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Rise of the Machines:
Deep Learning from Backgammon to Skynet

Paul Ginsparg, Physics and InfoSci
Cornell Univ

Over the past seven years, there have been significant advances
in applications of artificial intelligence, machine learning, and
specifically deep learning, to a variety of familiar tasks. From
Image and speech recognition, self-driving cars, and machine
translation, to beating the Go champion, it's been difficult to stay
abreast of all the breathless reports of superhuman machine
performance. There has as well been a recent surge in
applications of machine learning ideas to research problems in
the hard sciences and medicine. | will endeavor to provide an
outsider's overview of the ideas underlying these recent
advances and their evolution over the past few decades, and
project some prospects and pitfalls for the near future.

Aspen 16 Jan 2019



video games, poker, chess, go,
speech recognition, language translation,
medical applications (dermatology, ophthalmology),
chemical synthesis,
data analysis,
self-driving cars

Plan:
Teaser
How it all works
Historical highlights
Future



Google/Verily/Stanford [arXiv:1708.09843, Nature (2018)]

Original

"retinal fundus image":
photograph of back of eye
taken through pupil

(used for over 100 years
for detecting eye disease)

Now: using Al can also
predict risk of heart attack
or stoke.

and more ...



Google/Verily/Stanford [arXiv:1708.09843, Nature (2018)]

Original Age Gender

Actual: 57.6 years Actual: female
Predicted: 59.1 years Predicted: female

Deep learning models trained on data from 284,335 patients and
validated on two independent datasets of 12,026 and 999 patients



Google/Verily/Stanford [arXiv:1708.09843, Nature (2018)]
Original Age Gender SBP

Actual: 57.6 years Actual: female Actual: 148.5 mmHg
Predicted: 59.1 years Predicted: female Predicted: 148.0 mmHg

Smoking HbA1c BMI DBP

Actual: non-smoker Actual: non-diabetic Actual: 26.3 kg m— Actual: 78.5 mmHg
Predicted: non-smoker Predicted: 6.7% Predicted: 24.1 kg m™ Predicted: 86.6 mmHg




traditional cs:

Computer

write

’ @

but now: data is fmri scan, task is to determine probability of Alzheimers

We don't know how to write the program .
traindata program

Computer Computer q@

use training data and output to generate program,

@ testdata
machine learning:
which then generates output for test data.

program




All Thinks, Great and Small (H. Moravec, CMU, 1998)
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LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and be .con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704"” com-
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
demonstration for newsmen,,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
|signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-

1950

lings, Perceptron will make mis-
takes at first, but will grow
wiser as it gains experience, he
said, '

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers. '

Without Human Contiols

. The Navy said the perceptron

would be the- first non-living
mechanism “capable of receiv-
ing, recognizing and identifying
its surroundings without -any
human training or control.”

remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .
Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-

speech or writing in another
language, it was predicted.
Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly

|

scious of their existence,

The “brain” is designed to

|

!

late speech in one language to

line and which would be con-

1958

1958 New York
Times...

In today’s demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q” for the left
squares and ‘“O” for the right

squares. ,
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms. But he said the computer
had undergone a ‘self-induced
change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.
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COMPUTER SCIENTISTS STYMIED IN THEIR QUEST
TO MATCH HUMAN VISION

By WILLIAM J. BROAD
Published: September 25, 1984

EXPERTS pursuing one of man's most audacious dreams - to create [ FACEBOOK
machines that think - have stumbled while taking what seemedtobe  w TwiTTER
an elementary first step. They have failed to master vision. % GOOGLE+
After two decades of research, they have yet to teach machines the EMAIL
seemingly simple act of being able to recognize everyday objects and SHARE
to distinguish one from another.

& PRINT
Instead, they have developed a profound new respect for the [E REPRINTS

sophistication of human sight and have scoured such fields as
mathematics, physics, biology and psychology for clues to help them achieve the goal of
machine vision.
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GPU 70x faster
to train (week->hrs)

2011 2012
#
IBM Watson Multiple groups
wins speech recognition
Jeopardy Imagenet (Ng, Dean, et al)

.35% on MNIST

Hinton students ->
Google, Microsoft
(e.g., Android speech
recognition)

TANH SIGMOID

Choice of //

/ RELU

70% improvement
Dropout, 16k CPUs
1B weights
(1M for MNIST)

Activation 5
matters /
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Datal 2010 2011 2012

- §
arXiv.org > cs > arXiv:1112.6209 Search or Article ID inside arXiv  All papers Broaden yc

