
INFORMATION AND COMPUTATION 80, 227-248 (1989)

Inferring Decision Trees Using the Minimum
Description Length Principle*

J. Ross QUINLAN

School of Computing Sciences,
New South Wales Institute of Technology,

Sydney, N. S W. 2007 Australia

AND

RONALD L. RIVEST

MIT Laboratory for Computer Science,
Cambridge, Massachusetts 02139

We explore the use of Rissanen’s minimum description length principle for the
construction of decision trees. Empirical results comparing this approach to other
methods are given. 0 1989 Academic Press, Inc.

1. INTRODUCTION

This paper concerns methods for inferring decision trees from examples
for classification problems. The reader who is unfamiliar with this problem
may wish to consult J. R. Quinlan’s paper (1986), or the excellent mono-
graph by Breiman et al. (1984), although this paper will be self-contained.

This work is inspired by Rissanen’s work on the Minimum description
length principle (or MDLP for short) and on his related notion of the
stochastic complexity of a string Rissanen, 1986b. The reader may also
want to refer to related work by Boulton and Wallace (1968, 1973a,
1973b), Georgeff and Wallace (1984), and Hart (1987).

Roughly speaking, the minimum description length principle states that
the best “theory” to infer from a set of data is the one which minimizes the
sum of

1. the length of the theory, and

2. the length of the data when encoded using the theory as a
predictor for the data.

*This paper prepared with support from NSF Grant DCR-8607494, AR0 Grant
DAAL03-86-Ktll71, and a grant from the Siemens Corporation.

227
089s5401/89 $3.00

Copyright 0 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.

228 QUINLAN AND RIVES-I

Here both lengths are measured in bits, and the details of the coding
techniques are relevant. The encoding scheme used to encode the allowable
theories and data reflect one’s a priori probabilities.

This paper explores the application of the MDLP to the construction of
decision trees from data. This turns out to be a reasonably straightforward
application of the MDLP. It is also an application area that was foreseen
by Rissanen. (“...the design of an optimal size decision tree can rather
elegantly be solved by this approach without the usually needed fudge
factors and arbitrary performance measures” (Rissanen, 1986a, p. 151).

The purpose of the present paper is thus to examine closely this proposal
by Rissanen, to work out some of the necessary details, and to test the
approach empirically against other methods. This paper may also serve as
an expository introduction to the MDLP for those who are unfamiliar
with it; but the interested reader is strongly encouraged to consult
Rissanen’s (1978, 1986a, 1986b) fascinating papers on these subjects (and
his papers referenced therein).

We formalize the problem of inferring a decision tree from a set of exam-
ples as follows. We assume that we are given a data set representing a
collection of objects. The objects are described in terms of a collection of
attributes. We assume that we are given, for each object and each attribute,
the value of that attribute for the given object. In this paper we do not
consider the possibility that some values may be missing; the reader should
consult Quinlan (1986) for advice on handing this situation.

We are also given, for each object, a description of the class of that
object. The classification problem is often binary, where each object
represents either a positive instance or a negative instance of some class.
However, we will also consider non-binary classification problems, where
the number of object classes is an arbitrary finite number. (As an example,
consider the problem of classifying handwritten digits.)

Table I gives an example of a small data set, copied from
(Quinlan, 1986). Here the attributes are for various Saturday mornings,
and the classification is positive if the morning is suitable for some
“unspecified activity.”

From the given data set, a decision tree can be constructed. A decision
tree for the data in Table I is given in Fig. 1. We can view the decision tree
as a classification procedure. Some of the nodes (drawn as solid rectangles)
are decision nodes; these nodes specify a test that one can apply to an
object. The possible answers are the labels of the arcs leaving the decision
node. In Fig. 1, the tests simply name the attribute to be queried; the arcs
give the possible values for the attribute. The dashed boxes of the figure are
the leaves of the decision tree.

A decision tree defines a classification procedure in a natural manner.
Any object (even one not in the original data set) is associated with a

INFERRING DECISION TREES 229

TABLE I

A Small Data Set

Attribute

No. Outlook Temperature Humidity Windy Class

1 sunny hot high false N
2 sunny hot high true N
3 overcast hot high false P
4 rain mild high false P
5 rain cool normal false P
6 rain cool normal true N
7 overcast cool normal true P
8 sunny mild high false N
9 sunny cool normal false P

10 rain mild normal false P
11 sunny mild normal true P
12 overcast mild high true P
13 overcast hot normal false P
14 rain mild high true N

unique leaf of the decision tree. This association is defined by a procedure
that begins at the root and traces a path to a leaf by following the arcs that
correspond to the attributes of the object being classified. For example,
object 10 of Table I would be associated with the rightmost leaf of the
decision tree of Fig. 1, since it has a rainy outlook but is not windy. A
decision procedure with c leaves partitions the space of objects into c
disjoint categories.

With each leaf the decision tree associates a class; this is the default class

FIG. 1. A decision tree.

230 QUINLAN AND RIVEST

assigned by the decision tree to any object in the category associated with
that leaf. New objects will be classified according to the default class of
their category.

In our example, the available attributes are adequate to construct a
decision tree which predicts the class perfectly (a perfect decision tree). In
some cases, the objects in a given category may not all be of the same class.
This may happen if the input data is noisy, if the given attributes are inade-
quate to make perfect predictions (i.e., the class of the given objects cannot
be expressed as a function of their attribute values), or if the decision tree is
small relative to the complexity of the classification being made. If the
decision tree is not perfect, the default class label for a leaf is usually chosen
to be the most frequent class of the objects known to be in the associated
category.

