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1 Introduction

1.1 The Present Situation in Quantum Mechanics

At the beginning of the previous century, scientists had to face the problem that all the
physical theories already known at that time could not explain some distinct phenom-
ena observed at the atomic level, such as the photoelectric effect. Furthermore these
theories even predicted outcomes that apparently contradicted experimental results, like
electrons moving on ”classical” orbits and crashing into the atomic nucleus due to loss
of energy or the so-called ultraviolet catastrophe associated with black-body radiation.

The solution to all these problems was found in the 1920s and lead to the invention of
a completely new theory of physics – quantum mechanics. Since that time scientists were
able to explain numerous phenomena in nature and along with the theory of relativity
quantum mechanics has become the most successful physical theory in the 20th century.

Despite its great success over the last few decades and the progress that has been
made in the understanding of natural processes, qantum mechanics differs significantly
from other physical theories as pointed out by Anton Zeilinger in [1]. Zeilinger argues
that the crucial difference concerns primarily the conceptual foundations of quantum
mechanics, that is, in contrast to most physical theories, like the theory of relativity or
classical mechanics based on Newton’s laws of motion, quantum mechanics has not yet
been grounded on consistent fundamental principles.
At this point it is certainly necessary to clarify that the term ”foundations of a physical
theory” in the sense it is basically used in the present work does not refer to the under-
lying mathematical formalism. In the specific case of quantum mechanics the axiomatic
mathematical formulation based on Hermitian operators and their corresponding eigen-
vectors and eigenvalues has been known ever since the invention of the theory.1 What
is actually meant is a conceptual foundation of quantum mechanics in terms of simple
axioms and meaningful principles on which the entire theory can be built on.

Until now many generations of scientists have been debating on the fundamental prin-
ciples of quantum mechanics but physicists still do not agree on the foundations of the
theory. Thus, there currently exists a great variety of in part very different approaches.
It is exactly this disagreement about the conceptual interpretation of the theory itself
that characterises the present situation in quantum mechanics.

1.2 Quantum Theory from an Information-Theoretic Point of View

Due to its rather simple mathematical formalism and the fact that it predicts some very
counterintuitive events that cannot be compared with any phenomena observed in our
everyday life, quantum mechanics is regarded as one of the most abstract theories in

1The mathematical framework of quantum mechanics was mainly developed by Paul Dirac and John
von Neumann between 1930 and 1932 (compare [2] and [3]).
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physics. Therefore scientists are eager to find simple principles that are able to provide
a physically meaningful basis for the mathematical axioms, as Hardy states in [4]:

“A set of reasonable axioms provides us with a deeper conceptual under-
standing of a theory and is therefore more likely to suggest ways in which
we could extend the domain of the theory or modify the axioms in the hope of
going beyond quantum theory (for example, to develop quantum gravity).”2

Since some of the most important questions regarding current research concern the
information content of quantum systems and the extent to which knowledge can be
gained by performing measurements, many very promising approaches are based on
information-theoretic constraints.
The idea of starting from an information-theoretic point of view first came up in the
1970s, when physicists began to realise that their search for fundamental principles in
quantum mechanics has much in common with problems encountered in information
theory (see [5]). One example in this respect is the question whether superluminal in-
formation transfer is possible. In 1982 Nick Herbert suggested a way in which quantum
entanglement could be used to enable superluminal communication.3 In the same year
Wootters and Zurek proved the so-called no-cloning theorem4 and showed that faster-
than-light communication could only be performed, if cloning of an arbitrary quantum
state was possible.

Due to the fact that approaches based on such constraints are very successful in deriv-
ing features which are regarded as being solely quantum mechanical, we will limit the
discussion about the foundations of quantum theory to an information-theoretic point
of view.
To begin with, we will look at Zeilinger’s fundamental principle [1], which states that
quantum systems can only carry a finite amount of information. Starting from this con-
straint, Zeilinger and Brukner were able to show in [8] and [9] that some characteristic
properties of quantum mechanics, such as entanglement and randomness, are natural
consequences of this restriction. A quite different approach was developed by Clifton,
Bub and Halvorson [10], who try to deduce quantum theory from three fundamental
information-theoretic constraints. This concept is discussed in chapter 3.
The last sections deal with Hardy’s work [4], which is currently one of the most promis-
ing approaches able to derive the entire nature of quantum theory. In his paper Hardy
sets out from five axioms and manages to show that quantum theory is basically very
similar to classical probability theories. Referring to Hardy’s work, Spekkens’ toy the-
ory [12] based on the so-called knowledge balance principle will also be presented. Even
though Spekkens is not able to derive quantum theory, his toy theory suggests that
quantum states are primarily states of imagination and incomplete knowledge than
states of reality.

2L.Hardy, 2008, p. 27.
3compare [6]
4compare [7]
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2 Anton Zeilinger - The Fundamental Principle

Since Anton Zeilinger’s information-theoretic approach in [1] is quite intuitive and less
mathematical than most of the concepts presented in the following chapters, we will
start the discussion on the foundations of quantum mechanics with Zeilinger’s idea.

According to Zeilinger, the description of the world, i.e. the information one pos-
sesses about physical objects, is expressed in terms of propositions in connection with
their corresponding truth values. Any system, regardless of whether it is classical or
quantum mechanical, can therefore be seen as consisting of a set of various proposi-
tions. In the classical case a physical object can carry an infinite number of truth
values, whereas in the quantum case one has to deal with a non-commuting algebra of
observables and thus cannot assign the answer to all possible propositions to a system
simultaneously. One of the most prominent examples of this feature, known as quan-
tum complementarity, are the position ~x and momentum ~p of an object which cannot
be determined precisely at the same moment.

2.1 Finiteness of Information and the Fundamental Principle

In order to reproduce the characteristics of quantum complementarity, Zeilinger and
Brukner consider it quite natural to suppose that the description of quantum objects
in terms of propositions is subject to a limited amount of information, as they state in
[8]:

“The information content of a quantum system is finite.”5

According to this basic assumption quantum objects are related to an irreducible ran-
domness, meaning that it is not possible to know exactly the outcome for all conceivable
measurement settings.
Starting from this point of view the question arises how much information a quantum
system can carry. To answer this question we have to decompose the system into its
constituents until the most elementary individual system carries the truth value of a
single proposition. Since the truth value is either “true” or “false”, it can be expressed
by one bit of information and this eventually leads to the statement which Zeilinger and
Brukner refer to as their fundamental principle [1]:

“An elementary system carries one bit of information.”6

This foundational assumption provides a reasonable explanation for the complementar-
ity and randomness in quantum measurements. This can be illustrated if we consider
the example of a spin-1/2 particle with spin up along the z-axis, i.e. |ψ〉 = |+z〉 [9]. The
particle is able to carry one bit of information and this corresponds to the truth value

5C. Brukner and A. Zeilinger, 2002, p. 2.
6A. Zeilinger, 1999, p. 635.
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of a single proposition. Thus, it is only possible to predict the outcome of a particular
measurement and all other observations contain a certain randomness. Otherwise, the
particle carries more than one bit of information which contradicts the fundamental
principle.

The quantum randomness signifies a crucial difference between quantum and classical
mechanics. From a classical point of view the result of a measurement is predetermined,
meaning that the properties of a physical object are independent of observation and are
assigned to the system even before the measurement is performed. In quantum me-
chanics, on the contrary, the outcome is random except when the quantum state is an
eigenstate of the operator describing the measurement [1].

In the next section 2.2 we are going to consider more complex objects consisting of
more than one elementary system. Once again we are interested in the information con-
tent of such systems and will see that if the information is contained in the correlations
of the constituents, i.e. the joint properties, this corresponds to the case of quantum
entanglement.

2.2 Entanglement as Consequence of the Fundamental Principle

Since there exists no classical counterpart, entanglement is regarded as one of the most
characteristic features of quantum objects that differ classical mechanics from quantum
theory. In order to investigate entanglement in terms of an information-theoretic point
of view, setting out from the fundamental principle, we need to know how much in-
formation is contained within N elementary systems and, more importantly, how the
information is distributed over the individual constituents.
Following our basic assumptions, each of the N systems carries one bit of information
and hence Zeilinger and Brukner consider it suggestive to generalize the fundamental
principle [8]:

“N elementary systems carry N bits.”7

If these systems interact with each other, the information content can be distributed
within the composite system in many different ways.8 Either the information is carried
by the N elementary systems separately or it is in any way contained in the correlations
between the constituents [1].