(Help | Advanced search)
Computer Science > Learning

Building high-level features using large scale
unsupervised learning

Quoc V. Le, Marc'Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S. Corrado,
Jeff Dean, Andrew Y. Ng

(Submitted on 29 Dec 2011 (v1), last revised 12 Jul 2012 (this version, v5))

We consider the problem of building high-level, class-specific feature detectors from only
unlabeled data. For example, is it possible to learn a face detector using only unlabeled images?
To answer this, we train a 9-layered locally connected sparse autoencoder with pooling and local
contrast normalization on a large dataset of images (the model has 1 billion connections, the

9 layer sparse autoencoder dataset has 10 million 200x200 pixel images downloaded from the Internet). We train this

1B parameters network using model parallelism and asynchronous SGD on a cluster with 1,000 machines (16,000
10M 200x200 images cores) for three days. Contrary to what appears to be a widely-held intuition, our experimental
down to 18x18 results reveal that it is possible to train a face detector without having to label images as
16000 cores containing a face or not. Control experiments show that this feature detector is robust not only to

visual cortex is 1M x larger ~ translation but also to scaling and out-of-plane rotation. We also find that the same network is
sensitive to other high-level concepts such as cat faces and human bodies. Starting with these
learned features, we trained our network to obtain 15.8% accuracy in recognizing 20,000 object
categories from ImageNet, a leap of 70% relative improvement over the previous state-of-the-art.

Subjects: Learning (cs.LG)
Cite as: arXiv:1112.6209 [cs.LG]
(or arXiv:1112.6209v5 [cs.LG] for this version)
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ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca 1lya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.
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ImageNet Challenge
Image classification

: Easiest classes
IM AG E N ET I—a rge Scale \/Isual red fox (100) hen-of-the-woods (100) ibex (100)  goldfinch (100) flat-coated retriever (100)
Recognition Challenge (ILSVRC) N '
» 1.2M training images with it sy

porcuplne(100) stlngray(100) Blenheim spaniel (100)

1K categories e Tl ﬂ
* Measure top-b classification error reTe M
Hardest classes

muzzle (71) hatchet(68) water bottle (68) velvet (68) loupe (66)

Output Output : ..

Scale Scale \ \

T-shirt T-shirt @
\/ Giant panda X '

Drumstick Drumstick hook (66) spotllght (66) ladle (65) restaurant (64) Iettr opener (59)
Mud turtle Mud turtle J

J. Deng, Wei Dong, R. Socher, L.-J. Li, K. Liand L. Fel-Fei, “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 20009.
O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge”, Int. J. Comput. Vis.,, Vol. 115, Issue 3, pp 211-252, 2015.



BIG
Datal 2010 2011 2012

#

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.
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GPU 70x faster IBM Watson Multiple groups
to train (week->hrs) wins speech recognition

lannard\y Imananat (Nl Naan at al)

SCIENCE

Researchers Announce Advance in Image-Recognition Software

By JOHN MARKOFF NOWV. 17, 2014

MOUNTAIN VIEW, Calif. — Two groups of scientists, working

Email ; g, % ;
ke independently, have created artificial intelligence software capable of

recognizing and describing the content of photographs and videos with far

n Share . P—
greater accuracy than ever before, sometimes even mimicking human
levels of understanding.

W Tweet
Until now, so-called computer vision has largely been limited to

@ Save recognizing individual objects. The new software, described on Monday by
researchers at Google and at Stanford University, teaches itself to identify

A More entire scenes: a group of young men playing Frisbee, for example, or a herd

of elephants marching on a grassy plain.

The software then writes a caption in English describing the picture.
Compared with human observations, the researchers found, the computer-
written descriptions are surprisingly accurate.



2013 2014 2015 2016 2017
e e e e

microsoft real-time Mar: google alphaGO Jan: no-limit texas hold’em

Deep RL GAN translation beats Lee Sedol CMU program
beats human (speech to speech) (just 19 yrs after chess, beats top humans
AteXpert at not 30-40 years) (not another 10 yrs)

ari games

NIPS Dec Mar: AlphaGo Master
beats Ke Jie
(world #1)

self-driving vehicles,
superhuman
performance in
image recog,

Why us? Why now?

