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We provide an empirical and theoretical assessment of the value of information sharing in a two-stage
supply chain. The value of downstream sales information to the upstream firm stems from improving

upstream order fulfillment forecast accuracy. Such an improvement can lead to lower safety stock and better
service. Based on the data collected from a consumer packaged goods company, we empirically show that, if the
company includes the downstream sales data to forecast orders, the improvement in the mean squared forecast
error ranges from 701% to 8101% across all studied products. Theoretical models in the literature, however, sug-
gest that the value of information sharing should be zero for over half of our studied products. To reconcile the
gap between the literature and the empirical observations, we develop a new theoretical model. Whereas the
literature assumes that the decision maker strictly adheres to a given inventory policy, our model allows him
to deviate, accounting for private information held by the decision maker, yet unobservable to the econometri-
cian. This turns out to reconcile our empirical findings with the literature. These “decision deviations” lead to
information losses in the order process, resulting in a strictly positive value of downstream information sharing.
Furthermore, we empirically quantify and show the significance of the value of operations knowledge—the
value of knowing the downstream replenishment policy.

Keywords : supply chain; information sharing; signal propagation; decision deviation; time series; empirical
forecasting; autoregressive integrated moving average process

History : Received April 9, 2013; accepted November 25, 2014, by Serguei Netessine, operations management.
Published online in Articles in Advance.

1. Introduction
The abundance of information technology has had a
massive impact on supply chain coordination. Shar-
ing downstream demand information with upstream
suppliers has improved supply chain performance
in practice. Costco and 7-Eleven share warehouse-
specific, daily, item-level, point-of-sale data with their
suppliers via SymphonyIRI platform, a company
offering business advice to retailers (see Retail Info
Systems News 2013). In addition to this unidirectional
information sharing, collaborative planning, forecast-
ing, and replenishment (CPFR) programs advocate
joint visibility and joint replenishment. According to
Terwiesch et al. (2005), the benefit of CPFR programs
can be significant: the GlobalNetXchange, a consor-
tium consisting of more than 30 trade partners, has
reported a 5%–20% reduction in inventory costs and
an increase in off-the-shelf availability of 2%–12% fol-
lowing the launch of their CPFR programs.
Companies spend billions of dollars on demand

forecasting software and other supply chain solutions

(Ledesma 2004). Given the implementation cost of col-
laboration technology and the limited theoretical ben-
efits, it is not clear in practice whether a firm should
invest in information sharing systems. The decision to
implement an information sharing system thus hinges
on the following question: How much would shar-
ing downstream sales information improve the sup-
plier’s order forecast accuracy? We were approached
with this question by the statistical forecasting team
of a leading global consumer packaged goods (CPG)
company that manufactures and sells beverages and
snack foods to wholesalers and retail chains. Forecast-
ing is necessary for the company because of the lead
time to adjust manufacturing runs and deploy inven-
tory. In the absence of downstream sales information,
the upstream supplier uses its own sales history (i.e.,
its retailer’s order history), to forecast how much to
manufacture. Not satisfied with its current forecast-
ing performance, the firm sought solutions in infor-
mation sharing by collecting downstream operations
data (e.g., point of sale) from its customers. Using this
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data set, we directly measure the supplier’s forecast
accuracy improvement.
Our empirical results indicate a substantial value of

information sharing: statistically significant improve-
ments (701% to 8101% mean squared error percentage
improvements) across almost all studied products.
To put this in perspective, the company views fore-
cast accuracy improvement opportunities of 10% as
important and 30% as very significant.
The benefits of information sharing have been the-

oretically quantified in the literature. The works of
Gaur et al. (2005) and Giloni et al. (2014) are impor-
tant antecedents of our paper. The authors find that
the value of sharing downstream sales to improve
upstream forecasting is limited. (We will also refer to
customer sales as customer demand or demand.) In their
setting, the decision maker strictly follows an order-
up-to policy, via which the demand process propa-
gates upstream and becomes the order process. If, for
example, the retailer follows a demand replacement
policy (the retailer orders the demand in the current
week), orders equal demand. It is as if demand prop-
agates fully upstream and orders carry full demand
information. In such settings, there is no value of
information sharing. The insights in the literature
show that the value of information sharing is zero
when the upstream order is a sufficient statistic of
demand.
Although our empirical observations show that

there is value of information sharing, the theory
(which follows the same spirit as Gaur et al. 2005
and Giloni et al. 2014) would suggest zero value of
information sharing for 10 out of 14 studied products.
These different results suggest that we need a better
theoretical understanding of the missing component
in the theoretical literature, which makes the results
in the literature no longer apply.
The key underlying assumption in the theoreti-

cal literature is that decision makers consistently and
strictly follow a given replenishment policy. In prac-
tice, however, we learned that decision makers devi-
ate from their target inventory policy based on private
information that we cannot observe. From an econo-
metric perspective, we model the agent’s deviation
from the exact policy, in the spirit of Rust (1994), by
an “error term” that accounts for a state variable that
is observed by the agent but not by the statistician.
Taking into account the potential decision deviations
from classical ordering policies significantly increases
the theoretical value of information sharing, in agree-
ment with the empirical findings.
In the presence of decision deviations, we prove

that the value of information sharing is strictly pos-
itive for any forecast lead time (regardless of the
demand structure and the ordering policy). At first
glance, the decision uncertainty seems to diminish the

attractiveness of analyzing a retailer’s replenishment
process because of the unpredictability of the order
decision. Such uncertainty, however, opens the door
to information loss as signals propagate upstream.
As demand signals and decision deviations propagate
upstream to produce the order process, they follow
distinct evolution patterns: The evolution of inventory
governs the translation of decision deviations into
replenishment decisions, and the evolution of inven-
tory and current demand together govern the transla-
tion of demand. This difference prevents orders from
carrying both full information of demand and deci-
sion deviations. Information sharing then becomes
valuable to recover the order’s elaborate information
structure and to improve forecast accuracy. This intu-
ition continues to remain for any linear demand and
order structure, and thus, our conclusion is robust
under more general settings. Our new theory is sup-
ported by the empirical observations of significant
forecast improvements.
We conduct comparative statics and numerical stud-

ies to examine the impact of product demand char-
acteristics, such as the degree of seasonality, on the
value of information sharing. These insights can help
managers rank the potential gains from information
sharing depending on the demand characteristics for
different products such as sport drinks or orange juice.
Our estimation procedure uses the fact that the

supplier not only knows the retailer’s point-of-sale
data, but also knows the retailer’s replenishment pol-
icy. We refer to knowing the replenishment policy as
“operational knowledge” (in contrast to “sales knowl-
edge”). We are able to disentangle the value of sales
and the value of operational knowledge. By using
an analogous estimation procedure that only uses
sales data (and no operational knowledge), we empir-
ically quantify the value of sales and operational
knowledge. In fact we show that operational knowl-
edge brings the same order of magnitude of forecast
improvements as only sales data. This suggests that
companies should always keep operations in mind to
achieve the maximum value from downstream sales
information.
Our study is grounded in both empirical evidence

and theory, and attempts to understand the cause of
the positive value of information sharing. We analyze
a data set containing weekly downstream demand,
upstream order fulfillment, and the point-of-sale price
over a period of two and a half years. This allows
us to make the following three main contributions.
First, this paper complements the emerging area of
research in information sharing with empirical evi-
dence. Specifically, we directly measure the value of
information sharing at a leading CPG company and
demonstrate a statistically significantly positive value
of information sharing, and we empirically quantify
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the value of operational knowledge. Second, we allow
for decision deviations in our theoretical model to
explicitly capture the decision maker’s private infor-
mation that is unobservable to us. This model extends
the existing literature and recovers the results from
the literature as a special case without decision devi-
ation. We demonstrate that the decision deviation
distorts the normal demand propagation in a way
that obscures the detailed information of the two
processes. The resulting less informative order sig-
nals induce larger forecast uncertainty, which sug-
gests that it is strictly beneficial for the supplier to
use downstream demand to recover the order’s origi-
nal elaborate information structure. Third, we provide
guidelines on how the value of information sharing
depends on the demand characteristics.

2. Literature Review
Our paper is related to two streams of literature:
(1) theoretical work on information sharing and de-
mand propagation through supply chains and (2) em-
pirical work that bridges the above theory and oper-
ational data.
There is a vast theoretical literature on the sub-

ject of demand propagation and information sharing
in supply chains. A company’s demand propagates
through the supply chain and becomes its order to
the supplier. The properties of orders can help answer
important questions in supply chains, e.g., is shar-
ing retailer’s demand information beneficial for the
supplier to forecast its own order and manage its
inventory? Is there incentive for the agents to share
their own information? Is there a bullwhip effect and
what is the driver? The demand propagation relies on
two basic characteristics of the supply chain: demand
structure and replenishment policy. We focus on the
work that assumes truthful and complete informa-
tion disclosure. We begin by introducing the various
demand and policy structures studied in the litera-
ture. Next, we discuss our paper’s contribution rela-
tive to the two most related studies: Gaur et al. (2005)
and Giloni et al. (2014).

2.1. Theoretical Work
The demand propagation and information sharing
have been well studied and quantified under vari-
ous modeling assumptions. Lee et al. (2000) adopt an
autoregressive AR4p5 process, Miyaoka and Hausman
(2004) and Graves (1999) assume an integrated mov-
ing average IMA4d1 q5 process, Gaur et al. (2005) and
Giloni et al. (2014) consider an autoregressive moving
average ARMA4p1 q5 process, and Aviv (2003) uses the
linear state space framework. Another body of liter-
ature applies the martingale model of forecast evolu-
tion (MMFE) structure. It uses the incremental signal,
generated from the minimum mean squared error, to

model the evolution of a process. Heath and Jack-
son (1994), Graves et al. (1998), Aviv (2001), and Chen
and Lee (2009) apply such demand structure to study
production and forecasting. Mixed results have been
derived based on different demand structures. For
example, Lee et al. (2000) find the value of demand
can be quite high with an autoregressive (AR)(1)
demand; Gaur et al. (2005) find that there is no value
of information sharing under 75% of demand param-
eters when demand follows an autoregressive moving
average ARMA41115 process.
Gaur et al. (2005) show that the ARMA model

closely resembles the real-life demand structure and
find it valuable from the manager perspective to
study such demand process. Our study models and
empirically fits an autoregressive integrated moving
average (ARIMA) demand, because it is the most gen-
eral structure to describe our data set.
In the information sharing literature, the most com-

monly studied replenishment policy is the myopic
order-up-to policy. The following papers investigate
other ordering policies. Caplin (1985) studies a peri-
odically reviewed 4s1S5 policy and proves the exis-
tence of the bullwhip effect. Cachon and Fisher (2000)
quantify the value of information sharing with a
batching allocation rule between one supplier and
multiple retailers. These two papers model batching
in replenishment, which is not amenable to math-
ematically tractable analysis. The following papers
adopt a “linear replenishment rule,” in which orders
are linear in historical observations. Balakrishnan
et al. (2004) propose an “order smoothing” inven-
tory policy where the order is a convex combina-
tion of historical demands. Miyaoka and Hausman
(2004) use the old demand forecasts to set the base
stock level and show this can reduce the bullwhip
effect. Graves et al. (1998) and Chen and Lee (2009)
study the general-order-up-to policy (GOUTP), which
smooths forecast revisions to produce a desirable
order-up-to level. According to the replenishment pol-
icy that the retailer adopts, our paper introduces
a linear order rule that keeps the days of inven-
tory constant and uses some order smoothing. This
policy equals the optimal order-up-to policy in an
independent and identically distributed (i.i.d.) de-
mand setting, and is a special case of GOUTP. Our
key intuitions and conclusions regarding information
losses are not restricted by our specific inventory pol-
icy structure, they preserve under any affine and sta-
tionary ordering policies.
Gaur et al. (2005) and Giloni et al. (2014) study the

general ARMA model and conclude that there is no
value of information sharing when retailers’ demand
can be inferred from the order history. We test this
condition on our data set and find that our empir-
ical findings contradict with the theoretical predic-
tions in the literature. We recognize a key component
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absent in the literature: decision makers may deviate
from the target policy, whereas the literature assumes
that decision makers strictly and consistently follow
a replenishment policy. We relax the strict adherence
assumption by allowing decision shocks, which suc-
cessfully explains our substantial empirically evalu-
ated value of information sharing, thus filling the gap
between the theoretical and empirical observations.

