
CHAPTER 17 

Influence Lines 

The structures we have considered so far have been subjected to loading systems that 
were stationary, i.e. the loads remained in a fixed position in relation to the structure. 
In many practical situations, however, structures cany loads that vary continuously. 
Thus a building supports a system of stationary loads which consist of its self- 
weight, the weight of any permanent fixtures such as partitions, machinery, etc., and 
also a system of imposed or ‘live’ loads which comprise snow loads, wind loads or 
any movable equipment. The structural elements of the building must then be 
designed to withstand the worst combination of these fixed and movable loads. 

Other forms of movable load consist of vehicles and trains that cross bridges and 
viaducts. Again, these structures must be designed to support their self-weight, the weight 
of any permanent fixtures such as a road deck or railway track and also the forces 
produced by the passage of vehicles or trains. It is then necessary to determine the 
critical positions of the vehicles or trains in relation to the bridge or viaduct. Although 
these loads are moving loads, they are assumed to be moving or changing at such a 
slow rate that dynamic effects such as vibrations and oscillating stresses are absent. 

The effects of loads that occupy different positions on a structure can be studied 
by means of influence lines. Influence lines give the value at a particular point in a 
structure of functions such as shear force, bending moment and displacement for all 
positions of a travelling unit load; they may also be constructed to show the variation 
of support reaction with the unit load position. From these influence lines the value 
of a function at a point can be calculated for a system of loads traversing the 
structure. For this we use the principle of superposition so that the structural systems 
we consider must be linearly elastic. 

17.1 Influence lines for beams in contact with the load 
We shall now investigate the construction of influence lines for support reactions 
and for the shear force and bending moment at a section of a beam when the 
travelling load is in continuous contact with the beam. 

Consider the simply supported beam AB shown in Fig. 17.1 (a) and suppose that 
we wish to construct the influence lines for the support reactions, R, and R,, and 
also for the shear force, SKI and bending moment, M,, at a given section K; all the 
influence lines are constructed by considering the passage of a unit load across the 
beam. 
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Fig. 17.1 
supported beam 

Reaction, shear force and bending moment influence lines for a simply 

RA influence line 

Suppose that the unit load has reached a position C, a distance z from A, as it travels 
across the beam. Then, considering the moment equilibrium of the beam about B we 
have 

R,L- l ( L - z ) = O  

which gives R,  = ( L  - z)L (17.1) 
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Hence RA is a linear function of z and when z = 0, RA = 1 and when z = L ,  RA = 0; 
both these results are obvious from inspection. The influence line (IL)  for RA (RAIL) 
is then as shown in Fig. 17.1 (b). Note that when the unit load is at C, the value of 
RA is given by the ordinate cd in the RA influence line. 

RB influence line 

The influence line for the reaction RB is constructed in an identical manner. Thus, 
taking moments about A 

RBL- l ~ =  0 

so that RB=zJL (17.2) 

Equation (17.2) shows that RB is a linear function of z .  Further, when z = 0, R ,  = 0 
and when z = L ,  R ,  = 1, giving the influence line shown in Fig. 17.1 (c). Again, with 
the unit load at C the value of RB is equal to the ordinate c,e in Fig. 17.1 (c). 

S, influence line 

The value of the shear force at the section K depends upon the position of the unit 
load, i.e. whether it is between A and K or between K and B. Suppose initially that 
the unit load is at the point C between A and K. Then the shear force at K is given by 

SK= -RB 

so that from Eq. (17.2) 

s - - -  z ( O c z c a )  
L 

K -  (17.3) 

The sign convention for shear force is that adopted in Section 3.2. We could have 
established Eq. (17.3) by expressing SK in terms of RA. Thus 

S K =  R A -  1 

Substituting for RA from Eq. (17.1) we obtain 

L - z  Z s 1 = -- 
L L 

as before. Clearly, however, expressing SK in the terms of R ,  is the most direct 
approach. 

We see from Eq. (17.3) that S, varies linearly with the position of the load. 
Therefore, when z = O ,  S,=O and when z = a ,  S K =  -a /L ,  the ordinate kg in 
Fig. 17.1 (d), and is the value of SK with the unit load immediately to the left of K. 
Thus, with the load between A and K the S, influence line is the line a,g in 
Fig. 17.l(d) so that, when the unit load is at C, the value of SK is equal to the 
ordinate c,f. 

K -  

With the unit load between K and B the shear force at K is given by 

S K =  +RA (Or S K =  1 - RB) 
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Substituting for RA from Eq. (17.1) we have 
SK= ( L - z ) / L  ( a c z s L )  (17.4) 

Again SK is a linear function of load position. Therefore when z = L ,  SK = 0 and 
when z = a,  i.e. the unit load is immediately to the right of K, SK = ( L  - a ) / L  which 
is the ordinate kh in Fig. 17.1 (d). 

From Fig. 17.1 (d) we see that the gradient of the line a2g is equal to 
[ ( - a / L )  - O] /u  = - 1/L and that the gradient of the line hb2 is equal to 
[0 - ( L  - a ) / L ] / ( L  - a )  = - 1/L. Thus the gradient of the SK influence line is the 
same on both sides of K. Furthermore, gh = kh + kg or gh = ( L  - a ) / L  + a / L  = 1. 

MK influence line 

The value of the bending moment at K also depends upon whether the unit load is to 
the left or right of K. With the unit load at C 

M, = RB(L - a) (Or M K  = RAU - I ( U  - Z )  

which, when substituting for Re from Eq. (17.2) becomes 

MK=(L-Q)z /L  ( O S Z S ~ )  (17.5) 

From Eq. (17.5) we see that MK varies linearly with z. Therefore, when z=O, 
MK = 0 and when z = a, M, = ( L  - a)a/L, which is the ordinate k,j  in Fig. 17.1 (e). 

Now with the unit load between K and B 

M K  = RAa 
which becomes, from Eq. (17.1) 

MK= [ ( L - z ) / L ] a  ( a c z s L )  (17.6) 

Again MK is a linear function of z so that when z = a ,  MK = ( L  - U)Q/L ,  the ordinate 
k , j  in Fig. 17.1 (e), and when z = L,  MK = 0. The complete influence line for the 
bending moment at K is then the line ajb,  as shown in Fig. 17.1(e). Hence the 
bending moment at K with the unit load at C is the ordinate c,i in Fig. 17.1 (e). 

In establishing the shear force and bending moment influence lines for the section 
K of the beam in Fig. 17.l(a) we have made use of the previously derived 
relationships for the support reactions, R ,  and Re. If only the influence lines for SK 
and M, had been required, the procedure would have been as follows. 

With the unit load between A and K 

SK = -Re 
Now, taking moments about A 

RBL- lz=O 

whence 
Z 

R B = L  
Thus s - -L 

L 
K -  
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This, of course, amounts to the same procedure as before except that the calculation 
of RB follows the writing down of the expression for S,. The remaining equations 
for the influence lines for SK and M, are derived in a similar manner. 

We note from Fig. 17.1 that all the influence lines are composed of straight-line 
segments. This is always the case for statically determinate structures. We shall 
therefore make use of this property when considering other beam arrangements. 

Example 17.1 Draw influence lines for the shear force and bending moment at the 
section C of the beam shown in Fig. 17.2(a). 

In this example we are not required to obtain the influence lines for the support 
reactions. However, the influence line for the reaction RA has been included to 
illustrate the difference between this influence line and the influence line for RA in 
Fig. 17.1 (b); the reader should verify the R A  influence line in Fig. 17.2(b). 

Since we have established that influence lines for statically determinate structures 
consist of linear segments, they may be constructed by placing the unit load at 
different positions, which will enable us to calculate the principal values. 