The problem is to construct the “best” decision tree, given the data. Of
course, what is “best” depends on how one plans to use the tree. For
example, a tree might be considered “best” if:

1. It is the smallest “perfect” tree.

2. It has the smallest possible error rate when classifying previously
unseen objects.

In this paper we are primarily concerned with objective 2.
For this purpose, it is well known that it is not always best to construct

a perfect decision tree, even if this is possible with the given data. One often
achieves greater accuracy in the classification of new objects by using an
imperfect, smaller decision tree rather than one which perfectly classifies all
the known objects (Breiman et al., 1984). The reason is that a decision tree
which is perfect for the known objects may be overly sensitive to statistical
irregularities and idiosyncrasies of the given data set.

However, it is generally not possible for a decision tree inference
procedure to explicitly minimize the error rate on new examples, since the
“real world” probability distribution generating the examples may be
unknown or may not even exist.

Consequently, a number of different approximate measures have been
proposed for this purpose. For example, Quinlan (1986) studies some infor-
mation-theoretic measures similar to the MDLP in spirit. The MDLP is an
approximate criteria in the same sense: minimizing the appropriate
“description-length” (to be defined) can be viewed as an attempt to
minimize the “true” error rate for the classification procedure.

Another level of approximation usually arises because it is usually
infeasible in practice to determine which decision tree actually minimizes
the desired measure. There are just too many candidate decision trees, and
there seems to be no efficient way of identifying the one which optimizes

INFERRING DECISION TREES 231

the chosen measure. Thus one is forced to adopt heuristics here as well
which attempt to find a tree that is good or near-optimal with respect to
the chosen measure. A commonly used heuristic is to build a large tree in a
top-down manner, and then to iteratively prune leaves off until a tree is
found that seems to minimize the desired measure (Breiman et al., 1984). It
is not ucommon for different criteria to be used during the pruning phase
than during the initial building phase. Growing an overly large initial tree
will often allow dependencies between the attributes to be discovered which
might not reveal themselves quickly enough if an attempt was made to
grow the tree top-down until it seemed that the measure was minimized.

No matter what search technique is used to find a good tree according to
the desired measure, the choice of the approximate measure itself can have
a large effect on the quality of the resulting decision tree.

2. THE MINIMUM DESCRIPTION LENGTH PRINCIPLE

In this section, we describe how Rissanen’s (1978, 1986a, 1986b)
minimum length description principle naturally defines a measure on
decision trees (relative to a given set of data), where the decision tree which
minimizes this measure is proposed as a “best” decision tree to infer from
the given data.

We will motivate the minimum description length principle by consider-
ing a communication problem based on the given data. The minimum
description length principle will define the “best” decision tree to be the one
that allows us to solve our communication problem by transmitting the
fewest total bits. Of course, this communication problem is just an artifice
used in the definition of the “best” tree; the real objective is to produce that
decision tree which will have the greatest accuracy when classifying new
objects.

Our communication problem is the following. You and I have copies of
the data set (e.g., Table I), but in your copy the last column-giving the
class of each object-is missing. I wish to send you an exact description of
the missing column using as few bits as possible. We agree in advance on
an encoding technique to be used to transmit the missing column to you.
The simplest technique would be for me to transmit the column itself to
you directly. In our example this would require exactly 14 bits, independent
of what classifications the objects have.

However, if the class of an object depends to any significant extent on its
attributes, then I may be able to dramatically reduce the number of bits I
need to send, if we have agreed to use an encoding technique that allows
me to express such dependencies. For example, suppose it sufficed for me

232 QUINLAN AND RIVEST

to say, “an object is in the positive class if and only if it has high humidity.”
This would require only a few bits, independent of the size of the table.

In general, the more predictable that the class of an object is from the
object’s attributes, the fewer bits I may need to send in order to com-
municate to you the missing class column. To this end, it may be helpful
for us to agree on an encoding technique that allows reference to various
subsets of the objects defined by their attributes, such as “all windy high
humidity objects.” Since both of us know the attributes of each object, you
can determine which objects I am referring to when I use such descriptions.

In general, I may find it worthwhile to:

1. Partition the set of objects into a number of subsets or categories,
based on the attributes of the objects.

2. Send you a description of this partition.

3. Send you a description of the most frequent (or default) class to be
associated with each subset.

4. For each category of objects, send you a description of the excep-
tions-by naming those objects in the category whose actual classification
is different than the default class, together with the correct classification for
those objects.

This may be worthwhile since if there are few exceptions in a category,
only a few bits will be needed to describe them. Although I need to use
some bits in order to describe to you the partition, this partition may more
than pay for its cost by means of the data compression I can later achieve
in step 4.

A natural and efficient way of partitioning the set of objects into disjoint
categories, and associating a default class with each category, is to use a
decision tree. This is the approach we will use in this paper.

The “best” decision tree, for our communication problem, is defined to
be the one which enables me to send you the fewest possible bits in order
to describe to you the missing class column in your table. For this tree, the
combined length of the description of the decision tree, plus the description
of the exceptions, must be as small as possible. Of course, the actual cost
will depend on the methods used to encode the decision tree and the
exceptions-more about this later.

This “optimal” (according to the MDLP) decision tree can then be used
to classify new objects.