2.2. Empirical Work
A growing body of empirical literature analyzes
the bullwhip effect and information sharing. In a
game-theoretic environment, agents have incentives
to partially rely on the data or share untruthful
information. Cohen et al. (2003) and Terwiesch et al.
(2005) empirically show the low efficiency of forecast
sharing. Cachon et al. (2007) investigate a wide range
of industries and show insignificant variance ampli-
fication for some industries. Bray and Mendelson
(2012) decompose the bullwhip by information trans-
mission lead time and show a significant amplifi-
cation generated from last-minute shocks. Using an
econometric model, Dong et al. (2014) find that the
inventory decision-making transfer between firms,
which means the supplier manages the retailer’s
inventory, benefit both upstream and downstream
firms. They show a negative relation between the
decision transfer and distributor’s average inventory.
In our paper, the retailer’s demand information is an
additional indicator included to help forecast supplier
orders. Similarly, one can use other potential indica-
tors to predict customer demand, e.g., financial mar-
ket index or accounting variables (see Osadchiy et al.
2013, Kesavan et al. 2010, among others).

3. Model
We consider a two-echelon supply chain with a sup-
plier and a retailer. The retailer faces demand Dt and
places an order Ot to the supplier in each week t.
In each week, the supplier predicts the future order,
e.g., the one-step prediction for week t given the his-
tory through week t É 1, which we denote as ÔtÉ11 t
(throughout the paper, hats denote forecasted quanti-
ties). The supplier aims to improve the forecast accu-
racy of future orders by including downstream sales
data. Without information sharing, the supplier only
observes the retailer’s order history. With informa-
tion sharing, in addition to orders, the supplier also
observes the retailer’s sales history.
Within each week, the following sequence of events

occur: 415 the retailer’s demand is realized and the
retailer places an order to the supplier; 425 after receiv-
ing the order, the supplier releases the shipment;
435 the supplier collects the latest information and
predicts the future h-step ahead orders; and 445 based
on the updated prediction, the supplier makes pro-
duction decisions.

3.1. Demand Process
We study a similar demand structure as that of Gaur
et al. (2005) and Giloni et al. (2014). During each
week t, the retailer faces external demand, Dt , for
a single item. Let Dt follow an ARIMA4p1d1 q5 pro-
cess, where p, d, and q are nonnegative integers that
represent the degree of the autoregressive, integrated,
and moving average parts of the model, respectively.
The ARIMA structure assumes a linear combination
of historical observations and historical shocks. When
d = 0, the ARIMA4p101 q5 process is reduced to an
ARMA4p1 q5 process,

Dt = å+ê1DtÉ1 +ê2DtÉ2 + · · ·+êpDtÉp

+ Öt Éã1ÖtÉ1 Éã2ÖtÉ2 É · · ·ÉãqÖtÉq1 (1)

where å is the process mean, Öt is an i.i.d. normal
demand shock with zero mean and variance ë2

Ö , êi

is the autoregressive coefficient, and ãi is the moving
average coefficient.
To derive the abbreviated expression for d � 0, we

introduce the backward shift operator B, which shifts
variables backward in time; e.g., BdDt shifts demand
back by d times BdDt = DtÉd, and 41 É B5Dt differ-
ences demand once 41ÉB5Dt =DtÉDtÉ1. Differencing
the demand twice means differencing Dt É DtÉ1 one
more time 41ÉB52Dt = Dt É 2DtÉ1 + DtÉ2. Similarly,
41 É B5dDt differences the demand d times, and we
refer to it as the dth-order differenced demand.
Let the AR coefficient be denoted as îAR4B5 = 1É

ê1B É ê2B
2 É · · · É êpB

p, the integration coefficient as
è4B5 = 41É B5d, and the MA coefficient as ùMA4B5 =
1Éã1BÉã2B

2É · · ·ÉãqB
q . When d � 0, è4B5Dt follows

an ARMA4p1 q5 process, and we rewrite the demand
process (1) as

îAR4B5è4B5Dt =å+ùMA4B5Öt0

We can further rewrite è4B5Dt as a moving average
(MA) representation with ù4B5=îÉ1

AR4B5ùMA4B5:

è4B5Dt =å+ù4B5Öt0 (2)

We will work with this MA representation because it
is mathematically equivalent to an ARMA model but
has a more concise expression. We assume that the
mean of demand is constant. Under this assumption,
E641É B5dDt7 = 0 for d > 0, and thus, the differenced
demand has zero process mean for d > 0.
We review a basic, yet important, property of an

MA process from the time-series literature: covariance
stationarity. For details, we refer readers to Hamilton
(1994) and Brockwell and Davis (2002). We assume the
dth differenced demand is covariance stationary; that
is, the differenced demand has a finite and constant
mean, finite variance, and time invariant covariance
of è4B5Dt and è4B5Dt+h for any t and h. One might
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think that the MA model is restricted to a convenient
class of models. However, representation (2) is funda-
mental for any covariance stationary time series. That
is, any covariance stationary process is equivalent to
an MA process in terms of the same covariance matrix
(Wold 1938). Therefore, assuming the ARIMA model
is not restrictive. We adopt the Hamilton (1994, p. 109)
description of the equivalence between the stationar-
ity and MA representation, which is known as the
Wold decomposition property.

Property 1 (WoldDecomposition). Any zero-mean

covariance stationary process Xt can be represented in the

MA form Xt =
Pà

i=0ÅiÖtÉi, where Åo = 1 and

Pà
i=0i Å

2

<à. The term Öt is white noise and represents the error

in forecasting: Öt ⌘Xt É Ê4Xt óXtÉ11XtÉ21 0 0 05.

3.2. Replenishment Policy
This section presents the replenishment policy the
retailer adopts in practice. We interviewed the plan-
ner who places orders to understand the policy. We
learned that the supplier is the retailer’s only source,
and that it requires a transportation lead time LR to
ship products to the retailer.
According to the planner, the retailer aims at keep-

ing a constant DOI (days of inventory) amount of
the total on-hand inventory and in-transit inventory.
In addition, the decision maker smooths orders. (We
find this in the data and confirm this with the plan-
ner.) We refer to such policy as the “ConDOI policy
with order smoothing,” where “Con” represents con-
stant and “DOI” represents days of inventory. We first
define the ConDOI policy and then extend it with
order smoothing.
If a retailer follows the ConDOI policy, she places

an order at the end of week t to bring the inventory
level up to the target days of inventory multiplied
by the retailer’s total future demand forecast within
the transportation lead time LR. For example, if the
retailer targets the inventory at 14 days and the lead
time LR is 3 weeks, the retailer follows an order-up-to
policy with order-up-to level equal to 2 (weeks)⇥ the
retailer’s demand forecast of the next three weeks.
When the demand is i.i.d. distributed, the retailer’s
demand forecast is constant. Thus, both the optimal
order-up-to policy and the ConDOI policy generate
constant orders, and they are equivalent under i.i.d.
demand. When demands are correlated, the optimal
order-up-to level changes every week, which is not
convenient from a practical perspective. The ConDOI
policy, on the other hand, requires only one parame-
ter, the DOI level, to manage inventory, and thus, is
easy to implement and free from heavy computational
burdens, which explains its use in practice.
Since a week has seven days, the target weeks of in-

ventory equals 7É1⇥ target DOI level. We denote it as

‚ , where ‚ is positive and constant.1 Let D̂R
t1 t+k denote

the retailer’s future demand forecast for week t + k
made in week t. According to the interview with the
retailer, we learned that the retailer adopts a weighted
moving average demand forecast, which uses recent
demands in H weeks (see Chen et al. 2000b for the
moving average forecast and Chen et al. 2000a for the
exponential smoothing forecast). Chen et al. (2000b)
show that the moving average is one of the most
commonly used forecasting techniques in practice. Let
m̂t denote the retailer’s forecast of future LR week
demands given demand history prior to week t,

m̂t ⌘
LRX

k=1

D̂R
t1 t+k =

HX

j=0

ÇjDtÉj1 (3)

where Çj is the coefficient of demand in the past jth
weeks, the sum of which equals the transportation
lead time,

PH
j=0Çj = LR. At the end of week t, the

retailer orders up to ‚m̂t . Note that the retailer that
we study adopts a suboptimal demand forecast2 (the
optimal demand forecast should follow the ARIMA
structure). We will argue that this assumption does
not have a qualitative impact on the theoretical results
in §6.
According to the planner, the ending inventory in

each week might not reach the target days of inven-
tory because the order decision might fail to adjust the
end inventory changes completely. To address this, we
extend the ConDOI policy by allowing a fixed pro-
portion of last week’s inventory to become the cur-
rent week’s inventory. In other words, the order-up-to
level is a convex combination of that of the ConDOI
policy and that of the demand replacement policy,

It = É‚m̂t + 41ÉÉ5ItÉ11

where É is the order smoothing level, and it is
between 60117. Irvine (1981) introduces a similar
notion and empirically confirms that firms attempt a
partial adjustment toward the optimum level.
Given the fundamental law of material conserva-

tion, Ot =Dt + It É ItÉ1, we write the order as

Ot =Dt +É4‚m̂t É ItÉ150 (4)

The order in week t is the current week’s demand
plus É fraction of the net inventory under the ConDOI
policy. The larger É, the faster the order adjusts to

1 In the following empirical analysis, we allow ‚ to vary across the
summer and the winter. ‚ remains constant across seasons. There-
fore, assuming a constant ConDOI for our theoretical analysis is
not restrictive.
2 To empirically recover the replenishment policy parameters later
in the paper, one has to use the same policy that generated the
data.
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the target ConDOI inventory level. The order smooth-
ing component enables the extension of the ConDOI
policy to a rich family of linear policies. The order-
ing rule is reduced to a ConDOI policy when É =
1, and becomes a demand replacement policy when
É = 0. The order expression of the myopic order-
up-to policy is a special case when É = 1. Graves
et al. (1998) and Chen and Lee (2009) derive general
production-smoothing policies by imposing weight
on forecast revisions, which bear an affine and time-
invariant structure on historical signals. Our smooth-
ing level É smooths the net inventory to produce the
desired order-up-to level, which is a special case of
the above general class. The order Ot in Equation (4)
may be negative, in which case we assume that this
excess inventory is returned without cost (for the
same assumption, see Chen et al. 2000b, Gaur et al.
2005, Chen and Lee 2009).
We can iteratively replace ItÉi with É‚m̂tÉi +

41ÉÉ5ItÉiÉ1 for any i � 1 in the order process (4),
which becomes

Ot =Dt +É
HX

i=0

‚ÇiDtÉi ÉÉ2
àX

i=1

41ÉÉ5iÉ1
HX

j=0

‚ÇjDtÉiÉj 0

We define

ñ4B5⌘ 1+É
HX

i=0

‚ÇiB
i ÉÉ2

àX

i=1

HX

j=0

41ÉÉ5iÉ1‚ÇjB
i+j

as the policy parameter. Using ñ4B5, we abbrevi-
ate the order as Ot = ñ4B5Dt . Since demand satisfies
è4B5Dt = å+ ù4B5Öt and the order satisfies è4B5Ot =
è4B5ñ4B5Dt , we can represent the order process as an
ARIMA model with the white noise series 8Öt9:

è4B5Ot =å+ù4B5ñ4B5Öt1 (5)

which has the same expression in Gaur et al.
(2005, (7)): orders are linear in demand shocks.
The coefficient of Öt in (5) is c0 ⌘ 1+ Éa0. Since this

coefficient is rarely zero according to our data set, we
assume that c0 6= 0 and normalize it to one (see Giloni
et al. 2014 for discussion on c0 = 0). Then the centered
order follows an MA process with the white noise
series 8c0Öt9,

è4B5Ot Éå= cÉ1
0 ù4B5ñ4B5c0Öt0 (6)

We next empirically test the theoretical model and
evaluate the forecast accuracy improvement when
there is information sharing.