S, influence line 

With the unit load at A 

Sc = -RB = 0 (by inspection) 

Fig. 17.2 Shear force and bending moment influence lines for the beam of 
Ex. 17.1 
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With the unit load immediately to the left of C 

Sc= - RB 

Now taking moments about A we have 

R , x 6 - 1 ~ 2 = 0  

which gives 

Therefore, from Eq. (i) 

1 
RB=- 

3 

1 s - - _  
3 

C -  

Now with the unit load immediately to the right of C 

Sc= +RA 

Taking moments about B gives 

R A x 6 - 1 x 4 = 0  

2 
RA= 7 whence 

so that, from Eq. (iii) 

2 s,=+- 
3 

With the unit load at B 

S, = + R A  = 0 (by inspection) 

Placing the unit load at D we have 

Sc= +RA 

Again taking moments about B 
R A x 6 + 1 x 2 = 0  

RA = - 113 from which 

(ii) 

(iii) 

Hence Sc= -113 (vii) 

The complete influence line for the shear force at C is then as shown in 
Fig. 17.2(c). Note that the gradient of each of the lines a,e, fb,, and b,g is the same. 

M, influence line 

With the unit load placed at A 

Mc = + RB x 4 = 0 (Rs = 0 by inspection) 
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With the unit load at C 

in which R, = 2/3 with the unit load at C (see above). With the unit load at B 

Mc = + R ,  x 2 = 0 (R, = 0 by inspection) 

Finally, with the unit load at D 

Mc=+R,X2 
but, again from the calculation of Sc, R, = - 1/3. Hence 

2 M c = - -  
3 

The complete influence line for the bending moment at C is shown in Fig. 17.2(d). 
Note that the line hbzi is one continuous line. 

17.2 Mueller-Breslau principle 
A simple and convenient method of constructing influence lines is to employ the 
Mueller-Breslau principle which gives the shape of an influence line without the 
values of its ordinates; these, however, are easily calculated for statically 
determinate systems from geometry. 

Consider the simply supported beam, AB, shown in Fig. 17.3(a) and suppose that 
a unit load is crossing the beam and has reached the point C a distance z from A. 
Suppose also that we wish to determine the influence line for the moment at the 
section K,  a distance a from A. We now impose a virtual displacement, vc, at C 
such that internal work is done only by the moment at K, i.e. we allow a change in 
gradient, e,, at K so that the lengths AK and KB rotate as rigid links as shown in 
Fig. 17.3(b). Therefore, from the principle of virtual work (Chapter 15), the 
external virtual work done by the unit load is equal to the internal virtual work done 
by the moment, M,,  at K. Thus 

1 VC = MK8, 

If we choose vc so that is equal to unity 

MK= V C  (17.7) 

Le. the moment at the section K due to a unit load at the point C, an arbitrary 
distance z from A, is equal to the magnitude of the virtual displacement at C. But, as 
we have seen in Section 17.1, the moment at a section K due to a unit load at a point 
C is the influence line for the moment at K. Therefore the MK influence line may be 
constructed by introducing a hinge at K and imposing a unit change in angle at K; the 
displaced shape is then the influence line. 

The argument may be extended to the construction of the influence line for the 
shear force, SK. at the section K. Suppose now that the virtual displacement, vc, 
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Fig. 17.3 Verification of the Mueller-Breslau principle 

produces a shear displacement, us,,, at K as shown in Fig. 17.3(c). Again, from the 
principle of virtual work 

1 uc = S K ~ S . K  
If we choose vc SO that us,, = 1 

s K =  vc (17.8) 

Hence, since the shear force at the section K due to a unit load at any point C is the 
influence line for the shear force at K, we see that the displaced shape in Fig. 17.3(c) 
is the influence line for S, when the displacement at K produced by the virtual 
displacement at C is unity. A similar argument may be used to establish reaction 
influence lines. 

The Mueller-Breslau principle demonstrated above may be stated in general terms 
as follows: 

The shape of an influence line for a particular function (support reaction, shear 
force, bending moment, etc.) can be obtained by removing the resistance of the 
structure to that function at the section for which the injuence line is required and 
applying an internal force corresponding to that function so that a unit 
displacement is produced at the section. The resulting displaced shape of the 
structure then represents the shape of the influence line. 
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Example 17.2 Use the Mueller-Breslau principle to determine the shape of the 
shear force and bending moment influence lines for the section C in the beam in 
Ex. 17.1 (Fig. 17.2(a)) and calculate the values of the principal ordinates. 

In Fig. 17.4(b) we impose a unit shear displacement at the section C. In effect we 
are removing the resistance to shear of the beam at C by cutting the beam at C. We 
then apply positive shear forces to the two faces of the cut section in accordance 
with the sign convention of Section 3.2. Thus the beam to the right of C is displaced 
upwards while the beam to the left of C is displaced downwards. Since the slope of 
the influence line is the same on each side of C we can determine the ordinates of 
the influence line by geometry. Hence, in Fig. 17.4(b). 

c,e clf 
clal clbl 
-- -- 

clal 1 
cibi 2 

Therefore c,e = - c,f = - c,f 

c,e + c,f = 1 

1 2 
c , e = - ,  elf=- 

3 3 

Further, since 

as before. The ordinate d,g(=f) follows. 

Fig. 17.4 Construction of influence lines using the Mueller-Breslau principle 
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In Fig. 17.4(c) we have, from the geometry of a triangle, 

a + p = 1 (external angle = sum of opposite internal angles) 

Then, assuming that the angles a and p are small so that their tangents are equal to 
the angles in radians 

c2h c2h 
-+-=l 
c2a2 c~b2 

or 

4 
whence czh = - 

3 

as in Fig. 17.2(d). The ordinate d2i(= f) follows from similar triangles. 

17.3 Systems of travelling loads 
Influence lines for beams are constructed, as we have seen, by considering the 
passage of a unit load across a beam or by employing the Mueller-Breslau principle. 
Once constructed, an influence line may be used to determine the value of the 
particular function for shear force, bending moment, etc., at a section of a beam 
produced by any system of travelling loads. These may be concentrated loads, 
distributed loads or combinations of both. Generally we require the maximum values 
of a function as the loads cross the beam. 

Concentrated loads 
By definition the ordinate of an influence line at a point gives the value of the 
function at a specified section of a beam due to a unit load positioned at the point. 
Thus, in the beam shown in Fig. 17.1 (a) the shear force at K due to a unit load at C 
is equal to the ordinate c2f in Fig. 17.1 (d). Since we are assuming that the system is 
linear it follows that the shear force at K produced by a load, W, at C is WcZf. 

The argument may be extended to any number of travelling loads whose positions 
are fixed in relation to each other. In Fig. 17.5(a), for example, three concentrated 
loads, W , ,  W2 and W3 are crossing the beam AB and are at fixed distances c and d 
apart. Suppose that they have reached the positions C, D and E, respectively. Let us 
also suppose that we require values of shear force and bending moment at the 
section K; the SK and M, influence lines are then constructed using either of the 
methods described in Sections 17.1 and 17.2. 

Since the system is linear we can use the principle of superposition to determine 
the combined effects of the loads. Therefore, with the loads in the positions shown, 
and refemng to Fig. 17.5(b), 

s K =  -wIsI - wzsz- w3s3 (17.9) 

in which s,, s2 and s3 are the ordinates under the loads in the SK influence line. 
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Fig. 17.5 Number of concentrated travelling loads 

Similarly, from Fig. 17.5(c) 

MK = W , m ,  + W2m, + W3m3 (17.10) 

where m , ,  m2,  and m3 are the ordinates under the loads in the M, influence line. 

Maximum shear force at K 

It can be seen from Fig. 17.5(b) that, as the loads W , ,  Wz and W 3  move to the right, 
the ordinates s, , s2 and s3 increase in magnitude so that the shear force at K increases 
negatively to a peak value with W ,  just to the left of K. When W ,  passes to the right 
of K, the ordinate, sI, becomes positive, then 

SK = + w l s ,  - w2s2 - w3s3 

and the magnitude of SK suddenly drops. As the loads move further to the right the 
now positive ordinate s, decreases in magnitude while the ordinates s, and s3 
increase negatively. Therefore a second peak value of SK occurs with W 2  just to the 
left of K. When W z  passes to the right of K the ordinate s-, becomes positive and 

S K  = + w,s, + wZs2 - w3s3 

so that again there is a sudden fall in the negative value of S,. A third peak value is 
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reached with W ,  just to the left of K and then, as W ,  passes to the right of K, SK 
becomes completely positive. The same arguments apply for positive values of SK as 
the loads travel from right to left. 

