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Rise of the Machines:
Deep Learning from Backgammon to Skynet

Over the past seven years, there have been significant advances 
in applications of artificial intelligence, machine learning, and 
specifically deep learning, to a variety of familiar tasks. From 
image and speech recognition, self-driving cars, and machine 
translation, to beating the Go champion, it's been difficult to stay 
abreast of all the breathless reports of superhuman machine 
performance. There has as well been a recent surge in 
applications of machine learning ideas to research problems in 
the hard sciences and medicine. I will endeavor to provide an 
outsider's overview of the ideas underlying these recent 
advances and their evolution over the past few decades, and 
project some prospects and pitfalls for the near future.

Paul Ginsparg, Physics and InfoSci
Cornell Univ

Aspen 16 Jan 2019



video games, poker, chess, go,
speech recognition, language translation,

medical applications (dermatology, ophthalmology), 
chemical synthesis,

data analysis,
self-driving cars

Plan:
Teaser

How it all works
Historical highlights

Future



Google/Verily/Stanford [arXiv:1708.09843, Nature (2018)]

"retinal fundus image": 
photograph of back of eye 
taken through pupil
(used for over 100 years 
for detecting eye disease)

Now: using AI can also 
predict risk of heart attack 
or stoke.

and more …



Google/Verily/Stanford [arXiv:1708.09843, Nature (2018)]

Deep learning models trained on data from 284,335 patients and 
validated on two independent datasets of 12,026 and 999 patients



Google/Verily/Stanford [arXiv:1708.09843, Nature (2018)]



but now: data is fmri scan, task is to determine probability of Alzheimers
We don't know how to write the program …

data

traditional cs:

write 
program

outputcomputer

traindata

output
computer

program

machine learning:
use training data and output to generate program,
which then generates output for test data.

testdata

computer output



approx 2030 
$1k compute 
resources will 
match human 
brain compute 
and storage 
capacity

(H. Moravec, CMU, 1998)
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GPU 70x faster
to train (week->hrs)

Choice of
Activation
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.35% on MNIST

Multiple groups
speech recognition

Imagenet (Ng, Dean, et al)
70% improvement
Dropout, 16k CPUs

1B weights
(1M for MNIST) 

2011
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ImageNet Challenge

• Large Scale Visual 
Recognition Challenge (ILSVRC)
• 1.2M training images with 

1K categories 
• Measure top-5 classification error 

44

Image classification
Easiest classes

Hardest classes

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 93

o Yearly ImageNet competition 
◦ Automatically label 1.4M images with 1K objects
◦ Measure top-5 classification error

ImageNet Large Scale Visual Recognition Challenge

Output
Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output
Scale
T-shirt
Giant panda
Drumstick
Mud turtle

✔ ✗

93

Output
Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output
Scale
T-shirt
Giant panda
Drumstick
Mud turtle

J. Deng, Wei Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei , “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009.
O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge”, Int. J. Comput. Vis.,, Vol. 115, Issue 3, pp 211-252, 2015.
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Why us? Why now?
1) Bigger Data
2) Faster CPU (+GPU)
3) Better Initialization
4) Right non-linearity

2013 2017

microsoft real-time
translation

(speech to speech)

NIPS Dec

2015 2016

Mar: google alphaGO
beats Lee Sedol

(just 19 yrs after chess,
not 30-40 years)

Jan: no-limit texas hold’em
CMU program 

beats top humans
(not another 10 yrs)

self-driving vehicles,
superhuman

performance in 
image recog,

… ->

Mar: AlphaGo Master
 beats Ke Jie 

(world #1)

2014

GANDeep RL
beats human

expert at
Atari games
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software (TensorFlow, torch … caffe2, decaffeine, matconvnet, microsoft cognitive toolkit, pytorch)

[WWW -> 
social media -> 

text/data sharing]



2017

Oct: AlphaGo Zero
(3 days to beat AlphaGo Lee,

21 Days to beat AlphaGo Master)

2018 2019?

