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An 8-DOF (degrees-of-freedom) nonlinear dynamic model of a spiral bevel gear pair which
involves time-varying mesh stiffness, transmission error, backlash, and asymmetric mesh stiffness
is established. The effect of the asymmetric mesh stiffness on vibration of spiral bevel gear
transmission system is studied deliberately with numerical method. The results show that the
mesh stiffness of drive side has more effect on dynamic response than those of the coast side. Only
double-sided impact region is affected considerably by mesh stiffness of coast side while single-
sided impact and no-impact regions are unchanged. In addition, the increase in the mesh stiffness
of drive side tends to worsen the dynamic response of the transmission system especially for light-
load case.

1. Introduction

Spiral bevel gear has been widely used in many power transmission systems due to its
considerable technical advantages. Owing to backlash, time-varying mesh stiffness, and
many other nonlinear factors, gear transmission system produces complex dynamic behavior
which has aroused wide attention from scholars around the world. Since the first gear
dynamic model was proposed by Tuplin in 1950s, considerable progress has been made
in parallel axis gear dynamics [1–4]. However, the dynamics of a spiral bevel-geared
system is lack of investigations when compared with the parallel system. Liangyu et al.
[5] derived a twelve-degrees-of-freedom vibration model of a pair of Spiral bevel gears.
Meanwhile an 8-DOF and a 2-DOF simplified model and a modified model with mesh
error are given, which provides a theoretical foundation for studying dynamic response
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of Spiral bevel gears. Gosselin et al. [6] proposed a general formula and applied it to
analyze the load distribution and transmission error of spiral bevel gear pair and hypoid
gear pair. Bibel et al. [7] studied the three-dimensional stress of a spiral bevel gear pair
with finite element method. Fujii et al. [8] carried out analysis of dynamic behaviors
of straight bevel-geared shaft supported on tapered roller and angular contact bearings,
respectively, and then they measured the torsional and bending vibrations of the geared
rotor and the vibrating displacement in the axial direction under a constant transmitted
torque by using straight and skew bevel gears with a power circulating-type bevel-gear
testing machine [9]. Xu et al. [10] analyzed the coupled lateral-torsional vibration behavior
of the rotors with the engagement of spiral bevel gears by means of the transfer matrix
method, which neglected the relationships of the generalized displacements between two
bevel gears. Donley et al. [11] developed a dynamic model of a hypoid gear set for use
infinite element analysis of gearing systems. In their gear mesh model, the mesh point
and line-of-action are time invariant. Fang [12] developed a lumped parameter vibration
model of a spiral bevel gear transmission to compute dynamic load and gear response.
His mesh model is based on the classical gear mesh force equations that produce a
simple unidirectional gear-mesh-coupling vector. Cheng and Lim [13] proposed a hypoid
gear dynamic model based on exact gear geometry for analyzing gear mesh mechanism
and applied the corresponding linear dynamic model to study the hypoid gear pair
dynamics with transmission error excitation. In recent years, spiral bevel gear dynamics has
gained extensive attention from many scholars and many relevant investigations have been
published [14–17].

Unlike spur or helical gears, the mesh couplings in spiral bevel gears are not
symmetric, due to the complex curvilinear features of the spiral bevel gear tooth geometry.
That is, their mesh parameters for the drive and coast sides are very different. Most of the
previous studies on the dynamics of spiral bevel gear transmissions focus on backlash and
time-varying mesh stiffness, assuming symmetric mesh parameters for simplicity.

In this paper, we focus mainly on the dynamics of high-speed, precision spiral
bevel gear pairs often used in automotive and aerospace power transmission systems.
An 8-DOF nonlinear dynamic model of a spiral bevel gear pair which involves time-
varying mesh stiffness, transmission error, backlash, and mesh stiffness asymmetry is
proposed. Compared to mesh stiffness, the mesh damping with time-varying and asymmetric
has less effect on dynamic response. Therefore, the study focuses on the effect of the
asymmetric mesh stiffness on the vibration characteristics of spiral bevel gear transmission
system, and the mesh damping parameter is assumed to be constant as in references
[13, 14].

2. Dynamic Model

The proposed nonlinear dynamic model of a spiral bevel gear pair is shown in Figure 1.
Three-dimensional Cartesian coordinate is set up, which uses the theoretical intersection
of the two bevel gear axis for the origin. The two gear bodies are considered as
rigid cone disks and bending rotation can be neglected for the bearing layout in
Figure 1. Then the model includes transverse and torsion coordinates as shown in
Figure 1.