One of the simplest composite systems we can consider is a two-qubit product state,
e.g. |ψ〉 = |+z〉 |+z〉. As we know from the generalization of the fundamental principle
this system can carry a total number of N = 2 bits of information. A possible list of

7C. Brukner and A. Zeilinger, 2002, p. 3.
8At this point it is crucial to mention that we do not consider any exchange with the environment

and therefore the total information of the composite system is conserved.
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propositions could be two individual statements about the spin of particle 1 and particle
2, respectively, along the z-axis.
Another way of representing the system can be achieved if we replace one of these state-
ments with a proposition concerning joint properties, like for example: “The two spins
are equal along the z-axis”. If this proposition expressed our entire knowledge, i.e. the
total information content, the quantum state would be incompletely described, since we
are left with two possibilities:

|ψ〉 = |+z〉 |+z〉 or |ψ〉 = |−z〉 |−z〉 . (2.1)

As we can see, the correlations can be represented only by a single proposition and
thus the second bit of information must be carried by one of the systems individually.
The crucial point here is that a two-qubit product state is characterized by at most
one proposition which describes the joint properties. The information content of the
correlations is therefore9 [9]:

Iproductcorr = 1. (2.2)

Instead of a pure product state we will now consider one of the four maximally entangled
Bell states:

|ψ±〉 =
1√
2

(|+z〉 |−z〉 ± |−z〉 |+z〉) (2.3)

|φ±〉 =
1√
2

(|+z〉 |+z〉 ± |−z〉 |−z〉) . (2.4)

In all of these cases the information content represented by joint properties of the
individual systems is not restricted to one bit as opposed to product states. This is
another consequence of the finiteness of information and the fundamental principle as
we will show in the following example.
If we take one of the Bell states, e.g. |φ−〉, we see that this quantum state can be
described in different bases [1] [9]:

|φ−〉 =
1√
2

(|+z〉 |+z〉 − |−z〉 |−z〉) (2.5)

=
1√
2

(|+x〉 |−x〉+ |−x〉 |+x〉) (2.6)

=
1√
2

(|+y〉 |+y〉+ |−y〉 |−y〉) . (2.7)

Thus, we can state two different propositions representing joint properties, meaning that
the total number of two bits of information is completely contained in the correlations
of the individual systems [9]:

Ientangledcorr = 2. (2.8)

9An adequate measure of information will be introduced in the next section 2.3
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A possible list of propositions comprises the statements “The spins along the z-axis are
equal” and “The spins are not equal along the x-axis”. Due to the generalized funda-
mental principle, the Bell states can carry only two bits of information and consequently
the third proposition concerning the spins of the particles along the y-axis must already
be determined by the other two statements.10

The examples discussed above suggest that quantum entanglement is just another nat-
ural implication of the finiteness of information and provide an information-theoretic
entanglement criterion for two-qubit systems [9]:

Ientangledcorr > 1. (2.9)

In other words, in the case of a two-qubit entangled state the two available bits are re-
quired to represent joint properties of the composite system and the individual particles
do not carry any information on their own.
Zeilinger and Brukner’s entanglement criterion is deeply connected with Erwin Schrödinger’s
paper “The present situation in quantum mechanics” from 1935 (compare [13]). In this
work, Schrödinger first came up with the idea that information is bound and can pri-
marily reside in correlations between the individual systems [13]:

“Maximal knowledge of a total system does not necessarily include total
knowledge of all its parts, not even when these are fully separated from each
other and at the moment are not influencing each other at all.”11

The general concept of the entanglement criterion does not only apply to two-qubit
systems but is also valid for more complex objects (see Zeilinger, Brukner and Zukowski,
2001). In this paper it is also shown that a general Bell inequality can be derived which
corresponds to our entanglement criterion and therefore agrees with the fundamental
principle.

2.3 Measure of Information

So far we talked a lot about the information content of quantum systems and discussed
some consequences of the fundamental principle but we did not specify an appropriate
measure of information or, respectively, the information gain in quantum experiments.

For that purpose we first consider a probabilistic experiment with only two possible
outcomes ”yes” and ”no” and associated probabilities p1 and p2 [8]. Such experiments
obey the binomial distribution with standard deviation

σ =
√
p1p2N =

√
p1(1− p1)N, (2.10)

10This is obviously true, since the relation σ1
yσ

2
y = −

(
σ1
xσ

2
x

) (
σ1
zσ

2
z

)
implies that an eigenstate of σ1

yσ
2
y

is a joint eigenstate of σ1
xσ

2
x and of σ1

zσ
2
z [9].

11E. Schrödinger, translated by J.Trimmer, 1980, p.331.
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where N denotes the number of experimental trials. Since one cannot exactly predict
the sequence of these N outcomes, the result of each trial is subject to an element of
uncertainty [8]. According to Zeilinger and Brukner it is reasonable to assume that
the experimenter’s uncertainty U is proportional to σ2. Thus, after each trial one’s
uncertainty is reduced by [8]:

U =
σ2

N
= p1(1− p1). (2.11)

If we now generalize our example and consider an experiment with n possible outcomes
and probabilities p1, p2, ..., pn, the uncertainty can be expressed in the following way
[8]:

U(~p) =
n∑
i=1

U(pi) =

n∑
i=1

pi(1− pi) = 1−
n∑
i=1

p2i . (2.12)

This implies that U(~p) (~p defines the probability vector ~p = (p1, p2, ..., pn)) represents
the total lack of information about all conceivable measurement results.
In order to obtain a proper expression for the measure of information I(~p), Zeilinger
and Brukner argue that the information gain in a single trial is the complement of the
uncertainty U(~p) [8]:

I(~p) = 1− U(~p) =
n∑
i=1

p2i . (2.13)

As we can see, if one of the probabilities is equal to one, I(~p) reaches its maximum
whereas in the case of equal probabilities the uncertainty is maximal. In the second
situation pi = 1/n (i = 1, 2, ..., n) and the experimenter is not able to gain any infor-
mation regarding subsequent measurement outcomes. Hence, it is useful to introduce
an adequate normalization [8]:

I(~p) = N
n∑
i=1

(
pi −

1

n

)2

. (2.14)

N denotes the normalization constant which, in the case of k bits of information and
consequently n = 2k possible measurement outcomes, is given by N = 2kk/(2k − 1).12

In particular, in an experiment with only two outcomes it is easy to prove that the
measure of information is:

I(~p) = 2

(
p1 −

1

2

)2

+ 2

(
p2 −

1

2

)2

= (p1 − p2)2 . (2.15)

Equation (2.15) specifies the appropriate expression for the measure of information
needed to describe experiments with two-dimensional quantum system, e.g. spin-1/2

12The derivation of this result is shown in Brukner and Zeilinger, 1999 [14].
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particles, as discussed in section 2.2.
Let us recall the Bell state |φ−〉 and the two propositions concerning the spins along
the x- and the z-axis. In the case of the first statement “The spins are not equal along
the x-axis” we can define the probabilities p+xx and p−xx. p+xx quantifies the probability
that the spins of both particles are equal along the x-axis and therefore p−xx describes
the probability that the spins are not equal. According to this definition, we know that
p+xx = 0 and, consequently, p−xx = 1. Thus, the measure of information Ixx regarding a
measurement in x-direction is given by:

Ixx =
(
p+xx − p−xx

)2
= 1. (2.16)

The measure of information Izz with respect to the z-axis is determined analogously:

Izz =
(
p+zz − p−zz

)2
= 1. (2.17)

We see that in the case of entangled states the total information resides in the correla-
tions between the particles as pointed out in section 2.2.
Therefore, the measure of information we deduced here for quantum experiments agrees
with the predictions of the fundamental principle and this fact indicates that there exists
a certain link between quantum mechanics and a limited amount of information.

3 Clifton, Bub and Halvorson - Quantum Theory in Terms
of Three Information-Theoretic Constraints

In this section we are going to discuss another interesting approach, developed by
Clifton, Bub and Halvorson (see [10]), that is quite different from Zeilinger’s fundamen-
tal principle but also manages to derive some of the most significant traits of quantum
mechanics in a mathematically abstract way. Starting point here is the assumption that
the physical world is subject to the following three fundamental information-theoretic
constraints [10]:

• Superluminal information transfer between separated physical systems is not pos-
sible.

• Information contained in unknown physical states cannot be broadcasted perfectly.

• Unconditionally secure bit commitment is not possible.

In order to derive quantum theory, these fundamental constraints have to be connected
with some of the very characteristics of quantum systems [10]:

• The algebras of observables related to distinct physical system need to commute.
This property is referred to as kinematic independence.

• The algebra of observables of an individual system has to be noncommutative.

8



• The physical world needs to be nonlocal, meaning that separated systems are at
least sometimes represented by entangled states.

To prove that the information-theoretic constraints suffice to deduce the features of
quantum mechanics listed above, we will use the concept of C∗-algebras. Since C∗-
algebras are algebras of linear operators acting on a Hilbert space, they are an important
tool for the description of the mathematical formalism of quantum mechanics. Thus,
in the next section we will start with an introduction to the basics of our mathematical
framework.

3.1 Introduction to C∗-Algebras

In the most general case a C∗-algebra is defined as a Banach ∗-algebra13 over the field
of complex numbers C. In this context, the ∗-algebra (also referred to as involutive
algebra) represents in a certain way the “adjoint” operation that satisfies the following
properties for all elements A and B of the corresponding Banach space and complex
numbers α and β [15]:

(A∗)∗ = A

(AB)∗ = B∗A∗

(αA+ βB)∗ = α∗A∗ + β∗B∗

‖A∗A‖ = ‖A‖2.