The communication problem defined above captures the essence of
Rissanen’s minimum description length principle. The “best” tree for the
communication problem is proposed as the “best” tree to infer from the
given data. Dependencies between an object’s class and its attributes which
are pronounced and prevalent enough to allow me to save bits in the com-

INFERRING DECISION TREES 233

munications problem are judged to be significant and worth including in
the inferred decision tree. Dependencies which are weak or are only
represented in a few cases are judged to be insignificant and are omitted
from the tree. The communication problem thus provides a mathematically
clean and rigorous way of defining the “best” decision tree to infer from a
given set of data, relative to the method used to encode the tree and the
exceptions. Furthermore, since coding length and predictability are
intimately related, one has reason to expect that such a decision tree will
do well at classifying new, unseen cases (see Rissanen, 1986a, 1986b).

2.1. A Bavesian Interpretation of the MDLP

In the next section we turn to the question of coding techniques. Before
doing so, we point out that the MDLP can be naturally viewed as a
Bayesian MAP (maximum a posteriori) estimator. Let T denote our
decision tree, and let t denote its length in bits when encoded as described
in the next section. Similarly, let D denote the data to be transmited (the
last column of the object description table), and let d denote its length
when encoded as described in the next section, using the tree to describe all
the “non-exceptional” classes.

Let r be a fixed parameter, r > 1. (In typical usage, r = 2.) We associate
with each binary string of length t (here t > 0) the probability

(l -t)(k)*? (1)

so ,4 (the empty string) has probability (1 - l/r), the strings 0 and 1 each
have probability (1 - l/r)(1/2r), and so on. It is easy to check that the total
probability assigned to strings of length t is (1 - l/r)(l/r)’ and that the
total probability assigned to all strings is 1. The parameter r controls how
quickly these probabilities decrease as the length t of the string increases; as
r increases these probabilities decrease more quickly. This procedure allows
us naturally to associate a probability with a string.

Let rT and rg be two fixed parameters with r,> 1 and rg > 1. Then we
can interpret the minimum description length principle in a Bayesian
manner as follows, using the above procedure for associating probabilities
with strings:

1. The length t of encoding of the tree T is used to determine the
a priori probability of the theory represented by the decision tree,

234 QUINLAN AND RIVEST

2. The length d of the data is used to determine the conditional
probability of the observed data, given the theory,

P(DIT)=(l-r,) $ Y
(> D

(3)

3. The negative of the logarithm of the a posteriori probability of the
theory is by Bayes’ formula a linear function of r and d;

P(T(D)= P(D I T) P(T)
P(D) (4)

implies that

-k(l -r,)-kid1 -r~)+f(D)

= fcT+dcD+g(r,, rD, D), (5)

wheref(D) is a constant that depends on the data D but not on the tree T,
and where g(rT, rD, D) is a constant depending only on D and the
parameters rT and r D; these constant values can thus be safely ignored
when trying to find the best tree T for the data D. The tree which
minimizes tc,+ dc, will have maximum a posteriori probability.

If, for example, we choose rT = rD = 2, then cT. = c, = 2, and finding the
best theory is equivalent to minimizing the sum t + d. Choosing other
values for rT and/or rD will give rise to other linear combinations of t and
d. If rT is large, then large trees T will be penalized more heavily, and a
more compact tree will have maximum a posteriori probability. In the
limit, as rT + co, the resulting tree will be the trivial decision tree consisting
of a single node giving the most common class among the given objects. If
rD is large, then a large tree, which explains the given data most accurately,
is likely to result, since exceptions will be penalized heavily. In the limit, as
rD -+ co, the resulting decision tree will be a perfect decision tree, if one
exists. Thus, choosing rT and rD amount to choosing one’s a priori bias
against large trees or large numbers of exceptions.

In the rest of this paper, unless stated otherwise, we will assume
that rT= rD, so that cT=cg, and we will wish to minimize t + d; this
corresponds to the minimum description length principle in its simplest
form.

One can view the contribution of the minimum description length prin-
ciple, in comparison with a Bayesian approach, as providing the user with
the conceptually simpler problem of computing code lengths, rather than
estimating probabilities. It is easier to think about the problem of coding a

INFERRING DECISION TREES 235

decision tree than it is to think about assigning an a priori probability to
the tree.

3. CHOICE OF CODING TECHNIQUES

There are many different techniques one could use to encode the decision
tree and the exceptions. In this section we propose some particular techni-
ques for consideration. For a given set of data, and for each possible
encoding technique, a “best” tree can be computed (in principle, although
in practice it may be difficult to compute such a “best” tree).

It is important that the encoding techniques chosen be efficient. An
inefficient method of encoding trees will cause decision trees which are too
small to be produced, since the “tree” portion of our communication cost
will be too high. Symmetrically, an inefficient method for encoding excep-
tions will tend to result in overly large trees being produced.

This paper suggests some particular encoding techniques. The utility of
the minimum description length principle is not based on the use of any
particular techniques.

The minimum description length principle provides a way of comparing
decision trees, once the encoding techniques are chosen.

4. DETAILS OF CODING METHODS

In order to illustrate the details of the approach suggested above, we
outline techniques for coding messages, strings, and trees in this section. In
this paper, all logarithms are to the base 2; we denote the base two
logarithm of n as lg(n).