The coordinate vector of the system can be expressed with [X1, Y1, Z1, θ1x, X2, Y2,
Z2, θ2y]

T .
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The normal dynamic load of pinion and its components along axis can be calculated
as

Fn = kh
(
λn

)
f
(
λn

)
+ chλ̇n,

Fx = Fn
(
sinαn sin δ1 + cosαn sin βm cos δ1

)
,

Fy = −Fn
(
sinαn cos δ1 − cosαn sin βm sin δ1

)
,

Fz = −Fn cosαn cos βm,

(2.1)
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kh1, λn > b,
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khar1 cos
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rωht + φhr1

)
,

kh2 = khm2 +
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r=1

khar2 cos
(
rωht + φhr2

)
,

f
(
λn

)
=

⎧
⎪⎪⎪⎨
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λn − b, λn > b,

0, −b ≤ λn ≤ b,

λn + b, λn < −b,

(2.2)

where kh1, kh2—mesh stiffness of drive side and coast side, respectively; λn—Dynamic
transmission error; kh(λn), f(λn)—Nonlinear displacement function; ch—Mesh damping
coefficient; αn—Normal surface pressure angle; δ1—Pitch cone angle of the pinion; βm—
Helix angle at meshing point; khm1, khm2—Mean mesh stiffness of drive side and coast side,
respectively; khar1, khar2—Fourier series coefficients; b—Half of the gear backlash.

Dynamic transmission error can be defined with

λn = (−X1 +X2)a1 + (Y1 − Y2)a2 +
(
Z1 − Z2 + rm1θ1x − rm2θ2y

)
a3 + e

(
t
)
, (2.3)

where

a1 = sinαn sin δ1 + cosαn sin βm cos δ1,

a2 = sinαn cos δ1 − cosαn sin βm sin δ1,

a3 = cosαn cos βm,

(2.4)

e(t) is the static transmission error on normal direction of meshing surface. It can be expressed
in a Fourier series form: e(t) =

∑∞
r=1 er sin(rωht + φer), where rm1, rm2—mean radius at

meshing point; er—amplitude of the r-order harmonic; φer—phase angle of the r-order
harmonic.
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Figure 1: Dynamic model of a spiral bevel gear pair.

The equations of the dynamic model can be described as

m1Ẍ1 + C1xẊ1 +K1xX1 = Fx,

m1Ÿ1 + C1yẎ1 +K1yY1 = Fy,

m1Z̈1 + C1zŻ1 +K1zZ1 = Fz,

I1xθ̈1x = T1 + Fzrm1,

m2Ẍ2 + C2xẊ2 +K2xX2 = −Fx,

m2Ÿ2 + C2yẎ2 +K2xY2 = −Fy,

m2Z̈2 + C2zŻ2 +K2zZ2 = −Fz,

I2yθ̈2y = −T2 − Fzrm2,

(2.5)

T1 = T1m + T1v, T2 = T2m, (2.6)

where m1, m2—Mass of pinion and gear, respectively; I1x, I2y—Mass moments of inertias
of pinion and gear, respectively; Kij , Cij—Bearing stiffness and damping along the three
coordinate axis, respectively; T1, T2—Load torques on pinion and gear, respectively; T1m,
T2m—Mean load torques on pinion and gear, respectively; T1v—Ripple torque on pinion.
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Using λn as a new freedom degree, the two rigid-body rotation equations of the
original model can be changed into a single one:

mea1Ẍ1 −mea2Ÿ1 −mea3Z̈1 −mea1Ẍ2 +mea2Ÿ2 +mea3Z̈2

+meλ̈n + cha2
3λ̇n + kh

(
λn

)
a2

3f
(
λn

)
= a3(F1m + F1v) +meën

(
t
)
,
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I1xI2y(

I1xr
2
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2
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) ,

F1m =
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rm1
=
T2m

rm2
,

F1v =
T1vrm1me

I1x
=
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r=1

Fr cos
(
rωT1t + φT1r

)
,

(2.7)

where me—Equivalent mass of the gear pair; F1v, F1m—Ripple and mean force on pinion,
respectively.

Next, introducing the parameters

xi =
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l
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l
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l
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b

l
,
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(
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(2.8)

where i = 1, 2; j = x, y, z.
The dimensionless form of (2.5) can be obtained as

ẍ1 + 2ς1xẋ1 + k1xx1 − 2a1ς1hλ̇n − a1k1hf(λn) = 0,

ÿ1 + 2ς1yẏ1 + k1yy1 + 2a2ς1hλ̇n + a2k1hf(λn) = 0,

z̈1 + 2ς1zż1 + k1zz1 + 2a3ς1hλ̇n + a3k1hf(λn) = 0,

ẍ2 + 2ς2xẋ2 + k2xx2 + 2a2ς2hλ̇n + a2k2hf(λn) = 0,

ÿ2 + 2ς2yẏ2 + k2yy2 − 2a2ς2hλ̇n − a2k2hf(λn) = 0,

z̈2 + 2ς2zż2 + k2zz2 − 2a3ς2hλ̇n − a3k2hf(λn) = 0,

a1ẍ1 − a2ÿ1 − a3z̈1 − a1ẍ2 + a2ÿ2 + a3z̈2 + λ̈n + 2a2
3ςhλ̇n + a

2
3g(λn)f(λn) = a3f1m + a3f1v + fe.

