
- Each test conducted 20 times

NOO AT BOIL

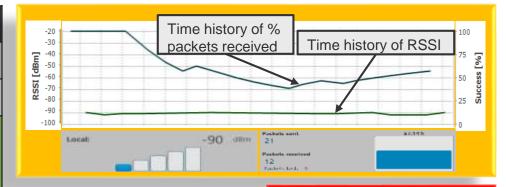


SENSOR PACKAGE - ELECTRICAL

SENSOR PACKAGE -COMMUNICATIONS

Xbee-Pro XSC S3B

XBee-Pro XSC S3B Specifications

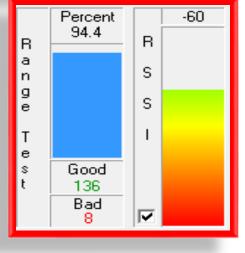

Interfacing Modes	SPI or UART
Transmit Current Draw	215 mA
Idle Current Draw	2.5 A
Supply Voltage	2.4 – 3.6 VDC
Dipole Antenna Gain	2 dBi (+2 dB of P _t)

INFERNO

- Requires 2 XBees: 1 at SP and 1 at GSMRS
- Mainly operates in idle mode
- Employ USART interfacing
- Data sent in discrete packets

SP COMMUNICATIONS SELECTION

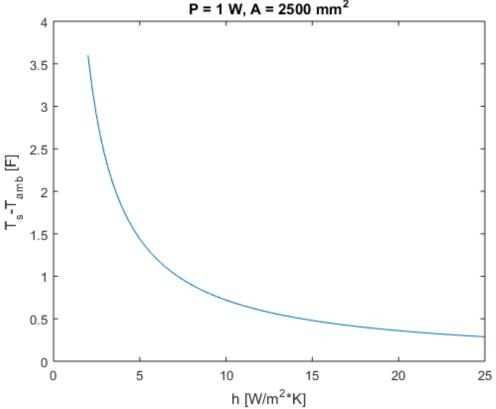
INFERNO Comms Testing Results		
Top 📔 Old XBee Model		
Bottom	New XBee Model	
Conclusion	New model provides far greater success: INFERNO will use XBee-Pro XSC S3B	



Testing Conditions:

- XBees were fixed in both cases
- Both tests performed with identical conditions and XBee configurations
- Different link software used for each XBee model → different figure styles

Conclusion:


- Some degree of packet loss over time for both models
- Superior packet receive rate for new model
- Superior received signal strength for new model

SENSOR PACKAGE THERMAL ANALYSIS

- Assumes 1D heat convection through open sides
- Ignores heat conduction through foam
- Heat transfer coefficient based on range for a free convection gas

SENSOR PACKAGE - ELECTRICAL

- Xbee Power Requirements
 - 9600 baud
 - 30 Bytes every 10 seconds = 240 bits
 - 240 bits/9600 bits/sec = 0.025 seconds every 10 seconds
 - Transmitting only 0.25% of the time

MULTIROTOR TRADE STUDY: QAV500 V2

• Quadcopter utilizing DJI Flamewheel frame arms

Adva	ntage	S
------	-------	---

- Elongated body allows for more payload space
- Frame arm configuration allows for large (13") props
- Clean vs. dirty bay construction provides easier electrical integration
- Bottom plate design is friendly to payload integration

Disadvantages

- Heaviest airframe considered
- Quadrotor design limits available takeoff weight

MULTIROTOR TRADE STUDY: TBS DISCOVERY

• Quadcopter utilizing DJI Flamewheel frame arms

Advantages	Disadvantages
Elongated body allows	• Bottom plate is not easily
for more payload space	modifiable for payload
• Frame arm configuration	deployment system
allows for large (13") props	integration
Lightest Airframe	Quadrotor design limits
Considered	available takeoff weight

MULTIROTOR TRADE STUDY: DJI F550

 Hexacopter from the DJI Flamewheel family of airframes

	Advantages		Disadvantages
•	Hexacopter design allows	•	Bottom plate is not easily
	for higher available takeoff		modifiable for payload
	weight		deployment system
•	Lightweight for a		integration
	hexacopter	•	Hexacopter design limits
			propeller size
		•	Control scheme is more
			complex and harder to
			tune than a quadcopter

MULTIROTOR TRADE STUDY: 3DR SOLO

Ready to fly 3DR Quadcopter

	Advantages		Disadvantages
•	Ready to Fly	•	420 g Payload (Not
•	Capable of streaming 720p		including camera and
	video		gimbal)
•	800 m Range and 20	•	Expensive (\$1000-1400)
	minute Flight Time	•	Airframe Modification
•	WiFi Comm System		Required to Mount
•	Capable of Servo Control		Deployment Module

MULTIROTOR TRADE STUDY: DJI PHANTOM

Ready to fly DJI Quadcopter

	À	2	2
10100			5
	ay)		
T			

Advantages	Disadvantages	-
Ready to Fly	 450 g Payload 	
• Capable of streaming 720p	 Expensive \$1000 	
video and record 1080p at	Airframe Modification	
30 FPS	Required to Mount	
• 17 minute Flight Time	Deployment Module	
Camera/Gimbal Included		
Capable of Servo Control		