4.1. Coding a Message Selected from a Finite Set

We shall need ways to encode a message that is selected from a finite set.
If the message to be transmitted is selected from a set of n equality Zikely
messages, then Ig(n) bits are required to encode the selected message. (In
this paper we shall generally ignore the issues that arise concerning the use
of non-integral numbers of bits. The use of techniques such as arithmetic
coding (Rissanen and Langdon, 1981) can justify using non-integral num-
bers, rather than rounding up; arithmetic codes can be as efficient as the
non-integral numbers indicate, when many messages are being sent. Also,
we are less interested here in actually coding the data than in knowing how
much information is present.)

If the messages have unequal likelihoods which are known to the
receiver, then -lg(p) bits are required to transmit a message which has

236 QUINLAN AND RIVEST

probability p, using an ideal coding scheme. Of course, if the n messages
are equally likely, this reduces to our previous measure.

4.2. Coding Strings of O’s and l’s

We shall also need techniques for encoding finite-length strings of O’s and
1’s. In particular, we are interested in the problem of transmitting a string
of O’s and l’s so that it will be cheaper to transmit strings which have only
a few 1’s. (The ones will indicate the location of the exceptions.) We
assume that the string is of length n, that k of the symbols are l’s and that
(n - k) of the symbols are O’s, and that k < b, where b is a known a priori
upper bound on k. Typically we will either have b = n or b = (n + 1)/2.

The procedure we propose is:

l First I transmit to you the value of k. This requires lg(b + 1) bits.
(See Appendix A for a variation on this proposal.)

. Now that you know k, we both know that there are only (;)
strings possible. Since all these possible strings are equally likely a priori,
I need only lg((;)) additional bits to indicate which string actually occurred.

The total cost for this procedure is thus

UK k, b) = lg(b + 1) + lg
((>>

; bits.

When we are transmitting the location of exceptions for a binary
classification problem, we will have b = (n + 1)/2; in several other cases we
will have b = n.

We may consider coding in this manner the string in the last column of
Table I:

N, N, P, P, P, N, P, N, P, P, P, P, P, N. (7)

Treating N as 0 and P as 1, we have n = 14, k = 9, and b = 15, for a total of

L(14,9, 14) = lg(15) + lg(2002) = 14.874 bits.

This is larger than the “obvious” cost of 14 bits; this coding scheme can
save substantially when k is small, in return for an increased cost in other
situations (as in the present example).

We propose using L(n, k, b) as the standard measure of the complexity of
a binary string of length n containing exactly k l’s, where k < 6. This is an
accurate measure of the number of bits needed to transmit such a string
using the proposed scheme.

The formula for L(n, k, n) is also derivable by another coding method,
which we sketch here. (This method and analysis are due to

INFERRING DECISION TREES 237

Rissanen, 1986a.) I will transmit O’s and l’s to you one by one. However,
after I have transmitted t symbols to you, s of which are l’s, we shall con-
sider the probability of the next symbol as being a 1 as (s + l)/(t + 2kthis
is Laplace’s famous “Rule of Succession.” Similarly, the probability of the
next symbol being a 0 is considered to be ((t - s) + 1)/(t + 2). This can be
viewed as a straight frequency ratio, where the initial values for the number
of O’s and the number of l’s seen so far begin at one each rather than zero.
For example, the initial estimated likelihood of seeing a 1 is 4, and the
likelihood of seeing an 0 as the second symbol if the first symbol was a 1 is
f. At each step, the probabilities of O’s and l’s are computable, and these
probabilities are used in the coding, so that a symbol of probability p only
requires lg(p) bits to represent, With a little algebra, one can prove that the
number of bits needed to represent a string of n symbols containing k l’s
using this technique is exactly L(n, k, n).

The function L(n, k, b) can be approximated using Stirling’s formula to
obtain:

4 k(n) k(k) Mn -k) Wx) L(n, k, b)=nH(k/n)+T-T- --
2 2

-k(b) + Wlln), (8)

where H(p) is the usual “entropy function”:

H(P) = -p lg(p) - (1 -p) lg(l -p). (9)

It is interesting to note that L(n, k, b) does not depend on the position of
the k l’s within the string of length n; any string of length n which contains
exactly k l’s will be assigned a codeword of length exactly L(n, k, b) bits. In
our application, where the order of the objects in the table is arbitrary, this
seems appropriate.

Quinlan’s (1986) heuristic is based on related ideas; he measures the
information content in a string of length n containing k P’s as nH(k/n).
The use of this under-approximation to L(n, k, b) may result in overly large
decision trees, by our standards. In addition, he does not consider the cost
of coding the decision tree at all; his method may be viewed as a maximum
likelihood technique rather than a MAP technique.

We note that the natural generalization of this method to nonbinary
classification problems would assign a cost of

L(n; k,, k,, k,) = lg
((“:1i-‘)‘(k,,k;...,k,)) (lo)

to a string of length n containing kl objects of class 1, k, objects of class

238 QUINLAN AND RIVEST

t, where k = k, + . .. + k,. Here the upper bound b on the kis is omitted
and assumed to be n.

There are, of course, a number of different variations one could try. Each
such variation coresponds to a different “model class” or choice of prior
probabilities for our representation of strings. Appendix A describes one
technique which encodes small values of k more compactly than our
standard scheme. An even more highly biased scheme would encode 0 as 0
and k>O as lkO.