4. Empirical Estimation
This section sets up the forecasting procedure, ex-
plains the data set, and presents the empirical models.

We compare the forecast accuracy under two set-
tings: NoInfoSharing and InfoSharing. The supplier
observes the retailer’s order history under the NoInfo-
Sharing setting and observes the additional retailer’s
sales history under the InfoSharing setting.
We choose the last 26 weeks in our data as the out-

of-sample test period. This out-of-sample comparison
is made in two stages. First, we forecast the one-step-
ahead order over the out-of-sample test period. To be
specific, the forecast begins 26 weeks before the end of
the data. Given information history through the end
of week tÉ1, we predict the order for week t. We then
update the information history from the beginning of
the data through the end of week t to predict for week
t+1. We update the available information history on a
rolling basis to obtain the order forecast and calculate
the forecast error by comparing the actual observa-
tion and predicted value. Second, we conduct tests of
equal forecast accuracy on the two sequences of fore-
cast errors generated from two candidate forecasting
methods.

4.1. Data
We obtain the data from a CPG company, which is a
leading manufacturer and supplier in the U.S. bever-
age and snack food industry. We study two brands of
products: sports drinks and orange juice.
Our data set consists of three elements of a spe-

cific retail customer: (1) the retailer’s sales from its
distribution centers to local stores, (2) the retailer’s
orders from the retailer’s distribution centers to the
supplier’s distribution center, and (3) the products’
retail price. This retail customer is one of the CPG
company’s major accounts. The data spans 126 weeks
between 2009 and 2011. We calculate the retailer’s
inventory using the fundamental law of material con-
servation, given sales and orders. The retailer’s inven-
tory level stays positive over all weeks, indicating
that stock outs are very rare in our data set. In addi-
tion, we find in a numerical study that the value of
demand and the value of sales are statistically indis-
tinguishable under parameters that are representative
of our data set. Thus, we approximate sales as actual
demand in our study.
We eliminate untrustworthy data, such as new-

entering products that have incomplete data points or
obsolete products that are existing the market. After
cleaning the data, we have 51 product lines in total:
19 orange juice products and 32 sports drink prod-
ucts. We summarize the sales, orders, and price of
a specific product (orange flavor powder product)
over 126 weeks in Figure 1. It shows the bullwhip
effect: the upstream order has larger volatility than
the downstream sales. Further, when there is a price
promotion, demand and orders experience a spike
during the discount activity and suffer a slump when
price returns to normal.
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Figure 1 (Color online) Summary of Sales, Orders, and Point-of-Sale Price for Product PD OR
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The two major concerns regarding high-promo-
tional products are (1) the violation of the stationary
assumption of both demand and orders, and (2) the
complicated ordering rules that preclude us from
completely removing the promotional lift and cor-
rectly estimating the policy parameters.3 Further, the
orders might be moved from peak to nonpeak periods
according to certain rules, such as shipping certain
percentage of orders in advance prior to the promo-
tional week, if planners anticipate a spike in future
demand (Van Donselaar et al. 2010 also show that
advancing orders are an important consideration of
decision makers). Price variations across weeks gen-
erate nonstationary spikes, which further complicates
the replenishment policy and results in a time-variant
covariance matrix of orders.
For the purpose of our study, we shall classify the

products into low-promotional and high-promotional
products and focus on the former. This classification
is based on the price discount and frequency of dis-
count being offered on the product.4 Based on the
data set, 14 products have low-promotional activities.
The 14 low-promotional items occupy 20% of the total
ordering volume of the retailer. For completeness, we
empirically study the rest of the high-promotional
products (see the technical companion, available as

3 To be specific, when retailers forecast future demand of promo-
tional products in practice, they first generate the baseline (non-
promotional) forecast as in Equation (3) and then add back the
promotional lift by multiplying the price reduction rate.
4 Negotiated at the beginning of each year, the supplier has a fixed
price plan throughout the year. Thus, the future price can help
predict demand changes for promotional products. A promotional
activity can last for several weeks. We define a promotional depth
metric to capture price discount and frequency. Promotional depth
sums every promotional activity’s price discount measured as a
percentage within the test periods,

P
i discount ratei , where i is the

total number of activities in the test periods. We define the low-
promotional products as those with promotional depth  0015 (zero
or one promotional activity), and we define the high-promotional
product as those with higher promotional depth.

supplemental material at http://dx.doi.org/10.1287/
mnsc.2014.2132), and we briefly show and discuss the
results in §9.
To summarize, we utilize the retailer’s (1) sales to

the end customers and (2) order fulfillment to the sup-
plier. The summary statistics over the 126 weeks are
presented in Table 1. Sales have approximately the
same mean as orders because inflows balance out-
flows. As a side note, we also observe the bullwhip
effect: products have higher variations in upstream
orders.5

4.2. The Empirical Model with Information
Sharing: Decision Deviations

We next address the key difference between a theoret-
ical model in the literature and what happens in prac-
tice, and explain the InfoSharing forecasting method.
The key underlying assumption in the theoretical

model described above, as well as in the literature, is
that the decision maker strictly and consistently fol-
lows a specific replenishment rule. This is rarely the
case in practice, because decision makers only use
the replenishment policy as a mere guide from which
they rationally deviate. Van Donselaar et al. (2010)
show that retail store managers may not follow order
advices by the replenishment system because their
incentives may differ from the system or they per-
ceive the system to be suboptimal. We interviewed
planners that place orders to the CPG company, and
we observed how they place orders. The observations
confirm the literature that the planners’ orders indeed
deviate from the suggested policy. Deviations could
stem from several operational causes. For example,
to increase transportation efficiency and reduce trans-
portation cost, the retailer tries to fill up a full truck,
and thus she may place a rounded order quantity or

5 The literature discusses the potential factors of the bullwhip effect,
such as the inventory policy and forecasting technique (Lee et al.
1997; Chen et al. 2000a, b), order batching (Lee et al. 1997), and
order smoothing (Chen and Lee 2009).
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Table 1 Summary Statistics of Sales and Orders

Sales Orders

Brand Product Mean S.D. C.V. Mean S.D. C.V.

Orange juice 128 OR 11387041 395032 0028 11383064 802082 0058
128 ORCA 11019071 290039 0028 11028006 582027 0057
12 OR 457083 129067 0028 456059 263077 0058
12 ORCA 227047 84079 0037 233024 164090 0071
59 ORST 593018 161012 0027 601090 281029 0047
59 ORPC 724095 188055 0026 727002 346000 0048

Sports drink 500 BR 870048 391070 0045 889003 726024 0082
500 GP 11145093 474019 0041 11171095 851016 0073
PD LL 75033 42028 0056 78010 74087 0096
PD OR 86074 51074 0060 90074 82020 0091
PD FRZ 97084 53096 0055 100091 83025 0082
1GAL GLC 511020 95010 0019 517038 199086 0039
1GAL FRT 336057 83080 0025 340076 141059 0042
1GAL OR 522055 95043 0018 531003 201029 0038

Note. C.V., coefficient of variation.

more (or less) orders than the policy suggests. Prod-
ucts with inventory above the target DOI level might
still be replenished because as the week approaches
Friday, the decision makers overreplenish to guaran-
tee enough inventory during the weekends. In prac-
tice, the retailer might place orders daily. However,
for this study, we have access only to the weekly
level instead of daily information. Looking through
the lens of the aggregate data, we lose the detail on
the replenishment decision, which is reflected by the
actual orders’ deviations from the theory.
Among the above different operational drivers, a

common characteristic is that they can be observed
by decision makers, but not by statisticians. Hence-
forth, we rationalize the retailer’s departure from
the exact policy following the same spirit as Rust
(1994): it is due to a state variable that is observed
by the downstream retailers but not by the upstream
suppliers. It is interesting to note that deviations from
the prescribed order quantity might further reduce
system cost since they are based on more detailed
information.
We extend the theoretical framework by explicitly

including such idiosyncratic shocks in decision mak-
ing. We refer to such idiosyncratic shocks as deci-
sion deviations. We assume the decision deviation
Ñt is normally distributed with zero mean and vari-
ance ë2

Ñ , and independent with historical demand
shock Ös1 s < t. However, contemporaneous demand
signals and decision deviation signals can be corre-
lated. A common approach in the empirical literature
is to model this error term as additively separable in
the decision. Using this approach, we obtain

Ot =Dt +É4‚m̂t É ItÉ15+ Ñt0 (7)

We shall show that the inclusion of this zero-mean
shock in the theoretical model has important conse-
quences on the value of information sharing in §6.

As before, we iteratively replace ItÉi with É‚m̂tÉi +
41ÉÉ5ItÉiÉ1 + ÑtÉi in the order process (7) and obtain

Ot = Dt +É
HX

i=0

aiDtÉi ÉÉ2
àX

i=1

41ÉÉ5iÉ1
HX

j=0

ajDtÉiÉj

+ Ñt É
àX

i=1

É41ÉÉ5iÉ1ÑtÉi0

We define ä4B5 = 1 É É
Pà

i=141 É É5iÉ1Bi as the order
smoothing parameter. Applying the backshift opera-
tors ä4B5 and è4B5, the order process can be abbre-
viated as

è4B5Ot Éå= ù4B5ñ4B5Öt +è4B5ä4B5Ñt0 (8)

Remark. Note that decision deviations focus on
how much real order decisions depart from the
replenishment policy that the firm is expected to fol-
low. Although decision deviations and the bullwhip
effect share similar operational factors, these two con-
cepts are different. For instance, decision deviations
can be present in the absence of the bullwhip effect: if
a firm orders a fixed amount (truck load effect) each
week but is expected to follow the ConDOI policy,
the order variance is zero (no bullwhip effect), but the
firm deviates from the target inventory policy (pos-
itive decision deviations). On the contrary, the bull-
whip effect can be present in the absence of decision
deviations. For example, when a firm strictly follows
a general-order-up-to policy, decision deviations are
zero, whereas the order smoothing level still amplifies
the order variability (Chen and Lee 2009). They may
also coincide: under the demand replacement policy
with Ot =Dt + Ñt , decision shocks are reflected in Ñt ,
which also directly drives a higher upstream variance.
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InfoSharing Method. In practice, the retailer’s fore-
cast is a weighted summation of last month’s de-
mands. Thus, we let H = 3 and the order in (7)
becomes Ot = 41+ É‚Ç05Dt + É‚Ç1DtÉ1 + É‚Ç2DtÉ2 +
É‚Ç3DtÉ3 É ÉItÉ1 + Ñ. We estimate the replenishment
policy parameters for each week in the test period by

Ot = c0Dt + c1DtÉ1+ c2DtÉ2+ c3DtÉ3ÉÉItÉ1+Ñt1 (9)

where c0 ⌘ 1+ É‚Ç0 and ci ⌘ É‚Çi for i = 11213. The
idiosyncratic shock, Ñt , captures the decision maker’s
deviation from the deterministic replenishment pol-
icy.6 If Ñt is positive, the retailer orders more than
what our policy predicts, and vice versa. As we will
show later, Ñt is the key element in bridging the
empirical and theoretical results.
To forecast the supplier’s order in t + 1, we first

forecast future demands. We fit the ARIMA model
on the historical demand series to forecast D̂t1 t+1. We
obtain the best estimator with the step-wise vari-
able selection method, which chooses the model with
the lowest Bayesian information criterion (BIC).7 The
order prediction for t + 1 uses the parameters esti-
mated from (9), D̂t1 t+1, Ds , where s  t and It , Ôt1 t+1 =
c0D̂t1 t+1 + c1Dt + c2DtÉ1 + c3DtÉ2 ÉÉIt0 Note that D̂t1 t+1
is an optimal demand forecast, which differs from the
retailer’s weighted average demand forecast D̂R

t1 t+1.