Thus we see that maximum positive and negative values of shear force at a 
section of a beam occur when one of the loads is at that section. In some cases it is 
obvious which load will give the greatest value, in other cases a trial-and-error 
method is used. 

Maximum bending moment at K 

A similar situation arises when determining the position of a set of loads to give the 
maximum bending moment at a section of a beam although, as we shall see, a more 
methodical approach than trial and error may be used when the critical load position 
is not obvious. 

With the loads W ,  , W, and W ,  positioned as shown in Fig. 17.5 (a) the bending 
moment, MK, at K is given by Eq. (17.10), i.e. 

MK = W,m, + W2m2 + W,m, 

As the loads move to the right the ordinates m,,  m2 and m3 increase in magnitude 
until W ,  passes K and m, begins to decrease. Thus MK reaches a peak value with W, 
at K. Further movement of the loads to the right causes m2 and m3 to increase, while 
m, decreases so that a second peak value occurs with W ,  at K; similarly, a third peak 
value is reached with W, at K. Thus the maximum bending moment at K will occur 
with a load at K. In some cases this critical load is obvious, or it may be found by 
trial and error as for the maximum shear force at K. However, alternatively, the 
critical load may be found as follows. 

Suppose that the beam in Fig. 17.5(a) carries a system of concentrated loads, W,, 
W,, ..., y., ..., Wn, and that they are in any position on the beam. Then, from 
Eq. (17.10) 

(17.11) 

Suppose now that the loads are given a small displacement 62. The bending moment 
at K then becomes M,+6MK and each ordinate m becomes m+6m. Therefore, 
from Eq. (17.1 1) 

or 

whence 
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Therefore, in the limit as 6z  + 0 

-=cy-  dMK dm. 

dz j - 1  dz 

in which dmj/dz is the gradient of the MK influence line. Therefore, if 
n 

j -  1 

is the sum of the loads to the left of K and 

is the sum of the loads to the right of K, we have, from Eqs (17.5) and (17.6) 

For a maximum value of M,, dMK/dz = 0 so that 

or 
a L - a  

(17.12) 

From Eq. (17.12) we see that the bending moment at K will be a maximum with one 
of the loads at K (from the previous argument) and when the load per unit length of 
beam to the left of K is equal to the load per unit length of beam to the right of K. 
Part of the load at K may be allocated to AK and part to KB as required to fulfil this 
condition. 

Equation (17.12) may be extended as follows. Since 

n 

then 

Substituting for 

j =  I 
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in Eq. (17.12) we obtain 

i u:- i y,L 
L - a  j - 1  j =  I - -  Rearranging we have - 

whence j =  1 -- -- j =  I 

L a 

Combining Eqs ( 17.12) and (1 7.13) we have 

j =  1 i -  1 j =  1 -=-- 
L a L - a  

(17.13) 

(17.14) 

Therefore, for MK to be a maximum, there must be a load at K such that the load per 
unit length over the complete span is equal to the load per unit length of beam to the 
left of K and the load per unit length of beam to the right of K. 

Example 17.3 Determine the maximum positive and negative values of shear 
force and the maximum value of bending moment at the section K in the simply 
supported beam AB shown in Fig. 17.6(a) when it is crossed by the system of loads 
shown in Fig. 17.6(b). 

The influence lines for the shear force and bending moment at K are constructed 
using either of the methods described in Sections 17.1 and 17.2 as shown in 
Fig. 17.6(c) and (d). 

Maximum negative shear force at K 

It is clear from inspection that SK will be a maximum with the 5 kN load just to the 
left of K ,  in which case the 3 kN load is off the beam and the ordinate under the 
4 kN load in the SK influence line is, from similar triangles, -0.1. Then 

Maximum positive shear force at K 

There are two possible load positions which could give the maximum positive 
value of shear force at K; neither can be eliminated by inspection. First we shall 
place the 3 kN load just to the right of K. The ordinates under the 4 kN load and 
5 kN load are calculated from similar triangles and are +Os5 and +0.3, respectively. 
Then 

SK = 3 x 0.7 + 4 x 0-5 + 5 x 0-3 = 5.6 kN 
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Fig. 17.6 Determination of the maximum shear force and bending moment at a 
section of a beam 

Now with the 4 kN load just to the right of K, the ordinates under the 3 kN load 
and 5 kN load are -0.1 and + O S ,  respectively. Then 

SK = 3 x (-0.1) + 4 x 0.7 + 5 x 0.5 = 5.0 kN 

Therefore the maximum positive value of SK is 5-6 kN and occurs with the 3 kN 
load immediately to the right of K. 

Maximum bending moment at K 

We position the loads in accordance with the criterion of Eq. (17.14). The load per unit 
length of the complete beam is (3 + 4 + 5)/20 = 0-6 kN/m. Therefore if we position the 
4 kN load at K and allocate 0.6 kN of the load to AK the load per unit length on AK is 
(3 + 0-6)/6 = 0.6 kN/m and the load per unit length on KB is (3.4 + 5)/14 = 0.6 kN/m. 
The maximum bending moment at K therefore occurs with the 4 kN load at K in this 
example the critical load position could have been deduced by inspection. 

With the loads in this position the ordinates under the 3 kN and 5 kN loads in the 
M ,  influence line are 1 -4 and 3.0, respectively. Then 

MK(max) = 3 x 1.4 + 4 x 4-2 + 5 x 3-0 = 36.0 kNm 

Distributed loads 
Figure 17.7(a) shows a simply supported beam AB on which a uniformly distributed 
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Fig. 17.7 Shear force and bending moment due to a moving uniformly distributed 
load 

load of intensity w and length 1 is crossing from left to right. Suppose we wish to 
obtain values of shear force and bending moment at the section K of the beam. 
Again we construct the SK and MK influence lines using either of the methods 
described in Sections 17.1 and 17.2. 

If we consider an elemental length 61 of the load, we may regard this as a 
concentrated load of magnitude w61. The shear force, 6SK, at K produced by this 
elemental length of load is then, from Fig. 17.7(b), 

6 s K  = w61s 

The total shear force, SK, at K due to the complete length of load is then 
I SK = 1, ws dl 

or, since the load is uniformly distributed 

SK = w Ji s dl (17.15) 

Hence SK = w x area under the projection of the load in the SK influence line. 

Similarly 

so that 

MK = w 1' in dl (17.16) 
n 

MK = w x area under the projection os the load in the MK influence line. 
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Maximum shear force at K 

It is clear from Fig. 17.7(b) that the maximum negative shear force at K occurs with 
the head of the load at K while the maximum positive shear force at K occurs with 
the tail of the load at K. Note that the shear force at K would be zero if the load 
straddled K such that the negative area under the load in the SK influence line was 
equal to the positive area under the load. 

Maximum bending moment at K 

If we regard the distributed load as comprising an infinite number of concentrated 
loads,we can apply the criterion of Eq. (17.14) to obtain the maximum value of 
bending moment at K. Thus the load per unit length of the complete beam is equal to 
the load per unit length of beam to the left of K and the load per unit length of 
beam to the right of K. Therefore, in Fig. 17.8, we position the load such that 

w ck, w dkl -- -- 
a h  klbl 

ck, dk, 
or --- - (17.17) 

a lk~ klbl 

fc a,c 
hkl alkl 
-- -- From Fig. 17.8 

so that fc = - a,c hk, = ( a’kii7’) hk, = (1 - 2) hkl 
alkl 

d g =  1- -  ( :;I) hkl 
Similarly 

Therefore, from Eq. (17.17) we see that 

fc = dg 

and the ordinates under the extremities of the load in the M, influence line are equal. 
It may also be shown that the area under the load in the MK influence line is a 
maximum when fc = dg. This is an alternative method of deducing the position of 

Fig. 17.8 Load position for maximum bending moment at K. 
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the load for maximum bending moment at K. Note that, from Eq. (17.17), K divides 
the load in the same ratio as it divides the span. 

