Infinite sheet of charge

Symmetry:

direction of $E=x$-axis

CHOOSE Gaussian surface to be a cylinder aligned with the x-axis.

Apply Gauss' Law:
Integrate the barrel, $\vec{E} \bullet d \vec{S}=0$
Now the ends, $\oint \vec{E} \bullet d \vec{S}=2 A E$
The charge enclosed $=\sigma \mathrm{A}$
Therefore, Gauss' Law $\Rightarrow \quad \varepsilon_{0}(2 \mathrm{EA})=\sigma \mathrm{A}$

$$
\mathrm{E}=\frac{\sigma}{2 \varepsilon_{0}}
$$

Conclusion: An infinite plane sheet of charge creates a CONSTANT electric field .

Two Infinite Sheets

(into screen)
Field outside the sheets must be zero. Two ways to see: Superposition

Gaussian surface encloses zero charge
Field inside sheets is NOT zero:
Superposition
Gaussian surface encloses non-zero chg

$$
\begin{gathered}
Q=\sigma A \\
\oint \vec{E} \bullet d \vec{S}=A F=\frac{\text { ounside }}{0}+A E_{\text {inside }}
\end{gathered}
$$

$$
\mathrm{E}=\frac{\sigma}{\varepsilon_{0}}
$$

More Sheets

(into screen)
Now, asymmetrically charged

Superposition

Show fields in all locations from each sheet

$$
\begin{aligned}
& E_{x}=\frac{-2 \sigma}{2 \varepsilon_{0}}+\frac{\sigma}{2 \varepsilon_{0}} \\
& E_{x}=\frac{2 \sigma}{2 \varepsilon_{0}}+\frac{\sigma}{2 \varepsilon_{0}} \\
& E_{x}=\frac{2 \sigma}{2 \varepsilon_{0}}-\frac{\sigma}{2 \varepsilon_{0}}
\end{aligned}
$$

CheckPoint

In both cases shown below, the colored lines represent positive (blue) and negative (red) charged planes.

In which case is E at point P the biggest?
A) A
B) B
C) the same

Infinite Sheets of Charge: Question $1(\mathrm{~N}=68)$

Superposition:

This week

- Today:
- Electric Potential Energy
- Wednesday:
- Electric Potential
- Homework \#2 is due 9PM
- Thursday:
- Midterm $1 \rightarrow$ Kane Hall; 5 pm sharp
- See Home Page for content, Practice, Equation sheet ...
- PHYS 122 A \rightarrow Physics Building Rooms A102 and A118
- PHYS 122 B \rightarrow Kane 120
- No backpacks please
- Bring a calculator (no fancy stuff allowed of course)
- We provide the equation sheet
- Friday:
- No class

Lecture Thoughts

- I don't recall any of the types of energy we went over in 121 ever being negative. I understand that change in electric energy can be positive or negative, but how can the overall potential energy of a system be negative? What does it mean to have "negative potential energy"?
- The concept of the potential energy with more than two bodies and different angles confuses me.
- The myriad of different formulas in change in work, change in potential, and the potential energy.

Big new ideas from Physics 121

- Define Potential Energy Difference (for a Conservative Force)

$$
\Delta U=U_{2}-U_{1}=-W_{1 \rightarrow 2}
$$

Units: Joules
The definition of Work:
The work done on a particle by a force F as it moves an object from point 1 to point 2 is

$$
W_{1 \rightarrow 2}=\int_{1}^{2} \vec{F} \cdot d \vec{l}
$$

Remember: The work equals the change in kinetic energy

$$
W_{1 \rightarrow 2}=\Delta K
$$

Consequence:

$$
W_{1 \rightarrow 2}+\Delta U=0
$$

Finding the potential energy change:

Use formulas to find the magnitude
Check the sign by understanding the problem...

Note: For gravity, m_{1} and m_{2} are always positive Thus, it is always: attractive force

But: For Coulomb's Law, q_{1} and q_{2} can have either sign.
Same sign charges: repulsive force
Opposite signs charges: attractive force

Finding the potential energy change:

Use formulas to find the magnitude
Check the sign by understanding the problem...

	Force		Work
Coulomb	$k \frac{q_{1} q_{2}}{r^{2}} \hat{r}$		
Gravity (General Expression)	$-G \frac{m_{1} m_{2}}{r^{2}} \hat{r}$		

$$
W_{1 \rightarrow 2}=\int_{1}^{2} \vec{F} \cdot d \vec{l}
$$

Note: For gravity, m_{1} and m_{2} are always positive
Thus, it is always: attractive force
But: For Coulomb's Law, q_{1} and q_{2} can have either sign.
Same sign charges: repulsive force
Opposite signs charges: attractive force

Finding the potential energy change:

Use formulas to find the magnitude
Check the sign by understanding the problem...