The last property, ‖A∗A‖ = ‖A‖2, characterizes C∗-algebras and the ‖ · ‖-operation de-
notes the standard operator norm. Any algebra containing the identity operator is called
a unital C∗-algebra. A very important example, the one that will be used throughout
this chapter, is the algebra B(H ) of all bounded operators on a Hilbert space H .

In connection with algebras, we also need to define the concept of representations.
A representation of a C∗-algebra A is a mapping π, symbolized by π : A→ B(H ), pre-
serving the linear and ∗-structure of A [10]. A representation is said to be irreducible,
if H and the null space are the only closed subspaces of H that are invariant under
the mapping π.

An important subalgebra of B(H ) are von Neumann algebras R. These algebras
are characterized by the property R = R′′, where R′′ denotes the double commutant
of R.14 The center of a von Neumann algebra is defined by R ∩R′ and referred to as
factor, if it includes only multiples of the identity operator [10].
A quantum mechanical state is any linear functional ρ : A→ C on a C∗-algebra A that

13An detailed introduction to Banach algebras and spaces goes beyond the scope of this work. We
limit our discussion to the very basics of C∗-algebras.

14The commutant R’ describes the set of all operators on the Hilbert space H that commute with
the operators of R.
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is positive and normalized, i.e. [15]:

ρ(αA+ βB) = αρ(A) + βρ(B), ∀A,B ∈ A and ∀α, β ∈ C
ρ(A∗A) ≥ 0, ∀A ∈ A

ρ(11) = 1.

The standard form for the description of a quantum state defined on the algebra B(H )
can be achieved by using a trace-one density operator D [10]:

ρ(A) = Tr(AD), ∀A ∈ B(H ).

In the case of a pure state, the density operator satisfies D2 = D, meaning that the
only possible eigenvalues of D are 0 and 1.

At this point we have to introduce a theorem that is very significant for the abstract
characterization of C∗-algebras. The Gelfand-Naimark-Segal theorem (GNS theorem)
claims that for all states ρ there exists a representation (πρ,Hρ) of A and a vector Ωρ

defined on the Hilbert space Hρ in such a way that [10]:

• ρ(A) =< Ωρ|πρ(A)Ωρ > ∀A ∈ A, and

• the set {πρ(A)Ωρ : A ∈ A} is dense in Hρ.

Just in the case of pure states ρ, the triple (πρ,Hρ,Ωρ), the so called GNS representa-
tion of A, defines an irreducible representation.
Referring to the GNS theorem, the Gelfand-Naimark theorem states that for an abstract
C∗-algebra one can obtain a faithful15 representation as a norm-closed ∗-subalgebra of
B(H ), for a Hilbert space H [10]. According to this theorem, C∗-algebras can be
regarded as general algebras of operators acting on Hilbert spaces.

In the following section 3.2 we will discuss how classical as well as quantum theories fit
into the theory of C∗-algebras we established here.

3.2 Classical and Quantum Theories in the C∗-algebraic framework

In order to investigate classical theories in terms of our mathematical framework we
need to introduce another important theorem concerning the so called function repre-
sentation of a C∗-algebra A [10]. This kind of representation implies that an abelian
C∗-algebra is isomorphic to the set C(X) of all complex-valued, continuous functions
defined on a compact Hausdorff space X.
In this case each element A of A is mapped to a function Â, referred to as Gelfand
transformation of A, whose value at a particular state ρ of the pure state space P(A)
corresponds to the value that ρ assigns to A [10]. Consequently, we see that every phase

15A representation π of A is called faithful, if π(A) = 0 implies A = 0 (A ∈ A), see [10].
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space representation of a classical theory agrees with a C∗-algebra and, furthermore,
we can also conclude that every abstract abelian C∗-algebra represents a classical phase
space theory [10].

A similar condition can be derived for quantum theories, but in contrast to the classical
case, such theories are represented by non-abelian C∗-algebras. This property, however,
does not suffice to deduce the entire nature of quantum mechanics as Clifton, Bub and
Halvorson suggest in [10]. According to these physicists, the most characteristic feature
that fundamentally sets quantum mechanics apart from its classical counterpart is the
existence of entangled states.
The significance of entanglement for quantum systems was first described by Erwin
Schrödinger in his famous paper from 1935 (see [13]). Schrödinger did not believe that
nonlocal entangled states can indeed exist, since he considered physical systems, no mat-
ter whether they are classical or quantum mechanical, to be characterized by local states
only. But, in contrast to Schrödinger’s notion of quantum mechanics, the experimental
violation of Bell’s inequality has actually proved the existence of nonlocal entanglement.

In the subsequent sections we are going to show that our three information-theoretic
constraints suffice to deduce the characteristic features of quantum mechanics stated
at the beginning of chapter 3. Clifton, Bub and Halvorson even prove the converse
derivation in [10], but that goes beyond the scope of this work and, therefore, we limit
our discussion to the deduction of the fundamentals of quantum theory starting from
an information-theoretic point of view.

3.3 Kinematic Independence

First, we set out from the point that superluminal information transfer is not possible
and demonstrate that this single restriction already implies the kinematic independence
of distinct physical systems [10].
For this purpose let us consider a composite system, consisting of two subsystems A and
B, where local measurements in A do not have any impact on B. Due to this constraint
we assume all measurements in A to be represented by nonselective (measurement)
operators T [10]:

T (A) =
n∑
i=1

E
1
2
i AE

1
2
i , A ∈ A ∨B (3.1)

where A ∨B denotes the C∗-algebra of the composite system A + B and Ei describe
positive operators in A with the defining property

∑n
i=1Ei = 1. The restriction to

nonselective operators T endorses the following definition regarding the information
content of system B after a measurement in system A has been performed [10]:

Definition 1: “An operation T conveys no information to B just in case
(T ∗ρ)|B = ρ|B for all states ρ of B.” (Halvorson, 2003, p. 1574)
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At this point it is important to mention that we will consider only such C∗-algebras,
where ρ(A) = ρ(B) implies A = B for all states ρ [10]. Hence, (T ∗ρ)|B = ρ|B if and only
if ρ(T (B)) = ρ(B) for all B ∈ B and states ρ of A ∨B. According to our information-
theoretic constraint all states of B are also states of A∨B and therefore (T ∗ρ)|B = ρ|B
if only if T (B) = B for all B ∈ B [10].
In order to show the kinematic independence of A and B one has to prove that local
measurements in A do not suffice to convey any information to system B. Clifton, Bub
and Halvorson deem it reasonable to consider nonselective measurement operators T of
the following form [10]:

T (A) = PAP + (11− P )A(11− P ), A ∈ A ∨B (3.2)

with P representing a projection in A. We already showed that for any B ∈ B [10]

B = T (B) = PBP + (11− P )B(11− P ) (3.3)

⇒2PBP − PB −BP = 0. (3.4)

If we now multiply equation (3.4) on the left and, respectively, on the right with P , we
obtain [10]:

PBP − PB = 0 (3.5)

PBP −BP = 0. (3.6)

Note that here we used the characteristic property of projections, P 2 = P . Subtracting
these two equations yields [10]:

[P,B] = 0. (3.7)

We know that A is spanned by all its projection operators P , whereas B is spanned by
its self-adjoint operators and therefore we can conclude that A and B are kinematically
independent [10].

3.4 Noncommutativity

In this section we are going to show that the “No Broadcasting”-constraint entails the
noncommutativity concerning the algebra of observables of a distinct quantum system
[10]. Starting point here is a general theorem, which states that the broadcasting
of an arbitrary pair of pure states can be performed if and only if the corresponding
density matrices are mutually commuting.16 Hence, we assume classical mechanics to be
characterized by the property that all states can be broadcast, whereas in the quantum
case this is generally not possible.
In the following, we will need a number of definitions and theorems, which will not be
entirely proved in this work.17 First of all, we begin with a very important lemma [10]:

16This theorem was proved by Barnum et al., see [11].
17All complete proofs are given in [10].
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Lemma 1: Let us consider two physical systems A and B with associated
C∗-algebras A and B. If A and B are kinematically independent, there is
at most one state σ of A∨B for any state ω of A and any state ρ of B that
satisfies σ(AB) = ω(A)ρ(B) for all A ∈ A and B ∈ B.

In addition to this lemma we give the definition [10]:

Definition 2: “Suppose two kinematically independent, isomorphic C∗-
algebras A and B. A pair of states {ρ0, ρ1} of A can be broadcast only if
there exists a standard state σ of B and a dynamical evolution represented
by an operation T of A∨Bsuch that T ∗(ρi⊗ σ)|A = T ∗(ρi⊗ σ)|B = ρi (i =
0, 1). The pair of states {ρ0, ρ1} of A can be cloned just in the case that
T ∗(ρi ⊗ σ) = ρi ⊗ ρi (i = 0, 1)”. (Halvorson, 2003, p. 1578)

The subsequent theorem proves that in the case of Abelian algebras of observables any
pair of pure states can be cloned and broadcast by a certain broadcasting map [10]:

Theorem 1: For two isomorphic Abelian C∗-algebras A and B there exists
an operation T on A ∨B that is able to broadcast all states of A.