(2.9)

3. Numerical Results

As there is no analytical method existing for (2.9), the equation is solved by applying the
explicit Runge-Kutta integration routine with variable step that is generally applicable to
strong nonlinear equation. The effect of tooth mesh stiffness asymmetry on dynamic response
of spiral bevel gear system for both light and heavy loads is studied here. For subsequent
numerical study, the baseline data used are

Z1 = 36, Z2 = 40, αn = 20◦, βm = 35◦, b = 35μm. (3.1)
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Figure 2: Effect of mean mesh stiffness of coast side for lightly loaded case. ∗—single-sided impact ◦—no
impact +—double-sided impact.

In this part, it is focused on effect of mean mesh stiffness khm1, khm2, assuming that
khr1 = khr1, φhr1 = φhr2 for simplicity.

3.1. Effect of Mesh Stiffness Asymmetry for Lightly Loaded Case

Dimensionless dynamic parameters set in the system are as follows:

ςij = 0.01, ςih = 0.0125, ςih = 0.0125,

kih = 0.25, khr1 = khr2 = 0.2,

φhr1 = φhr2 = 0,

f1m = 0.25, f1v = 0 ωh = 0.7,

fe = 0.5ω2
h cosωht, i = 1, 2, j = x, y, z.

(3.2)
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Figure 3: Effect of mean mesh stiffness of drive side for lightly loaded case. ∗—single-sided impact ◦—no
impact +—double-sided impact.

The effect of the mean mesh stiffness of coast side on dynamic response for lightly
loaded case is shown in Figure 2. The horizontal axis represents excitation frequency ωh and
the vertical axis represents peak-peak value of the dynamic transmission errorA. As shown in
Figure 2(a), when khm2 = 0.5, single-sided impact response and double-sided impact response
alternate in the low-frequency regions. And the max of A occurs at ωh = 0.9. In the region
ωh ∈ [0.96, 1.06], there are no impact responses, and the gear pair running smoothly as khm2 is
increased to 1 in Figure 2(b); the max of A 8.5 moves to the frequency ωh = 0.52. The dynamic
response in no-impact and single-sided impact regions ωh ∈ [0.96, 1.5] keeps unchanged.
When khm2 is increased further to 1.5 and 2, the peak-peak value A in double-sided impact
region changes obviously while the location and vibration response of single-sided impact
and no-impact regions are nearly unchanged. The above results show that the mesh stiffness
of coast side only affects double-sided tooth impact region.

Figure 3 shows the effect of mean mesh stiffness of drive side for lightly loaded case. It
can be seen from Figure 3(a) that double-sided impacts dominate the range ωh ∈ [0.67, 0.79].
And four response jump discontinuities can be seen at frequency ωh = 0.67, 0.79, 0.97, 1.25.
It can be observed that response jump discontinuities appear at these frequencies. As khm1 is
increased to 1, it can be observed that more double-sided impacts appear and the location of
each impact region shifts obviously. As khm1 is further increased to 1.5 and 2, both response
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Figure 4: Bifurcation diagram for lightly loaded case.

jumps and single-sided impacts increased considerably, and response in the whole excitation
frequency areas changes significantly. As can be seen in Figure 3(c), except the two narrow
bands ωh ∈ [1.03, 1.17] and ωh ∈ [1.36, 1.5], the rest excitation frequencies are all double-
sided impact regions. When khm1 = 2, width of double-sided tooth impact region is further
increased.

To further explain the effect of the mean mesh stiffness of drive side on dynamic
response, bifurcation diagram is introduced in Figure 4. For the current light-load case,
it can be observed that, as khm1 is increased from 1 to 2, chaotic motion regions increase
considerably. From above observations, it can be concluded that the mesh stiffness of drive
side affects dynamic response greatly in the whole excitation frequency region. Furthermore,
the increase of drive side mesh stiffness tends to worsen dynamic response.