			$\Delta U=-W_{1 \rightarrow 2}$	
	Force $\stackrel{\rightharpoonup}{F}$	$\begin{aligned} & \text { Work } \\ & W_{1 \rightarrow 2} \end{aligned}$	Change in P.E. $\Delta U=U_{2}-U_{1}$	$\begin{aligned} & \text { P.E. Function } \\ & U \end{aligned}$
Coulomb	$k \frac{q_{1} q_{2}}{r^{2}} \hat{r}$	$-k q_{1} q_{2}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)$	$k q_{1} q_{2}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)$	$k \frac{q_{1} q_{2}}{r}+U_{0}$
Gravity	$-G \frac{m_{1}, m_{2}}{r^{2}} \hat{r}$	$\operatorname{Gm}_{1} m_{2}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)$	$-G m_{1} m_{2}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)$	${ }^{\frac{m_{1} m_{2}}{r}}{ }^{r}+U_{0}$

Note: For gravity, m_{1} and m_{2} are always positive Thus, it is always: attractive force

But: For Coulomb's Law, q_{1} and q_{2} can have either sign.
Same sign charges: repulsive force
Opposite signs charges: attractive force

Simple Examples

$$
\Delta U \equiv-W_{\text {conservative }}
$$

Work by gravity is negative $=-m g \Delta h$
Potential energy increases

PE decreases

Same idea for Coulomb force... if Coulomb force does positive work, potential energy decreases.

Clicker

You hold a positively charged ball and walk to the right in a region that contains an electric field directed to the left.

W_{H} is the work done by the hand on the ball
W_{E} is the work done by the electric field on the ball
Which of the following statements is true:
A) $W_{H}>0$ and $W_{ت}>0$
B) $W_{H}>0$ and $W_{E}<0$
C) $W_{H}<0$ and $W_{E}<0$
D) $W_{H}<0$ and $W_{E}>0$

Prelecture: Electric Potential Energy

Masses M_{1} and M_{2} are initially separated by a distance R_{a}. Mass M_{2} is now moved further away from mass M_{1} such that their final separation is R_{b}.
Which of the following statements best describes the work W_{ab} done by the force of gravity on M_{2} as it moves from R_{a} to R_{b} ?

M_{1}

First Answer Choice Distribution ($\mathrm{N}=77$)

smartPhysics

Prelecture: Electric Potential Energy

Masses M_{1} and M_{2} are initially separated by a distance R_{a}. Mass M_{2} is now moved further away from mass M_{1} such that their final separation is R_{b}.
Which of the following statements best describes the work W_{ab} done by the force of gravity on M_{2} as it moves from R_{a} to R_{b} ?

$W_{\mathrm{ab}}>0$$W_{\mathrm{ab}}=0$
$W_{a b}<0$

M_{1}

First Answer Choice Distribution ($\mathrm{N}=77$)

Force and displacement in opposite directions \rightarrow Work is negative.

smartphysics

Prelecture: Electric Potential Energy

In Case A two charges which are equal in magnitude but opposite in charge are separated by a distance d. In Case B the same charges are separated by a distance $2 d$.
Which configuration has the highest potential energy U ?

Case B
Case A has the highest potential energy

- Case B has the highest potential energy

Both cases have the same potential energy

smartPhysics

Prelecture: Electric Potential Energy

In Case A two charges which are equal in magnitude but opposite in charge are separated by a distance d. In Case B the same charges are separated by a distance $2 d$.
Which configuration has the highest potential energy U ?

Case B
Case A has the highest potential energy
Case B has the highest potential energyBoth cases have the same potential energy

Think what the charges would tend to do in the absence of other forces. They would "fall" from case B to case A. \rightarrow Case B has higher U.

smartPhysics

Example: Two Point Charges

Calculate the change in potential energy for two point charges originally very far apart moved to a separation of " d "

$$
\Delta U=-\int_{\infty}^{d} k \frac{q_{1} q_{2}}{r_{12}^{2}} d r
$$

$$
\Delta U=k \frac{q_{1} q_{2}}{d} \equiv \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{d}
$$

Charged particles with the same sign have an increase in potential energy when brought closer together.

For point charges often choose $r=$ infinity as "zero" potential energy.

