Influential and high-leverage
observations, outliers



Influential observations

* |dea: how much does my fit change after taking out
this observation?

* There are different ways to measure this

* For example: Cook’s distance, DFFITS, etc.



Coolk’s distance

* Coolk’s distance of observation i is

?)j predicted value for observation j with
all the observations

n A ~ 2
Zj:l (y] yj(z)) @j(i) predicted value for observation j
p82 after taking out the i-th observation

52 our usual estimator of the residual

variance o2

D; =

* How big is big? Different recommendations... Some
people say D, >/

* | recommend looking closely at any observation
that seems to “stick out”



Leverage, outliers, and influence

* Leverage: measures how far away x;is from the
other x values [goes from O to I, from “average x” to “very unusual x”’]

* High leverage: unusual value of x;, which may or may
not be well predicted by our line

* Big residual |e;| : point that is badly predicted by our
line (outliers)

* Observations with high leverage and big residuals
are highly influential, because Cook’s distance can

be written as

2 T . 7
D o 6’i hz h;: leverage of observation i
() 1 h \2 e;: residual of observation i
( o Z)
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Figure 7.2: Outliers can conceal themselves. The solid line is the fit including the A point but not the e
point. The dotted line is the fit without either additional point and the dashed line is the fit with the e point
but not the A point.

Source: https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf



https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

Multiple linear regression



Multiple linear regression

* The same, but with more variables

* Find the coefficients that minimize in-sample
predictive error

* We can find Cls and hypothesis tests if we make
assumptions

[ ]
We assume * Independence of outcomes y; for i in
I:n (given the x;).

g o | Normality
yi ~ N(Bo + Prza + Paziz + -+ + Bp-1Tip-1,07) |« Homoscedasticity (equal variance
vi = Bo + Bz + BaTiz + -+ + By1Tip_1 + €1y €i 9 N(0,02) across observations, which doesn’t
depend on x;)

* Linearity (i.e. E[Y | X] is a linear
comb. of the Xs)



Regression & diagnostics with
SAS



PROC REG

* You can fit linear regression models with PROC
REG

* For example:

PROC REG data=iqg;
MODEL PIQ = brain height weight;

RUN;
This fits a model where “PIQ” is the outcome and
the predictors are “brain”,“height”, and “weight”

* You can find info about PROC REG in class code
and the handouts



Number of Observations Read | 38

Number of Observations Used | 38

Sums of squares

Analysis of Variance

P-value for test

(defined in previous S OF  Squares  Square FValue Pr> with null: none of
lecture Model 3 557274444 1857 58148 474 00072 > the predictors are
& Error 34 13322 391.81789
and later in this Corrected Total | 37 18895 useful
slideshow)
Root MSE 19.79439  R-Square | 0.2949
Dependent Mean  111.34211 Adj R-Sq | 0.2327
Coeff Var 17.77799
Parameter Estimates
Parameter | Standard
Variable DF Estimate Error | t Value Pr = |t|
Intercept. 1| 11135361 6297110  1.77 0.0860 P-values fOI’
Brain 1 206037 056345  3.66 0.0009 . . .
Height 1 273193 122943 222 00330 — > individual
Weight | 1 0.00055994 0.19707  0.00 0.9977 variables

coefficients



If the model fits the data well, we
should observe no “nonrandom”
patterns (e.g.a parabola) and the

spread of y-axis should not depend
strongly on the values on the x-

axis

Residual
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Same idea as the previous plot, but
the y-axis has been standardized so
that, if the model fits the data well,
roughly 95% of the points lie
within the [-2,2] band
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3 o 3 o
2 2
o oo — o ©° o
o c o
1 °%% o . I 1 g%cn .
S
0. o — 00g
0 o o 0 0 e o
@ g ooc,oo o o o ° 2o°o 0 °
1 oo, ° 14 o ©0 °
o o o
2 ° e 2 o e
100 120 140 005 010 015 0.20 0.25

Predicted Value Leverage



High values on the x-axis indicate
high leverage points. SAS has a rule
of thumb to flight “high leverage”
points, but in general | look at
observations that “stick out”

Residual

Fit Diagnostics for PIQ
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If the model fits the data well, the  x-axis: predicted values

points should be on the line. y-axis: actual values
Helpful for assessing the If the model does a good job at
assumption of normality. predicting, the points should align
More here (or ask me) nicely around y = x
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http://support.sas.com/documentation/cdl/en/procstat/67528/HTML/default/viewer.htm

Residual
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X-axis: observation number
y-axis: Cook’s distances
SAS has a rule for flagging “big”