Example 17.4 A load of length 2 m and intensity 2 kN/m crosses the simply 
supported beam AB shown in Fig. 17.9(a). Calculate the maximum positive and 
negative values of shear force and the maximum value of bending moment at the 
quarter-span point. 

The shear force and bending moment influence lines for the quarter-span point K 
are constructed in the same way as before and are shown in Fig. 17.9(b) and (c). 

Maximum shear force at K 

The maximum negative shear force at K occurs with the head of the load at K. In 
this position the ordinate under the tail of the load is -0.05. Hence 

SK(max. -ve) = -2 x $ (0.05 + 0.25) x 2 = -0.6 kN 

The maximum positive shear force at K occurs with the tail of the load at K. With 
the load in this position the ordinate under the head of the load is 0-55. Thus 

SK(max. +ve) = 2 x $ (0-75 + 0-55) x 2 = +2.6 kN 

Fig. 17.9 Maximum shear force and bending moment a t  the quarter-span point in 
the beam of Ex. 17.4 
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Maximum bending moment at K 

We position the load so that K divides the load in the same ratio that it divides the 
span. Therefore 0.5 m of the load is to the left of K and 1.5 m to the right of K. 
The ordinate in the MK influence line under the tail of the load is then 1.5 as is the 
ordinate under the head of the load. The maximum value of MK is thus given by 

MK(max)=2[i(1-5+ 1.875)x0.5+i(l-875+ 1 . 5 ) ~  1-51 

which gives 

MK(max) =6.75 kNm 

Diagram of maximum shear force 
Consider the simply supported beam shown in Fig. 17.10 (a) and suppose that a 
uniformly distributed load of intensity w and length L/5 (any fraction of L may be 
chosen) is crossing the beam. We can draw a series of influence lines for the 
sections, A, K, ,  K,, K,, K, and B as shown in Fig. 17.10(b) and then determine the 
maximum negative and positive values of shear force at each of the sections K,, K,, 
etc., by considering first the head of the load at K, ,  K,, etc., and then the tail of the 
load at A, K, ,  K,, etc. These values are then plotted as shown in Fig. 17.10(c). 

With the head of the load at K, ,  K,, K,, K4 and B the maximum negative shear 
force is given by w(ak,)s,, w(k, k,)s,, and so on, where sI, s,, etc., are the mid- 
ordinates of the areas ak,, k,k,, etc. Since s,, s,, etc. increase linearly, the maximum 
negative shear force also increases linearly at all sections of the beam between K, 
and B. At a section between A and K,,  the complete length of load will not be on the 
beam so that the maximum value of negative shear force at this section will not 

Fig. 17.10 Diagram of maximum shear force 
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lie on the straight line and the diagram of maximum negative shear force between A 
and K,, will be curved; the maximum negative shear force should be calculated for 
at least one section between A and K,. 

An identical argument applies to the calculation of the maximum positive shear 
force which occurs with the tail of the load at a beam section. Thus, in this case, the 
non-linearity will occur as the load begins to leave the beam between K4 and B. 

Reversal of shear force 
In some structures it is beneficial to know in which parts of the structure, if any, the 
maximum shear force changes sign. In Section 4.5, for example, we saw that the 
diagonals of a truss resist the shear forces and therefore could be in tension or 
compression depending upon their orientation and the sign of the shear force. If, 
therefore, we knew that the sign of the shear force would remain the same under the 
design loading in a particular part of a truss we could arrange the inclination of the 
diagonals so that they would always be in tension and would not be subject to 
instability produced by compressive forces. If, at the same time, we knew in which 
parts of the truss the shear force could change sign we could introduce 
counterbracing (see Section 17.5). 

Consider the simply supported beam AB shown in Fig. 17.1 1 (a) and suppose that 
it carries a uniformly distributed dead load (self-weight, etc.) of intensity wDL- The 
shear force due to this dead load (the dead load shear (DLS)) varies linearly from 
+wDLf./2 at A to -wDLL/2 at B as shown in Fig. 17.1 1 (b). Suppose now that a 
uniformly distributed live load of length less than the span AB crosses the beam. 
As for the beam in Fig. 17.10, we can plot diagrams of maximum positive and 
negative shear force produced by the live load; these are also shown in 
Fig. 17.1 1 (b). Then, at any section of the beam, the maximum shear force is equal 

Fig. 17.1 1 Reversal of shear force in a beam 
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to the sum of the maximum positive shear force due to the live load and the dead 
load shear force, or the sum of the maximum negative shear force due to the live 
load and the dead load shear force. The variation in this maximum shear force 
along the length of the beam will be more easily understood if we invert the dead 
load shear force diagram. 

Referring to Fig. 17.1 1 (b) we see that the sum of the maximum positive shear 
force due to the live load and the dead load shear force is always positive between a 
and c. Furthermore, between a and c, the sum of the maximum negative shear 
force due to the live load and the dead load shear force is always positive. 
Similarly, between e and ti the maximum shear force is always negative. However, 
between c and e the summation of the maximum positive shear force produced by 
the live load and the dead load shear force is positive, while the summation of the 
maximum negative shear force due to the live load and the dead load shear force is 
negative. Therefore the maximum shear force between c and e may be positive or 
negative, i.e. there is a possible reversal of maximum shear force in this length of 
the beam. 

Example 17.5 A simply supported beam AB has a span of 5 m and carries a 
uniformly distributed dead load of 0.6 kN/m (Fig. 17.12(a)). A similarly 
distributed live load of length greater than 5 m and intensity 1.5 kN/m travels across 
the beam. Calculate the length of beam over which reversal of shear force occurs 
and sketch the diagram of maximum shear force for the beam. 

The shear force at a section of the beam will be a maximum with the head or tail 
of the load at that section. Initially, before writing down an expression for shear 
force, we require the support reaction at A, R,. Thus, with the head of the load at a 

Fig. 17.12 Reversal of shear force in the beam of Ex. 17.5 
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section a distance z from A, the reaction, R A ,  is found by taking moments about B. 
Thus 

R A  x 5 - 0.6 x 5 x 2.5 - 1 * 5 ~ ( 5  - 2/2) = 0 

whence R A =  1.5 + 1 . 5 ~ - 0 . 1 5 ~ *  0 )  
The maximum shear force at the section is then 

S(max) = RA - 0.62 - 1-52 (ii) 

or, substituting in Eq. (ii) for R A  from Eq. (i) 

S(max) = 1 -5 - 0 . 6 ~  - 0.152 * (iii) 

Equation (iii) gives the maximum shear force at any section of the beam with the 
load moving from left to right. Then, when z=O, S(max)= 1.5 kN and when 
z = 5 m, S(max) = -5.25 kN. Furthermore, from Eq. (iii) S(max) = 0 when 
z =  1.74 m. 

The maximum shear force for the load travelling from right to left is found in a 
similar manner. The final diagram of maximum shear force is shown in 
Fig. 17.12(b) where we see that reversal of shear force may take place within the 
length cd of the beam; cd is sometimes called the focal length. 

Determination of the point of maximum bending moment in a beam 
Previously we have been concerned with determining the position of a set of loads 
on a beam that would produce the maximum bending moment at a given section of 
the beam. We shall now determine the section and the position of the loads for the 
bending moment to be the absolute maximum. 

Consider a section K a distance z ,  from the mid-span of the beam in Fig. 17.13 
and suppose that a set of loads having a total magnitude W, is crossing the beam. 
The bending moment at K will be a maximum when one of the loads is at K; let this 

Fig. 17.13 Determination of the absolute maximum bending moment in a beam 
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load be q.. Also, suppose that the centre of gravity of the complete set of loads is a 
distance c from the load W j  and that the total weight of all the loads to the left of Wj 
is WL, acting at a distance u from Wj; a and c are fixed values for a given set of 
loads. 

