
Influential and high-leverage 
observations, outliers



Influential observations

• Idea: how much does my fit change after taking out 
this observation?
• There are different ways to measure this
• For example: Cook’s distance, DFFITS, etc. 



Cook’s distance

• Cook’s distance of observation i is 

• How big is big? Different recommendations… Some 
people say Di >1
• I recommend looking closely at any observation 

that seems to “stick out”

predicted value for observation j with 
all the observations

predicted value for observation j 
after taking out the i-th observation

our usual estimator of the residual 
variance σ2



Leverage, outliers, and influence

• Leverage: measures how far away xi is from the 
other x values [goes from 0 to 1, from “average x” to “very unusual x”]

• High leverage: unusual value of xi, which may or may 
not be well predicted by our line
• Big residual |ei| : point that is badly predicted by our 

line (outliers)
• Observations with high leverage and big residuals 

are highly influential, because Cook’s distance can 
be written as

hi: leverage of observation i
ei: residual of observation i



Source: https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf


Multiple linear regression



Multiple linear regression
• The same, but with more variables
• Find the coefficients that minimize in-sample 

predictive error 
• We can find CIs and hypothesis tests if we make 

assumptions
• We assume • Independence of outcomes yi for i in 

1:n (given the xij).
• Normality
• Homoscedasticity (equal variance 

across observations, which doesn’t 
depend on xij)

• Linearity (i.e. E[Y | X] is a linear 
comb. of the Xs)

≈



Regression & diagnostics with 
SAS



PROC REG

• You can fit linear regression models with PROC 
REG
• For example:

This fits a model where “PIQ” is the outcome and 
the predictors are “brain”, “height”, and “weight”
• You can find info about PROC REG in class code 

and the handouts

PROC REG data=iq;
MODEL PIQ = brain height weight;

RUN;



Sums of squares 
(defined in previous 
lecture 
and later in this
slideshow)

P-value for test 
with null: none of 
the predictors are 
useful

P-values for 
individual 
variables

coefficients



If the model fits the data well, we 
should observe no “nonrandom” 
patterns (e.g. a parabola) and the 
spread of y-axis should not depend 
strongly on the values on the x-
axis

Same idea as the previous plot, but 
the y-axis has been standardized so 
that, if the model fits the data well,
roughly 95% of the points lie 
within the [-2,2] band 



High values on the x-axis indicate 
high leverage points. SAS has a rule 
of thumb to flight “high leverage” 
points, but in general I look at 
observations that “stick out”



x-axis: predicted values
y-axis: actual values
If the model does a good job at
predicting, the points should align
nicely around y = x 

If the model fits the data well, the 
points should be on the line. 
Helpful for assessing the 
assumption of normality. 
More here (or ask me)

http://support.sas.com/documentation/cdl/en/procstat/67528/HTML/default/viewer.htm


x-axis: observation number
y-axis: Cook’s distances
SAS has a rule for flagging “big” 
Cook’s distances. In general, I look 
for observations that stick out



I don’t like this plot! If you want to 
learn more, click here

Histogram of residuals vs best 
normal fit. If the residuals are 
roughly normal, the histogram and 
the overlaid curve should look 
similar. Useful for assessing 
normality of residuals

https://blogs.sas.com/content/iml/2013/06/12/interpret-residual-fit-spread-plot.html


Model building



General problem: 
Variable selection
• You have an outcome y and predictors x1, x2, … , xp

• Do put all p predictors in the model?
• Some reasons we might not want to include all of 

them
• In the application, the client might be interested in 

knowing which variables seem to be “active” 
(“predictive”) 
• If you don’t need some of them, you might be able to get 

rid of them and get more precise estimates and 
predictions [there are some caveats here]



Two classes of approaches

• All subsets
• Fit all possible models (with all the possible subsets of 

predictors in and out of the model)
• Rank/score the model according to some criterion 

• Almost infinitely many possibilities, no single criterion is 
uniformly better than the rest

• Search strategies
• Look for good models, without exploring all the subsets
• Sometimes you just have to do this because the model 

space is too big, and you can’t go through all subsets…



How to score models?

• You go through all subsets, find a “score”… A score 
like what?
• We have seen R2



Residual 
sum of squaresvariability in y

variability in
predictions

• It’s easy to use: it goes 
from 0 to 1

• Tempting to use it as a 
“goodness-of-fit” 
statistic 

• It can be deceptive 
when the relationship 
between y and x isn’t 
linear

Sums of squares



• Unfortunately, R2 can’t get worse as you add in 
more variables [the residual sum of squares can’t get worse after 
adding a variable… Worst case scenario, the coefficient of that variable is 
set to 0, and we’re done] 

• Fortunately, somebody found out a way to penalize 
the so that there isn’t a bias towards bigger models
• If all predictors are garbage: E[R2] = p/(n-1) 
• BAD! It increases as we put in bogus predictors
• Adjusted R2 is modified so that E[R2

adj] = 0 if all 
predictors are bad



BIC and Cp

• BIC: smaller is better
• Again, it looks at the tradeoff between smaller residual 

sum of squares (RSS) and the fact that bigger models 
(tend to) have smaller residual sum of squares
• So, it has a term that increases in RSS and some penalty 

on model “complexity” (p * log n) 

• Cp: Pick smallest model whose Cp is roughly p
• Idea: Same tradeoff between small RSS and penalizing big 

models
• Can be derived by thinking how E(RSS) should behave if 

the model is “correct”  



Searching for good models

• Sometimes you can’t go through all models
• Some strategies for finding good models

• Forward selection: start with no variables, and keep on adding 
variables one at a time until it doesn’t pay off (according to some 
criterion)

• Backward selection: start with all of the variables, and keep on 
dropping variables until it doesn’t pay off (according to some 
criterion)

• Stepwise selection: start with no variables, and keep on adding 
variables one at a time until it doesn’t pay off. If a variable that 
seemed useful at some previous step isn’t useful anymore, you drop 
it 

• You can use p-values as the criterion to include/exclude 
variables
• You can use other criteria, such as BIC, etc.



Don’t compare model scores if 
you transformed y!

Source:
Transformations and R 2

Alastair Scott &Chris Wild

https://www.tandfonline.com/author/Scott,+Alastair
https://www.tandfonline.com/author/Wild,+Chris
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