Cook’s distances. In general, | look

for observations that stick out
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Histogram of residuals vs best
normal fit. If the residuals are
roughly normal, the histogram and
the overlaid curve should look

similar. Useful for assessing | don’t like this plot! If you want to
normality of residuals learn more, click here
30 Fit-Mean Residual
] 40
€ 20 8 Observations 38
S 20 o f Parameters 4
a Error DF 34
10 0 MSE 391.82
20 ¢ R-Square 0.2949
0 5 Adj R-Square 0.2327
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Residual Proportion Less


https://blogs.sas.com/content/iml/2013/06/12/interpret-residual-fit-spread-plot.html

Model building



General problem:
Variable selection

* You have an and

* Do put all p predictors in the model?
* Some reasons we might not want to include all of
them
* In the application, the client might be

(“predictive”)

* If you don’t need some of them, you might be able to get
rid of them and

[there are some caveats here]



Two classes of approaches

e All subsets

* Fit (with all the possible subsets of
predictors in and out of the model)

the model according to some criterion

* Almost infinitely many possibilities, no single criterion is
uniformly better than the rest

* Search strategies
* Look for good models, without exploring all the subsets

* Sometimes you just have to do this because the model
space is too big, and you can’t go through all subsets...



How to score models?

* You go through all subsets, find a “score”... A score
like what?

 We have seen R2



Sums of squares

Residual variability in
variability in y sum of squares predictions
n n n
—\2 A\ 2 A~ —\ 2
E:(yz’_y) :E:(yi_yi) +E (Ui — )
1=1 1=1 1=1

* It’s easy to use: it goes
from O to |
* Tempting to use it as a

R2 L Z?:l (@z — @)2 “goodness-of-fit”

n 92 statistic
Zz’:1 (yz o y) * It can be deceptive
when the relationship

between y and x isn’t
linear




n—1

R:y =1—(1—-R?
adjusted ( ) n—p— 1
 Unfortunately, R? can’t get worse as you add in

more variables [the residual sum of squares can’t get worse after
adding a variable... Worst case scenario, the coefficient of that variable is
set to 0,and we’re done]

* Fortunately, somebody found out a way to penalize
the so that there isn’t a bias towards bigger models

* If all predictors are garbage: E[R?] = p/(n-1)
* BAD! It increases as we put in bogus predictors

* Adjusted R?is modified so that E[R?,;] = O if all
predictors are bad



BIC and CP

* BIC: smaller is better

* Again, it looks at the tradeoff between smaller residual
sum of squares (RSS) and the fact that bigger models
(tend to) have smaller residual sum of squares

* So, it has a term that increases in RSS and some penalty
on model “complexity” (p * log n)

* C,: Pick smallest model whose C; is roughly p

* |dea: Same tradeoff between small RSS and penalizing big
models

* Can be derived by thinking how E(RSS) should behave if
the model is “correct”



Searching for good models

* Sometimes you can’t go through all models

* Some strategies for finding good models

* Forward selection: start with no variables, and keep on adding
variables one at a time until it doesn’t pay off (according to some
criterion)

* Backward selection: start with all of the variables, and keep on
dropping variables until it doesn’t pay off (according to some
criterior%)

start with no variables, and keep on adding
variables one at a time until it doesn’t pay off. If a variable that
seemed useful at some previous step isn’t useful anymore, you drop
it
* You can use p-values as the criterion to include/exclude
variables

* You can use other criteria, such as BIC, etc.



Don’t compare model scores if
you transformed y!

Two fitted models, obtained by different transforma-
tions of the response, are plotted on the original scale in
Figures 1 and 2. Figure 1 is obtained by fitting a model
of the form

Y¥=a+ Bx+ yx* +e, (1)

where Y* = Y/x*?, by ordinary least squares and then
expressing the prediction equation and the prediction in-
terval limits back in the original scale. Figure 2 is ob-
tained in the same way by fitting

Y¥=a+ Bx+ y*+e, ()

with Y¥ = log.(Y). Note that both linear models contain
a constant term.

Source:
Transformations and R 2
Alastair Scott &Chris Wild



https://www.tandfonline.com/author/Scott,+Alastair
https://www.tandfonline.com/author/Wild,+Chris

Don’t compare model scores if

you transformed y!
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Figure 1. Fitted Model Based on Y* = Y/x°/.
Source:

Transformations and R 2
Alastair Scott &Chris Wild
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Figure 2. Fitted Model Based on Y3 = log Y.
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https://www.tandfonline.com/author/Scott,+Alastair
https://www.tandfonline.com/author/Wild,+Chris