Initially we fmd R, by taking moments about B. 

Hence 

which gives 

The bending moment, MK, at K is then given by 

MK = R,(: + zl) - w a  

or, substituting for R,, 

+ z, - WLa 1 
Differentiating M, with respect to z1 we have 

5 = 3 [ - 1( 5 + zl) + 1( 4 - z, + 41 
&I L 

or 

For a maximum value of M,, dM,/dZ, = 0 so that 

C 
z1 = - 

2 
(17.18) 

Therefore the maximum bending moment occurs at a section K under a load Wj such 
that the section K and the centre of gravity of the complete set of loads are 
positioned at equal distances either side of the mid-span of the beam. 

To apply this rule we select one of the larger central loads and position it over a 
section K such that K and the centre of gravity of the set of loads are placed at 
equal distances on either side of the mid-span of the beam. We then check to 
determine whether the load per unit length to the left of K is equal to the load per 
unit length to the right of K. If this condition is not satisfied, another load and 
another section K must be selected. 

Example 17.6 The set of loads shown in Fig. 17.14(b) crosses the simply 
supported beam AB shown in Fig. 17.14(a). Calculate the position and magnitude of 
the maximum bending moment in the beam. 



588 Influence Lines 

Fig. 17.14 Determination of absolute maximum bending moment in the beam of 
Ex. 17.6 

The first step is to find the position of the centre of gravity of the set of loads. 
Thus, taking moments about the load W, we have 

(9 + 15 + 15 + 8 +8)2=15 x 2 + 15 x 4.3 + 8 x 7-O+ 8 x 9.3 

whence 2 = 4 4 9 m  

Therefore the centre of gravity of the loads is 0-21 m to the left of the load W,. 
By inspection of Fig. 17.14(b) we see that it is probable that the maximum 

bending moment will occur under the load W,. We therefore position W3 and the 
centre of gravity of the set of loads at equal distances either side of the mid-span of 
the beam as shown in Fig. 17.14(a). We now check to determine whether this 
position of the loads satisfies the load per unit length condition. The load per unit 
length on AB = 55/20 = 2-75 kN/m. Therefore the total load required on 
AK = 2-75 x 10.105 = 27.79 kN. This is satisfied by W,, W, and part (3.79 kN) of 

Having found the load position, the bending moment at K is most easily found by 
w3. 

direct calculation. Thus taking moments about B we have 

R, x 20 - 55 x 10.105 = 0 

whence R, = 27-8 kN 

Hence M K  = 27.8 x 10.105 - 9 x 4.3 - 15 x 2-3 = 207.7 kNm 
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It is possible that in some load systems there may be more than one load position 
which satisfies both criteria for maximum bending moment but the corresponding 
bending moments have different values. Generally the absolute maximum bending 
moment will occur under one of the loads between which the centre of gravity of 
the system lies. If the larger of these two loads is closer to the centre of gravity than 
the other, then this load will be the critical load; if not then both cases must be 
analy sed. 

17.4 Influence lines for beams not in contact with the 
load 
In many practical situations, such a bridge construction for example, the moving 
loads are not in direct contact with the main beam or girder. Fig. 17.15 shows a 
typical bridge construction in which the deck is supported by stringers that are 
mounted on cross beams which, in turn, are camed by the main beams or girders. 
The deck loads are therefore transmitted via the stringers and cross beams to the 
main beams. Generally, in the analysis, we assume that the segments of the stringers 
are simply supported at each of the cross beams. In Fig. 17.15 the portion of the 
main beam between the cross beams, for example FG, is called a panel and the 
points F and G are called panel points. 

Figure 17.16 shows a simply supported main beam AB which supports a bridge 
deck via an arrangement of cross beams and stringers. Let us suppose that we wish 
to construct shear force and bending moment influence lines for the section K of the 
main beam within the panel CD. As before we consider the passage of a unit load; in 
this case, however, it crosses the bridge deck. 

S, influence line 

With the unit load outside and to the left of the panel CD (position 1) the shear 
force, SK, at K is given by 

(17.19) 

SK therefore varies linearly as the load moves from A to C. Thus, from Eq. (17.19), 
when z ,  = 0, SK = 0 and when z ,  = a ,  SK = -a/L, the ordinate cf in the SK influence 
line shown in Fig. 17.16(b). Furthermore, from Fig. 17.16(a) we see that 

Zl sK = -R, = - - 
L 

Fig. 17.15 Typical bridge construction 



590 Influence Lines 

Fig. 17.16 Influence lines for a beam not in direct contact with the moving load 

SK = Sc = SD with the load between A and C, so that for a given position of the load 
the shear force in the panel CD has the same value at all sections. 

Suppose now that the unit load is to the right of D between D and B (position 2). 
Then 

L - z, 
S, = +RA = - (1 7.20) 

and is linear. Therefore when z2 = L ,  SK = 0 and when z2 = e ,  S, = ( L  - e ) / L ,  the 
ordinate dh in the SK influence line. Also, with the unit load between D and B, 
SK = Sc = SD( = + R A )  so that for a given position of the load, the shear force in the 
panel CD has the same value at all sections. 

Now consider the unit load at some point between C and D (position 3). There 
will now be reaction forces, R, and R,, as shown in Fig. 17.16(a) acting on the 
stringer and the beam where, by considering the portion of the stringer immediately 
above the panel CD as a simply supported beam, we see that R,= ( e - z , ) / c  and 
RD = (z3 - a)/c .  Therefore the shear force at K is given by 

L 

S K =  -R,+ R,  (or S K =  + R A -  R,) 
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so that (17.2 1) 

SK therefore varies linearly as the load moves between C and D. Furthermore, when 
z3=a ,  SK= -a /L ,  the ordinate cf in the SK influence line, and when z 3 = e ,  
SK = ( L  - e ) / L  the ordinate dh in the SK influence line. Note that in the calculation of 
the latter value, e - a = c. 

Note also that for all positions of the unit load between C and D, SK = -RB + R,  
which is independent of the position of K. Therefore, for a given load position 
between C and D, the shear force is the same at all sections of the panel. 

MK influence line 

With the unit load in position 1 between A and C, the bending moment, M,, at K is 
given by 

(17.22) 

M, therefore varies linearly with the load position between A and C. Also, when 
2, =0, M , = O  and when zi = a ,  M,=a(L-d ) /L ,  the ordinate c i i  in the M, 
influence line in Fig. 17.16(c). 

With the unit load in position 2 between D and B 

(17.23) 

Again, M, varies linearly with load position so that when z2= e ,  M, = ( L  - e )d /L ,  
the ordinate dip in the MK influence line. Furthermore, when z2 = L,  MK = 0. 

When the unit load is between C and D (position 3) 

MK = Rs(L - d )  - RD(e - d )  

As before we consider the stringer over the panel CD as a simply supported beam so 
that RD = (z3 - a)/c.  Then since 

RB = z3/L 

MK = - 23 (L - d )  - (?)(e - d )  
L 

(17.24) 

Equation (17.24) shows that M, varies linearly with load position between C and D. 
Therefore, when z3 = a,  M ,  = a ( L  - d ) / L ,  the ordinate c,i in the M, influence line, 
and when z3 = e ,  M, = d ( L  - e ) / L ,  the ordinate d,p in the M ,  influence line. Note, 
that in the latter calculation, e - a = c. 

Maximum values of SK and MK 

In determining maximum values of shear force and bending moment at a section of 
a beam that is not in direct contact with the load, certain points are worthy of note. 
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1. When the section K coincides with a panel point (C or D, say) the SK and M, 
influence lines are identical in geometry to those for a beam that is in direct contact 
with the moving load; the same rules governing maximum and minimum values 
therefore apply. 

2. The absolute maximum value of shear force will occur in an end panel, AE or 
DB, when the SK influence line will be identical in form to the bending moment 
influence line for a section in a simply supported beam that is in direct contact with 
the moving load. Therefore the same criteria for load positioning may be used for 
determining the maximum shear force, i.e. the load per unit length of beam is equal 
to the load per unit length to the left of E or D and the load per unit length to the 
right of EorD.  