4.3. The Empirical Model Without
Information Sharing

For the NoInfoSharing benchmark, we use only the
order history to predict future orders. We replicate the
CPG company’s current practice: using the ARIMA
process to model orders and make future predictions.
We next show that this method is also theoretically
grounded.
ARMA-In-ARMA-Out Property. The order process

with decision deviations has a stationary covariance.
According to property 1, the order process (8) fol-
lows an ARIMA model. This is consistent with the
“ARMA-in-ARMA-out” (AIAO) property discussed
in the literature (Gilbert 2005, Gaur et al. 2005), where
AIAO means that the retailer’s order process is also
an ARMA process with respect to the demand shock.8
If the replenishment policy is an affine and time
invariant function of the historical demand, inventory,

6 The estimating Equation (9) does not have an intercept, which
might result in a nonzero average of Ñt in the estimation. Note
that we empirically test that for most products, Ñt has a zero mean
(p < 0005).
7 BIC is a criterion for model section for time-series analysis and
model regression. It selects the set of parameters that maximizes
the likelihood function with the least number of parameters in the
model.
8 Giloni et al. (2014) show a more general QUARMA-in-QUARMA-
out property that includes the special case c0 = 0.

demand shock, and decision deviations, the order
process has a stationary covariance. Henceforth, the
upstream order series also follows an ARIMA process
under such policies.
NoInfoSharing Method. Based on the above AIAO

property, we fit an ARIMA4p1d1 q5 model to the order
history,

41ÉB5dOt = å+ ễ141ÉB5dOtÉ1 + · · ·+ ễp41ÉB5dOtÉp

+át + ã̃1átÉ1 + · · ·+ ã̃qátÉq1 (10)

where át is the order shock, and å, ễi and ã̃i are the
time-series coefficients of the order process. As before,
we predict future orders by applying the estimated
ARIMA model. For example, if d= 1 and we have the
available information history until week tÉ1, then the
order forecast for week t uses estimated coefficients
å1 ễi, and ã̃i, and estimated historical order shocks
átÉ11átÉ21 0 0 0 1 ÔtÉ11 t = OtÉ1 + å + ễ14OtÉ1 É OtÉ25 +
ễ24OtÉ2 É OtÉ35 + · · · + ễp4OtÉp É OtÉpÉ15 + ã̃1átÉ1 +
ã̃2átÉ2 + · · · + ã̃qátÉq . This method is a reliable repre-
sentation of the CPG company’s current practice.9

5. Empirical Results
This section provides empirical evidence that incor-
porating downstream sales data improves order fore-
cast accuracy, compared to the benchmark where sales
information is not shared. We display the estimated
demand and replenishment policy parameters and the
empirical findings.

5.1. Parameter Results
We present the demand and replenishment policy
parameters in Table 2. The first column records the
4p1d1 q5 value of the ARIMA demand, and the next
three columns are the corresponding demand parame-
ters; i.e., the 128 OR product follows anARIMA4011115
demandprocess,Dt =DtÉ1+Öt É 0093ÖtÉ1. For all prod-
ucts, demand is best estimated by d = 1, which
implies that the first-order differenced demand is
an ARMA process. The estimated demand parame-
ters are used to generate the optimal demand fore-
cast D̂t1 t+1 for the InfoSharing forecast. In the policy

9 It is important to ensure that the information environment and
methods used for our paper and the company are similar, so that
the comparison of forecast accuracy is fair. We conduct comparisons
between the company’s historical forecasts and our derived fore-
casts for promotional and nonpromotional products, at the stock
keeping unit (SKU) and pack level, and across winter periods and
summer periods. The forecast accuracy turns out to be very close
(around an average 2% difference) and the company confirmed it
as insignificant.
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Table 2 Estimated Demand and Policy Parameters

Demand parameters Policy parameters

Brand Product 4p1d1q5 ã1 ã2 ã3 c0 c1 c2 c3 É DOI Weight

Orange juice 128 OR 4011115 0093 1030 0027 0063 6036 0062
400045 400185 400165 400125

128 ORCA 4011115 0093 1033 0030 0053 8048 0057
400045 400185 400175 400125

12 OR 4011125 0048 0033 1046 0060 0087 8056 0086
400105 400105 400175 400185 400125

12 ORCA 4011125 0028 0025 0097 1009 0036 0086 11054 0085
400105 400105 400215 400235 400195 400125

59 ORST 4011115 0072 1055 0039 9076 0068
400075 400105 400075

59 ORPC 4011115 008 1084 É0046 0028 9058 0073
400075 400185 400225 400085

Sports drink 500 BR 4011135 0012 0016 0049 1017 0055 0035 14050 0093
400095 400095 400095 400295 400335 400075

500 GP 4011105 0039 0067 0063 0036 13043 0088
400255 400385 400295 400075

PD LL 4011105 0061 1011 0024 21006 0085
400405 400445 400065

PD OR 4011115 0030 1037 0039 0029 18035 0084
400105 400165 400235 400075

PD FRZ 4011115 0032 1027 0047 0032 16022 0083
400095 400165 400225 400075

1GAL GLC 4011125 002 0043 0076 1017 É0054 0022 12038 0087
400095 400095 400255 400285 400215 400085

1GAL FRT 4011125 0037 0036 1049 0025 13038 0078
400105 400105 400135 400075

1GAL OR 4011125 0029 0034 1052 0030 12033 0077
400105 400105 400125 400075

Notes. The number in parentheses denotes the standard error of the estimate. For the policy parameters, we apply the step-wise variable selection method to
only include variables with p < 0005 in the regression.

parameter sector, orders are determined by a lin-
ear combination of historical demands10 and the last
week’s inventory. The order smoothing level É is sta-
tistically significantly different from one, providing
strong support for retailers’ order smoothing.11
In practice, it takes one week to ship products

from the CPG company to the retailer. Thus, the

10 For some products, the estimated weight of the current week’s
demand is zero, which is unlikely to occur in practice. Our esti-
mation shows a zero coefficient because the retailer may replen-
ish inventory during the week, but our data set consists of sys-
tem’s snapshots at the end of the each week. If the retailer replen-
ishes certain products always on Monday, the current week’s order
should be a linear combination of past weeks’ demand, not includ-
ing the current week (since the current week’s demand has not
been realized yet). Therefore, we adjusted for products with zero
c0 in Table 2 by shifting c1, c2 and c3 forward.
11 The order smoothing level É is necessary in improving forecasts.
We test a setting without allowing order smoothing (setting É = 1).
When É = 1 (this corresponds to the retailer following the strict
ConDOI policy) in the estimating equation, the in-sample fit (R2,
AIC and BIC) is low, and we do not observe a significant out-of-
sample forecast accuracy improvement.

transportation lead time is one, LR = 1, and we have

HX

i=0

‚Çi = 1 and ‚ = ÉÉ1
✓ HX

i=0

ci É 1
◆
0

The DOI column displays the estimated days of
inventory level. For example, the retailer aims to
keep 6.36 days (0.91 weeks) of inventory for prod-
uct 128 OR, which is equivalent to 0091⇥ 11387041=
11262054 cases of inventory on average. According to
the planner, the retailer targets at a lower DOI level
for the orange juice brand and a higher DOI for the
sports drink brand, because the sports drink products
have higher demand variations. Our estimated DOI
level is consistent with the actual target level claimed
by the decision maker. Decision deviations are the
residuals when estimating (9). They satisfy the white
noise assumption according to the Bartlett test. We
define ë2

Ñ/4ë
2
Ö +ë2

Ñ 5 as the decision deviation weight,
which measures the relative weight of the decision
uncertainty over the demand uncertainty. We display
the weight in the last column. The weight of Ñ over

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

49
.1

60
.1

89
.2

41
] o

n 
18

 A
ug

us
t 2

01
5,

 a
t 1

4:
07

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Cui et al.: Information Sharing in Supply Chains
Management Science, Articles in Advance, pp. 1–22, © 2015 INFORMS 11

Table 3 NoInfoSharing and InfoSharing Forecast Accuracy Comparison in MAPE and RMSE

MAPE (%) Relative RMSE (%)

NoInfo Info MAPE % NoInfo Info MSE %
Brand Index Product Sharing Sharing improve Sharing Sharing improve

Orange juice 1 128 OR 3900 2105 4500⇤⇤ 4709 4303 1801⇤⇤

2 128 ORCA 4207 2908 3003⇤ 4504 3809 2605⇤⇤

3 12 OR 19807 8202 5806⇤ 7708 5302 5304⇤⇤

4 12 ORCA 10607 5301 5002⇤⇤ 5903 4006 5301⇤⇤

5 59 ORST 4000 3205 1808⇤ 4803 4606 701
6 59 ORPC 2603 1900 2707⇤⇤ 3306 2802 2904⇤⇤

Sports drink 7 500 BR 4000 2401 3908⇤⇤ 4705 2901 6205⇤⇤

8 500 GP 3206 2009 3600⇤⇤ 3409 1906 6804⇤⇤

9 PD LL 2502 2309 407 4308 3006 5103
10 PD OR 6803 3801 4402⇤⇤ 8106 3505 8101⇤

11 PD FRZ 3709 2209 3905⇤ 4103 2701 5609⇤⇤

12 1GAL GLC 3706 2303 3800⇤⇤ 4301 2902 5402⇤⇤

13 1GAL FRT 5009 3507 2909⇤⇤ 5205 3506 5400⇤⇤

14 1GAL OR 3404 2309 3004⇤ 3606 2702 4408⇤⇤

Note. InfoSharing forecasts outperform NoInfoSharing forecasts for almost all products.
⇤⇤At level p < 0005, the accuracy improvement over the NoInfoSharing method is significant.
⇤At level p < 001, the accuracy improvement over the NoInfoSharing method is significant.

demand signals ranges from 0.6 to 0.9 across prod-
ucts, providing strong evidence that decision devia-
tions are prevalent in our data set.12

5.2. Including Downstream Demand Improves
Order Forecasting

We measure the accuracy with three forecast error
metrics widely used in the literature (cf. Osadchiy
et al. 2013, Kesavan et al. 2010): mean absolute per-
centage error (MAPE), mean squared error (MSE), and
relative root mean error over the mean of orders (rel-
ative RMSE). Let N be the number of weeks in the
test period. The MAPE metric over the test period
is MAPE = 41/N 5