4.3. Coding Sets of Strings

In our example, I might partition the objects into those with “high
humidity,” and those with “normal humidity.” This results in the final
column being divided into two parts,

N, N, P, P, N, P, N for the high humidity objects, (11)

where the default class is “N,” and

P, N, P, I’, P, P, P for the normal humidity objects, (12)

where the default class is “P.” To code the exceptions will require only

L(7, 3, 3) + L(7, 1, 3) = 11.937 (13)

bits. Since this is less than the “obvious” coding length of 14 bits, there
seems to be some relationship between the attribute “humidity” and the
class of the object. The complexity of representing the exceptions has been
reduced by breaking it into two parts.

Of course, we would also need to include the the cost of describing this
simple decision tree (containing only one decision node), before we can
decide if such a partition is worthwhile.

4.4. Coding Decision Trees

How can I code a decision tree efficiently? It seems natural to use a
coding scheme where smaller decision trees are represented by shorter
codewords than larger decision trees.

We assume for now that the attributes have only a finite number of
values, as in our example. We discuss countable or continuous-valued
attributes later. Our procedure for encoding the decision tree is a recursive,
top-down, depth-first procedure. A leaf is encoded as a “0” followed by an
encoding of the default class for that leaf.

To code a tree which is not a leaf, we begin with a “1,” followed by the
code for the attribute at the root of the tree, followed by the encodings of
the subtrees of the tree, in order. If the root attribute can have v values,

INFERRING DECISION TREES 239

then the code for the tree is obtained by concatenating the codes for the u
subtrees after the code for the root. This procedure is applied recursively to
encode the entire tree.

If there are four possible attributes at the root, we need two bits to code
the selected attribute. However, note that attributes deeper in the tree will
be cheaper to code, since there are fewer possibilities remaining to be used
deeper in the tree. As an example, the code for the tree of Fig. 1 would be:

1 Outlook 1 Humidity 0 N 0 P 0 P 1 Windy 0 N 0 P

This corresponds to a depth-first traversal of the tree, where O’s indicate
leaves (with following default class) and l’s indicate decision nodes (with
following attribute name). The substring “1 Humidity 0 N 0 P” corresponds
to the left subtree of the root, the substring “0 P” corresponds to the
middle subtree, and the substring “1 Windy 0 N 0 P,, corresponds to the
right subtree. Here the code for “Outlook” would indicate that we are
selecting the first attribute out of four, so this would require two bits. On
the other hand, the code for “Humidity” would require only lg(3) bits,
since there are only three attributes remaining at this point in the tree,
since “Outlook” is already used. The example tree requires 18.170 bits to
encode.

The proposed encoding technique above for representing trees is nearly
optimal for binary trees, but is not so good for trees of higher arity. In
general, a uniform b-ary tree with n decision nodes and (b - 1) n + 1 leaves
will require bn + 1 bits using our scheme (not counting the bits required to
encode the attribute names or default classes), whereas the number of b-ary
trees with n internal nodes and (b - 1) n + 1 leaves is (see Knuth, 1968,
Exercise 2.3.4.4.11)

1 bn

(b-l)n+l n ’ 0
the base two logarithm of which is

bnH 0 1 +1&W -- M(b- 1) n) 271
b 2 2 ---2+0(l), bit(n) k 2 (15)

where H(p) is the usual entropy function (using base two logarithms).
Even counting the extra bits required to specify the size of the tree, the
proposed coding scheme is not as efficient for high arity trees as one might
desire.

To fix this, the following approach can be used. Consider the bit string
representing the structure of the tree (i.e., excluding the attribute names
and default classes). For binary trees this string contains nearly as many

613/80/3-4

240 QUINLAN AND RIVEST

ones as zeros, whereas for trees using attributes of high arity there will be
many more zeros than ones. Suppose the tree has k decision nodes and
n-k leaves. Then the tree’s description string will be of length n and will
contains k ones. Note that k < n - k since all tests will have arity at least
two. Thus we should specify the cost of describing the structure of the tree as
L(n, k, (n + 1)/2). To obtain the total tree description cost, we then add in
the cost of specifying the attribute names at each node and the cost of
specifying the default class for each leaf, using the cost measures previously
described.

There are several ways one can improve upon the above coding techni-
que. A simple example is to note that in some cases the default class of a
leaf is obvious. (If the classification problem is binary, the leaf is the right
child, and the other child is a leaf, then the default class for the leaf must be
the complement of its sibling’s default class, otherwise the decision is
useless.) We do not pursue these approaches here.

4.5. Coding Exceptions

In addition to coding the decision tree, I need to code the exceptional
objects whose classes are different than the default classes of their
categories.

For binary classification problems, this is relatively straightforward,
since all I need to do is to indicate the positions of the exceptions.

We prefer to do so on a category-by-category basis, since this works
most smoothly with our procedures for growing a good decision tree.
There are other obvious candidate encoding schemes-such as coding up
the locations of the exceptions in a global manner-which may be more
efficient as coding techniques overall but which are more difficult to
integrate into search procedures for good trees.

Let us return to our example. Given our example decision tree, we have
divided the set of objects into five subsets:

sunny outlook & high humidity: N, N N

sunny outlook & normal humidity: P, P

overcast outlook: p, p, p, p

rainy outlook & windy: N N

rainy outlook & not windy: p, p, p

The exceptions (there are none) can be encoded with a cost:

L(3,O,l)+L(2,0, 1)+L(4,0,2)+L(2,0,1)+L(3,0,1)=5.585 bits.

(16)

The total cost for our communication problem using the example tree is

INFERRING DECISION TREES 241

thus 18.170 bits for the tree, plus 5.585 bits for the exceptions-a total cost
of 23.754 bits.