For the proof of this theorem we use the fact that due to the isomorphism between A
and B both Abelian algebras are also isomorphic to the set C(X) defined on a compact
Hausdorff space X18 and, hence, A⊗B ∼= C(X)⊗ C(X) ∼= C(X ×X)19 [10].

We can now define a linear mapping T on C(X × X) that satisfies T (11) = 11, i.e.
T represents a nonselective operation on C(X) ⊗ C(X). The operation T has the fol-
lowing properties for any functions f and g on some Hausdorff space X and for any
states ρ, σ of C(X) [10]:

T (f ⊗ g) = fg ⊗ 11 (3.8)

T (11⊗ f) = f ⊗ 11 (3.9)

⇒ T ∗(ρ⊗ σ)(11⊗ f) = (ρ⊗ σ)(f ⊗ 11) = ρ(f). (3.10)

As we can see, T ∗(ρ⊗ σ)|B = ρ. Since T (f ⊗ 11) = f ⊗ 11, we can conclude that [10]:

T ∗(ρ⊗ σ)(f ⊗ 11) = (ρ⊗ σ)(f ⊗ 11) = ρ(f) (3.11)

⇒ T ∗(ρ⊗ σ)|A = ρ. (3.12)

Note that the nonselective operator T introduced above represents a many-to-one map-
ping of the underlying pure state space and therefore T is irreversible.

According to the previous theorem, all states in classical systems can be broadcast,

18See section 3.2.
19Note that A ∨B is isomorphic to A⊗B, see [10].

13



since such theories are characterized by Abelian algebras of observables. To prove that
this property significantly differs classical from quantum mechanics, we need to show
that if any pair of states can be broadcast, the corresponding system has an Abelian
algebra of observables [10]. For this purpose, Clifton, Bub and Halvorson suggest to
demonstrate that if the broadcasting of an arbitrary pair of pure states is possible, then
these states can be cloned.

We will proceed with our proof by introducing the concept of unitary operators in
the C∗-algebraic framework. Consider a state ρ of A and let U be a unitary operator
in A. We can define another state ρU

20 by [10]:

ρU (A) = ρ(U∗AU) (A ∈ A). (3.13)

Additionally, if U is a unitary operator in A and V is another unitary operator in B,
then for all A ∈ A and B ∈ B we obtain [10]:

(ω ⊗ ρ)U⊗V (A⊗B) = (ω ⊗ ρ)(U∗AU ⊗ V ∗BV ) = (ωU ⊗ ρV )(A⊗B). (3.14)

The uniqueness of product states then implies that (ω ⊗ ρ)U⊗V = ωU ⊗ ρV .

In order to prove that the possibility to broadcast arbitrary pairs of pure states en-
tails that the underlying algebra of observables is Abelian, we will need a number of
different lemmas21 and theorems [10].

Lemma 2: Consider two unitarily equivalent pure states ρ0 and ρ1 of A
and another state σ of B, then [10]

p(ρ0 ⊗ σ, ρ1 ⊗ σ) = p(ρ0, ρ1) (3.15)

p(ρ0 ⊗ ρ0, ρ1 ⊗ ρ1) = p(ρ0, ρ1)
2, (3.16)

where p(ρ0, ρ1) denotes the transition probability between ρ0 and ρ1.

Lemma 3: Let A and B be kinematically independent C∗-algebras. If we
define a state ρ of A ∨B in such a way that either ρ|A or ρ|B is pure, then
ρ is a product state.

Theorem 2: If there exists a (nonselective) operation T on A ∨ B that
broadcasts each pair {ρ0, ρ1} of A, the algebra A is Abelian.

For the proof of the previous theorem let us consider a nonabelian C∗-algebra A. If
there indeed exists an operation T that is able to broadcast each pair of states {ρ0, ρ1},
then there are certain pure states ρ0 and ρ1 of A that satisfy 0 < ||ρ0 − ρ1|| < 222.

20ρ and ρU are called unitarily equivalent.
21The proofs of the following two lemmas will not be given in this work. For further details see [10].
22Here we use the fact that two pure states ρ0 and ρ1 are orthogonal, if ||ρ0 − ρ1|| = 2, compare [10].

14



We now assume that a state σ of B is given, such that we obtain [12]:

T ∗(ρ0 ⊗ σ)|A = T ∗(ρ0 ⊗ σ)|B = ρ0, (3.17)

T ∗(ρ1 ⊗ σ)|A = T ∗(ρ1 ⊗ σ)|B = ρ1. (3.18)

According to Lemma 3 we can conclude that T ∗(ρ0⊗σ) = ρ0⊗ρ0, as well as T ∗(ρ1⊗σ) =
ρ1 ⊗ ρ1. For the transition probability p it follows that [10]:

p(ρ0, ρ1) = p(ρ0 ⊗ σ, ρ1 ⊗ σ) (3.19)

≤ p(T ∗(ρ0 ⊗ σ), T ∗(ρ1 ⊗ σ)) (3.20)

= p(ρ0 ⊗ ρ0, ρ1 ⊗ ρ1) (3.21)

= p(ρ0, ρ1)
2. (3.22)

Note that the nonselective operation T cannot decrease the transition probability. Since
the inequality we deduced above, p(ρ0, ρ1) ≤ p(ρ0, ρ1)2, contradicts our requirement that
0 < p(ρ0, ρ1) < 1, we can conclude that A has to be Abelian [10].

As we can see, a pair of states of a system can be broadcast, if and only if, the cor-
responding algebra of observables is Abelian, i.e. only classical theories can broadcast
arbitrary states. But since we already know that in this case the density matrices are
commuting (see Barnum et al., [11]), we can conclude that individual quantum systems
are characterized by a noncommutative algebra of observables.

3.5 Nonlocality

Finally, we want to demonstrate that our last remaining information-theoretic con-
straint, the “No Bit Commitment”-theorem, implies that separated physical systems
are at least sometimes represented by entangled states23 [10].
We start with a lemma concerning the non-uniqueness of the decomposition of quantum
mechanical mixed states24 [10]:

Lemma 4: Consider a C∗-algebra A. A is nonabelian if and only if there
exist specific pure states ω1,2 and ω± of A that satisfy the relation:

1

2
(ω1 + ω2) =

1

2
(ω+ + ω−) . (3.23)

For the subsequent proof we will have a close look at a bit commitment protocol between
two distinct physical systems A and B. In the case that the mixed states in both systems

23This property is generally referred to as nonlocality, compare section 3.
24The proof of the lemma will not be given in this work. For further details see [10].
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can be decomposed in a non-unique way, we can define a pair of correlated states {ρ0, ρ1}
in A+B, which has identical marginals relative to A and B [10]:

ρ0 =
1

2
(ω1 ⊗ ω1 + ω2 ⊗ ω2) (3.24)

ρ1 =
1

2
(ω+ ⊗ ω+ + ω− ⊗ ω−) . (3.25)

Provided that the algebras of observables pertaining to A and B do not commute but
are kinematically independent, let us consider a party, called Alice, that wants to supply
an encoded bit to another party, called Bob [10].
A commitment scheme usually consists of two phases, the commitment stage and the
revelation stage. In the commitment stage we suppose that Alice is able to decide
whether the state ρ0 or ρ1 is prepared [10]. Her choice either relates to the commitment
0 or to the commitment 1, respectively. If Alice committed to 0, Bob is commanded to
do a measurement that discriminates between ω1 and ω2 in the revelation stage. If, on
the other hand, Alice committed to 1, Bob is instructed to perform a measurement able
to distinguish between ω+ and ω−.

We proceed with an important theorem25 that proves the security of the bit com-
mitment protocol, if Alice and Bob are able to make use of only classically correlated
states26 [10]. In addition, we prove that due to the impossibility of superluminal infor-
mation transfer Alice can convert product states only to other product states. Thus, it
is ensured that Alice cannot cheat by preparing an arbitrary state σ and transforming
it later, at some other stage, into ρ0 and ρ1 [10].

Theorem 3: Let A and B be two nonabelian C∗-algebras. There exists a
pair of states {ρ0, ρ1} of A ∨B that satisfies:

• ρ0|B = ρ1|B.

• There exists no classically correlated state σ of A and B and nonselec-
tive measurement operations T0 and T1 that fulfill:

T ∗0 σ = ρ0 (3.26)

T ∗1 σ = ρ1. (3.27)

We can conclude that if the composite system A+B has a pair of classically correlated
states {ρ0, ρ1} with identical marginals relative to A and B, then A and B can have
an entangled state that can be converted to ρ0 or ρ1 by a local operation [10]. Hence,
the impossibility of unconditionally secure bit commitment implies the nonlocality of
physical systems.