PN
i=1 óOt+i É Ôt+iÉ11 t+ió/Ot+i. MAPE

measures the absolute error relative to the mean,
which is closely related to the metric used by the
company from which we received the data. MSE is a
frequently adopted accuracy metric in the theoretical
literature because of its mathematical tractability. We
also use this metric for our theoretical analysis. We
display the RMSE value because it is more intuitive
to understand.
Table 3 presents the forecast accuracy for each prod-

uct in MAPE and RMSE separately. The first sec-
tor displays the MAPE metrics of each method and
the MAPE percentage improvement of the InfoShar-
ing method over the NoInfoSharing method, which is

12 The decision deviation Ñ is important in improving forecasts. We
conduct an empirical forecast study excluding decision deviations,
which only uses demand parameters and demand signals in Equa-
tion (5) to make predictions. The InfoSharing forecasts become very
inaccurate for all products, which even perform worse than the
NoInfoSharing forecasts.

defined by (MAPENoInfo ÉMAPEInfo)/MAPENoInfo. The
larger the percentage improvement, the more accurate
the forecast with information sharing. We conduct the
pairwise t-test to determine the statistical significance
of forecast improvement. A major drawback of MAPE
is that zero or small real observations might distort
the measure. For example, 12 OR and 12 OR CA have
low ordering quantity in three weeks, which leads to
a high MAPE even on the average level. The relative
RMSE sector reports the RMSE value over the mean
of orders. We test the significant level by MSE and
display the MSE percentage improvement in the last
column, (MSENoInfo ÉMSEInfo)/MSENoInfo.
Table 3 shows that adding downstream demand

leads to statistically significant forecast accuracy
improvement. For all products (except for PD LL13),
the InfoSharing method generates statistically signif-
icant improvements over the NoInfoSharing method
for at least one error metrics. If measuring at the over-
all level across products, the NoInfoSharing forecasts
have a 56045% MAPE, the number of which is repre-
sentative of the typical number we observe at the CPG
company. At the overall level, the InfoSharing fore-
casts have a statistically significantly lower MAPE of
33036%. To summarize, we have empirically showed
that the value of downstream demand is statistically
significantly positive, and the effect is very large.

13 We also test forecast accuracy using the mean absolute error
(MAE) metrics. MAE is defined as

PN
i=1 óOt+i É Ôt+iÉ11 t+ió/

PN
i=1Ot+i .

For the product PD LL, the MAE metric shows that the Info-
Sharing method is statistically significantly (p < 001) better than the
NoInfoSharing method.
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So far, we have empirically tested the value of
downstream demand. We next revisit the theoretical
conditions in the literature on our products, and com-
pare the theoretical predictions with our empirical
observations.

6. Theoretical Results
In this section, we first revisit the main results from
Gaur et al. (2005) and Giloni et al. (2014) on the value
of sharing information in our settings. We then show
the inconsistency between our empirical findings and
the corresponding theoretical results suggested in the
literature. Finally, we identify the impact of decision
deviations on the value of information sharing, and
we prove that by incorporating decision deviations,
the value of information sharing is always positive if
there is uncertainty in both decision deviations and
demand.

6.1. Revisit the Literature
When revisiting the literature, we focus on the one-
step-ahead forecast and use it as a theoretical foun-
dation to compare with the empirical results. In our
new model, we will study the general h-step-ahead
forecast.
Besides the covariance stationarity property dis-

cussed in §3, we review another important property
of a time-series process called invertibility. An MA
process is determined by a unique covariance matrix.
A covariance stationary process may have multiple
MA representations in terms of different sets of coef-
ficients Åi relative to their corresponding white noise
series. Among the alternative representations, there
is always an invertible representation with respect to
some set of shocks, and we are only interested in
this invertible one. An MA process Xt =å+ù4B5Öt is
invertible relative to 8Öt9 if the shock can be written as
an absolutely summable sequence of past demands.
A sequence 8Åt9 is said to be absolutely summable if
limn!à

Pn
i=0 óÅió is finite.

Property 2 (Invertibility). Define ù4z5=1Éã1z
1É

ã2z
2É···Éãqz

q
. Then Öt can be written as an absolutely

summable series of 8Xs9 with s  t, if and only if all roots

of ù4z5= 0 lie outside of the unit circle, 8z 2 ⇤1 ózó> 19.
We say that Xt is invertible relative to 8Öt9.

Invertibility guarantees future independence: Xt is
only correlated with past value of Öt . Noninvertibil-
ity would allow for correlation with future values,
which is undesirable. Invertibility is a property of the
MA coefficients relative to the corresponding white
noise series. According to Brockwell and Davis (2002,
p. 54), for any noninvertible process Xt = ù4B5Öt , we
can find a new white noise sequence 8wt9 and a
new coefficient ù04B5 such that Xt = ù04B5wt and Xt

is invertible relative to 8wt9. We say that the coeffi-
cient ù04B5 is in the invertible representation. Since
empirical estimation identifies parameters based on
history, estimators should have invertible representa-
tions. Henceforth, we assume the differenced demand
process, 41ÉB5dDt , satisfies invertibility.
As Hamilton (1994, p. 68) shows, an MA process

has at most one invertible representation, which has a
larger white noise variance than any other noninvert-
ible representations. Later, we will illustrate that the
enlarged white noise caused by converting from the
noninvertible to invertible representation is the trig-
ger to the positive value of information sharing in the
literature.
In our theoretical analysis, we measure the fore-

cast accuracy by the mean squared forecast error. We
denote the information set that contains the historical
orders until week t as ÏO

t and the information set that
contains the historical demand until week t asÏD

t . The
one-step mean squared forecast error without infor-
mation sharing is Var4Ot+1 É Ôt1 t+1 óÏO

t 5, and with
information sharing is Var4Ot+1ÉÔt1 t+1 óÏO

t [ÏD
t 5. The

value of information sharing is positive if and only if
including downstream information reduces the fore-
cast error

Var4Ot+1 É Ôt1 t+1 óÏO
t [ÏD

t 5

<Var4Ot+1 É Ôt1 t+1 óÏO
t 50 (11)

Recall the centered order is an MA process
cÉ1
0 ù4B5ñ4B5c0Öt . With downstream demand informa-
tion, the demand and policy parameters can be esti-
mated and thus are known to the supplier. The only
uncertainty stems from the demand shock occurring
in t+ 1. Thus, we have Var4Ot+1 É Ôt1 t+1 óÏO

t [ÏD
t 5=

Var4c0Öt5.
Without information sharing, the supplier analyzes

the order history as an MA process. If the order has
a noninvertible MA representation with respect to
demand shocks, i.e., cÉ1

0 ù4B5ñ4B5 is not invertible, the
supplier will not be able to recover demand shocks
using the order history. Yet, the supplier will always
be able to express the order as an invertible MA rep-
resentation with respect to some set of shocks. Recall
that the shocks in the invertible representation has the
largest variance. Therefore, when cÉ1

0 ù4B5ñ4B5 is not
invertible, the variance of the shocks that are invert-
ible is larger than Var4c0Öt5. Then inequality (11) holds,
and hence the value of information sharing is pos-
itive. The positive value of information sharing is
equivalent to the noninvertibility property. Gaur et al.
(2005) and Giloni et al. (2014) show the same intu-
itions for the positive value of information sharing.
The following proposition gives a formal statement
of the sufficient and necessary conditions that shar-
ing downstream demand benefits the supplier’s order
forecast.
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Proposition 1. If the decision maker strictly adheres

to a replenishment policy, the value of information sharing

under the one-step forecast lead time is positive if and only

if at least one root of ñ4z5= 0 lies inside the unit circle.

The value of information sharing is positive if and
only if ù4B5ñ4B5 is in the noninvertible representa-
tion, which in turn is equivalent to the existence of at
least one root of ù4z5ñ4z5= 0 that lies inside the unit
circle. Since all roots of ù4z5 = 0 lie outside the unit
circle because of the invertible assumption, the order
is noninvertible relative to Öt if and only if there exists
at least one root of the policy parameter polynomial
ñ4z5= 0 that lies inside the unit circle.
Comparison with Results in the Literature. Recall

that we introduce decision deviations when conduct-
ing empirical forecasts, which capture idiosyncratic
shocks in ordering decisions due to private informa-
tion observed by retailers. Decision deviations allow
us to relax the strict adherence to replenishment poli-
cies assumption, and they are the major difference
between the model in the literature and our empirical
model. We use the following analysis to illustrate that
when decision deviations are absent, the theoretical
results are different from empirical observations.
We check the invertibility condition in Proposition 1

on the estimated replenishment policy parameters in
Table 2. The replenishment policy parameters14 are
invertible for over half of the products. Consider, for
example, product 128 ORCA with c0 = 1033, c1 = 003,
and É = 0053. Its policy parameter is

ñ4z5 = c0 + 4c1 ÉÉ4c0 É 155z

ÉÉ4c1 + 41ÉÉ54c0 É 155
àX

i=2

41ÉÉ5iÉ2zi

= 1033+ 0013zÉ 0024
àX

i=2

0047iÉ2zi0

We have ñ415 = 1033 + 0013 É 0024/41 É 00475 > 0.
Since ñ4z5 = 1033 + z40013É 0024/41/zÉ 004755, we
have ñ4z5 > 0 for 0 < z < 1. No root of ñ4z5 = 0 lies
inside of the unit circle. This means that orders are a
sufficient statistic of demand for this product, which
allows us to recover the exact demand series from
the order history. Thus, the theory shows zero value
of information sharing for product 128 ORCA. We
find that 10 out of 14 products have invertible pol-
icy coefficients, suggesting that these 10 products can
gain nothing from information sharing. This is con-
trary to the empirical observations that show signif-
icant improvements from incorporating downstream

14 Note that the replenishment policy parameters are estimated
using both orders and demand. Measuring the invertibility of the
policy parameters is equivalent to measuring whether orders are
invertible to demand signals.

demand for almost all products. Such different results
call for a better theoretical understanding of how deci-
sion deviations can alter the result on the value of
information.

6.2. Preliminary Results
Recall that when decision deviations are present, the
order process, after being integrated, consists of two
MA processes with demand signals and decision
deviations as their corresponding white noise series
in (8). Before we delve into the analysis of our specific
model, we first study a more general setting: fore-
casting the aggregation of multiple MA processes. We
then apply the results to our model.
Consider N processes Xi

t = ïi4B5Ö
i
t , each of which

follow a MA structure with respect to i.i.d. random
shock Öit . The coefficient is ïi4B5 = 1 + ãi

1B + ãi
2B

2 +
· · · + ãi

qi
Bqi with degree qi (where qi can be infinite).

Note that we do not impose any restrictions on the
coefficient—ïi4B5 can be either invertible or nonin-
vertible. When predicting future value beyond qi peri-
ods, the forecast is constant and uncertainty cannot
be resolved. We allow contemporaneous signals to
be correlated, but require signals to be independent
across periods. That is, Öit is independent of Ö

j
s for any

s < t. We also require that the contemporaneous sig-
nals are linear independent in Assumption A1. To be
specific, the signal of any process is not linear in that
of other processes.

Assumption A1. Öit is not a linear combination of ÖÉi
t

for any i, where Éi
represents other processes except i.

The summation of N processes is St =
PN

i=1X
i
t =PN

i=1 ïi4B5Ö
i
t . According to Brockwell and Davis (2002,

p. 54), St has a unique invertible MA representation,
which we denote as ïS4B5át with respect to shocks át .
The coefficient is ïS4B5= 1+ à1B + à2B

2 + · · · + àqS B
qS ,

and qS is the largest k that guarantees nonzero covari-
ance Cov4St1St+k5 6= 0. We impose a technical assump-
tion that ïS4B5 is not a common factor of all ïi4B5 in
Assumption A2. Then, there exists a process k such
that ïS4B5 is not a factor of ïk4B5, which guarantees
that ïÉ1

S 4B5ïk4B5 is of infinite degree.