3. To obtain maximum values of shear force and bending moment in a panel, a 
trial-and-error method is the simplest approach remembering that, for concentrated 
loads, a load must be placed at the point where the influence line changes slope. 

17.5 Forces in the members of a truss 
In some instances the main beams in a bridge are trusses, in which case the cross 
beams are positioned at the joints of the truss. The shear force and bending moment 
influence lines for a panel of the truss may then be used to determine the variation in 
the truss member forces as moving loads cross the bridge. 

Fig. 17.17 Determination of forces in the members of a truss 
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Consider the simply supported Warren truss shown in Fig. 17.17(a) and suppose 
that it cames cross beams at its upper chord joints which, in turn, support the bridge 
deck. Alternatively, the truss could be inverted and the cross beams supported by the 
lower chord joints; the bridge deck is then the through type. Suppose also that we 
wish to determine the forces in the members CD, CE, DE and GE of the truss. 

We have seen in Section 4.5 the mechanism by which a truss resists shear forces 
and bending moments. Thus shear forces are resisted by diagonal members, while 
bending moments are generally resisted by a combination of both diagonal and 
horizontal members. Therefore, refemng to Fig. 17.17(a), we see that the forces in 
the members CE and DE may be determined from the shear force in the panel CD, 
while the forces in the members CD and GE may be found from the bending 
moments at E and C, respectively. We therefore construct the influence lines for the 
shear force in the panel CD and for the bending moment at E and C, as shown in 
Fig. 17.17(b), (c) and (d). 

In Section 17.4 we saw that, for a given load position, the shear force in a panel 
such as CD is constant at all sections in the panel; we will call this shear force ScD. 
Then, considering a section XX through CE, CD and GE, we have 

F C E  sin 8 = ScD 
" 

so that 

Similarly 

(17.25) 

F D E  = - (1  7.26) 
sin 8 

From Fig. 17.17(b) we see that for a load position between A and J, S,, is 
negative. Therefore, referring to Fig. 17.17(a), F C E  is compressive while F D E  is 
tensile. For a load position between J and B, SCD is positive so that F C E  is tensile and 
F D E  is compressive. Thus F C E  and F D E  will always be of opposite sign; this may also 
be deduced from a consideration of the vertical equilibrium of joint E. 

I f  we now consider the moment equilibrium of the truss at a vertical section 
through joint E we have 

FcDh = ME 

or ME 
FCD = 

Since M E  is positive for all load positions (Fig. 17 
The force in the member GE is obtained 

Fig. 17.17(d). Thus 

FGEh = M c  

which gives 

F,, will be tensile since M ,  is positive for all load 

(17.27) 

17(c)), F C D  is compressive. 
from the Mc influence line in 

(17.28) 

positions. 
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It is clear from Eqs (17.25)-(17.28) that the influence lines for the forces in the 
members could be constructed from the appropriate shear force and bending moment 
influence lines. Thus, for example, the influence line for FCE would be identical in 
shape to the shear force influence line in Fig. 17.17(b) but would have the ordinates 
factored by 1 /sin 8. The influence line for FDE would also have the ScD influence line 
ordinates factored by l/sin 8 but, in addition, would have the signs reversed. 

Example 17.17 Determine the maximum tensile and compressive forces in the 
member EC in the Pratt truss shown in Fig. 17.18(a) when it is crossed by a 
uniformly distributed load of intensity 2.5 kN/m and length 4 m; the load is applied 
on the bottom chord of the tms .  

The vertical component of the force in the member EC resists the shear force in 
the panel DC. We therefore construct the shear force influence line for the panel DC 
as shown in Fig. 17.18(b). From Eq. (17.19) the ordinate df = 2 x 1-4/ 
(8 x 1.4) = 0.25 while from Eq. (17.20) the ordinate cg = (8 x 1.4 - 3 x 1-4)/ 
(8 x 1.4) = 0.625. Furthermore, we see that S, changes sign at the point j 
(Fig. 17.18 (b)) where jd, from similar triangles, is 0-4. 

The member EC will be in compression when the shear force in the panel DC is 
negative and its maximum value will occur when the head of the load is at j ,  thereby 
completely covering the length aj in the SI, influence line. Therefore 

F, sin 45" = SI, = 2.5 x i x 3.2 x 0.25 

whence F,= 1.41 kN (compression) 

The force in the member EC will be tensile when the shear force in the panel DC 
is positive. Therefore to find the maximum tensile value of F, we must position the 
load within the part jb of the SDc influence line such that the maximum value of S, 
occurs. Since the positive portion of the S, influence line is triangular, we may use 
the criterion previously established for maximum bending moment. Thus the load 
per unit length over jb must be equal to the load per unit length over jc and the load 
per unit length over cb. In other words, c divides the load in the same ratio that it 

Fig. 17.18 Determination of the force in a member of the Pratt girder of Ex. 17.7 
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divides jb, i.e. 1:7. Therefore 0-5 m of the load is to the left of c, 3.5 m to the right. 
The ordinates under the extremities of the load in the SK influence line are then both 
0.3 125 m. Hence the maximum positive shear force in the panel CD is 

ScD(max. +ve) = 2.5[;(0.3125 +0-625) x 0.5 + f(0.625 + 0.3125) x 3-53 

Sc,(max. +ve) = 4.69 kN 

F ,  sin 45" = ScD 

F ,  = 6.63 )cN 

which gives 

Then, since 

which is the maximum tensile force in the member EC. 

Counterbracing 
A diagonal member of a Pratt truss will, as we saw for the member EC in Ex. 17.7, 
be in tension or compression depending on the sign of the shear force in the 
particular panel in which the member is placed. The exceptions are the diagonals in 
the end panels where, in the Pratt truss of Fig. 17.18(a), construction of the shear 
force influence lines for the panels AH and MB shows that the shear force in the 
panel AH is always positive and that the shear force in the panel MB is always 
negative; the diagonals in these panels are therefore always in tension. 

In some situations the diagonal members are unsuitable for compressive forces so 
that counrerbrucing is required. This consists of diagonals inclined in the opposite 
direction to the original diagonals as shown in Fig. 17.18(a) for the two centre 
panels. The original diagonals are then assumed to be carrying zero force while the 
counterbracing is in tension. 

It is clear from Ex. 17.17 that the shear force in all the panels, except the two 
outer ones, of a Pratt truss can be positive or negative so that all the diagonals in 
these panels could experience compression. Therefore it would appear that all the 
interior panels of a Pratt truss require counterbracing. However, as we saw in 
Section 17.3, the dead load acting on a beam has a beneficial effect in that it reduces 
the length of the beam subjected to shear reversal. This, in turn, will reduce the 
number of panels requiring counterbracing. 

Example 17.8 The Pratt truss shown in Fig. 17.19(a) carries a dead load of 
1.0 kN/m applied at its upper chord joints. A uniformly distributed live load, which 
exceeds 9 m in length, has an intensity of 1-5 kN/m and is also carried at the upper 
chord joints. If the diagonal members are designed to resist tension only find which 
panels require counterbracing. 

A family of influence lines may be drawn as shown in Fig. 17.19(b) for the 
shear force in each of the ten panels. We begin the analysis at the centre of the 
truss where the dead load shear force has its least effect; initially, therefore, we 
consider panel 5 .  The shear force, S5, in panel 5 with the head of the live load at n, 
is given by 

S, = 1 .O(area n,gb - area n,qa) - 1-5 (area n,qa) 

1.e. S, = 1 -0 x area n,gb - 2.5 x area n,qa (i) 
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Fig. 17.19 Counterbracing in a Pratt t russ  

The ordinates in the Ss influence line at g and q are found from similar triangles 
and are 0-5 and 0.4, respectively. Also, from similar triangles, n, divides the 
horizontal distance between q and g in the ratio 0.4:0.5. Therefore, from Eq. (i) 

Ss = 1-0 x + X  5.0 x 0-5 - 2-5 x ;X 4.0 x 0.4 

Ss = -0.75 kN which gives 

Therefore, since Ss is negative, the diagonal in panel 5 will be in compression so that 
panel 5 ,  and from symmetry panel 6, requires counterbracing. 