For non-binary classification problems, we propose coding the excep-
tions using an iterative approach within each category (assuming the
default class for the category has already been coded in the structure of the
tree):

l Identify the locations of the exceptions.

l Identify the most common class occurring among the exceptions;
this is the “first alternative class” for that category.

l Identify the locations of the “second-order” exceptions within the
exceptions; these objects are neither default class for the category nor the
first alternative class for that category.

l Iterate as necessary with higher order exceptions and higher order
alternative classes until no further exceptions remain.

4.6. Coding Real- Valued Attributes

For real-valued attributes (such as age or weight) we must modify our
coding techniques. The approach we propose is to find a good “cut point”;
a decision node will not only name the attribute (e.g., age) but also the
value of the cut point (e.g., 40), so that the decision will be a binary
decision of the form “Is age < 40?“. In computing the length of the
description of the decision tree, we will need to explicitly measure the cost
of representing the value of the cut point.

There are two approaches that come to mind:

l Using values of the known objects. Suppose that for the desired
attribute the n given objects have rn d n distinct values. A decision node can
specify a real-valued cut-point by sorting the m real values associated with
the known objects, and specifying the ith such number by specifying i.
Although one could merely specify i using lg(m) bits, it seems preferable
to use some short encodings to represent a well-distributed set of i’s. One
such approach is to order the fractions i/m so that we first have
an approximation to 4, then approximations to t and $ then good
approximations to b, & 2, & and so on. The jth such approximation is
represented by coding j using only lb(j) bits (see Appendix A); this
represents the ith largest value of the attribute on the given data. A second
approach is to select approximately J- m evently spaced values from the
sorted list of values, and to use lg(&) bits to indicate which one to use as
a cut-point. For a justification of a very similar approach, see Wallace and
Boulton’s (1968) paper.

l Using compactly described rational numbers. A binary rational
fraction with numerator a and denominator 2b can be represented by the

242 QUINLAN AND RIVEST

pair of integers (a, 6). The coding techniques described, for example, in
Appendix A, can be used to encode these integers. It may not pay to use a
high-precision number in a test if a simpler number performs nearly as well.

Although we have experimented with these approaches, it is difficult to
distinguish their performance; for definiteness, let us propose the second
method.

5. DISCUSSION

We now have a well-defined procedure for me to use to communicate the
class column to you. I will pick the decision tree which “pays for itself” in
terms of the data compression it permits by coding the induced subset
separately.

The decision tree I pick will be a good decision tree for the data (relative
to the coding method selected). It reflects the important structure in the
relationship between the attributes and the class of the objects but will not
contain decisions whose effect is not strong enough to justify their inclusion
in the tree. The communication cost measure provides a rationale for
picking the right intermediate amount of structure.

6. COMPUTING GOOD DECISION TREES

It is probably difficult to compute the best decision tree under our
measure. Hyalil and Rivest (1976) prove that constructing an optimal
binary decision tree is NP-compte when the cost of a tree is its external
path length; it may be possible to modify this proof to handle the current
situation, although we have not done so.

Heuristics for growing good trees in a top-down manner derive naturally
from the discussion of the previous section.

The incremental cost of replacing a leaf with a decision node is easily
measured. Suppose there are A attributes altogether in our problem, and
we are considering replacing a leaf at depth d with a decision node based
on some attribute. Suppose that on the path from the root to this leaf at
depth d, there are d’ <d discrete attributes tested. These attributes cannot
be tested again, so that d’ of the A attributes are not eligible for use in this
position. Thus, there are A -d’ attributes eligible, and to indicate which
one is selected will require lg(A -8) bits. If the attribute selected has v
possible values, the rest of the incremental cost for describing the
additional tree structure (exclusive of the attribute name but including the
new default classes) is 20 - 1 bits.

INFERRING DECISION TREES 243

This operation splits one subset into v subsets. We can measure the
extent to which the exceptions can now be coded more efficiently. If the
savings so obtained is greater than the cost of extending the tree, the exten-
sion should be selected. If several such extensions are possible, we can pick
the one that yields the greatest net savings.

We propose a two-phase process for growing a good decision tree.
In the first phase we begin with the null tree (a single leaf) and continue

to extend the tree by iterating the following procedure until the tree is
perfect or cannot be grown any further:

1. Let x be a leaf whose corresponding category of objects are of
varying classes, such that it is possible to replace x with a decision node
(i.e., x is not at maximum possible depth).

2. For each possible attribute A that might be specified in the
decision node to replace x, compute the total communication cost if this
change is made. (The cost is the resulting description length for the tree
plus exceptions. Note that only a portion of the code is changed, making
this computation a local one.)

3. Replace x with the decision node least total communication cost.
(Note that the total communication cost may go up.)

During the second phase, the tree is repeatedly pruned back by replacing
decision nodes (all of whose children are leaves) by leaves, whenever this
improves the total communication cost, until no further improvement in
communication cost is possible.

One can easily imagine more elaborate search procedures which work
harder to find better decision trees under our complexity measure. For
example, we could select the attribute (if any) to use in a given decision
node by explicitly considering the quality of all of the depth zero, one, or
two decision subtree trees that can be built at that position. The attribute
at the root of the best such subtree would be selected as the attribute to use
at that position, and the process would begin over to select the attributes
(if any) to use at the positions in the next level of the tree.