MULTIROTOR TRADE STUDY: WEIGHTING JUSTIFICATION

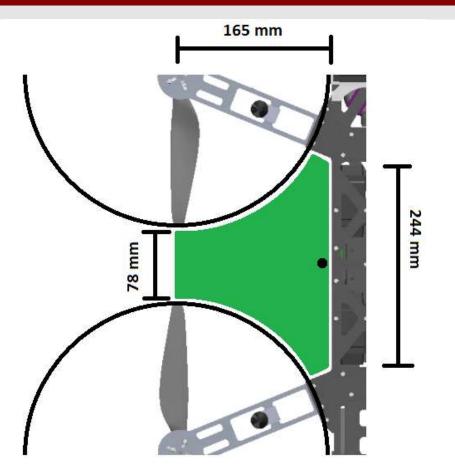
		Weighting
Criteria	Weight	Justification
Size	5%	The airframe must be of a reasonable size such that a rover may be designed by a future senior projects group to transport it, however, the INFERNO project is not constrained by specific child drone size requirements
Ease of Assembly	26%	The INFERNO team must be capable of assembling the airframe correctly and efficiently. Time is an important resource, thus a read-to-fly airframe is preferable over a more time-consuming kit.
Payload Integration	21%	The airframe must be capable of integrating with the designed payload and deployment mechanism. Because this is the main purpose of the child drone, compatibility and reliability of this interface is key to the mission.
Max Payload	7%	The chosen airframe and motor combination must be capable of lifting the weight of the entire assembly including the airframe, battery, and payload. If this cannot be accomplished, no mission can be attempted.
Cost	8%	The chosen airframe must fit within the budget for the INFERNO project. Money must also be allocated to the Sensor Package and other project elements, thus a small cost is important in the selection.
Serviceability	34%	Despite the INFERNO team's best efforts to avoid it, there is a likely chance that the chosen airframe will need to withstand a crash during the project timeline. Thus, the serviceability of the chosen airframe will be key to keeping such an event from bring all project progress to a halt.

MULTIROTOR TRADE STUDY: CRITERIA RANKINGS

Criteria	1	2	3	4	5	Weight
Size	> 1000 mm	800 - 1000 mm	600 - 800 mm	400 - 600 mm	< 400 mm	5%
Ease of Assembly	Airframe is do-it-yourself (DIY): requires custom design and manufacturing of airframe and integration of all components	require assembly; requires	Airframe is plug-and-fly (PNF): Most components necessary are included and preassembled; requires procurement and integration of a battery, transmitter, and receiver	Airframe is bind-and-fly (BNF): All components necessary are included and preassembled with the exception of a transmitter	Airframe is ready-to-fly (RTF); the airframe is fully assembled and ready to operate out of the box	26%
Payload Integration	Airframe cannot mount payload and/or imaging systems externally	Airframe requires structural modification to mount external imaging and payload systems	Airframe requires structural modification to mount external imaging system	Airframe requires structural modification to externally mount payload	Airfame can accommodate external payload/imaging without permanent modification	21%
Max Payload	< 200 g	200 - 300g	300 - 500 g	500 - 600 g	600+ g	7%
Cost	>\$3000	\$3000-\$2500	\$2500-\$2000	\$2000-\$15000	<\$1500	8%
Serviceability	Cannot service or exchange parts; must use COTS supplier for maintanence	Able to replace some components with same brand parts, but cannot use other brands; cannot service all components	Able to replace all components with same brand parts	Able to exchange some components with other brand parts	Able to fully exchange and upgrade all components with other brand parts	34%

MULTIROTOR TRADE STUDY

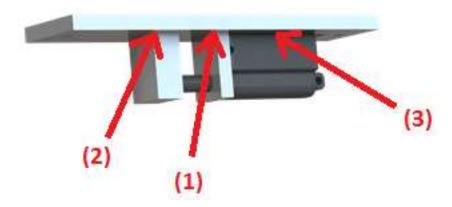
		TBS Di	scovery	DJI I	-550	QAV5	00 V2	3DR	Solo	DJI Pha	antom 3	DJI S	900
Criteria	Weight	Rating	Score	Rating	Score	Rating	Score	Rating	Score	Rating	Score	Rating	Score
Size	5%	4	0.2	4	0.2	4	0.2	4	0.2	4	0.2		0.1
Ease of Assembly	26%		0.26		0.52		0.26	5	1.3	5	1.3		0.52
Payload Integration	21%	3	0.63	3	0.63	5	1.05	4	0.84	4	0.84	3	0.63
Available Payload	7%	4	0.26	5	0.325	3	0.195		0.065	3	0.195	5	0.325
Cost	8%	4	0.3	4	0.3	4	0.3	5	0.375	5	0.375		0.15
Serviceability	34%	5	1.7	5	1.7	5	1.7	3	1.02		0.68	4	1.36
Total	100%	3.	35	3.6	75	3.7	705	3	.8	3.	59	3.08	35



