
Informal Design Guidelines for
Relational Databases

Relational database design: The grouping of
attributes to form "good" relation schemas
Two levels of relation schemas:

The logical "user view" level
The storage "base relation" level

Design is concerned mainly with base relations
Criteria for "good" base relations:

Discuss informal guidelines for good relational design
Discuss formal concepts of functional dependencies and
normal forms 3NF, BCNF

Semantics of the Relation
Attributes

Each tuple in a relation should represent one entity
or relationship instance

Only foreign keys should be used to refer to other entities
Entity and relationship attributes should be kept apart as
much as possible
Design a schema that can be explained easily relation by
relation. The semantics of attributes should be easy to
interpret.

Redundant Information in
Tuples and Update Anomalies

Mixing attributes of multiple entities may
cause problems

Information is stored redundantly wasting
storage
Problems with update anomalies:

Insertion anomalies
Deletion anomalies
Modification anomalies

EXAMPLE OF AN UPDATE
ANOMALY

Consider the relation:
EMP_PROJ (Emp#, Proj#, Ename, Pname, No_hours)

Update Anomaly
Changing the name of project number P1 from “Billing” to
“Customer-Accounting” may cause this update to be made for all
100 employees working on project P1

Insert Anomaly
Cannot insert a project unless an employee is assigned to .
Inversely- Cannot insert an employee unless he/she is assigned to
a project.

EXAMPLE OF AN UPDATE
ANOMALY (2)

Delete Anomaly
When a project is deleted, it will result in deleting all the
employees who work on that project. Alternately, if an employee
is the sole employee on a project, deleting that employee would
result in deleting the corresponding project.

Design a schema that does not suffer from the
insertion, deletion and update anomalies. If there
are any present, then note them so that applications
can be made to take them into account

Null Values in Tuples

Relations should be designed such that their tuples
will have as few NULL values as possible

Attributes that are NULL frequently could be placed in
separate relations (with the primary key)
Reasons for nulls:
a. attribute not applicable or invalid
b. attribute value unkown (may exist)
c. value known to exist, but unavailable

Spurious Tuples

Bad designs for a relational database may result in
erroneous results for certain JOIN operations
The "lossless join" property is used to guarantee
meaningful results for join operations
The relations should be designed to satisfy the
lossless join condition. No spurious tuples should
be generated by doing a natural-join of any
relations

Functional Dependencies

Functional dependencies (FDs) are used to
specify formal measures of the "goodness"
of relational designs
FDs and keys are used to define normal
forms for relations
FDs are constraints that are derived from the
meaning and interrelationships of the data
attributes

Functional Dependencies (2)

A set of attributes X functionally determines a set of
attributes Y if the value of X determines a unique value for
Y
X Y holds if whenever two tuples have the same value for
X, they must have the same value for Y
If t1[X]=t2[X], then t1[Y]=t2[Y] in any relation instance r(R)

X Y in R specifies a constraint on all relation instances
r(R)
FDs are derived from the real-world constraints on the
attributes

Examples of FD constraints

Social Security Number determines employee name
SSN ENAME

Project Number determines project name and
location
PNUMBER {PNAME, PLOCATION}

Employee SSN and project number determines the
hours per week that the employee works on the
project
{SSN, PNUMBER} HOURS

Functional Dependencies (3)

An FD is a property of the attributes in the
schema R
The constraint must hold on every relation
instance r(R)
If K is a key of R, then K functionally
determines all attributes in R (since we never
have two distinct tuples with t1[K]=t2[K])

Inference Rules for FDs

Given a set of FDs F, we can infer additional FDs
that hold whenever the FDs in F hold
Armstrong's inference rules
A1. (Reflexive) If Y subset-of X, then X Y
A2. (Augmentation) If X Y, then XZ YZ

(Notation: XZ stands for X U Z)
A3. (Transitive) If X Y and Y Z, then X Z

A1, A2, A3 form a sound and complete set of
inference rules

Additional Useful Inference
Rules

Decomposition
If X YZ, then X Y and X Z

Union
If X Y and X Z, then X YZ

Psuedotransitivity
If X Y and WY Z, then WX Z

Closure of a set F of FDs is the set F+ of all FDs
that can be inferred from F

	Informal Design Guidelines for Relational Databases
	Semantics of the Relation Attributes
	Redundant Information in Tuples and Update Anomalies
	EXAMPLE OF AN UPDATE ANOMALY
	EXAMPLE OF AN UPDATE ANOMALY (2)
	Null Values in Tuples
	Spurious Tuples
	Functional Dependencies
	Functional Dependencies (2)
	Examples of FD constraints
	Functional Dependencies (3)
	Inference Rules for FDs
	Additional Useful Inference Rules