3.2. Effect of Mesh Stiffness Asymmetry for Heavily Loaded Case

Dimensionless dynamic parameters set in this part are as follows:

ςij = 0.01, ςih = 0.0125, ςih = 0.0125, kih = 0.25, khr1 = khr2 = 0.2,

φhr1 = φhr2 = 0, f1m = 1, f1v = 0, fe = 0.5ω2
h cosωht,

i = 1, 2, j = x, y, z.

(3.3)

When khm1 = 1, the effect of khm2 for heavy-load case is shown in Figure 5. No-
impact region ωh ∈ [0.74, 1.18] is far wider than double-sided impact region ωh ∈ [0.5, 0.61]
in Figure 5(a). And the max of A = 15.9 which comes at ωh = 0.52 is much larger than
that of 6 for light-load case. There are three single-sided impact regions ωh ∈ [0.62, 0.73],
ωh ∈ [1.19, 1.27], and ωh ∈ [1.32, 1.5], and little response jump can be seen. As khm2

is increased to 1, dynamic response in double-sided impact region changes greatly while
responses in single-sided impact and no-impact regions remain the same. And the max of A
is increased to 24. As khm2 is increased further to 1.5 and 2, only double-sided impact region
is affected. The results show that double-sided impact region becomes obviously narrower
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Figure 5: Effect of mean mesh stiffness of coast side for heavily loaded case. ∗—single-sided impact ◦—no
impact +—double-sided impact.

and response jumps diminish considerably for heavily loaded case. Although the peak-peak
value of dynamic transmission error in double-sided impact region is larger than that of
light-load case, response jump discontinuities and double-sided tooth impacts for heavily
loaded case are far fewer. As light-load condition, only double-sided impact region is affected
considerably by mesh stiffness of coast side. This is because khm2 only takes effect for double-
sided impact condition.

Figure 6 shows dynamic response for different mean mesh stiffness of drive side while
leaving mean mesh stiffness of coast side unchanged. In Figure 6(a), there are three no-impact
regions ωh ∈ [0.98, 1.33], ωh ∈ [0.57, 0.79], and ωh ∈ [1.44, 1.5], one double-sided impact
region ωh ∈ [0.8, 0.91], and three response jump frequencies ωh = 0.8, ωh = 0.91, and ωh =
0.97. The max of A = 32 occurs at ωh = 0.92. As khm1 is increased to 1, no-impact regions are
reduced to two ωh ∈ [0.74, 1.18] and ωh ∈ [1.28, 1.31], and the location of each impact region
changes significantly. For khm1 = 1.5 in Figure 6(c), the number of double-sided impact region
is increased to two ωh ∈ [0.57, 0.76] and ωh ∈ [1.31, 1.41], and more response jumps appear.
When khm1 is increased to 2, double-sided impact region becomes wider and response in
double-sided impact region takes significant changes from Figure 6(c).

Figure 7 shows response bifurcation for different khm1, while khm2 is fixed to 1. For
khm1 = 1 in Figure 7(a), no chaotic motion can be seen. However, as khm1 is increased to 2,
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Figure 6: Effect of mean mesh stiffness of drive side for heavily loaded case. ∗—single-sided impact ◦—no
impact +—double-sided impact.

there are two obvious chaotic motion areas. Comparing with Figure 4, it can be seen that
chaotic motion areas diminish considerably in Figure 7. From these results we can conclude
that mesh stiffness of drive side also affects dynamic response greatly for heavy-load case. In
addition, the increase of khm1 will worsen the dynamic response of the system especially for
light-load case. Compared with light-load condition, the degree of gear backlash nonlinearity
is lower for heavy-load case. This is because mesh force under heavy-load condition is large
and hence mesh teeth are difficult to separate.

4. Conclusions

A nonlinear dynamic model of a spiral bevel gear pair which involves time-varying mesh
stiffness, transmission error, backlash, and mesh stiffness asymmetry is proposed. The effect
of tooth mesh stiffness asymmetry on vibration of spiral bevel gear transmission system is
studied deliberately. Some important conclusions are obtained.

Firstly, the mesh stiffness for drive side has more effect on dynamic response than
those of the coast side. Only double-sided impact region is affected considerably by mesh
stiffness of coast side while single-sided impact and no-impact regions are unchanged.
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Figure 7: Bifurcation diagram for heavily loaded case.

Secondly, the dynamic response of the system is very sensitive to mesh stiffness of
drive side. The change of mesh stiffness of drive side will affect response in the whole
excitation frequency areas. Furthermore, the increase of drive side mesh stiffness tends to
worsen dynamic response especially for lightly loaded case.

Thirdly, the vibration characteristic for heavily loaded case is far better than that for
lightly loaded case. And the mesh stiffness asymmetry affects the dynamic response more
compared with heavy-load case.
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