Assumption A2. There exists a process k such that

ïÉ1
S 4B5ïk4B5 is of infinite degree.

With full information, we not only observe each pro-
cess but also know each process’s coefficient ïi4B5 and
white noise series Öit . Specifically, in our setting, with
full information, the supplier knows both demand his-
tory and knowledge of the retailer’s replenishment
policy. The coefficients ïi4B5 consist of demand param-
eters and replenishment policy parameters, which can
be estimated out using historical demand and the
replenishment policy. With aggregate information, we
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only observe the aggregate process St . The value is
positive for the h-step-ahead forecast if and only if

Var
✓ hX

l=1

�
St+l É Ŝt1 t+l

� ���
[

i

ÏXi

t

◆

<Var
✓ hX

l=1

�
St+l É Ŝt1 t+l

� ���ÏS
t

◆
1

where Ŝt1 t+l ó
S

iÏ
Xi

t denotes the best linear forecast
under information sharing where the supplier uses
both the knowledge of the replenishment policy and
the historical demand to obtain demand shocks and
decision deviations, and Ŝt1 t+l óÏS

t denotes the best
linear forecast under no information sharing where
the supplier uses the historical orders to obtain
order shocks. The following theorem states the suffi-
cient condition for the positive value of information
sharing.

Theorem 2. Under Assumptions A1 and A2, if there
exist two processes with different coefficients, ïi4B5 6= ïj4B5
for some i1 j , then

Var
✓ hX

l=1

�
St+l É Ŝt1 t+l

� ���
[

i

ÏXi

t

◆

<Var
✓ hX

l=1

�
St+l É Ŝt1 t+l

� ���ÏS
t

◆

for any finite forecast lead time h, where hmaxi8qi9.

Among N processes, if the coefficients of any two
processes differ, the aggregate process has a strictly
larger mean squared forecast error as long as the fore-
cast is within the effective forecast range.15 Intuitively,
the error variance is different for h if the h-step-ahead
forecasts with and without information sharing are
different. This theorem indicates that if signals do not
evolve in the same manner over aggregation, we can
forecast better by distinguishing the signal series and
analyzing them separately.

Remark. When the coefficients are the same, the
aggregate process becomes ï14B5

PN
i=1 Ö

i
t . We can apply

the result of Proposition 1 that the value of infor-
mation sharing is determined by the invertibility
of ï14B5. When Assumption A1 is violated, there
could be no value of information sharing even when
the coefficients are different.16 When Assumption A2

15 If h � maxi8qi9, the order forecast becomes the mean of orders
with and without downstream information, and thus, there is no
value of information sharing. If qi = 0 for all i, all processes become
an i.i.d. normal process. The order forecast is the mean of orders,
and thus the value of information sharing is zero.
16 For example, consider two processes with the same signals, X1

t =
Öt É 005ÖtÉ1 and X2

t = Öt É 007ÖtÉ1. The summation is St = 42Öt5 É
00642ÖtÉ15 with signal 2Öt . Since ïS4B5 = 1 É 006B is invertible and
Var4Öt+Öt5=Var42Öt5, the value of information sharing is zero even
though 1É 005B 6= 1É 007B.

is violated, there could be no value of information
sharing even when the coefficients are different.17
Note that we relax Assumption A2 and show the
extension of Theorem 2 in the technical companion.

6.3. Strictly Positive Value of Information Sharing
Let us apply this general result to the order process
in (8) in our setting. The two MA series that consti-
tute the order process are demand shock series and
decision deviation series,

X1
t = cÉ1

0 ù4B5ñ4B5c0Öt and X2
t =è4B5ä4B5Ñt0 (12)

Based on the Pearson correlation test on demand and
decision deviations in our data set, we find low and
insignificant correlations when the signals are from
the same period or across different periods, which
suggests that Assumption A1 holds for our data set
and the independence assumption across noncontem-
poraneous signals holds. Assumption A2 also holds
for (12).18 Sharing demand information corresponds
to full information defined in the preliminary anal-
ysis, since we can estimate out all the coefficients,
demand signals, and decision deviations. No infor-
mation sharing corresponds to aggregate information,
since we only observe the order history. The following
proposition illustrates the result of the positive value
of information sharing.

Proposition 3. Given that demand signals and deci-

sion deviations are nonzero, the value of information shar-

ing is strictly positive if (a) demand follows ARMA4p1 q5
for any h-step-ahead forecast, where h  max8qÖ1 qÑ9, or
(b) demand follows ARIMA4p1d1 q5 for the one-step-ahead
forecast.

Recall that Theorem 2 is based on stationary pro-
cesses. Under condition (a), demand is stationary (i.e.,
d = 0), and we can directly apply Theorem 2 to
show that the value of information sharing is pos-
itive for any h-step-ahead forecast. Under condition
(b), demand is nonstationary (i.e., d � 1), which stems
from the integrated inclusion of the past observations.
Note that the forecast error of the one-step-ahead fore-
cast includes only shocks (not the historical obser-
vations). Since the shocks of an ARIMA process are
stationary, the arguments used for condition (a) will

17 Specifically, consider X1
t = 41 É B + B3541 É 005B5Öt and X2

t =
41ÉB+B3541 + 005B5Ñt , where Öt and Ñt are independent, and
Var4Öt5=Var4Ñt5. The aggregate process becomes St = 41ÉB+B35át ,
where át = 41 É 005B5Öt + 41 + 005B5Ñt . Since à̃1 = 0, the two-step-
ahead forecast Ŝt1t+2 is É41É 005B5Öt É 41+ 005B5Ñt + 41É 005B5ÖtÉ1 +
41+ 005B5ÑtÉ1 + 41É 005B5ÖtÉ2 + 41+ 005B5ÑtÉ2 for both cases.
18 Recall that ñ4B5 = 1+ Éä4B54Å0 + Å1B + Å2B

2 + Å3B
35. X1

t and X2
t

have a common factor if and only if ù4B5= ä4B541É B5É1. If this is
the case, the degree of ñ4B5 is larger than the degree of 41ÉB5è4B5,
suggesting that the coefficient of the aggregate process is not their
common factor. Thus, Assumption A2 holds.
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hold, and we can apply Theorem 2 to the case where
the forecast lead time h= 1.
When qÖ = qÑ = 0, both X1

t and X2
t are i.i.d. pro-

cesses, and thus, St is also an i.i.d. process. Any fore-
cast is a constant, and thus there is no value from
sharing the downstream sales information. This sit-
uation can only occur when ù4B5 = è4B5 = ñ4B5 =
ä4B5= 1, which means the retailer faces an i.i.d.
demand and employs a demand replacement pol-
icy. In the rest of the paper, we will exclude this
situation from the discussion, because, with i.i.d.
demand, using historical observations cannot reduce
any uncertainty of the future forecast.
If not both processes are i.i.d. models, or equiva-

lently, if qÖ = qÑ = 0 is not true, then the two sets of
parameters cÉ1

0 ù4B5ñ4B5 and è4B5ä4B5 can never be
the same. The key ingredient in the proof is to show
that the polynomial 41ÉB5 is a factor in è4B5ä4B5 but
not a factor in cÉ1

0 ù4B5ñ4B5, which leads to a positive
value of information for any forecast lead time.
Compared with the invertibility conditions posted

on the policy parameter ñ4B5 that induces positive
value of information sharing in Proposition 1, Propo-
sition 3 establishes a qualitatively different conclusion
and intuition. Under a strict adherence to the inven-
tory policy, the planner places orders based on the
same information set that statisticians observe, which
leads to a classical demand signal propagation stud-
ied in the literature. Our interview with the planner
and our data suggests decision departures from the
ideal policy, because retailers observe private infor-
mation that is not observed by statisticians. Thus,
unlike before, the demand now propagates together
with decision deviations. Besides demand informa-
tion, all decision deviation information should also be
carried by the order process to produce a zero value
of information sharing. Decision deviations, however,
turn out to distort the normal demand propagation.
The different propagation patterns of the demand
process and decision deviation process drive the loss
of information as they propagate upstream. To be
specific, the ending inventory level carries the cur-
rent week’s decision deviation and rolls it over to
the next week’s replenishment decision that further
determines the next week’s ending inventory. Thus,
the evolution of inventory governs the translation
of exogenous decision deviation signals into orders.
Demand signals, on the other hand, are governed by
the evolution of both inventory and current demand.
As both signals propagate together to become orders
in such innately different patterns, the detailed infor-
mation of the two processes is lost and is replaced
with the less informative (larger uncertainty) order
signals. Consequently, information sharing becomes
valuable to recover the order’s elaborate information
structure and to forecast more accurately.

We conclude that when decision deviations and
demand signals are both present, demand informa-
tion is lost during propagation and orders are not a
sufficient statistics of demand. Thus, it is impossible
to infer demand from orders, or equivalently, demand
cannot be written as a linear combination of historical
orders. (Gaur et al. 2005 and Giloni et al. 2014 define
this property as inferability.)
Generalization of Proposition 3. Our model assumes

that the retailer has a weighted moving average
demand forecast. We prove the same theoretical result
when the demand forecast is optimal (shown in the
technical companion). Furthermore, we prove that the
value of information sharing is strictly positive under
a more general setting where the retailer faces the
MMFE demand and the GOUTP (shown in the tech-
nical companion). Most time-series demand models
can be interpreted as a special case of the MMFE
demand, such as the AR model, IMA model, the gen-
eral ARMA model, and the linear state-space demand
model (Chen and Lee 2009). The GOUTP covers a
class of stationary and affine order-up-to policies,
i.e., the myopic order-up-to policy, the production
smoothing policy (Graves et al. 1998), and the Con-
DOI policy with ordering smoothing. It is worth not-
ing that for any demand structure and replenishment
policy that are an affine time-invariant combination of
historical observations and signals, the key intuition
that drives the positive value of information shar-
ing remains: the evolution patterns of demand sig-
nals and decision deviation signals follow innately
different evolution patterns. The distinct propagation
patterns obscure the detailed information structure,
which leads to a strictly positive value of informa-
tion sharing for any linear demand model and inven-
tory policy. We further strengthen the key result under
more general demand and ordering policy settings.
Proposition 3 illustrates the value of information

sharing when both demand and decision uncertain-
ties are nonzero. If there is no decision deviation,
Proposition 1 demonstrates the sufficient and neces-
sary condition of positive value of information shar-
ing. The following proposition, on the other hand,
considers the other extreme case where demand
uncertainty is zero.

Proposition 4. When the demand shock is zero, the

value of information sharing is zero for the one-step-ahead

forecast.