AVAILABLE AREA FOR ANTENNA PLACEMENT

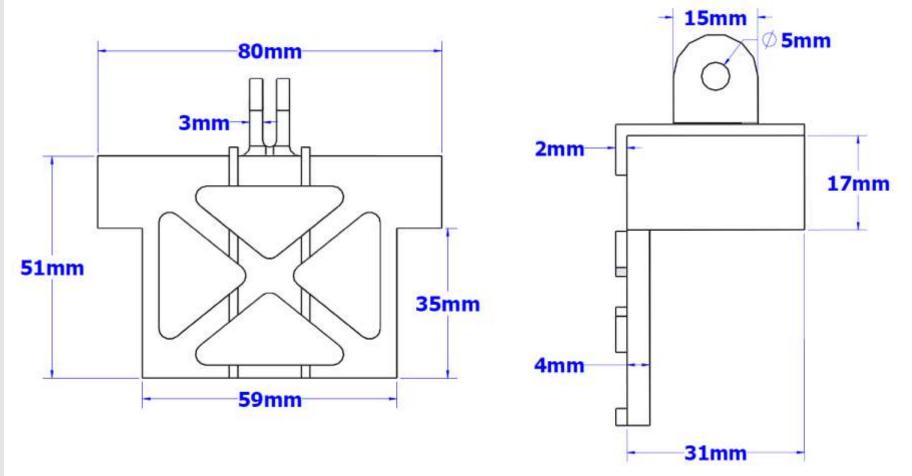
Full Sensor Package Height – 179 mm

Propeller Height Off Ground – 180 mm


Antenna Largest Diameter – 10 mm

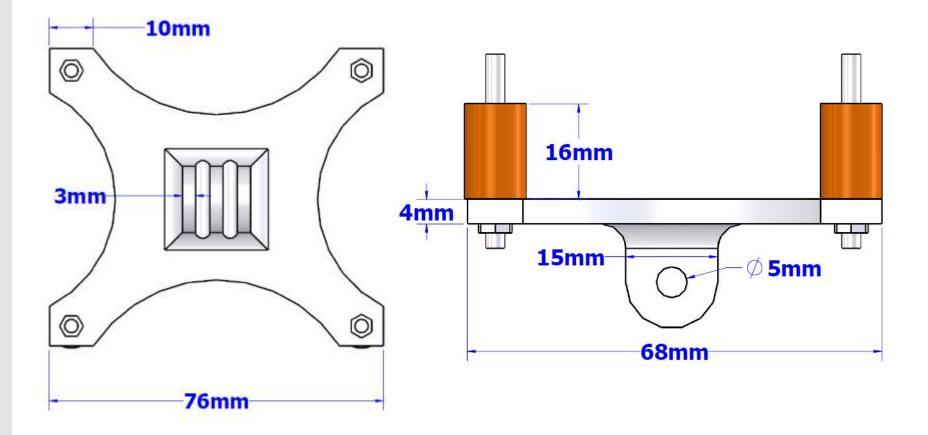
AVAILABLE AREA FOR ANTENNA PLACEMENT

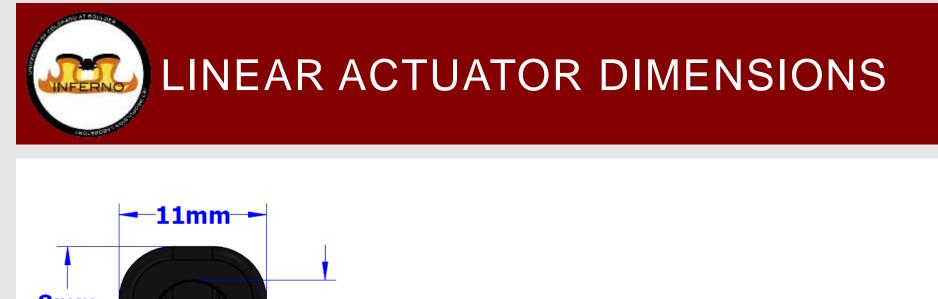
Material Strengths					
ABSplus 3D Printed Material					
Tensile Strength 31 MPa					
Flexure Strength	35 MPa				
Epoxy Resin					
Tensile Strength	85 MPa				

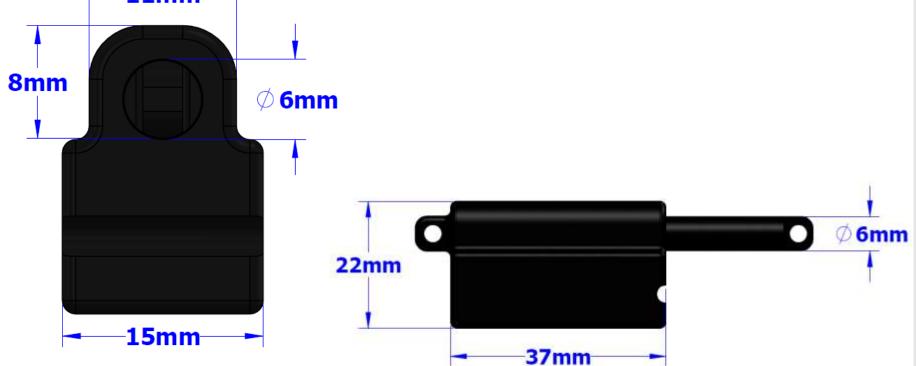


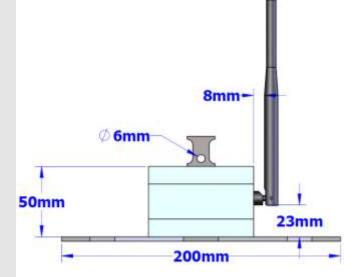
Minimum Areas						
ABSplus 3D Pr	ABSplus 3D Printed Material					
Tension (1) 225 mm ²						
Flexure (2) 250 mm ²						
Epoxy Resin						
Tension (3)	375 mm ²					

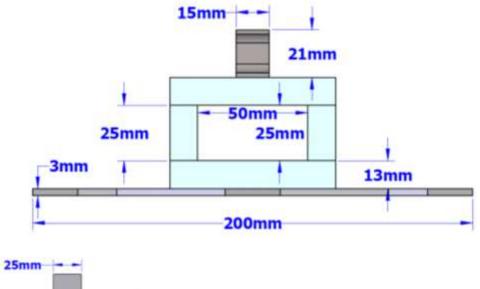
Factor of Safety					
ABSplus 3D Printed Material					
Tension 4678					
Flexure	5868				
Epoxy Resin					
Tension 21,376					