AI-enabled chips
IoT + AI at the edge

interoperability (ONNX)
auto-ML

AI+DevOps= AIOps
Dec: AlphaZero

(24 hours to superhuman
chess, shogi, go)
“tabula rasa”

Kasparov: “the truth”

Medical Image Analysis
(CT scans for stroke, 
Image Generation;

entire MRI processing chain, 
acquisition to image retrieval, 

segmentation to disease prediction)

All pervasive:
e.g., google: search, image search, driverless cars, voice recog,

youtube recommender, street labels
facebook: images through two nn's, tag friends, understand image, (e.g., no food), 
major companies hiring like crazy. ibm watson, siri, yelp (also fraud), tesla, netflix,

skype live translation, 

Dec: AlphaZero
(24 hours to superhuman

chess, shogi, go
— discovered the principles on its own

and quickly became best player)

some science problems (protein folding) like Go: well-known rules and a well-described 
goal. similar algorithms might be applied to similar tasks in quantum chemistry, 
materials design and robotics
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Discrete Probability and Counting
Discrete Probability and Counting

A finite probability space is a set S and a real function p(s) on S such that:

• p(s) � 0 , 8s 2 S, and

•
P

s2S p(s) = 1 .

We refer to S as the sample space, subsets of S as events, and p as the probability distribution.

The probability of an event A ✓ S is p(A) =
P

a2A p(a).

(Note that p(;) = 0.)

Example: Flip a fair coin. S = {H,T}

“Fair” implies that it is equally likely to come up H (heads) or T (tails), and therefore
p(H) = p(T ) = 1/2.

Note: when all elements of S have same probability, then p is the uniform distribution.

Example: Flip a biased coin where the probability of H is twice the probability of T .

Since p(H) + p(T ) = 1, this implies p(H) = 2/3 and p(T ) = 1/3.

Example: Flip a fair coin twice.

What is the probability of getting one H and one T?

Possible outcomes are S = {HH,HT , TH, TT}.

Two out of the possible 4 outcomes give one H and one T ,
each outcome has probability 1/4, so the total probability is 1/4 + 1/4 = 1/2

Example: flip a fair coin 4 times.

What is the probability of getting exactly two heads?

The set of all possibilities

S = {HHHH,HHHT,HHTH,HHTT ,HTHH,HTHT,HTTH,HTTT

THHH,THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT}

2
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Conditional Probability

Suppose we know that one event has happened and we wish to ask about another.

For two events A and B, the joint probability of A and B is defined as

p(A,B) = p(A ∩ B)

the probability of the intersection of events A and B in the sample space,

equivalently the probability that events A and B both occur

The conditional probability of A relative to B is

p(A|B) = p(A ∩B)/p(B) “the probability of A given B”

Example: Flip a fair coin 3 times.

B = event that we have at least one H

A = event of getting exactly 2 Hs

What is the probability of A given B?

In this case, (A ∩ B) = A, p(A) = 3/8, p(B) = 7/8,

and therefore p(A|B) = 3/7.

Notice that the definition of conditional probability also gives us the formula: p(A∩B) =

p(A|B)p(B). For three events we have: p(A ∩ B ∩ C) = p(A|B ∩ C)p(B|C)p(C). (What is

a general rule?)

We can also use conditional probabilities to find the probability of an event by breaking

the sample space into disjoint pieces. If S = S1 ∪ S2 . . .∪ Sn and all pairs Si, Sj are disjoint

then for any event A, p(A) =
∑

i p(A|Si)p(Si) =
∑

i p(A ∩ Si).

Example: Suppose we flip a fair coin twice. Let S1 be the outcomes where the first flip

is H and S2 be the outcomes where the first flip is T . What is the probability of A = getting

2 Hs? p(A) = (1/2)(1/2) + (0)(1/2) = 1/4.

Two events A and B are independent if p(A ∩ B) = p(A)p(B). This immediately gives:

A and B are independent iff p(A|B) = p(A).