When demand is deterministic, the order becomes
Ot =m+ ä4B5Ñt , where m is a constant composed of
historical demand. Since only one signal series propa-
gates to become orders, we can directly apply Propo-
sition 1 to examine whether ä4B5 is invertible. The
unique root of ä4z⇤5= 0 lies on the unit circle, which
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Plosser and Schwert (1997) defined as strictly nonin-
vertibility. The author shows that the univariate MA
parameter’s estimator is asymptotically similar to the
invertible processes, indicating that ä4B5 can be cor-
rectly estimated from historical orders. Therefore, we
can infer the decision deviation history by orders and
conclude zero value of information sharing.
To summarize the above theoretical findings, we

characterize the value of information sharing with a
numerical analysis. We measure the value of infor-
mation sharing by the MSE percentage improvement
of the InfoSharing forecasts over the NoInfoSharing
forecasts. When h = 1, the measure is 4Var4Ot+1 É
Ôt1 t+1 óÏO

t 5ÉVar4Ot+1 É Ôt1 t+1 óÏO
t [ÏD

t 55/Var4Ot+1 É
Ôt1 t+1 óÏO

t 5, which takes value between 0 and 1.
Figure 2 displays the MSE percentage improvement

of the one-step-ahead forecast with respect to the rela-
tive weight of the decision deviation under three sets
of inventory policy parameters. Keeping the DOI level
and the order smoothing level fixed, we choose three
sets of policy parameters Çi (i= 011) that correspond
to three lines in Figure 2. Consider the retailer faces an
ARIMA4011115 demand, Dt = DtÉ1 + Öt É ãÖtÉ1, with
the MA parameter ã= 005. The policy parameter ñ4B5
is noninvertible for the top two processes but invert-
ible for the bottom one. In this numerical example, Öt
and Ñt are independent.
Our theoretical prediction aligns with the numer-

ical observations. When the decision uncertainty is
zero, the value of information sharing is positive for
the first two and zero for the last policy parameters.
This pattern is consistent with Proposition 1. Note
that the studies in the literature correspond to the

Figure 2 (Color online) MSE Percentage Improvement Against the
Decision Deviation Weight for an ARIMA4011115 Demand
with ã= 005 and a ConDOI Policy with Order Smoothing
with É = 008 and ‚ = 2
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points on the vertical axis where the decision devia-
tion weight is zero. Our theory can describe the entire
curve. As decision deviations become dominant, there
is little (and zero if decision deviation weight = 1)
gain from sharing the downstream sales informa-
tion, which coincides with Proposition 4. When both
the decision uncertainty and the demand uncertainty
exist, Figure 2 presents a strictly positive value of
information sharing, which agrees with Proposition 3.

6.4. Our Theory is Supported
by Our Empirical Findings

In this section, we validate whether the observed fore-
cast accuracy improvements in the data set agrees
with our theory predictions. To this end, we compare
the predicted and actual root mean squared forecast
error, separately under the InfoSharing method and
the NoInfoSharing method.
To be specific, we first derive the actual value from

the empirical study. Second, we calculate the pre-
dicted root mean squared forecast error based on our
theory and the estimated demand and policy param-
eters. When there is information sharing, the mean
squared forecast error is c20ë

2
Ö + ë2

Ñ . In the absence of
information sharing, based on the innovation algo-
rithm in the time-series literature, the mean squared
forecast error becomes a function of c0, ëÖ, ëÑ, policy
parameters and demand parameters listed in Table 2.
We present the results in Figure 3. We plot the pre-

dicted against the actual root mean squared predic-
tion error under both no information sharing (left)
and information sharing (right) case. Each point rep-
resents a product with a corresponding index in
Table 3. A perfect model fit would lead to the points
lying on the 45-degree dashed line in the figure.
We fit a regression of the theoretical predictions on
the actual observations. Under the information shar-
ing setting, predicted = É13003 + 1017 ⇥ actual, and
the 95% confidence interval on the coefficient 1.17 is
60095110407. Under the no information sharing setting,
predicted=É14002+ 1003⇥ actual, and the 95% con-
fidence interval on the coefficient 1.03 is 60077110297.
The predicted points from our model are overall close
to the 45-degree line for both cases, indicating a good
fit. It shows that our new theoretical model can well
explain how demands propagate upstream, and thus
can predict the value of information sharing well.
We have proved that the value of information shar-

ing is strictly positive under any forecast lead time.
In the following section, we study how its magnitude
changes relative to key variables.

7. Theoretical Properties of the
Value of Information Sharing

We present the magnitude of the benefit of informa-
tion sharing as a function of the demand process char-
acteristics, namely, ã of an ARIMA4011115 demand
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Figure 3 (Color online) Consistency Between the Actual and Predicted Root Mean Squared Forecast Error Without Information Sharing (Left) and
With Information Sharing (Right)

P
re

di
ct

ed

900

800

700

600

500

400

300

200

100

0

P
re

di
ct

ed

900

800

700

600

500

400

300

200

100

0

Actual

10 10
4

12
3

5

8 7

2

1

9 11
13

14

6

13
4
14 12

3
5

7

8

2

1

6

11

0 100 200 300 400 500 600 700 800 900

Actual

0 100 200 300 400 500 600 700 800 900

9

Liner (fitted line)
Liner (45-degree line)

process (Lee et al. 2000 studies the impact of ê in an
AR415 process). We then discuss the impact of other
important variables, such as the forecast lead time
and the order smoothing level. We focus on the one-
step-ahead forecast. We theoretically analyze two spe-
cial cases and resort to numerical studies for more
involved settings.
We analyze a simple yet reasonable model to derive

the theoretical prediction. The empirical estimation
suggests that eight out of 14 products follow an
ARIMA4011115 demand. Henceforth, in this sec-
tion, we focus on an ARIMA4011115 demand with
ã 2 60115,

Dt =DtÉ1 + Öt ÉãÖtÉ11

which can be equivalently written as an exponential
smoothing form, Dt = 41 É ã5

Pà
i=1 ã

iÉ1DtÉi + Öt . The
current observation is a weighted average of historical
observations with exponentially decaying coefficients.
Values of ã closer to one put greater weight on recent
data, and thus react more intensely to recent varia-
tions, whereas processes with ã closer to zero smooth
the weight on past observations, and thus are less
responsive to recent changes. Therefore, the process
trends more slowly with a smaller ã. For example,
the products that we study can be classified accord-
ing to ã. Orange juice is an everyday drink for con-
sumers. Sports drinks, on the other hand, are mainly
consumed for exercising, and thus their consumptions
are influenced by weather, temperature, and sporting
events. The data exhibit a clearer slowly trending pat-
tern in demand for sports drinks. Consistent with the
above analysis, our estimated ã is larger for orange
juice products and smaller for sports drinks prod-
ucts, according to our demand parameter estimations.
We refer to demand with small ã as slowly trending
demand.
Recall that the retailer’s future demand forecast is a

weighted average of historical H + 1 weeks’ demands.
In the rest of this section, we assume the retailer’s

order relies on current and last weeks’ demand,
H = 1. We assume that demand signals and decision
deviations are independent. The order can be writ-
ten as a summation of two processes in Öt and Ñs as
in (12),

X1
t = �

1+É‚Ç0 +É‚Ç1B
�
41+ãB5Öt

ÉÉ2
àX

i=1

41ÉÉ5iÉ14‚Ç0 + ‚Ç1B541+ãB5ÖtÉi

and

X2
t = Ñt É ÑtÉ1 É

àX

i=1

É41ÉÉ5iÉ14ÑtÉi É ÑtÉiÉ150

We focus on processes X1
t and X2

t with degrees
smaller or equal to 3. When the degree of either
process exceeds 3, the complexity of the problem
precludes analytically tractable solutions and neces-
sitates numerical analysis. Note that we will relax
this restriction by allowing an infinite degree in the
following numerical study. Therefore, we study two
simple policies: (1) the retailer follows a demand
replacement policy (É = 0), and (2) the retailer adopts
a ConDOI policy (É = 1) with zero weight on the pre-
vious week’s demand (Ç1 = 0). Under (1), the order
process is Ot =Dt + Ñt , and under (2), the order pro-
cess is Ot = 41 + ‚Ç05Dt É ‚Ç0DtÉ1 + Ñt É ÑtÉ1. The
following proposition demonstrates that the value
strictly decreases with ã (see the proof in the technical
companion).

Proposition 5. The value of information sharing

under the one-step-ahead forecast strictly decreases with ã
under both (1) and (2).

To further explore the demand’s impact under
other policy parameters, we conduct numerical stud-
ies. Figure 4 presents the relation of MSE percentage
improvement with respect to ã under three policy
weight parameters (Ç0 = 1051005, and É002). The value
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Figure 4 (Color online) Under an ARIMA4011115 Demand with ã and a ConDOI Policy with Order Smoothing with Ç0, É = 005 and ‚ = 2, the
MSE Percentage Improvement Strictly Increases with ã
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declines as ã is larger, which corroborates the analyti-
cal findings without restrictions on the degree of two
MA processes. When ã is closer to one, the coefficient
of demand signals becomes closer to the coefficient of
decision deviations, and hence, less information is lost
as signals propagate upstream and information shar-
ing is less valuable. For example, under the demand
replacement policy (1), when ã= 1, the centered order
becomes ÖtÉÖtÉ1+ÑtÉÑtÉ1. An immediate result from
Theorem 2 is a complete information propagation and
zero value of demand.
Let us revisit the empirical MSE percentage im-

provement in the last column of Table 3. Except for
the two orange drinks 12 OR and 12 ORCA, which
have a much smaller bottle volume compared to other
orange juice products and serve a similar function
as sports drinks, the orange juice products gain less
from information sharing than the rest of the prod-
ucts. Consistent with our theoretical predictions, their
ã is closer to zero, which differs substantially from 12
OR, 12 ORCA, and the other sports drinks in Table 2.
Hence, our theory can provide a correct mapping
from the demand pattern to the potential gain from
information sharing.
The result implies that it is more worthwhile for

suppliers in industries with slow trending consump-
tions to invest in the information sharing system to
improve predictions. Note that forecasting beyond
one week might reverse the relation of the value of
information sharing and demand parameter ã. We
recommend that managers resort to run a numerical
study to validate the potential gain based on demand
and policy characteristics.
Forecast Lead Time. Note that the h-step-ahead fore-

cast is the sum of forecasts within h periods. Compa-
nies may also monitor predictions in a specific lead
time, which they use to adjust manufacture plans.
We define the hth-step-ahead forecast as the forecast
made in period t about demand in period t + h. We

conduct a numerical analysis on the impact of the
forecast lead time (see detailed results in the techni-
cal companion), and we find different results on the
two forecast metrics. We show that the value of infor-
mation sharing of the hth-step-ahead forecast strictly
decreases as the forecast lead time increases. This is
because future signals are less dependent on historical
demand, and thus, the future uncertainty is less likely
to be resolved with information sharing. This implies
a limited potential gain in farther forecasts. We find
that for the h-step-ahead forecast, the value of infor-
mation sharing might increase with forecast lead time
under some conditions. This is because historical sig-
nals are cancelled out when summing the future fore-
casts within h periods, and the forecast error might
increase less slowly with forecast lead time under
information sharing.19

Order Smoothing Level. We also explore the impact
of the smoothing level (see numerical studies in the
technical companion). We find that the value of infor-
mation sharing increases as É increases. When É is
close to one, there is less inventory smoothing, and
the order depends more on historical demand and
inventory. Thus, current demand becomes very valu-
able for predicting future orders, and information
sharing provides greater improvements. It is interest-
ing to note that, when É = 0 (demand replacement
policy with Ot = Dt + Ñt), the order only relies on
demand in the period, which leads to a small benefit
from sharing information.