As we can see, the three information-theoretic constraints stated at the beginning of

25Once again, the proof of the lemma will not be given in this work. For further details see [10].
26Classically correlated states relate to convex combinations of product states [10].
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section 3 indeed suffice to deduce some of the very characteristic features of quantum
mechanics. This indicates that the foundations of quantum physics are at least to some
extent subject to a small number of fundamental information-theoretic axioms.

4 Lucien Hardy - Quantum Theory from five Reasonable
Axioms

Another promising approach able to derive many characteristics of quantum mechanics
is represented by Hardy’s work [4]. In contrast to the rather abstract standard for-
mulation of quantum theory based on Hermitian operators acting on complex Hilbert
spaces, Hardy proposes a set of five intuitive axioms starting from an information-
theoretic point of view. As we will see in this chapter, these axioms have much in
common with classical probability theories and it turns out that in fact only a single
axiom distinguishes quantum theory from its classical counterparts.
We will start our discussion with an introduction to Hardy’s reasonable axioms [4]:

Axiom 1, Probabilities: “Relative frequencies (measured by taking the
proportion of times a particular outcome is observed) tend to the same value
(which we call the probability) for any case where a given measurement is
performed on an ensemble of n systems prepared by some given preparation
in the limit as n becomes infinite.” (L. Hardy, 2008, p. 2)

This first axiom is fundamental to all probability theories, in that the measurement
probabilities depend only on the preparation and not on the particular ensemble being
used. Thus, we can associate with each preparation a distinct state of the system which
contains all the information required to calculate the probability of a specific measure-
ment outcome [4].

Before we can proceed with the remaining axioms, we need to define two integers that
will be very important for the description of the physical systems being investigated [4]:

• The integer K represents the number of degrees of freedom. In other words, K
denotes the minimum number of measurements necessary to specify the state.

• The integer N represents the dimension of the system, i.e. N defines the maximum
number of states distinguishable in a single measurement.

Axiom 2, Simplicity : “K is determined by a function of N (i.e. K =
K(N)) where N = 1, 2, ... and where, for each given N , K takes the mini-
mum value consistent with the axioms.” (L. Hardy, 2008, p. 2)

The second axiom implies that there exists no natural restriction on the number of
dimensions a physical system can have, but choosing the smallest possible number of
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K for a given N leads to the simplest feasible theory in agreement with the axioms [4].
As we will see in the following sections, K = N r with r being a positive integer. In
particular, it will be proved that K = N in the case of classical probability theories,
whereas in the case of quantum theory we have K = N2.

Axiom 3, Subspaces: “A system whose state is constrained to belong to
an M dimensional subspace (i.e. have support on only M of a set of N
possible distinguishable states) behaves like a system of dimension M .”
(L. Hardy, 2008, p. 2)

The subspaces-axiom emphasizes the notion that all ensembles with the same number
of distinguishable states carry an equal amount of information [4].

Axiom 4, Composite systems: “A composite system consisting of two
subsystems A and B having dimension NA and NB respectively, and number
of degrees of freedom KA and KB respectively, has dimension N = NANB

and number of degrees of freedom K = KAKB.” (L. Hardy, 2008, p. 2)

Hardy considers it reasonable to assume that the composite system A+B comprises at
least NANB distinguishable states27 [4]. Provided that N = NANB, Hardy manages to
show in his work that the number of degrees of freedom is given by K = KAKB

28.

Axiom 5, Continuity : “There exists a continuous reversible transforma-
tion on a system between any two pure states of the system.”
(L. Hardy, 2008, p. 2)

The last axiom 5 is the one that significantly differs quantum theory from classical
probability theories [4]. It is quite astonishing, but one even just has to remove the
word “continuous” from the previous axiom to recover classical theories. To see this,
we will give a description of the basic concepts of classical as well as quantum probability
theories in the following sections.

4.1 The Structure of Classical Probability Theories

First, we will have a look at classical probability theories. Let us consider a classical
system that can be located in one of N distinguishable states, the so-called basis states,
which span the corresponding state space. It is now possible to assign each of the N
basis states a probability pn (n = 1, 2, ..., N) of finding the system in a specific state
after a measurement has been performed [4]. We can therefore represent the state of

27Basically, the composite system can have a larger number of distinguishable states but we will not
consider this case here, compare [4].

28The proof will not be performed in this work. For further details see [4].
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the system by a single vector whose entries are related to the distinct measurement
probabilities [4]:

p =


p1
p2
...
pN

 . (4.1)

This vector is completely characterized by a total number of N measurement proba-
bilities and, thus, classical probability theories satisfy K = N29. Since a general state
of the state space is given as a convex sum of the basis states, the basis states can be
written in the following form [4]:

pnull =


0
0
0
...
0

 , p1 =


1
0
0
...
0

 , p2 =


0
1
0
...
0

 , · · · , pN =


0
0
0
...
1

 . (4.2)

The null state pnull corresponds to the case in which the system does not enter the
measurement device.
In the following we will associate the basis states, except the null state, with the pure
states of the classical system and refer to the minimum number of K probability mea-
surements needed to specify the state as fiducial measurements [4]. In order to prove
whether the system p is in one of the pure states, we relate all these measurements to
the vectors rn (n = 1, 2, ...,K = N) [4]:

r1 =


1
0
...
0

 , r2 =


0
1
...
0

 , · · · , rK =


0
0
...
1

 . (4.3)

Hence, in the case of pure states the measurement probability pmeas is given by the dot
product [4]:

pmeas = rn · p, n = 1, 2, ...,K. (4.4)

This simple formula does not only apply to pure state measurements but is also valid
for general types of measurements, as we can see, if we consider the situation where
we decide to measure an arbitrary rn with probability λ and rk with probability 1− λ.
The corresponding measurement is thus represented by r = λrn + (1 − λ)rk and from

29Note that we do not care about normalization. In the case of normalized states one obtains K =
N − 1 [4].
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linearity of the dot product we conclude that the measurement probability can generally
be written in the form [4]:

pmeas = r · p. (4.5)

If one just wants to check whether the system is present or not, the associated measure-
ment vector is defined by [4]:

r11 =
∑
n

rn. (4.6)

Consequently, the measurement probability is confined by [4]:

0 ≤ r11 · p ≤ 1. (4.7)

Note that normalized states pnorm satisfy the upper bound, i.e. r11 · pnorm = 1. Addi-
tionally, equation (4.6) can be redefined if we take into account that the measurement
device is able to distinguish L different outcomes, each related to a vector rl (l = 1, ..., L)
[4]:

r11 =
L∑
l=1

rl. (4.8)

So far, classical probability theories are obviously consistent with our first four axioms,
but axiom 5, however, is not satisfied. According to Hardy’s continuity-axiom one can
always find a continuous reversible transformation between any two pure states of the
system [4]. It is easy to prove that reversible transformations applied to a pure state will
yield another pure state. To see this we will consider the contrary case for a moment.
Let us assume there exists a reversible transformation Z and a pure state p such that

Zp = λpn + (1− λ)pk, (4.9)

with pn,k being two different states [4]. Since Z is reversible, we conclude

p = λZ−1pn + (1− λ)Z−1pk, (4.10)

which implies that p is a mixture and therefore our initial assumption is apparently
contradicted [4]. Hence, axiom 5 demands the existence of a continuous transformation
that takes a pure state to another one without leaving the pure states’ subspace. This,
however, is not possible, since the system has only a finite number of N pure states [4].
Thus, classical probability theories do not fulfill axiom 5 as indicated at the beginning
of chapter 4.
In contrast to the classical case, we will see in the next section 4.2 that quantum theory
does indeed satisfy Hardy’s postulated axioms.
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4.2 The Structure of Quantum Theory

According to Hardy, quantum theories can be characterized in a way very similar to
classical probability theories, but before we will deal with Hardy’s description we give
an overview of the standard formulation of quantum mechanics [4]:

• A quantum mechanical state can be expressed in terms of a positive, Hermitian
operator ρ̂ that fulfills the condition Tr(ρ̂) = 130.

• Each outcome of a probability measurement corresponds to a positive operator Âl
(l = 1, 2, ..., L) [4]:

L∑
l=1

Âl = 1̂1, (4.11)

where 1̂1 denotes the identity operator.

• When a measurement Â is performed on a system represented by a state ρ̂, the
measurement probability is given by [4]:

pmeas = Tr(Âρ̂). (4.12)

• The evolution of a states is generally described by a completely positive, linear
superoperator $ [4]:

ρ̂→ $(ρ̂). (4.13)

In order to represent quantum theory by means of probability vectors, we first need to
relate the number of degrees of freedom K with the number of dimensions N a quantum
system has. For that purpose let us consider the matrix representation of Hermitian
operators acting on an N dimensional Hilbert space [4]. Such matrices are specified
by N real parameters along the diagonal and 1

2N(N − 1) complex numbers above the
diagonal resulting in N2 real numbers. Consequently, Hermitian operators are made
up of N2 linearly independent projection operators P̂k (k = 1, ...,K = N2) and we
therefore have K = N2 in the quantum case.
Using the vector

P̂ =


P̂1

P̂2
...