We note that choosing an attribute with a large number of values is
penalized using the cost measure suggested here. This addresses one of the
difficulties raised by Quinlan. With many previous methods of growing a
decision tree, an attribute with many values would have a high chance of
being chosen, since it split the set of objects into many subsets. One can
imagine, for example, using the “object number” attribute (the first column
of our Table I) at the root of the decision tree(!). Although there is no real
“structure” here, using this attribute in our example allows the object set to
be divided into sets which are purely of one class or of the other (i.e., the
individual objects). This approach is penalized using the MDLP, since the

244 QUINLAN AND RIVEST

TABLE II

Experimental Results

Data set Size

HYPE 11
Discordant 15
LED 83
Credit 14
Endgame 15
Prob-Disj 17

MDLP

Error rate

0.6%
1.9%

26.9%
17.4%
17.9%
20.5%

Size

11.0
13.6
56.0
32.5
62.6
42.6

c4

Error rate

0.55%
1.25%

28.1 %
16.1 %
13.6 %
14.9 %

cost of specifying the attribute will not be justified in terms of the extra
compression achieved in transmitting the class information.

It is interesting to note that for the small example given above, the
“humidity” attribute is the most promising according to our measure,
whereas Quinlan selected the “Outlook” measure for the root of the tree.
However, with our measure we find that even the “Humidity” decision
node is too costly; it is better to have the trivial tree consisting of just one
leaf. The given example is really just a toy example because of its small size,
and our approach realizes this by noting that for this example, no non-
trivial tree is worth paying for. For this example, our use of the MDLP
would suggest that given the available data, it is best to guess that the class
of an unseen object is “P,” independent of its attributes. (Recall that our
stated objective is to be able to classify new, unseen, objects well, nor to
classify the given objects perfectly.)

7. EMPIRICAL RESULTS

In order to test this approach of using the MDLP to guide the inference
of decision trees from data, we implemented it and compared it with one of
the best-performing alternative approaches. This approach is called “C4
with pessimistic pruning” and is described by Quinlan (1987). We tested
our approach on six data sets also used in (Quinlan, 1987). We note that
the C4 procedure is nondeterministic in nature, and we obtained our
results by averaging over a number of trees grown with the same data
set-hence the non-integral average tree sizes in the table. In contrast, our
MDLP approach is deterministic, and only one tree is produced for a given
set of data.

The “Size” columns represent the size of the average size of the decision
tree computed (number of leaves). The “Errors” columns represent the

INFERRING DECISION TREES 245

percentage error rate of the decision trees constructed on new examples.
These error rates were computed by constructing a decision tree using two-
thirds of the available data as a training set, and then using the remaining
one-third as a test set.

For those data sets which had real-valued attributes, the decision trees
created used one of the known n values of that attribute as a cut-point, and
charged the tree lg(n) bits for representing that cut-point.

The trees created using the MDLP were grown out to the maximum
possible size first, using MDLP to guide the selection of the attributes, and
then pruned back in a way that minimized the description length.

We see that the trees created with the MDLP compare favorably with
those created using the C4 technique with pessimistic pruning, In the
“Hypo” data set, they created exactly the same decision tree. In general, the
MDL method created smaller decision trees (the LED data set was the
exception). However, for the last two problems the decision trees created
by using the MDL are probably too small, resulting in a larger error rate.
It is not unlikely that our coding techniques have some residual inefhcien-
ties that are particularly relevant for these examples.

Overall, we are very encouraged by these experimental results. The
MDLP provides a unified framework for both growing and pruning the
decision trees, and these trees seem to compare favorably with those
created by other high-performance techniques. Moreover, we believe that
there certainly is room for further study and refinement of our methods,
which will very likely result in even better overall peformance.

8. EXTENSIONS

The proposed procedure for growing decision trees should work well in
the presence of noisy data. As the noise level increases, the tree grown
should decrease in size, since the significance of the existing dependencies of
the class on the attributes will be masked.

The proposed procedure can easily be adapted to handle “training sets”
which are especially representative of the concept being learned. One
simple way to do so is to associate a “frequency count” larger than one
with each input object in the data set. If it is desired that the decision tree
produced will classify each object in the training set correctly, these counts
can be set to a large value. (As the counts increase, the savings that can be
realized by using a perfect decision tree increases relative to other decision
trees.)

As a special case of the above notion, we can imagine replicating the
data set some number c times. This is approximately equivalent to saying
that if we separate my communication into t “tree bits” and d “data bits,”

246 QUINLAN AND RIVEST

TABLE III

Experimental Results for Various c

Data set

C=I c=2 c=8

Size Error rate Size Error rate Size Error rate

HYPE 11 0.6% 15 0.6% 19 0.5%
Discordant 15 1.9% 23 1.8% 31 1.1%
LED 83 26.9% 93 27.0% 95 27.0%
Credit 14 17.4% II 13.5% 76 17.0%
Endgame 15 17.9% 35 11.5% 71 12.0%
Prob-Disj 17 20.5% 45 13.5% 69 13.0%

that the total cost should be t + cd rather than just t + d. As c increases, we
can afford to record in our “best” tree ever more subtle dependencies. In
the limit as c -+ co, we can afford a perfect decision tree, if one exists. While
the minimum description length principle suggests using c = 1, we can
adjust c to reflect our a priori understanding of the representativeness or
completeness of the given data set. In the notation of Section 2.1, c = c,/c,;
larger values of c say that as lengths increase the probabilities associated
with the data strings decrease faster than the probabilities associated with
the tree strings. Table III gives some experimental results for various values
of C. At the moment we have little theory or justification for using values of
c other than 1; however, our empirical results suggest that using values of c
somewhat greater than 1 may sometimes be advantageous. We leave this
issue as an open problem.