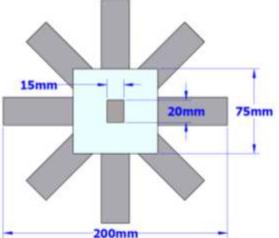


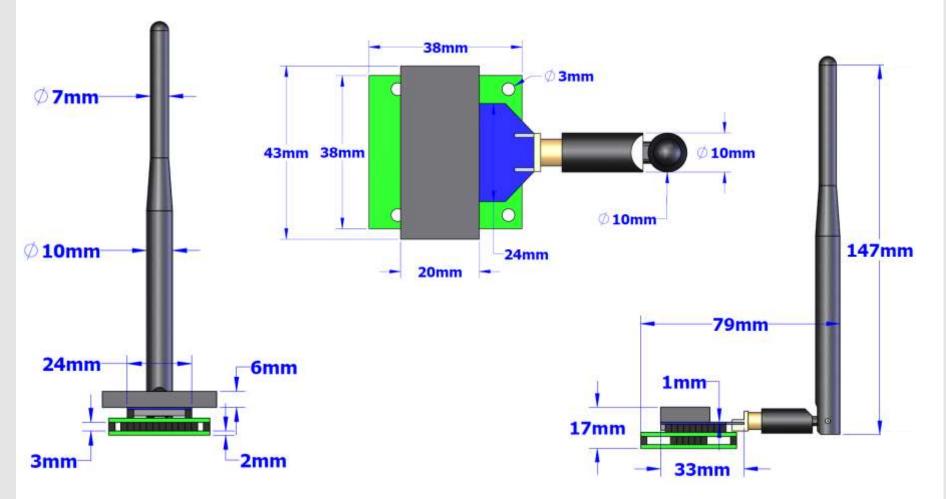

CAMERA MOUNT DIMENSIONS

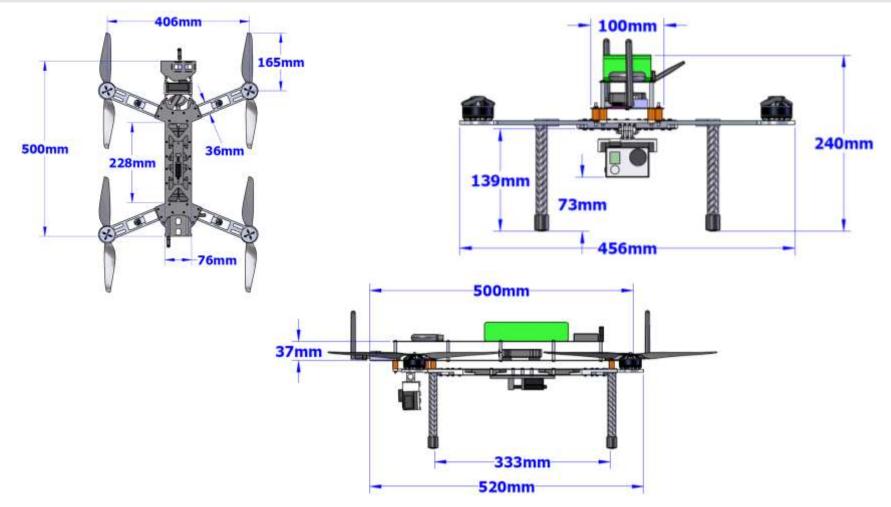



ISOLATION PLATE DIMENSIONS

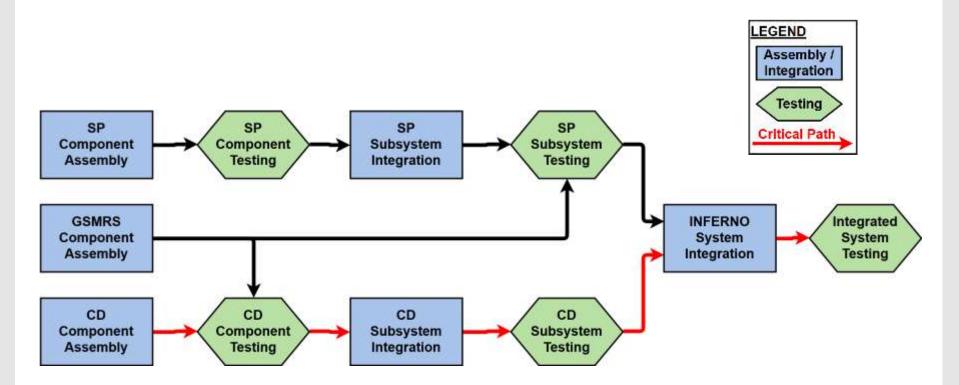




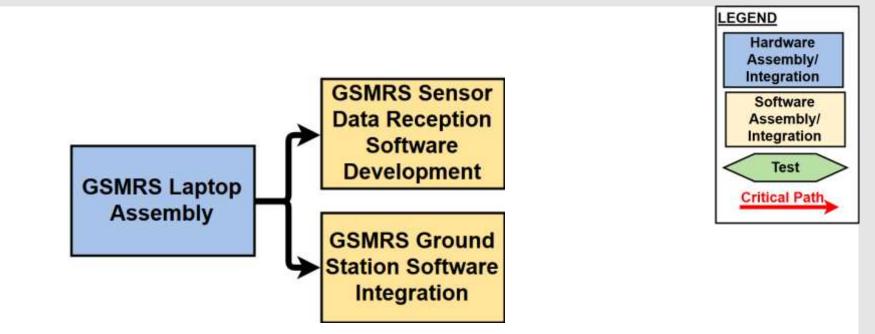


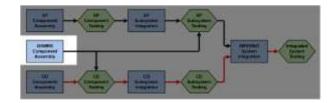


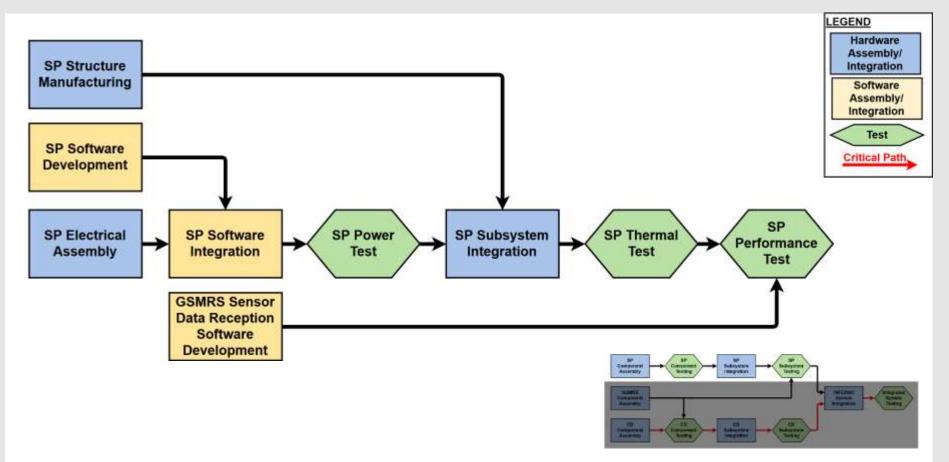
SENSOR PACKAGE ELECTRONICS DIMENSIONS

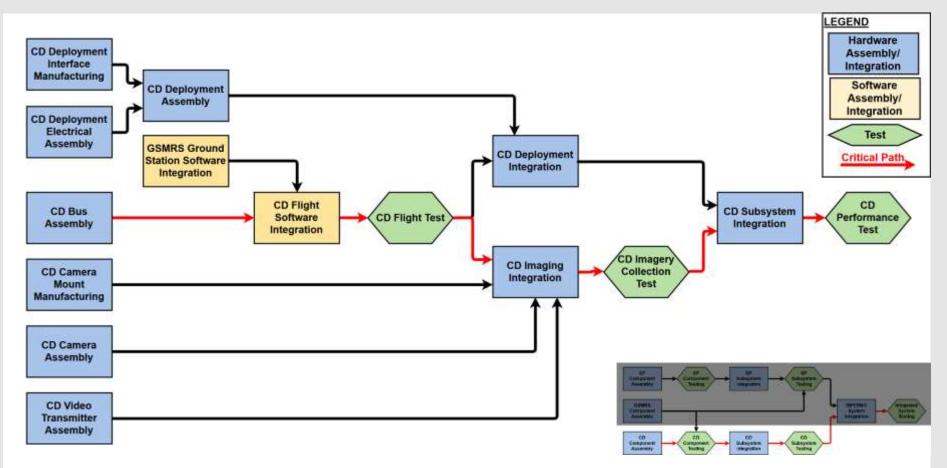


CHILD DRONE DIMENSIONS

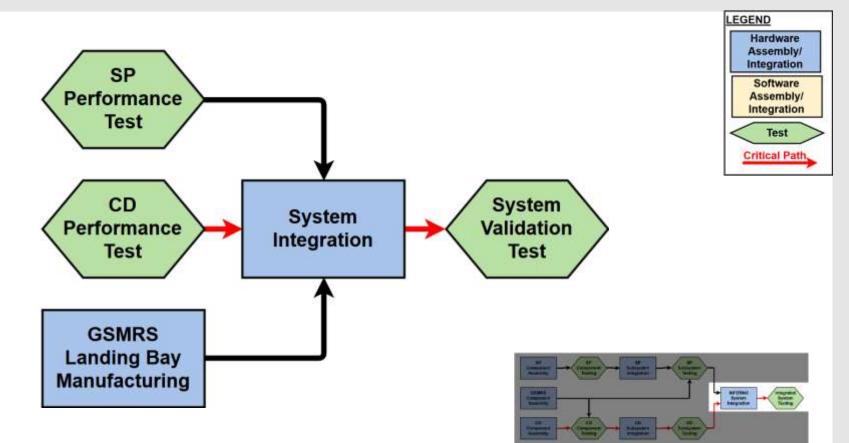



ASSEMBLY, INTEGRATION & TEST (AI&T) FLOW

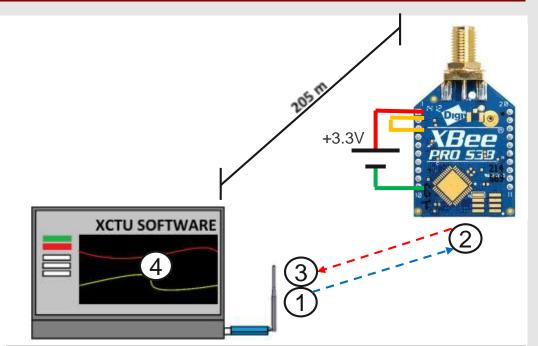

AI&T FLOW – GSMRS