1) Bigger Data

2) Faster CPU (+GPU)
3) Better Initialization
4) Right non-linearity
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microsoft real-time Mar: google alphaGO Jan: no-limit texas hold’em
Deep RL GAN translation beats Lee Sedol CMU program
beats human (speech to speech) (just 19 yrs after chess, beats top humans
AteXpert at not 30-40 years) (not another 10 yrs)
ari games
NIPS Dec Mar: AlphaGo Master
beats Ke Jie
(world #1)

self-driving vehicles,
superhuman
performance in
image recog,
—




2013 2014 2015 2016 2017
e e e e

microsoft real-time Mar: google alphaGO Jan: no-limit texas hold’em
Deep RL GAN translation beats Lee Sedol CMU program
beats human (speech to speech) (just 19 yrs after chess, beats top humans
expert at not 30-40 years) (not another 10 yrs)
Atari games NIPS Dec
Mar: AlphaGo Master
beats Ke Jie
(world #1)

self-driving vehicles,
superhuman
performance in
image recog,

Why us? Why now?

[WWW ->
social media ->

1) B|999r Data text/data sharing]
2) Faster CPU (+GPU)
3) Better Initialization

4) Right non-linearity

software (TensorFlow, torch ... caffe2, decaffeine, matconvnet, microsoft cognitive toolkit, pytorch)



2017 2018 20197
. S W

Oct: AlphaGo Zero Medical Image Analysis Al-enabled chips
(3 days to beat AlphaGo Lee, (CT scans for stroke, loT + Al at the edge
21 Days to beat AlphaGo Master) Image Generation; interoperability (ONNX)
Dec: AlphaZero entire MRI processing chain, auto-ML
acquisition to image retrieval, Al+DevOps= AlOps

(24 hours to superhuman
chess, shogi, go)

tabUIa“rasa . Dec: AlphaZero
Kasparov: “the truth (24 hours to superhuman
chess, shogi, go

— discovered the principles on its own
and quickly became best player)

segmentation to disease prediction)

some science problems (protein folding) like Go: well-known rules and a well-described
goal. similar algorithms might be applied to similar tasks in quantum chemistry,
materials design and robotics

All pervasive:
e.g., google: search, image search, driverless cars, voice recog,
youtube recommender, street labels
facebook: images through two nn's, tag friends, understand image, (e.g., no food),
major companies hiring like crazy. ibm watson, siri, yelp (also fraud), tesla, netflix,
skype live translation,






Discrete Probability and Counting

A finite probability space is a set S and a real function p(s) on S such that:
e p(s) >0, Vse S, and S

¢ Zsésp(s) =1.

We refer to S as the sample space, subsets of S as events, and p as the probability distribution.

The probability of an event A C S'is p(A) = >4 p(a).

(Note that p(0) = 0.)




Conditional Probability

Suppose we know that one event has happened and we wish to ask about another.

For two events A and B, the joint probability of A and B is defined as
p(A, B) = p(AN B)
the probability of the intersection of events A and B in the sample space,

equivalently the probability that events A and B both occur

The conditional probability of A relative to B is

p(A|B) =p(ANB)/p(B) “the probability of A given B”



ANBKB

P(A|B) = p(AN B)/p(B)
“the probability of A given B”

=p(A,B) / p(B)



Bayes’ Rule

A simple formula follows from the above definitions and symmetry of the joint probability:

P(A|B)p(B) = p(A, B) = p(B, A) = p(B|A)p(A):

p(B|A)p(A
Al = PEARA)
p(B)
Called “Bayes’ theorem” or “Bayes’ rule” — connects indu®iye and deductive inference

(Rev. Thomas Bayes (1763), Pierre-Simon Laplace (1812), Sir Hawgld Jeffreys (1939))

For mutually disjoint sets A; with J;__, 4; = S, Bayes’ rule takes the

_ p(B|A;)p(A;)
p(B|A1)p(A1) + ... + p(B|An)p(Ar)

p(Az'|B)



Example 1: Consider a casino with loaded and unloaded dice.
For a loaded die (L), probability of rolling a 6 is 50%:
p(6|L) =1/2, and p(i|L) =1/10 (i=1,...,5)
For a fair die (L), the probabilities are p(i|L) = 1/6 (i =1,...,6).
Suppose there’s a 1% probability of choosing a loaded die:
p(L) = 1/100.
If we select a die at random and roll three consecutive 6’s with it,

what is the posterior probability, P(L|6,6,6), that it was loaded?



The probability of the die being loaded, given 3 consecutive 6’s, is

p(6,6,6|L)p(L) _ p(6|L)°p(L)
p(6,6,6) p(6|L)3p(L) + p(6|L)3p(L)
(1/2)° - (1/100)
(1/2)3 - (1/100) + (1/6) - (99/100)
B 1 13
T 14(1/3)3-99  1411/3 14

p(L]6,6,6) =

21 .

so only a roughly 21% chance that it was loaded.