9. CONCLUSION

We have discussed the application of Rissanen’s minimum description
length principle to the induction of decision trees. While the approach
proposed here is close in spirit to that of Quinlan in looking at the infor-
mation content of strings, we also charge for the cost of representing the
tree itself. Our experimental results demonstrate the viability of this
approach.

APPENDIX A: A VARIATION ON CODING STRINGS

In this section we describe a variation on the above procedure for coding
strings which more strongly favors strings with high bias and derive a
different measure L’(n, k, 6) for the complexity of a string of length n
containing exactly k l’s, where k < 6. The idea is to code the integer k in

INFERRING DECISION TREES 247

such a way that smaller k’s have shorter representations. This corresponds
to a change in the probabilities assigned to data strings by the theories
associated with the decision trees.

Consider coding a message k drawn from the set (0, 1, b}. We will
also be interested in coding nonnegative natural numbers in a similar man-
ner. The scheme proposed here is very close to the approach suggested by
Rissanen (1983) for the latter case and “truncates” this approach to handle
the former case. (Other schemes are of course possible.)

We define the cost lb,(k) of coding an integer k chosen from the set
(0, 1, b} by the equations

lb,(O) = 1
(17)

lb,(k) = 1+ k(k) + MMk)) + lg(lg(lg(k))) + ... + c,,

where the sum only includes those terms which are positive and where the
constant C, is chosen such that

,co2-
b(k) = 1. (18)

(As a mnemonic, think of lb,(k) as the (1)ength of k in (b)its.) We also
denote by lb(k) the limit of lb,(k) as b + co.

Note that in the above scheme, the number k = 0 requires only one bit to
be coded. We note a few values of Cb in Table IV (the latter values of b are
of the form 10’ - 1 since a given value of b corresponds to selecting from a
set of size b + 1). Observe that the constant Cb approaches the limit
2.865064... from below as b -+ cc (the convergence is very slow; see
Rissanen (1983) for a derivation).

TABLE IV

Values for the Constant Cb

b Cb

2
3
4
9

99
999

99999
999999

co

O.oOOOOO
0.584963
0.774258
0.876024
1.024858
1.161168
1.198712
1.218215
1.230730
1.239310
2.865064

248 QUINLAN AND RIVEST

Given such a representation for integers k, we can represent a string of
length n containing k l’s (where k <b) using only

L’(n, k, 6) = lb,(k) + lg bits. (19)

This coding scheme favors strings with high bias noticeably, since the
coding of k is quite short for small k. In particular, if k = 0 or k = n, we will
need only two bits.

ACKNOWLEDGMENTS

We would like to thank Ed Puckett for introducing us to Rissanen’s work and for many
helpful discussions regarding the minimum description length principle. We would also like to
thank George Hart and Rick Lathrop for their thoughtful critiques of early drafts of this
paper.

RECEIVED September 8, 1987; ACCEPTED January 20, 1988

REFERENCES

BOWLTON, D. M. AND WALLACE, C. S. (1973a), An information measure for hierarchic
classification, Compuf. J. 16, No. 3, 254-261.

B~ULTON, D. M. AND WALLACE, C. S. (1973b) An information measure for single-link
classification, Compuf. J. 18, No. 3, 236238.

BREIMAN, L., FRIEDMAN, J. H., OLSHEN, R. A., AND STONE, C. J. (1984). “Classification and
Regression Trees,” Wadsworth International Group, Belmont, CA.

GEORGEFF, M. P. AND WALLACE, C. S. (1984), A general selection criterion for inductive
inference, in “ECAI 84: Advances in Artificial Intelligence,” pp. 473-482, Elsevier Science,
New York.

HART, G. W. (1987), “Minimum Information Estimation of Structure,” Ph. D. thesis. MIT
Dept. of Electrical Engineering and Computer Science, April; LIDS-TH-1664.

HYAFIL, L. AND RIVEST, R. L. (1976), Constructing optima1 binary decision trees is NP-
complete, Inform. Process. Left. 5, No. 1, 15-17.

KNUTH, D. E. (1968), “The Art of Computer Programming: Fundamental Algorithms,”
Vol. 1, Addison-Wesley, Reading, MA.

QUINLAN, J. R. (1986), Induction of decision trees, Mach. Learning 1, 81-106.
QUINLAN, J. R.(1987), Simplifying decision trees, Internat. J. Man Mach. Stud.
RISSANEN, J. (1978), Modeling by shortest data description, Automatica 14, 465471.
RISSANEN, J. (1986a), Stochastic complexity and modeling, Ann. of Surist. 14, No. 3.

1080-1100.
RISSANEN, J. (1986b), “Stochastic Complexity and Sufficient Statistics,” Technical Report,

IBM Research Laboratory, San Jose.
RISSANEN, J. (1983), A universal prior for integers and estimation by minimum description

length, Ann. of Statist. 11, No. 2, 416431.
RISSANEN, J. AND LANGDON, G. G., JR.. (1981) Universal modeling and coding, IEEE Trans.

Infor. Theory IT-27, No. 1, 12-23.
WALLACE, C. S. AND BOULTON, D. M. (1968). An information measure for classification,

Compur. J. 11, No. 2, 1855194.