Now with the head of the live load at n4, Sa= l-O(area n,fb-area n,ra) - 
1 -5 (area n4ra). 

The ordinates and base lengths in the triangles n4fb and n4ra are determined as 
before. Then 

S, = 1.0 x !X 6.0 x 0-6 - 2-5 X ~ X  3.0 x 0-3 

S4 = 0.675 kN from which 

Therefore, since S, is positive, panel 4, and therefore panel 7, do not require 

Clearly the remaining panels will not require counterbracing. 
Note that for a Pratt truss having an odd number of panels the net value of the 

dead load shear force in the central panel is zero, so that this panel will always 
require counterbracing. 

counterbracing. 

17.6 Influence lines for continuous beams 
The structures we have investigated so far in this chapter have been statically 
determinate so that the influence lines for the different functions have comprised 
straight line segments. A different situation arises for statically indeterminate 
structures such as continuous beams. 
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Consider the two-span continuous beam ABC shown in Fig. 17.20(a) and let us 
suppose that we wish to construct influence lines for the reaction at B, the shear 
force at the section D in AB and the bending moment at the section F in BC. 

The shape of the influence lines may be obtained by employing the 
Mueller-Breslau principle described in Section 17.2. Thus, in Fig. 17.20(b) we 
remove the support at B and apply a unit displacement in the direction of the support 
reaction, RB. The beam will bend into the shape shown since it remains pinned to the 
supports at A and C. This would not have been the case, of course, if the span BC 
did not exist for then the beam would rotate about A as a rigid link and the RB 
influence line would have been straight as in Fig. 17.1 (c). 

To obtain the shear force influence line for the section D we ‘cut’ the beam at D 
and apply a unit shear displacement as shown in Fig. 17.20(c). Again, since the 
beam is attached to the support at C, the resulting displaced shape is curved. 
Furthermore, the gradient of the influence line must be the same on each side of D 
because, otherwise, it would imply the presence of a moment causing a relative 
rotation. This is not possible since the displacement we have specified is due solely 
to shear. It follows that the influence line between A and D must also be curved. 

The influence line for the bending moment at F is found by inserting a hinge at F 
and applying a relative unit rotation as shown in Fig. 17.20(d). Again the portion 

Fig. 17.20 Influence lines for a continuous beam using the Mueller-Breslau 
principle 
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ABF of the beam will be curved, as will the portion FC, since this pan of the beam 
must rotate so that the sum of the rotations of the two portions of the beam at F is 
equal to unity. 

Example 17.9 Construct influence lines for the reaction at B and for the shear 
force and bending moment at D in the two-span continuous beam shown in 
Fig. 17.21 (a). 

The shape of each influence line may be drawn using the Mueller-Breslau 
principle as shown in Fig. 17.21(b), (c) and (d). However, before they can be of 
direct use in determining maximum values, say, of the various functions due to the 
passage of loading systems, the ordinates must be calculated; for this, since the 
influence lines are comprised of curved segments, we need to derive their equations. 

Fig. 17.21 Influence lines for the continuous beam of Ex. 17.9 
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However, once the influence line for a support reaction, RB in this case, has been 
established, the remaining influence lines follow from statical equilibrium. 

RB influence line 

Suppose initially that a unit load is a distance zI from A, between A and B. To 
determine RB we may use the flexibility method described in Section 16.4. Thus we 
remove the support at B (point 2)  and calculate the displacement, a21, at B due to the 
unit load at zI (point 1). We then calculate the displacement, a22, at B due to a 
vertically downward unit load at B. The total displacement at B due to the unit load 
at z l  and the reaction RB is then 

U2l - U ~ ~ R B  = 0 (i 1 
since the support at B is not displaced. In Eq. (i) the term az2RB is negative since RB 
is in the opposite direction to the applied unit load at B. 

Both the flexibility coefficients in Eq. (i) may be obtained from a single unit load 
application since, from the reciprocal theorem (Section 15.4), the displacement at B 
due to a unit load at z1 is equal to the displacement at zI due to a unit load at B. We 
therefore apply a vertically downward unit load at B. 

The equation for the displaced shape of the beam is that for a simply supported 
beam carrying a central concentrated load. Therefore, from Eq. (iv) of Ex. 13.5 

1 
48Et 

v = - -  (4z3 - 3L2z) 

or, for the beam of Fig. 17.21 (a) 

At B, when z = 4 m 

Z 
v = - -  (z2 - 48) 

12Et 

32 u s = - -  - all 
3Et 

(ii) 

(iii) 

Furthermore, the displacement at B due to the unit load at z I  (=displacement at zI 
due to a unit load at B) is, from Eq. (iii), 

v. =-- (z: - 48) = azl 
- I  12Et 

Substituting for and in Eq. (i) we have 

z1 7 32 
12Et 3Et 

(z;  - 48) - - R, = 0 -- 

(vi) 
ZI 

128 
from which RB = - - (zf - 48) (0 s zI d 4.0 m) 

Equation (vi) gives the influence line for RB with the unit load between A and B; 
the remainder of the influence line follows from symmetry. Eq. (vi) may be checked 
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since we know the value of R, with the unit load at A and B. Thus from Eq. (vi), 
when z, = 0, RB = 0 and when zI = 4.0 m, RB = 1 as expected. 

If the support at B were not symmetrically positioned, the above procedure would 
be repeated for the unit load on the span BC. In this case the equations for the 
deflected shape of AB and BC would be Eqs (xiv) and (xv) in Ex. 13.6. 

In this example we require the SD influence line so that we shall, in fact, need to 
consider the value of RB with the unit load on the span BC. Therefore from Eq. (xv) 
inEx. 13.6 

(vii) 1 3  2 V, = - (zI - 24z1 + 144zl - 128) (4.0 m d z1 d 8.0 m) 
' 12EI 

Hence from Eq. (i) 

(viii) 

A check on Eq. (viii) shows that when zI = 4-0  m, RB = 1 and when zI = 8.0 m, RB = 0. 

1 

128 
RB = - (z: - 242: + 1442, - 128) (4-0 m d z1 d 8.0 m) 

SD influence line 

With the unit load to the left of D, the shear force, SD, at D is most simply given by 

S D =  +R,- 1 (ix) 

(XI 

where, by taking moments about C, we have 

R, x 8 - l(8 - ZI) + RB X 4 = o  
Substituting in Eq. (x) for RB from Eq. (vi) and rearranging gives 

1 

256 
RA = - (2: - 802, + 256) 

whence, from Eq. (ix) 

1 ,  SD = - ( z ;  - 80z1) (0 d c 2.0 m) 
256 

(xii) 

Therefore, when z ,  = 0, S, = 0 and when z l  = 2.0 m, SD = -0-59, the ordinate dlg 
in the SD influence line in Fig. 17.21 (c). 

With the unit load between D and B 

SD= +R, 
so that, substituting for R ,  from Eq. (xi) 

1 

256 
SI, = - (:; - 80:, + 256) (2.0 m c zl c 4.0 m) (xiii) 

Thus, when z ,  =2.0 rn, SI,= +0.41, the ordinate d,f in Fig. 17.21(c) and when 
z I  = 4.0 m, S, = 0. 
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Now consider the unit load between B and C. Again 

S D =  + R ,  

but in this case, RB in Eq. (x) is given by Eq. (viii). Substituting for RB from 
Eq. (viii) in Eq. (x) we obtain 

1 2 RA = S, = - - (2: - 24Z, + 176z, - 384) (4.0 m s zI s 8.0 m) (xiv) 
256 

Therefore the SD influence line consists of three segments, a,g, fb, and b,c,. 

M, influence line 
With the unit load between A and D 

M , = R ,  x 2 - 1(2 - 2,) 

Substituting for R ,  from Eq. (xi) in Eq. (xv) and simplifying, we obtain 

(xvi) 

When z ,  = 0, M ,  = 0 and when zI  = 2.0 m, M ,  = 0-81, the ordinate dzh in the MD 
influence line in Fig. 17.2 1 (d). 