(Note that the Bayesian “prior” in the above is p(L) = 1/100, giving the expected
probability before collecting the data from actual rolls, and significantly affects the inferred

posterior probability.)



Binary Classifiers:

Use a set of features to determine whether objects have binary (yes or no) properties.

Examples: whether or not a text is classified as medicine,
or whether an email is classified as spam.

In those cases, the features of interest might be the words the text or email contains.

“Naive Bayes” methodology:
statistical method (making use of the word probability distribution)

as contrasted with a “rule-based” method
(where a set of heuristic rules is constructed and then has to be maintained over time)



Spam Filters

Spam filter = binary classifier where property is whether message is

spam (.S) or non-spam (S).
Features = words of the message.
Assume we have a training set of messages tagged as spam or non-spam

and use the document frequency of words in the two partitions as evidence

regarding whether new messages are spam.

(baby machine learning)



Example 1 (Rosen p. 422):

Suppose the word “Rolex” appears in 250 messages of a set of 2000 spam messages,
and in 5 of 1000 non spam messages.

Then we estimate p(“Rolex”|S) = 250/2000 = .125
and p(“Rolex”|S) = 5/1000 = .005.

Assuming a “flat prior” (p(S) = p(S) = 1/2) in Bayes’ law gives

p(“Rolex” |S)p(S) 125 125

p(S|“Rolex”) = __ _ o7
p(“Rolex”|S)p(S) + p(“Rolex”|S)p(S)  -125+.005  .130

= .962 .

With a rejection threshold of .9, this would be rejected.



Example 2 (two words, “stock” and “undervalued”):
Now suppose in a training set of 2000 spam messages and 1000 non-spam messages,

the word “stock” appears in 400 spam messages and 60 non-spam,
and the word “undervalued” appears in 200 spam and 25 non-spam messages.

Then we estimate

p(“stock”|S) = 400/2000 = .2
p(“stock”|S) = 60/1000 = .06
) = 200/2000 = .1
S) = 25/1000 = .025 .

p(“undervalued”|S

p(“undervalued”



Key assumption: assume statistical independence to estimate as
p(wi, we|S) = p(w1]S) - p(w2]S5)
p(wi, w2]S) = p(wi1|S) - p(w2]S5)

(This assumption is not true in practice: words are not statistically independent.
But we’re only interested in determining whether above or below some threshold,
not trying to calculate an accurate p(S|{wi,ws, ..., wy})



Write w; = “stock” and wo = “undervalued”, and recall:

p(w1]S) = 400/2000 = .2 p(w1]S) = 60/1000 = .06,
p(ws|S) = 200/2000 = .1 p(ws]S) = 25/1000 = .025

So assuming a flat prior (p(S) = p(S) = 1/2), and independence of the features gives

p(S|w, ws) = p(wi, w2|S)p(S)

o p(w1,w2]S)p(S) + p(wr, w2]S)p(S)
Qalve _ p(w1]5)p(w2|S)p(S) _ 2.1
p(w1|9)p(w2]S)p(S) + p(w1]S)p(ws|S)p(S)  2-.14.06-.025

= .930

at a .9 probability threshold a message containing those two words
would be rejected as spam.



More generally, for n features (words)

p(wi|S)p(w2|S) - - - p(wn|S)p(S)

p(wi|S)p(w2|S) - - p(wa|S)p(S) + p(wi]S)p(w2|S) - - - p(wn]S)p(S)

_ PO IIplwdS)
p(S) [Ty p(wi|S) + p(S) ITi=, p(wilS)




naive bayes
Bayes: p(C'lw) = p(w|C)p(C)/p(w)
Naive: p({w; }|C) = ] [; p(w;|C)
o spam filter (p(S|{w;})/p(S|{wi}))

e text classification (on arXiv > 95% now)

e spell correction
® voice recognition

simplest algorithm works better with more data.

for arXiv use multigram vocab: genetic_algorithm, black_hole

“The Unreasonable Effectiveness of Naive Bayes in the Data Sciences”



Error
model Language
model
pleTw) e p(wic)plc) Translation Lar?]g‘éZ?e
(spell correction) model

p(e I'f) e« p(ile)p(e)

(machine translation)
Language

p(cls) « p(slc)p(c)
(speech recognition)

Acoustic
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