AI&T FLOW – SENSOR PACKAGE

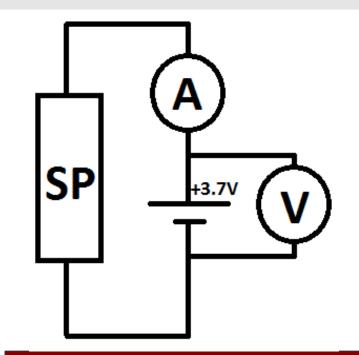


AI&T FLOW – CHILD DRONE


AI&T FLOW – INTEGRATED SYSTEM

V&V – SENSOR PACKAGE LINK BUDGET VERIFICATION

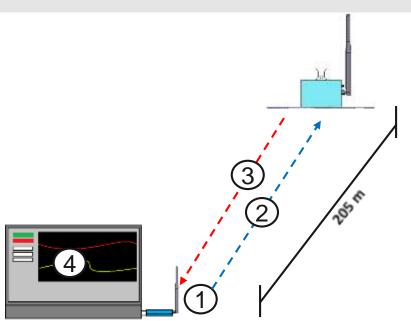
- Executed at South Campus
- Comparison of analytical link budget with RSSI during testing
- Identical test setup already used for communications prototyping
- Overview
 - 1. Local XBee running XCTU transmits pre-defined data packets
 - 2. Remote XBee receives and retransmits data packets
 - 3. XCTU calculates RSSI in dB
 - 4. RSSI compared with analytical link budget results