P̂K=N2

 , (4.14)

30This condition refers to normalized state vectors. If we do not care about normalization this relation
generalizes to 0 ≤ Tr(ρ̂) ≤ 1 [4].
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any Hermitian operators is given by the dot product a ·P̂, where a denotes a real vector.
Following the concept of the trace formula (see equation (4.12)), Hardy suggests to
alternatively characterize the states of the system by the probability vector [4]:

pS = Tr(P̂ρ̂). (4.15)

Each component of this vector corresponds to the measurement probability when the
respective projector P̂n is applied to ρ̂. Similar to the case of classical probability
theories we can also associate the measurement operators Âl (l = 1, 2, ..., L) with certain
vectors rM [4]:

Â = rM · P̂. (4.16)

Using this equation and equation (4.15) we can rewrite the trace formula in the form
[4]:

pmeas = rM · pS . (4.17)

Moreover, a measurement Â can be characterized in an analogous manner to the state
probability vector by [4]

pM = Tr(ÂP̂), (4.18)

whereas it is possible to define the state of a system by

ρ̂ = P̂ · rS . (4.19)

Thus, the measurement probability is given by [4]:

pmeas = pM · rS = Tr(Âρ̂) = Tr
(
rTM P̂P̂

T
rS

)
= rTMDrS , (4.20)

where D is a K ×K-matrix and the corresponding matrix elements are determined by
[4]:

Dij = Tr
(
P̂iP̂j

)
. (4.21)

Note that the identity operator 1̂1 can also be represented in terms of projection opera-
tors and the identity measurement r11 [4]:

1̂1 = r11 · P̂. (4.22)

In Hardy’s formulation of quantum theory the superoperator $ describing the evolution
of a quantum system relates to a linear transformation of the probability state vector
pS . This can easily be seen, if we substitute the transformation (4.13) into equation
(4.15) [4]:

pS = Tr(P̂ρ̂)→ Tr
(
P̂$(ρ̂)

)
(4.23)

= Tr
(
P̂$(P̂

T
D−1pS)

)
(4.24)

= ZpS . (4.25)
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The matrix Z characterizing the linear transformation is defined by [4]

Z = Tr
(
P̂$(P̂

T
)
)
D−1. (4.26)

In the previous derivation we made use of the relation pS = DrS , which follows from
equation (4.17) and (4.20) [4].

4.3 Hardy’s Axioms as Foundation of Quantum Theory

In this section we will forget about the characteristics of quantum and classical proba-
bility theories discussed before and show how quantum theory can be derived starting
from Hardy’s five axioms31.
First, we will deal with the number of degrees of freedom K and the number of dimen-
sions N a quantum system has and proof that in general K(N) = N r, with r being a
positive integer [4]. For that purpose Hardy suggests to consider an N + 1 dimensional
system whose state is either restricted to an N dimensional subspace W or belongs to
the one dimensional complement. In the first case, the subspaces-axiom implies that the
system has K(N) degrees of freedom, whereas in the second case, the system needs to
have at least one degree of freedom, since K can never be less than one [4]. Generally,
the state of the system will be a combination of W and its complement, each occurring
with probability λ and λ− 1 respectively (0 ≤ λ ≤ 1). Such systems are at least char-
acterized by K(N) + 1 degrees of freedom and, thus, we obtain that K(N) is a strictly
increasing function [4]:

K(N + 1) ≥ K(N) + 1. (4.27)

Additionally, from axiom 4 it follows that K(N) is a completely multiplicative function,
i.e. K(N) fulfills K(NANB) = K(NA)K(NB). In his work Hardy manages to prove
that any strictly increasing, completely multiplicative function can be written in the
form K(N) = Nα [4]. Since K was initially defined as an integer, we conclude [4]:

K(N) = N r (r = 1, 2, 3, . . .). (4.28)

Hardy proceeds with his proof by introducing K fiducial measurements which can be
related to a basis set of measurement vectors rn (n = 1, 2, ...,K). In an analogous man-
ner Hardy also defines K linearly independent probability vectors pk (k = 1, 2, ...,K)
needed to uniquely specify the state of the system [4]. In the previous sections we have
already seen that it is possible to represent both measurements and states either in terms
of r-type or p-type vectors which are related to each other by a linear transformation
[4]:

pS = DrS (4.29)

pM = DT rM . (4.30)

31Note that we will only give a sketch of Hardy’s proof in this work. The complete derivation is
performed in [4].
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The subscripts S and M refer to states and measurements, respectively. Using this
linear transformation the measurement probability pmeas is given by [4]:

pmeas = rTMDrS . (4.31)

In the following we will eliminate the case K = N and show that quantum theory
satisfies the condition K(N) = N2. If we consider a system with K = N degrees of
freedom, the K fiducial measurements can be chosen to be identical with the N basis
vectors spanning the state space [4]. The equality of fiducial and basis vectors indicates
that D correlates with the identity operator, i.e. D = 11, and therefore pure states fulfill
[4]:

rTDr = 1. (4.32)

The relation D = 11 implies that [4]

N∑
k=1

(pk)
2 = 1, (4.33)

with pk being the kth component of the vector p. Moreover, 0 ≤ pk ≤ 1, and since we
now require p to be normalized, we obtain [4]:

N∑
k=1

pk = 1. (4.34)

As we can see, only those vectors p satisfy the conditions stated above that have one
pk equal to one, while all the other entries are equal to zero. Hence, the pure states are
identical with the basis states which is exactly the case in classical probability theories
[4]. Since these N basis vectors form a discrete set, the continuity-axiom is not fulfilled
and, thus, we can rule out any theory with K = N .
According to the simplicity-axiom, K takes the minimum value in agreement with our
axioms, leading to the case of K(N) = N2 and by using the subspaces-axiom we can
easily generalize to arbitrary N [4].

In order to reproduce the formalism of quantum theory we derived in section 4.2, we
primarily need to recover the expressions for states ρ̂ and measurements Â given by
equations (4.16) and (4.19). This can be achieved by calculating the vector P̂ – whose
components are N2 linearly independent projection operators P̂k (see equation (4.14)) –
from D and correlating it with the vector representing the state and the measurement,
respectively [4]. Thus, we obtain the measurement probability pmeas described by the
well-known trace formula [4]:

pmeas = Tr(Âρ̂). (4.35)

Hardy is finally able to show that the most general evolution of the state ρ̂ after a
measurement is equivalent to the evolution predicted by quantum theory [4]. If we
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consider the case of a system exiting the measurement device after a measurement has
been performed, the state of this system will be changed into one of l (l = 1, 2, ..., L)
distinct configurations corresponding to the possible measurement outcomes. Therefore
it is possible to relate each outcome to a linear transformation Zl that alters the nor-
malization factor of the state such that it agrees with the probability of obtaining the
specific outcome [4]. This results in the following condition [4]:

r11 · Zlp = rl · p ∀p. (4.36)

Furthermore we can deduce that [4](
L∑
l=1

Zl

)T
r11 = r11, (4.37)

meaning that the set of all feasible transformations does not change the normalization
factor of the state. The relation above correlates with the constraint [4]

Tr
∑
l

$(ρ̂) = Tr(ρ̂) ∀ρ̂, (4.38)

and since the evolution of the state given by the completely positive superoperator $
can be described by $(ρ̂) =

∑
l M̂lρ̂M̂

†
l , it can be proved that this equation is identical

with the usual constraint on superoperators [4]:∑
l

M̂ †l M̂l = 1̂1. (4.39)

Since the two expressions (4.36) and (4.37) limiting the number of possible transforma-
tions are also valid for classical probability theories, Hardy believes this might lead to
another approach to the measurement problem encountered in quantum theory [4].
Thus, we see that Hardy’s set of reasonable axioms provides new insights into some of
the most characteristic issues of quantum mechanics.

5 Robert W. Spekkens - A Toy Theory

In this last chapter we will present Robert Spekkens’ toy theory [12] which, in contrast
to the other approaches discussed before, is not able to derive quantum theory but still
reproduces a great number of quantum phenomena. Spekkens’ model is based on a
single principle, which states that the amount of information one possesses about the
state of a system must always be quantitatively equal to the lack of information in a
state of maximal knowledge [12]. This assumption is deeply connected with the ques-
tion whether quantum states are considered to be ontic states, i.e. states of reality, or
epistemic states, that is states of (incomplete) knowledge32.

32The simplest example of an ontic state in classical mechanics is a state in the phase space. Epistemic
states, on the other hand, are often described as a convex sum of pure ontic states. Such states are
usually encountered in statistical mechanics [12].
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Physicists have been debating on this issue since the very beginning of quantum physics
and today the most widespread concept is the ontic point of view [12]. Spekkens, how-
ever, argues that the epistemic view of states grants a better conceptual understanding
of various quantum features, such as interference, noncommutativity and entanglement,
whereas the ontic viewpoint is less intuitive.