12
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Bayes’ Rule
Bayes Theorem

A simple formula follows from the above definitions and symmetry of the joint probability:

p(A|B)p(B) = p(A,B) = p(B,A) = p(B|A)p(A):

p(A|B) =
p(B|A)p(A)

p(B)

Called “Bayes’ theorem” or “Bayes’ rule” — connects inductive and deductive inference

(Rev. Thomas Bayes (1763), Pierre-Simon Laplace (1812), Sir Harold Je↵reys (1939))

For mutually disjoint sets Ai with
Sn

i=1 Ai = S, Bayes’ rule takes the form

p(Ai|B) =
p(B|Ai)p(Ai)

p(B|A1)p(A1) + . . .+ p(B|An)p(An)
.

Example 1: Consider a casino with loaded and unloaded dice.

For a loaded die (L), probability of rolling a 6 is 50%:

p(6|L) = 1/2, and Lp(i|L) = 1/10 (i = 1, . . . , 5)

For a fair die (L), the probabilities are p(i|L) = 1/6 (i = 1, . . . , 6).

Suppose there’s a 1% probability of choosing a loaded die:

p(L) = 1/100.

If we select a die at random and roll three consecutive 6’s with it,

what is the posterior probability, P (L|6, 6, 6), that it was loaded?

7 INFO 2950, 9–11 Feb 16
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The probability of the die being loaded, given 3 consecutive 6’s, is

p(L|6, 6, 6) = p(6, 6, 6|L)p(L)
p(6, 6, 6)

=
p(6|L)3p(L)

p(6|L)3p(L) + p(6|L)3p(L)

=
(1/2)3 · (1/100)

(1/2)3 · (1/100) + (1/6)3 · (99/100)

=
1

1 + (1/3)3 · 99 =
1

1 + 11/3
=

3

14
⇡ .21 ,

so only a roughly 21% chance that it was loaded.

(Note that the Bayesian “prior” in the above is p(L) = 1/100, giving the expected

probability before collecting the data from actual rolls, and significantly a↵ects the inferred

posterior probability.)

Example 2: Duchenne Muscular Dystrophy (DMD):

model as simple recessive sex-linked disease caused by a mutated X chromosome (eX).

eXY male expresses the disease

eXX female is a carrier but does not express the disease

Neither of a woman’s parents expresses the disease, but her brother does.

Then the woman’s mother must be a carrier, and the woman herself therefore has

an a priori 50/50 chance of being a carrier, p(C) = 1/2.

She gives birth to a healthy son (h.s.).

What now is her probability of being a carrier?

8 INFO 2950, 9–11 Feb 16



Binary Classifiers:

Use a set of features to determine whether objects have binary (yes or no) properties.

Examples: whether or not a text is classified as medicine,

or whether an email is classified as spam.

In those cases, the features of interest might be the words the text or email contains.

“Naive Bayes” methodology:

statistical method (making use of the word probability distribution)

as contrasted with a “rule-based” method

(where a set of heuristic rules is constructed and then has to be maintained over time)

Advantage of the statistical method:

features automatically selected and weighted properly,

no additional ad hoc methodology

easy to retrain as training set evolves over time, using same straightforward framework

14 INFO 2950, 9–11 Feb 16

Binary Classifiers:

Use a set of features to determine whether objects have binary (yes or no) properties.

Examples: whether or not a text is classified as medicine,

or whether an email is classified as spam.

In those cases, the features of interest might be the words the text or email contains.

“Naive Bayes” methodology:

statistical method (making use of the word probability distribution)

as contrasted with a “rule-based” method

(where a set of heuristic rules is constructed and then has to be maintained over time)

Advantage of the statistical method:

features automatically selected and weighted properly,

no additional ad hoc methodology

easy to retrain as training set evolves over time, using same straightforward framework

14 INFO 2950, 9–11 Feb 16



Spam Filters

Spam filter = binary classifier where property is whether message is

spam (S) or non-spam (S).

Features = words of the message.

Assume we have a training set of messages tagged as spam or non-spam

and use the document frequency of words in the two partitions as evidence

regarding whether new messages are spam.

Example 1 (Rosen p. 422):

Suppose the word “Rolex” appears in 250 messages of a set of 2000 spam messages,

and in 5 of 1000 non spam messages.