Conclusions:

- Test setup already prototyped
- Does not require any subsystem integration

V&V – SENSOR PACKAGE POWER TEST

- Executed at ITLL or Aerospace Labs
- Verify SP power system and storage capability
 - DRs 1.1.2.1, 1.1.2.2, 1.1.3
- Verifies SP power models
- Requires electronic/software integration of SP
- Overview:
 - Ammeter/voltmeter at battery terminals
 - SP collects/stores/transmits data for 1 hour
 - Voltage and current determine power/charge consumed
 - Will enable refinement of thermal model

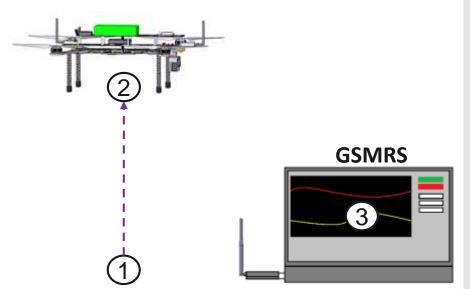

Conclusions:

- Testing facilities available
- Requires minimal resources

V&V – SENSOR PACKAGE PERFORMANCE TEST

- Executed at South Campus
- Verify integrated SP subsystem data collection, transmission, and reception under operational conditions
 - DRs 1.1, 1.1.2, 5.3
- Overview:
 - 1. Sensor Package placed 205m from GSMRS
 - 2. GSMRS commands SP to collect/transmit data
 - 3. GSMRS receives and plots data through 1 hour
 - 4. Data analyzed for compliance with requirements

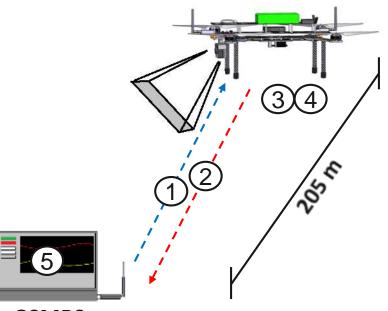
GSMRS


Conclusions:

 Completes verification of SP subsystem

V&V – CHILD DRONE FLIGHT POWER MODEL VERIFICATION

- Executed at RECUV
- Verify CD hovering power model
- Requires CD bus/flight software integration
- Overview:
 - 1. CD commanded to takeoff and hover
 - 2. CD remains at hover for 10 minutes, then lands
 - 3. Battery power/charge consumption assessed through voltage/current telemetry logs (10 Hz sample rate)

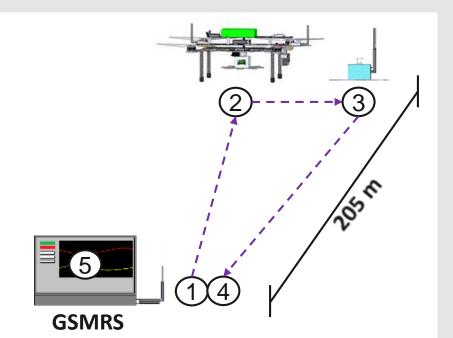

Conclusions:

- Key developmental test
- Verifies CD power model

V&V – CHILD DRONE IMAGE COLLECTION TEST

- Executed at ITLL/Aerospace Labs and Table Mountain
- Verify image quality, recording, and transmission during flight
 - DRs 2.1, 2.1.1, 2.1.3, 3.1, 3.1.1, 5.2
- Overview:
 - CD placed >205 m away from GSMRS, then commanded to begin image recording/transmission
 - 2. GSMRS receives and displays video from CD
 - 3. CD commanded to takeoff and hover for 15 minutes
 - 4. CD commanded to land and stop recording
 - 5. Imagery post-processed to verify compliance with requirements

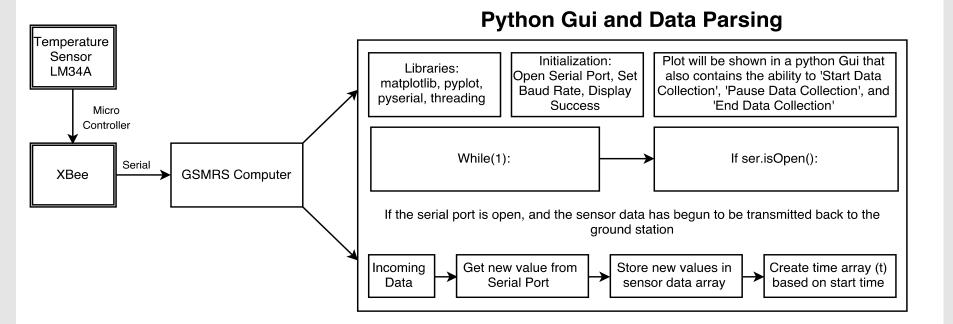
GSMRS


Conclusions:

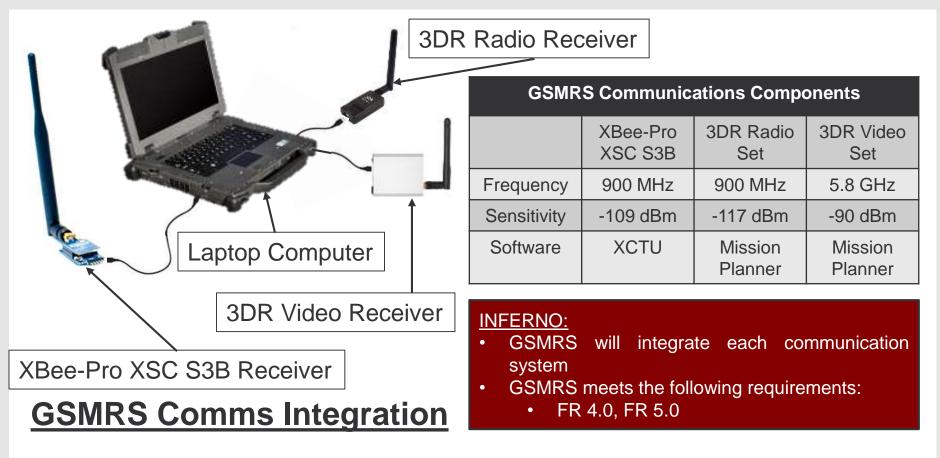
 Verifies image recording and transmission requirements

V&V – CHILD DRONE PERFORMANCE TEST

- Executed at Table Mountain
- Verifies integrated CD range, airspeed, hovering, deployment with SP mass simulator
 - DRs 1.2, 1.2.1, 1.2.2, 1.3.1, 1.3.2
- Overview:
 - 1. CD commanded to begin imagery and takeoff
 - 2. CD flies to LOI at >10 m/s and remains at hover until 5 min have elapsed
 - 3. CD lands and deploys SP mass simulator
 - 4. CD returns to GSMRS and hovers until 15 min have elapsed, then lands
 - 5. SP positioning and telemetry logs postprocessed to ensure compliance


Conclusions:

 Verifies CD flight as complete subsystem


GSMRS - SOFTWARE (DATA INTERPRETATION)

• The temperature data that is obtained needs to be displayed to the users are the ground station

GSMRS - COMMUNICATIONS

LEVELS OF SUCCESS

Levels	CD	Imaging	Sensor	GSMRS
1	 Capable of flight with simulated payload Deployment of SP simulated Manually piloted 	 Time stamped video at 420p at 30fps Wired communication with CD 8MP pictures taken on command 	 Wired communication with GSMRS Time stamped temperature data collected at 1 Hz, 8 bit resolution 	 Stationary workbench Wired data transmission and reception
2	 10 minute loaded flight time Translational flight capable Lands and deploys SP upon command 	 Wireless communication with CD Time Stamped video recorded at 720p at 30fps 	 Established wireless communication or handshake with GSMRS at 200m Store 1 hour of data 	 Wireless data transmission and reception
3	 15 minute loaded flight time 5 m/s translational flight Lands and deploys SP at LOI within 10m upon command Manually piloted takeoff and landing with autonomous waypoints for translation 	 Time stamped video recorded at 1080p at 30 fps 	 >50% wireless data transmission to GSMRS at 200m 	- Portable simulator
4	 10 m/s translational flight capable Lands and deploys SP at LOI within 5m upon command Fully autonomous with the exception of landing on GSMRS 	 Time stamped video transmitted at 720p at 30 fps 	 >90% wireless data transmission to GSMRS at 200m Retransmission of data possible 	- Data transmission and reception GUI

NEADOWT BOILT

BUDGET DETAILS – CHILD DRONE

Child Drone Manufacturing								
Part Name	Description	Unit Cost	Quantity	Discounts	Total Cost			
Lumenier QAV500 V2	Airframe w/ Aluminum Arms	\$318.00	1	0.00%	\$318.00			
3DR Pixhawk	Flight Controller	\$200.00	1	15.00%	\$170.00			
Tall CF Landing Gear	From Lumenier for QAV500	\$40.00	1	0.00%	\$40.00			
T-Motor MN3508-16 700 kV	Propeller Motors	\$70.00	4	0.00%	\$280.00			
Multistar Timber 13x4.5 Props	Propellers (pair)	\$18.00	4	0.00%	\$72.00			
Lumenier 30A ESC	Elec. Speed Controllers	\$25.00	4	0.00%	\$100.00			
Multistar 4S 10Ah 10C	Battery	\$59.00	1	0.00%	\$59.00			
Rctimer NEO-M8 GPS/Compass	GPS	\$50.00	1	0.00%	\$50.00			
Polou 12V, 2.2A Step-Down Reg	Voltage Regulator	\$10.00	1	0.00%	\$10.00			
Polou 5V, 1A Step-Down Reg	Voltage Regulator	\$8.00	1	0.00%	\$8.00			
Polou 5V Step-Up Reg	Voltage Regulator	\$5.00	2	0.00%	\$10.00			
Orange RC Bobbins (4pcs with nuts)	Silicone Bobbins (set of 4)	\$13.00	2	0.00%	\$26.00			
P30N06LE	Mosfet Switches	\$0.95	4	0.00%	\$3.80			
Misc. Electrical Parts		\$100.00	1	0.00%	\$100.00			
3D printed Deployment Attachment		\$10.00	1	0.00%	\$10.00			
Firgelli PQ12	Linear Actuator	\$65.00	1	0.00%	\$65.00			
Screws	M3 10 mm	\$0.04	2	0.00%	\$0.08			
			Child D	Drone Total	\$1,322			