In the following, we will develop Spekkens’ model starting from our fundamental prin-
ciple, the so-called knowledge balance principle, which will be discussed in more detail
in the next section 5.1.
But before we proceed, it is important to emphasize once again that Spekkens’ toy
theory cannot be considered as an alternative concept to the standard formulation of
quantum mechanics. Spekkens’ model is built on local and noncontextual hidden vari-
ables, but since the violation of Bell’s inequality and the Kochen-Specker-theorem we
know that it is impossible to understand quantum theory in this way [12].

5.1 The Knowledge Balance Principle

In line with Zeilinger’s approach (see chapter 2), Spekkens’ toy theory is based on the
assumption that quantum states are primarily states of incomplete knowledge, which
indicates that the description of quantum systems is subject to a limited amount of
information. Starting point is Spekkens’ knowledge balance principle from which the
entire toy theory can be derived [12]:

“If one has maximal knowledge, then for every system, at every time, the
amount of knowledge one possesses about the ontic state of the system at
that time must equal the amount of knowledge one lacks.”33

In order to apply this principle, we need to define an adequate measure of information
to quantify the knowledge one posses about the state of a system. For that purpose we
introduce a minimal number of propositions with corresponding truth values, “yes” or
“no”, required to completely characterize the ontic state [12].
To illustrate the implications of this set of propositions, which we refer to as canonical
set, let us consider the case of a system that can be located in one of four distinct ontic
states. A possible list of propositions able to determine the actual state of the system
could be four statements concerning the yes/no-questions in which of the ontic states
the system can be found [12]. As one might conjecture, this list of propositions does not
represent the canonical set, since the number of questions can be reduced, if we always
group two of the four ontic states to form a subset. Thus, two questions yielding four
answers suffice to uniquely specify the state of the system, e.g. [12]:

• ”Is the system in the set {1, 2}, or not?”

• ”Is the system in the set {1, 3}, or not?”

33R. Spekkens, 2008, p. 3.
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Using a canonical set of propositions to specify the state of a system, we can now de-
termine an appropriate expression of the measure of information. Spekkens suggests to
define it as the maximum number of propositions with known truth values in a variation
over all possible canonical sets [12].

In the following, we will only consider systems that satisfy the knowledge balance prin-
ciple stated above. In order to obtain an equality between the amount of information
one possesses and the lack of information in a state of maximal knowledge, there always
needs to be an even number of propositions in the canonical set. Hence, the simplest
system, which we call the elementary system, is obviously characterized by a total of
two questions and can therefore be located in one of four possible ontic states [12].
To describe more complex systems within the toy theory we suppose all systems to be
composed of these elementary systems. A general system consisting of N elementary
systems will then have 2N propositions in the canonical set and 22N possible ontic states
[12].

5.2 The Description of Elementary Systems

In the last section 5.1 we have already ascertained that the most elementary system in
accordance with Spekkens’ knowledge balance principle is determined by a minimum
number of two propositions in the canonical set. The actual ontic state, however, is yet
unspecified, since the fundamental principle allows only one of these two questions to
be answered [12]. We are therefore left with a system that still can be located in two
possible ontic states. If we denote the four distinct states with ‘1’, ‘2’, ‘3’ and ‘4’, the
epistemic states of the system are defined as disjunctions of the ontic states [12]:

1 ∨ 2

1 ∨ 3

1 ∨ 4

2 ∨ 3

2 ∨ 4

3 ∨ 4.

In contrast to these six states, which represent the states of maximal knowledge, there
exists only a single state of nonmaximal knowledge for elementary systems that is as-
sociated with the epistemic state [12]

1 ∨ 2 ∨ 3 ∨ 4.

This state corresponds to the case that the truth values of both propositions in the
canonical set are unknown [12].
The elementary systems in Spekkens’ toy theory can be characterized in a way very sim-
ilar to qubits in quantum information theory [12]. The six epistemic states of maximal
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knowledge correlate with the pure qubit states34 [12]

1 ∨ 2⇔ |0〉
3 ∨ 4⇔ |1〉
1 ∨ 3⇔ |+〉
2 ∨ 4⇔ |−〉
2 ∨ 3⇔ |+ i〉
1 ∨ 4⇔ | − i〉,

(5.1)

whereas the state of nonmaximal knowledge can be associated with the completely
mixed state [12]:

1 ∨ 2 ∨ 3 ∨ 4⇔ 11

2
.

The analogy between the elementary systems in the toy theory and qubits suggests a
simple geometric representation of the epistemic states very similar to the Bloch sphere
representation encountered in quantum information theory [12] (see figure 1). Orthogo-
nal pure qubit states correspond to antipodal points on the surface of the Bloch sphere,
while mixed states, i.e. convex combinations of pure states, are represented by the
points inside the ball.
In order to reproduce a relation analogous to the orthogonality of quantum states,
Spekkens deems it reasonable to introduce the notion of an ontic base of an epistemic
state [12]. The ontic base is defined as the set of ontic states that is in agreement
with the epistemic state. For example, if we consider the case of an elementary system
represented by the epistemic state 1 ∨ 2, the corresponding ontic base is the set {1, 2}.
In particular, two distinct epistemic states are called disjoint, if the intersection of their
respective ontic bases is empty. Thus, we conclude that the disjointness of epistemic
states in the toy theory resembles the feature of orthogonality in quantum mechanics
[12].

We proceed with the introduction of the concept of pure and mixed states in the toy
theory. As already mentioned, the six epistemic states of maximal knowledge are de-
scribed in a manner analogous to pure qubit states in quantum information theory,
whereas the single state of nonmaximal knowledge, 1 ∨ 2 ∨ 3 ∨ 4, correlates with the
completely mixed state 11/2 [12]. Since a general mixed quantum state can be written
as a convex sum of pure states, it is reasonable to introduce a similar operation in the
toy theory. In order to define a meaningful convex combination, Spekkens argues that
epistemic states need to fulfill the following two requirements [12]:

• First, the epistemic states must be disjoint.

• Secondly, the union of the ontic bases of the epistemic states has to correspond
with the ontic base of the resulting epistemic state.
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Figure 1: Analogy to the Bloch sphere. (a) A graphical representation of
epistemic states. The states are specified by four squares representing the
four possible ontic states. The colored squares characterize the set of ontic
states in which the system can be located. (b) Bloch sphere representation
of single qubits. Pure states correspond to the points on the surface of the
sphere. (R. Spekkens, 2008, p. 6)

Using the operation symbol ‘+cx’ to denote the convex combination of two epistemic
states, it is therefore possible to decompose the mixed state 1∨2∨3∨4 in various ways
in accordance with the conditions listed above [12]:

1 ∨ 2 ∨ ∨3 ∨ 4 =(1 ∨ 2) +cx (3 ∨ 4)

=(1 ∨ 3) +cx (2 ∨ 4)

=(2 ∨ 3) +cx (1 ∨ 4).

(5.2)

This decomposition is analogous to the well-known convex decomposition of the com-
pletely mixed qubit state 11/2 [12]:

11

2
=

1

2
|0〉〈0|+ 1

2
|1〉〈1|

=
1

2
|+〉 〈+|+ 1

2
|−〉〈−|

=
1

2
|+i〉 〈+i|+ 1

2
|−i〉 〈−i|.

(5.3)

As we can see, in quantum theory as well as in Spekkens’ toy theory the convex de-
composition of mixed states is not unique [12]. This fact indicates a certain connection
between quantum states and epistemic states, i.e. states of incomplete knowledge, and
therefore supports the epistemic point of view.

Another characteristic feature of quantum mechanics Spekkens’ toy theory is able to
reproduce concerns the impossibility of creating a universal state inverter [12]. Gener-
ally speaking, a universal state inverter maps an arbitrary quantum state |ψ〉 onto the

34Note that in quantum information theory |±〉 = 1√
2
(|0〉 ± |−〉) and | ± i〉 = 1√

2
(|0〉 ± i|−〉) [12].
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orthogonal state |ψ̄〉, that is it transforms |ψ〉 to |ψ̄〉 such that 〈ψ|ψ̄〉 = 0. However,
such a device cannot be constructed, since mappings of this kind are not unitary [12].
An analogous transformation within the toy theory is represented by any mapping which
takes a pure epistemic state of an elementary system to the state that is disjoint with
it. We therefore have the following transformation [12]:

1 ∨ 2 ↔ 3 ∨ 4,

1 ∨ 3 ↔ 2 ∨ 4,

2 ∨ 3 ↔ 1 ∨ 4.

(5.4)

This transformation is also impossible to achieve, since the first two conditions in equa-
tion (5.4) require the mapping 1↔ 4 and 2↔ 3, which apparently contradicts the third
condition [12]. Thus, we conclude that there exists no universal state inverter in the
toy theory.