1 
128 

MD = - (2: + 48zJ (0 s z ,  s 2.0 m) 

Now with the unit load between D and B 
M , = R A X 2  (xvii) 

Therefore, substituting for R ,  from Eq. (xi) we have 

(xviii) 

From J3q. (xviii) we see that when zI = 2.0 m, MD = 0.81, again the ordinate d2h in 
Fig. 17.21 (d). Also, when z I  = 4.0 m, MI, = 0. 

Finally, with the unit load between B and C, MD is again given by Eq. (xvii) but 
in which R ,  is given by Eq. (xiv). Hence 

1 

128 
MD = - (2: - 8Oz, + 256) (2.0 m s Z, s 4.0 m) 

(xix) 

The maximum ordinates in the S, and M ,  influence lines for the span BC may be 
found by differentiating Eqs (xiv) and (xix) with respect to z,, equating to zero and 
then substituting the resulting values of z ,  back in the equations. Thus, for example, 
from Eq. (xiv), 

1 
128 

MD = -- (2: - 24zT + 1762, - 384) (4-0 m s z, s 8.0 m) 

1 
--- ( 3 ~ :  - 48~1 -t 176) = 0 dSD -- 

dzi 256 

from which z ,  = 5.7 m. Hence 
S,(max) = -0.1 

Similarly M,(max) = -0.2 at z I  = 5.7 m. 
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In this chapter we have constructed influence lines for beams, trusses and 
continuous beams. Clearly influence lines can be drawn for a wide variety of 
structures that carry moving loads. Their construction, whatever the structure, is 
based on considering the passage of a unit load across the structure. 

Problems 
P.17.1 Construct influence lines for the support reaction at A in the beams 

shown in Fig. P.17.1 (a), (b) and (c). 

Ans. (a) Unit load at C, RA = 1.25. 
(b) Unit load at C, RA = 1.25; at D, RA = -0.25. 
( c )  Unit load between A and B, R ,  = 1; at C, RA = 0. 

Fig. P.17.1 

P.17.2 Draw influence lines for the shear force at C in the beams shown in 

Ans. Influence line ordinates 

Figs P.17.2(a) and (b). 

(a) D = 0.25, A = 0, C = k0.5, B = 0. 
(b) D=0*25 ,A=B=O,C=*0*5 ,E=-0 .25 .  

Fig. P.17.2 

P.17.3 Draw influence lines for the bending moment at C in the beams shown in 

Ans. Influence line ordinates 

Fig. P.17.2(a) and (b). 

(a) D = -0.125L, A = B = 0, C = 0.25L. 
(b) D = E = -0*125L, A = B = 0, C = 0-25L. 
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P.17.4 The simply supported beam shown in Fig. P.17.4 carries a uniformly 
distributed travelling load of length 10 m and intensity 20 kN/m. Calculate the 
maximum positive and negative values of shear force and bending moment at the 
section C of the beam. 

Ans. Sc = +37.5 kN, -40.0 kN, M,= +550 kNm, -80 kNm. 

Fig. P.17.4 

P.17.5 The beam shown in Fig. P.17.5(a) is crossed by the train of four loads 
shown in Fig. P.17.5 (b). For a section at mid-span, determine the maximum sagging 
and hogging bending moments. 

A m .  +161-3 kNm, -77.5 kNm. 

Fig. P.17.5 

P.17.6 A simply supported beam AB of span 20 m is crossed by the train of 
loads shown in Fig. P.17.6. Determine the position and magnitude of the absolute 
maximum bending moment on the beam and also the maximum values of positive 
and negative shear force anywhere on the beam. 

A m .  M(max) = 466.7 kN m under a central load 10.5 m from A. 
S(max +ve) = 104 kN at A, S(max -ve) = -97.5 kN at B. 

Fig. P.17.6 

P.17.7 The three-span beam shown in Fig. P.17.7 has hinges at C and E in its 
central span. Construct influence lines for the reaction at B and for the shear force 
and bending moment at the sections K and D. 
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A m .  Influence line ordinates 

R,; A = 0, B = 1, C = 1.25, E= F = G = 0. 
S,; A = 0, K = *O-5 ,  B = 0, C = -0.25, E = 0. 
SD;A=B=O,D=l*O,C= l*O,E=F=G=O.  
M, ;A=B=O,K=l*O,C= - 0 * 5 , E = F = G = 0 .  
MD; A = B = D = O ,  C = -0.5, E = F =  G = 0. 

Fig. P.17.7 

P.17.8 Draw influence lines for the reactions at A and C and for the bending 
moment at E in the beam system shown in Fig. P.17.8. Note that the beam AB is 
supported on the lower beam at D by a roller. 

If two 10 kN loads, 5 m apart, cross the upper beam AB, determine the maximum 
values of the reactions at A and C and the bending moment at E. 

Ans. R,(max) = 16.7 kN, R,(max) = 17.5 kN, M,(max) = 58.3 kNm. 

Fig. P.17.8 

P.17.9 A simply supported beam having a span of 5 m has a self-weight of 
0.5 kN/m and carries a travelling uniformly distributed load of intensity 1-2 kN/m 
and length 1 m. Calculate the length of beam over which shear reversal occurs. 

Ans. The central 1.3 m (graphical solution). 
P.17.10 Construct an influence line for the force in the member CD of the truss 

shown in Fig. P.17.10 and calculate the force in the member produced by the loads 
positioned at C, D and E. 

Ans. 28.1 kN (compression). 
P.17.11 The truss shown in Fig. P.17.11 carries a train of loads consisting of, 

left to right, 40kN, 70kN, 70kN and 60kN spaced at 2 m ,  3 m and 3 m ,  
respectively. If the self-weight of the truss is 15 kN/m, calculate the maximum 
force in each of the members CG, HD and FE. 

Ans. CG = 763 kN, HD = -724 kN, FE = -326 kN. 
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Fig. P.17.10 

Fig. P.17.11 

P.17.12 One of the main girders of a bridge is the truss shown in Fig. P.17.12. 
Loads are transmitted to the truss through cross beams attached at the lower panel 
points. The self-weight of the mss is 30 kN/m and it cames a live load of intensity 
15 kN/m and of length greater than the span. Draw influence lines for the force in 
each of the members CE and DE and determine their maximum values. 

Ans. CE = +37-3 kN, -65-3 kN, DE = +96-1 kN. 

Fig. P.17.12 

Fig. P.17.13 



606 Influence Lines 

P.17.13 The Pratt truss shown in Fig. P.17.13 has a self-weight of 1.2 kN/m 
and carries a uniformly distributed live load longer than the span of intensity 
2.8 kN/m, both being applied at the upper chord joints. If the diagonal members are 
designed to resist tension only, determine which panels require counterbracing. 

Ans. Panels 4 ,5  and 6. 

P.17.14 Using the Mueller-Breslau principle sketch the shape of the influence 
lines for the support reactions at A and B, and the shear force and bending moment 
at E in the continuous beam shown in Fig. P.17.14. 

Fig. P.17.14 

P.17.15 
the bending moment at B in the continuous beam shown in Fig. P.17.15. 

Construct influence lines for the reaction at A, the shear force at D and 

Ans. 

R, = (z13 - 202, + 32)/32 
R,= (-z13+ 12zI2-44z, +48)/32 ( 2 ~ 0 m c z , d 4 - 0 m )  
SD = (zI3 - 20~,)/32 
SD = (zI3  - 202, + 32)/32 
MB= (zl3-4z1)/16 (Odz,d2*0m) 
M B =  (-z13+ 1 2 ~ , ~ - 4 4 ~ , + 4 8 ) / 1 6  ( 2 ~ 0 m c z , c 4 . 0 m )  

(0 c z, c 2.0 m) 

(OS Z ,  d 1.5 m) 
(1.5 m d  I, d 2.0 m) 

Fig. P.17.15 