Then we estimate p(“Rolex”|S) = 250/2000 = .125

and p(“Rolex”|S) = 5/1000 = .005.

Assuming a “flat prior” (p(S) = p(S) = 1/2) in Bayes’ law gives

p(S|“Rolex”) = p(“Rolex”|S)p(S)
p(“Rolex”|S)p(S) + p(“Rolex”|S)p(S)

=
.125

.125 + .005
=

.125

.130
= .962 .

With a rejection threshold of .9, this would be rejected.
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Spam Filters

Spam filter = binary classifier where property is whether message is

spam (S) or non-spam (S).

Features = words of the message.

Assume we have a training set of messages tagged as spam or non-spam

and use the document frequency of words in the two partitions as evidence

regarding whether new messages are spam.
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Example 2 (two words, “stock” and “undervalued”):

Now suppose in a training set of 2000 spam messages and 1000 non-spam messages,

the word “stock” appears in 400 spam messages and 60 non-spam,

and the word “undervalued” appears in 200 spam and 25 non-spam messages.

Then we estimate

p(“stock”|S) = 400/2000 = .2

p(“stock”|S) = 60/1000 = .06

p(“undervalued”|S) = 200/2000 = .1

p(“undervalued”|S) = 25/1000 = .025 .

Accurate estimates of joint probability distributions p(w1, w2|S) and p(w1, w2|S)
would require too much data

Key assumption: assume statistical independence to estimate as

p(w1, w2|S) = p(w1|S) · p(w2|S)

p(w1, w2|S) = p(w1|S) · p(w2|S)

(This assumption is not true in practice: words are not statistically independent.

But we’re only interested in determining whether above or below some threshold,

not trying to calculate an accurate p(S|{w1, w2, . . . , wn})

Write w1 = “stock” and w2 = “undervalued”, and recall:

p(w1|S) = 400/2000 = .2 p(w1|S) = 60/1000 = .06,

p(w2|S) = 200/2000 = .1 p(w2|S) = 25/1000 = .025

So assuming a flat prior (p(S) = p(S) = 1/2), and independence of the features gives

p(S|w1, w2) =
p(w1, w2|S)p(S)

p(w1, w2|S)p(S) + p(w1, w2|S)p(S)

=
p(w1|S)p(w2|S)p(S)

p(w1|S)p(w2|S)p(S) + p(w1|S)p(w2|S)p(S)
=

.2 · .1
.2 · .1 + .06 · .025 = .930

at a .9 probability threshold a message containing those two words

would be rejected as spam.
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More generally, for n features (words)

p(S|{w1,w2, . . . , wn}) =
p({w1, w2, . . . , wn}|S)p(S)

p({w1, w2, . . . , wn})

=
p({w1, w2, . . . , wn}|S)p(S)

p({w1, w2, . . . , wn}|S)p(S) + p({w1, w2, . . . , wn}|S)p(S)

=
p(w1|S)p(w2|S) · · · p(wn|S)p(S)

p(w1|S)p(w2|S) · · · p(wn|S)p(S) + p(w1|S)p(w2|S) · · · p(wn|S)p(S)

=
p(S)

Qn
i=1 p(wi|S)

p(S)
Qn

i=1 p(wi|S) + p(S)
Qn

i=1 p(wi|S)
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naive bayes
Bayes: p(C|w) = p(w|C)p(C)/p(w)

Naive: p({wi}|C) =

Q
i p(wi|C)

• spam filter (p(S|{wi})/p(S|{wi}))

• text classification (on arXiv > 95% now)

• spell correction

• voice recognition

• . . .

simplest algorithm works better with more data.

for arXiv use multigram vocab: genetic algorithm, black hole

“The Unreasonable Effectiveness of Naive Bayes in the Data Sciences”



p(c | w)     p(w | c) p(c)∝
Language

model

Error
model

(spell correction)

p(c | s)     p(s | c) p(c)∝
Language

model

Acoustic
model

(speech recognition)

p(e | f)     p(f | e) p(e)∝

Translation
model

Language
model

(machine translation)