As we have seen so far, the elementary systems in Spekkens’ toy theory have much
in common with qubits in quantum information theory and this fact supports the point
of view that quantum states are primarily states of incomplete knowledge.
In the next section 5.3 we are going to extend the toy theory and consider more complex
systems composed of pairs of elementary systems.

5.3 Pairs of Elementary Systems

Composite systems consisting of pairs of elementary systems are obviously specified by
four propositions in the canonical set, since each elementary systems itself is represented
by two propositions [12]. Consequently, the pair can be located in one of sixteen distinct
ontic states, which can be written as conjunctions35 of the ontic states of the individual
elementary systems [12]:

1 · 1 1 · 2 1 · 3 1 · 4
2 · 1 2 · 2 2 · 3 2 · 4
3 · 1 3 · 2 3 · 3 3 · 4
4 · 1 4 · 2 4 · 3 4 · 4.

Analogous to the description of single elementary systems it is also possible to represent
pairs of elementary systems graphically by 4× 4-arrays of cells (compare figure 2) [12].
If we consider a composite system consisting of two elementary subsystems A and B,
the rows of the 4 × 4-array determine the ontic states of system A and the columns
specify the possible ontic states of system B.

Even though the pair has four propositions in the canonical set, the knowledge bal-
ance principle allows only two of them to be answered. Thus, in a state of maximal

35Conjunctions will be denoted by the sysmbol ‘·’ [12].
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knowledge the composite system can be located in a set of four distinct ontic states and
the possible pure epistemic states are given as disjunctions, e.g. [12]:

(1 · 3) ∨ (1 · 4) ∨ (2 · 3) ∨ (2 · 4). (5.5)

The valid set of pure epistemic states can be further reduced, if we apply the knowledge
balance principle to each of the elementary systems, A and B, separately [12]. It fol-
lows that each system is represented at most by the truth value of a single proposition
and Spekkens is finally able to show that two different kinds of 4 × 4-arrays suffice to
completely characterize the possible epistemic states of maximal knowledge (see figure
2) [12].

Analogous to quantum states, it is also possible to distinguish between correlated and
uncorrelated epistemic states [12]. Conjunctions of states of maximal knowledge lead
to uncorrelated states, which can be generally described in the form [12]

(a ∨ b) · (c ∨ d), (5.6)

with a, b, c, d ∈ {1, 2, 3, 4} and a 6= b, c 6= d. These states are graphically represented by
permutations of the left array in figure 2 and correspond to product states in quantum
theory, e.g. |0〉|0〉 (compare equation (5.1)).
Correlated epistemic states, on the other hand, can be written in the form [12]

(a · e) ∨ (b · f) ∨ (c · g) ∨ (d · h), (5.7)

with a, b, c, d, e, f, g, h ∈ {1, 2, 3, 4} and a 6= b 6= c 6= d, e 6= f 6= g 6= h. In this case the
propositions with known truth values in the canonical set concern the relations between
the individual elementary systems and, thus, such epistemic states are analogous to
maximally entangled states [12]. Correlated states are represented by any permutation
of the second array in figure 2.
In contrast to the description of single elementary systems, there exist more than one
epistemic state of nonmaximal knowledge for composite systems in the toy theory. In
the case of a pair of elementary systems these states are characterized by either one or
none answered questions in the canonical set [12]. Specifically, the completely mixed
state

(1 ∨ 2 ∨ 3 ∨ 4) · (1 ∨ 2 ∨ 3 ∨ 4), (5.8)

which corresponds to none answered proposition, can be associated with the two-qubit
state, 11/2⊗ 11/2 [12].

In the following, we will deal with the well-known no-cloning theorem and demonstrate
how this no-go theorem arises from an epistemic point of view. According to the theo-
rem, which was first proved by Wootters and Zurek in 1982 (compare [7]), the cloning
of an arbitrary quantum state is impossible, since there exists no unitary operator that
is able to perform such a transformation36.

36A transformation that copies an arbitrary initial quantum state onto another one must preserve
inner products and therefore needs to be unitary [12].
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Figure 2: Graphical representation of valid epistemic states of maximal
knowledge for a pair of elementary systems in agreement with the knowl-
edge balance principle [12]. The possible ontic states of the composite
system AB are specified by 4 × 4-arrays of squares. The colored squares
characterize the set of ontic states in which the system is known to be. The
entire set of valid epistemic states is given by permutations of the rows and
columns of the arrays depicted above [12]. (R. Spekkens, 2008, p. 12)

In the context of an epistemic viewpoint, the cloning process is represented by a trans-
formation that copies an unknown initial state, (a ∨ b), onto a fixed state, (c ∨ d) [12]:

(a ∨ b) · (c ∨ d)→ (a ∨ b) · (a ∨ b). (5.9)

In order to illustrate the impossibility of the no-cloning theorem for nondisjoint epis-
temic states, Spekkens suggests to consider the cloning process for the set {1∨ 3, 3∨ 4}
[12]. If we choose the fixed state to be (1 ∨ 2), we have the transformation [12]:

(1 ∨ 3) · (1 ∨ 2)→ (1 ∨ 3) · (1 ∨ 3)

(3 ∨ 4) · (1 ∨ 2)→ (3 ∨ 4) · (3 ∨ 4).
(5.10)

To prove that this transformation does not exist in the toy theory we need to overlap
the uncorrelated epistemic states on both sides of equation (5.10). The resulting ontic
states are 3 · 1 and 3 · 2 on the left-hand side and 3 · 3 on the right-hand side. Due to
the fact that the number of ontic states is not preserved, we conclude that the cloning
transformation is not possible [12]. By taking any permutation of the epistemic states,
1 ∨ 3 and 3 ∨ 4, we can generalize the proof to an arbitrary set of states.

As we can see, Spekkens’ toy theory based on the simple knowledge balance principle is
indeed able to reproduce a large variety of quantum features. The analogy between the
epistemic states in the toy theory and quantum states certainly supports an epistemic
view of quantum states, even though we must be aware of the fact that the toy theory
is in no way equivalent to quantum theory.

6 Summary and Concluding Remarks

In this work we have considered four promising approaches that try to base quantum
theory on conceptual foundations in terms of simple axioms and meaningful principles.
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As already discussed at the beginning, we are not interested in the mathematical formal-
ism of quantum mechanics concerning complex Hilbert spaces and Hermitian operators,
instead, we want to find a foundation that is able to derive the very characteristics of
quantum physics, which significantly distinguish quantum from classical mechanics.

Although all the approaches introduced here start from an information-theoretic point
of view, the strategies to deduce quantum theory are in part very different. Zeilinger’s
fundamental principle is based on the assumption that the description of the world is
represented in terms of propositions (see section 2.1). Consequently, quantization arises
from the fact that quantum objects can carry only a limited amount of information [1].

In Clifton, Bub and Halvorson’s approach, on the other hand, the physical world is
subject to three fundamental information-theoretic constraints. As shown in section 3,
these constraints are connected with some characteristic features of quantum mechan-
ics, such as nonlocality and noncommutative algebras of observables.

Moreover, Hardy’s work (see section 4) based on a set of five reasonable axioms rep-
resents another promising approach able to derive quantum theory. In contrast to the
other approaches discussed before, Hardy suggests that quantum theory is more similar
to classical probability theories as one might expect at first sight. Hardy is able to show
that just the continuity-axiom – more precisely, just the single word “continuous” of
this axiom – is not consistent with classical probability theories [4]. This fact provides
completely new insights into the discussion on the conceptional foundations of quantum
theory and raises the question why so many quantum phenomena, for example entan-
glement, do not have a classical counterpart.
Consequently, Hardy regards quantum theory as a new continuous kind of probability
theory, as he states in [4]:

“Quantum theory is, in some respects, both superior to and more natural
than classical probability theory (and therefore classical theories in general)
since it can describe evolution for finite systems in a continuous way. Since
nature is quantum, not classical, it is to be expected that quantum theory
is ultimately the more reasonable theory.”37

In connection with the approaches developed by Zeilinger and Hardy, we also discussed
Spekkens’ toy theory in section 5. Even though not equivalent to quantum theory,
the toy theory based on the knowledge balance principle supports an epistemic view of
quantum states. If one accepts that both pure and mixed states are rather states of
incomplete knowledge than states of reality, many quantum features can be understood
in a very intuitive way.
On the other hand, the epistemic point of view raises questions concerning the reality
of quantum objects. What does the knowledge one possesses about a state actually
represent, if quantum states are not states of reality? This and other question are still

37L. Hardy, 2008, p. 27.

33



unanswered and therefore the knowledge balance principle does certainly not suffice to
deduce quantum theory without an additional axiom regarding the reality of states.
Nevertheless, Spekkens’ toy theory supports Hardy’s point of view and therefore we can
conclude that quantum theory is primarily a theory of information transfer, as Clifton,
Bub and Halvorson put it in [10]:

“That is, we are suggesting that quantum theory be viewed, [...] as a theory
about the possibilities and impossibilities of information transfer.”38

38Clifton, Bub and Halvorson, 2003, p. 1563.
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