BUDGET DETAILS – IMAGING

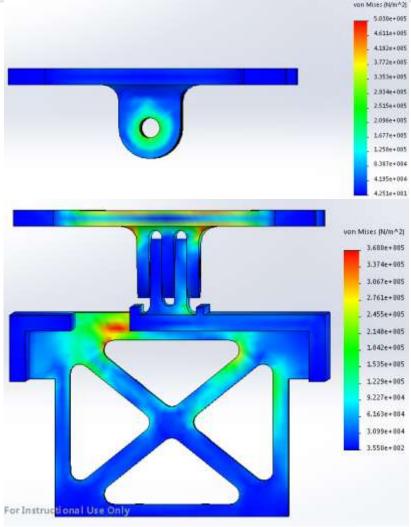
Imaging System Manufacturing								
Part Name	Description	Unit Cost	Quantity	Discounts	Total Cost			
GoPro Hero 3	Camera	\$300.00	1	100.00%	\$0.00			
3DR Video/OSD System Kit	Video Transmission System	\$190.00	1	15.00%	\$161.50			
3DR MinimOSD Cable for	Cables to connect video to flight							
Pixhawk	controller	\$4.00	1	15.00%	\$3.40			
3DR 5.8 GHz Cloverleaf								
Antenna Kit	High gain antenna	\$17.00	6	15.00%	\$86.70			
AV to USB Adapter		\$30.00	1	0.00%	\$30.00			
Tarot Gimbal FPV/OSD								
Video Cable		\$10.00	1	0.00%	\$10.00			
3D Print - Damping Base	10 Prints to account for damaged /							
and Top Plate	iterations	\$10.00	10	0.00%	\$100.00			
Misc. Electrical Parts		\$100.00	1	0.00%	\$100.00			
		In	naging Sy	stem Total	\$292			

BUDGET DETAILS – SENSOR PACKAGE

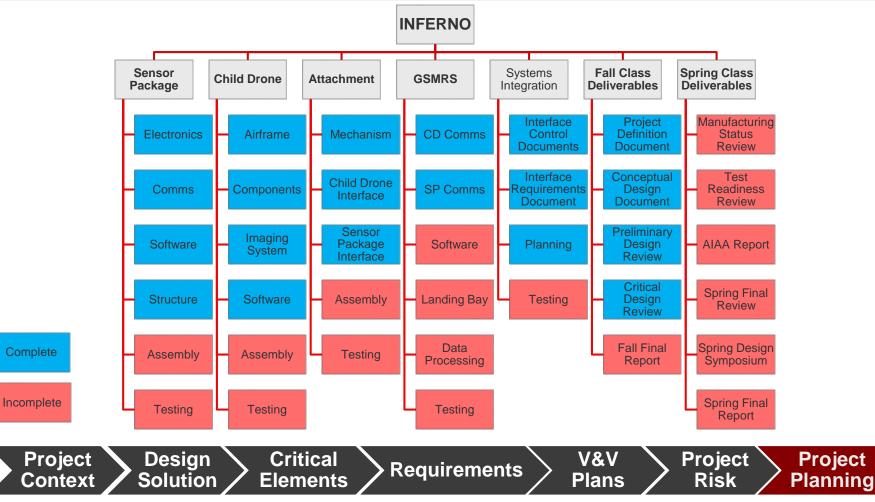
Sensor Package Manufacturing					
Part Name	Description	Unit Cost	Quantity	Discounts	Total Cost
Xbee Pro 900 MHz	XBP9B-XCST-001	\$42.00	1	0.00%	\$42.00
In-House PCB		\$88.00	2	0.00%	\$176.00
Temperature Sensor	LM34CA	\$8.00	2	0.00%	\$16.00
Structural Materials	Foam	\$20.00	1	0.00%	\$20.00
	Acrylic	\$10.00	1	0.00%	\$10.00
PCB Mounting	Standoffs	\$0.45	4	0.00%	\$1.80
	Screws	\$0.40	4	0.00%	\$1.60
Battery - 450 mAh 3.7 V	Tenergy (company)	\$7.59	1	0.00%	\$7.59
Antenna - 900 MHz		\$10.00	1	0.00%	\$10.00
3D printed attachment					
point		\$5.00	1	0.00%	\$5.00
Sensor Package Total					\$290

BUDGET DETAILS – GSMRS AND MISCELLANEOUS

GSMRS Manufacturing						
Part Name	Description	Unit Cost	Quantity	Discounts	Total Cost	
3DR Radio Set	Telemetry Comms System	\$100.00	1	0.00%	\$100.00	
FrSky Taranis X9D-Plus and						
X8R	Manual Control System	\$225.00	1	0.00%	\$225.00	
Xbee Pro 900 MHz	XBP9B-XCST-001	\$42.00	1	0.00%	\$42.00	
			GS	SMRS Total	\$367	


Additional Costs					
Part Name	Description	Unit Cost	Quantity	Discounts	Total Cost
Printing	Poster, Final Report	\$200.00	1	0.00%	\$100.00
GSMRS Total					\$367

IMAGING SYSTEM – STRESS ANALYSIS


- Evaluated under static 2g load
- ABSplus P430 plastic
- Static frictional coefficient 0.08
- Moment and normal force calculated analytically
 - Moment = 0.0779 N-m
 - Normal Force = 276N

Calculation	Maximum Stress [MPa]	Yield Stress [MPa]	Factory of Safety
Analytic	1.170		25.7
SolidWorks FEM	0.503	30	59.6

WORK BREAKDOWN STRUCTURE

1/6/2016

Complete