Clicker

Case B

In Case A two negative charges which are equal in magnitude are separated by a distance d. In Case B the same charges are separated by a distance $2 d$. Which configuration has the highest potential energy?
-A) Case A
-B) Case B

Followup

As usual, choose $\mathrm{U}=0$ at infinity:

$$
U(r)=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0}} \frac{1}{r}
$$

Potential Energy of Many Charges

Two charges are separated by a distance d. What is the change in potential energy when a third charge q is brought from far away to a distance d from the original two charges?

$$
\Delta U=\frac{q Q_{1}}{4 \pi \varepsilon_{0}} \frac{1}{d}+\frac{q Q_{2}}{4 \pi \varepsilon_{0}} \frac{1}{d}
$$

(consider each pair separately and add)

Cicker

What is the total energy* required to bring in three identical charges, from infinitely far away to the points on an equilateral triangle shown.
A) 0
B) $\Delta U=\frac{Q^{2}}{4 \pi \varepsilon_{0}} \frac{1}{d}$
C) $\Delta U=2 \frac{Q^{2}}{4 \pi \varepsilon_{0}} \frac{1}{d}$
D) $\Delta U=3 \frac{Q^{2}}{4 \pi \varepsilon_{0}} \frac{1}{d}$
E) $\Delta U=6 \frac{Q^{2}}{4 \pi \varepsilon_{0}} \frac{1}{d}$

Work to bring in first charge: $\quad W_{1}=0$
Work to bring in second charge : $W_{2}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{d}$
Work to bring in third charge :

$$
W_{3}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{d}-\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{d}=-\frac{2}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{d}
$$

*total energy is equivalent to the change in Potential Energy

Clicker follower

Suppose one of the charges is negative. Now what is the total energy required to bring the three charges in infinitely far away?
A) 0
B) $\Delta U=+1 \frac{Q^{2}}{4 \pi \varepsilon_{0}} \frac{1}{d}$
C) $\Delta U=-1 \frac{Q^{2}}{4 \pi \varepsilon_{0}} \frac{1}{d}$
D) $\Delta U=+2 \frac{Q^{2}}{4 \pi \varepsilon_{0}} \frac{1}{d}$
E) $\Delta U=-2 \frac{Q^{2}}{4 \pi \varepsilon_{0}} \frac{1}{d}$

Work to bring in first charge: $\quad W_{1}=\mathbf{0}$
Work to bring in second charge : $W_{2}=+\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{d}$
Work to bring in third charge : $\quad W_{3}=+\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{d}-\frac{1}{4 \pi \varepsilon_{0}} \frac{Q^{2}}{d}=0$

Checkpoint review

A charge of $+Q$ is fixed in space. A second charge of $+q$ was first placed at a distance r_{1} away from $+Q$. Then it was moved along a straight line to a new position at a distance R away from its starting position. The final location of $+q$ is at a distance r_{2} from +Q.

What is the change in the potential energy of charge $+q$ duing the process?

The change in potential energy is final minus initial.

$U_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r_{1}} \quad U_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r_{2}}$

$\Delta U \equiv U_{2}-U_{1}=\frac{Q q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)$
Note: $+q$ moves AWAY from $+Q$. Its Potential energy MUST DECREASE

$$
\Delta U<0
$$

smartphysics

CheckPoint Review

4) Two charges which are equal in magnitude, but opposite in sign are placed at equal distances from point A.

If a third charge is added to the system and placed at point A, how does the electric potential energy of the charge collection change?

Oincreases	Odecreases	Odoesn't change
A	B	C

Othe answer depends on the sign of the third charge
D (and, it doesn't depend on the sign)

CheckPoint Review

6) You start with two point charges separated by some distance. The charge of the first is positive. The charge of the second is negative and its magnitude is twice as large as the first.

Is it possible find a place to which you can bring a third charge in from infinity without changing the total potential energy of the system?YES, as long as the third charge is positiveYES, as long as the third charge is negativeYES, no matter what the third charge isNO

50\% success. LET'S DO THE CALCULATIONI

Electric Potential Energy of a System of Point Charges, II: Question $1(\mathrm{~N}=76)$

smartPhysics

Calculations

There are two solutions along line that connects the charges
One is the point B located between the charges.
The other is point A, to the left of the positive charge.

$$
\Delta U=+\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r}-\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q q}{r+d}
$$

$$
\text { Set } \Delta \boldsymbol{U}=\mathbf{0}
$$

$$
\frac{1}{r}=\frac{2}{r+d}
$$

$$
r=d
$$

Makes Sense! Q is twice as far from $-2 q$ as it is from $+q$

Reminder

- Thursday at 5 pm. Exam 1
- Covers material through Gauss' Law