19 For example, when the decision deviation process is Ñt É ÑtÉ1,
its h-step-ahead forecast error is Ñt+h and the variance does not
change with forecast lead time. In contrast, the aggregate process
does not preserve this structure, and the h-step-ahead forecast error
might strictly increases with forecast lead time. If the decision devi-
ation weight is relatively large, the forecast error under information
sharing hardly increases with forecast lead time, which means that
farther forecast can have a higher value of information.
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8. The Value of Operational
Knowledge

Note that in previous sections, apart from incorpo-
rating demand information, we also explicitly used
knowledge of the downstream replenishment pol-
icy. We define it as operational knowledge. In our
study, operational knowledge is ConDOI policy with
order smoothing where the retailer’s demand fore-
cast is a weighted moving average of recent four
weeks’ demand. When the supplier does not have
such knowledge, the value of demand might be lim-
ited. (Chen and Lee 2009 propose that the retailer
should share projected future orders to avoid sharing
the policy.) In this section, we empirically quantify the
benefit of knowing the downstream replenishment
policy, which we refer to as operational knowledge.
We replicate the situation where companies lack oper-
ational knowledge, using statistical forecasting meth-
ods that capture statistical correlations between sales
and orders. By contrasting them against the InfoShar-
ing and NoInfoSharing methods, we decompose the
value of information sharing into two parts: the value
stemming from only sales information and the addi-
tional value stemming from operational knowledge.
The NoInfoSharing forecast only uses order infor-
mation. Its forecast accuracy difference from the sta-
tistical forecasts measures the benefit of only sales
data. The InfoSharing forecast incorporates down-
stream sales information as well as the downstream
inventory policy. Its forecast accuracy improvement
over the statistical forecasts measures the value of
operational knowledge.
We consider three forecasting methods. We first

capture the order demand correlation by regressing
orders on demands within the past five weeks, re-
ferred to as the Reg D method:

Ot = c0Dt + c1DtÉ1 + · · ·+ c5DtÉ5 + òt0 (13)

Similarly, we regress orders on both orders and
demands, and we call it the Reg D and O method:

Ot = c0Dt + c1DtÉ1 + · · ·+ c5DtÉ5

+ b1OtÉ1 + · · ·+ b5OtÉ5 + òt0 (14)

We then treat the order as an ARIMA process while
at the same time accounting for demand, which adds
observed demands to orders in (10):

41ÉB5dOt = å+ễ141ÉB5dOtÉ1+···+ễp41ÉB5dO1
tÉp

+át+ã̃1átÉ1+···+ã̃qátÉq+c141ÉB5dDt

+···+cp41ÉB5dDtÉp+1+Öt+1

+e1Öt+···+eqÖtÉq+10 (15)

The parameters in Equation (15) can be estimated
by fitting Ot and Dt+1 series in a two-dimensional

Table 4 Forecast Accuracy Summary for All Methods at the
Overall Level

NoInfo Vector Reg Info
Sharing ARIMA Reg D D and O Sharing

MAPE (%) 56045 42072⇤ 45094⇤ 42018⇤ 33036⇤

Notes. Significant accuracy improvement over the NoInfoSharing method is
marked by an asterisk (p= 0001). Significant (p= 0005) accuracy improve-
ment of the InfoSharing method over the other unbold methods is also in
bold. All methods that include downstream sales outperform the NoInfoS-
haring forecast. The value of operational knowledge is positive, since the
InfoSharing forecast outperforms any statistical method.

vector ARIMA model. Note that method (15) is
more general than method (10). We specify a vector
ARIMA431111520 model with å = 0. We refer to this
as the vector ARIMA method.
Let us summarize the overall prediction accuracy

in MAPE across all products in Table 4. The NoInfo-
Sharing forecasts have the lowest accuracy (or highest
forecast error) with 56045% MAPE, and the Info-
Sharing forecasts have the highest predictive power
with 33036% MAPE. We can achieve a 40090% per-
centage improvement in total. We show that 21026%
comes from statistical methods and 19064% comes
from operational knowledge. This means that oper-
ational knowledge, as least in our study, brings a
similar order of magnitude of forecasting improve-
ments as using only sales information. This suggests
that companies should always learn the downstream
replenishment policy to specify the correct structure
between orders and demand, which enables the com-
panies to better utilize downstream demand informa-
tion to achieve the greatest improvements.

Remark. One might notice that the only difference
between Equation (9) and Equation (13) is ItÉ1. This
does not mean that operational knowledge is only
about knowing or including retail inventory. Opera-
tional knowledge is about using the policy structure
to incorporate retail inventory in the order decisions.
Note that we quantify the value of operational knowl-
edge in a specific setting. It is possible that operational
knowledge can bring no value in some cases. For

20 VARIMA4311115 model is
"

Od
t

Dd
t+1

#

=
"
c111 c112
c121 c122

#"
Od

tÉ1

Dd
t

#

+ · · ·+
"
c311 c312
c321 c322

#"
Od

tÉ3

Dd
tÉ2

#

+
"

át

Öt+1

#

+
"
e111 e112
e121 e122

#"
átÉ1

Öt

#

1

where ci21 and ci22 are restricted to zero for i= 11213; e112, e121, and e122
are restricted to zero; át is the order shock; and Öt is the demand
shock. We choose 4311115 because of the computational constraints.
Such parameters can represent the majority of parameters found
in (10).
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example, when the retailer follows a demand replace-
ment policy, we have Ot =Dt + òt . Simply estimating
the correlation between Ot and Dt can correctly cap-
ture the policy parameters, and there is no value of
operational knowledge.

9. Conclusions and Discussions
This paper empirically evaluates the supplier’s fore-
cast improvement by incorporating downstream retail
sales data and supports the observations with an
extended theoretical model. Table 3 in §5.2 summa-
rizes our main empirical findings. Our observations
highlight the positive value to suppliers of incorporat-
ing retailers’ sales data: 407%–5806% MAPE percent-
age improvements across 14 products and a 40090%
improvement in MAPE on an overall level, which is
regarded as a significant improvement by the CPG
company we studied. In addition, we empirically
decompose the 40090% total improvement into two
parts, 21026% from sales data and 19064% from knowl-
edge of the downstream replenishment policy.
We revisit and extend the theoretical model in the

existing literature. Until now, the theoretical literature
showed no value of information sharing for 10 out of
14 products. By taking into account the idiosyncratic
shocks in decision making, we relax the strict adher-
ence to the replenishment policy assumption in the lit-
erature. Our new theory yields qualitatively different
results than the previous literature. We demonstrate
that if both demand signals and decision signals are
nonzero, the value of information sharing is strictly
positive for any forecast lead time. Further, our new
theory is supported by our empirical observations.
Our paper, therefore, underscores the importance of
recognizing that the decision maker may deviate from
the exact policy, a phenomenon that is common in
practice and is absent in earlier theoretical models.
We show that decision deviations are present and

have a significant impact on the value of information
sharing. We identified several possible operational
explanations for the deviations. Interesting studies
could also look at behavioral factors that would cause
decision deviations (see studies by Schweitzer and
Cachon 2000 and Van Donselaar et al. 2010).
Our paper suggests that the value of information

sharing is higher when (1) product demand has high
local volatility, such as orange juice that is consumed
daily; (2) the retailer’s ordering policy has a low
inventory smoothing level, such as a strict ConDOI
policy; or (3) incorporating the inventory policy struc-
ture in determining the relationship between orders
and demand.
Our study focuses on a specific linear and station-

ary inventory policy with a stationary demand pro-
cess. It is worth noting that the conclusion regarding

the strictly positive value of information sharing can
be generalized to any linear and stationary inventory
policy and stationary demand. In fact, we prove that
the value of information sharing is always positive,
if a retailer follows the generalized order-up-to pol-
icy and the MMFE demand (in the technical compan-
ion). We highlight the key intuition that continues to
remain in general settings: demand signals and deci-
sion deviations accumulate in innately different evo-
lution patterns as they propagate upstream.
In this paper, we focus on low-promotional prod-

ucts, the demand and orders of which are stationary.
We also empirically test the forecast accuracy of the
remaining high-promotional products (we elaborate
on the forecasting procedure and results in the techni-
cal companion). We find that the value of information
sharing is positive for most promotional products. As
the promotional depth increases, the forecast accu-
racy decreases for both scenarios (with and without
information sharing), because the order series has
higher uncertainty. However, we observe an insignif-
icant correlation between forecast improvements and
the promotional depth. A potential reason comes from
the nonstationary order structure (in demand signals
and decision deviation signals) caused by nonstation-
ary price promotions. The optimal estimators (of the
ARIMA model for orders or the replenishment pol-
icy) obtained in the current week might be subop-
timal for the future, which might affect the forecast
precision of the two scenarios differently. Another
potential reason is that, with information sharing,
the estimating equation of the replenishment policy
might not correctly estimate parameters for the high
promotional products, because the method by which
the retailer forecasts future demand and how it deter-
mines orders becomes more complicated than the pol-
icy assumed in our model. Future research is needed
to understand how promotional activities affect the
information transmission and the value of sharing
downstream demand.
Our model can represent many industries in prac-

tice. Our results are applicable to other types of prod-
ucts when their demand and replenishment policy
follows a linear structure. However, our analysis has
limitations. In particular, future research should break
the affine structure and explore nonlinear policies
such as the 4s1S5 policy. This requires a reexamina-
tion via a nonlinear time-series model or a proper
approximation.
For practitioners, having access to more data points,

such as the daily level data, can help identify detailed
ordering patterns and benefit the forecast precision.
For example, one can distinguish the “Friday effect”
and the “batching effect” in a positive decision devi-
ation (overreplenishment from the target inventory
policy) by the day of the order. However, forecasting
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at the daily level comes at the price of both a heavy
computation burden and a nonlinear estimation. The
CPG company currently needs around 24 hours on
modern computing technology starting each Satur-
day night to run the ARIMA model on all product
lines. If the company were to forecast at the daily
level, they would need more computational power or
would need to start their forecasts earlier (than Satur-
day night), which would increase their forecast lead
time, and thus reduce their forecast accuracy. In addi-
tion, the daily level data has a lot of zero orders (the
planner claims to order only once per week around
80% of the weeks). For the baseline forecast without
downstream demand, fitting linear time-series mod-
els is not a good option on such a data set. Further,
to obtain the forecast with downstream demand, we
need to model a nonlinear inventory policy, which
takes more effort to estimate. Nonlinear models are
beyond the scope of our paper and require further
investigation. Forecasting at a coarse level, such as
the monthly level or beyond, loses precision and thus
fails to support short-term managerial decisions.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/mnsc.2014.2132.

Appendix

Proof of Theorem 2. With information sharing. Recall that
Xi

t = ïi4B5Ö
i
t with coefficient ïi4B5 = 1 + ãi

1B + ãi
2B

2 + · · · +
ãi
qi
Bqi . Let ÏXi

t = span8Öi11 0 0 0 1 Ö
i
t9 denote the plane contain-

ing the historical shocks Öi11 0 0 0 1 Ö
i
t . According to the defini-

tion, Öit+l ?ÏXi
t for any l � 1. Since we assume Öit ? Ö

j
tÉk for

any k > 0, the general orthogonal condition can be written
as

Öit+l ?Ï
Xj

t 1 8 i1 j1 l0 (16)

The h-step-ahead forecast of process Xi
t made in period t

is X̂i
t1 t+h = ãi

hÖt +ãi
h+1Ö

i
tÉ1 +· · ·+ãi

qi
Öit+hÉqi

. The total forecast
with information sharing is

PN
i=1 X̂

i
t1 t+h. We denote

Var
✓ hX

l=1

4St+lÉ Ŝt1 t+l5 ó
[

i

ÏXi

t

◆
as Var

✓ hX

l=1

4St+lÉ
NX

i=1
X̂i

t1 t+l5

◆

in the proof.
Without information sharing. In absence of demand infor-

mation, the order process is St = ïS4B5át , where ïS4B5= 1+
à1B+à2B

2+· · ·+àqS B
qS . (Note that qS might be infinite.) Let

ÏS
t = span8á11 0 0 0 1át9 denote the plane containing the order

process signals á11 0 0 0 1át . Since ïS4B5át =
PN

i=1 ïi4B5Ö
i
t and

ïS4B5 is invertible, then át = ïÉ1
S 4B5

PN
i=1 ïi4B5Ö

i
t 0 We have

ÏS
t 2

S
iÏ

Xi

t , because át is a linear combination of Öis1 s  t.
According to (16), we have Ö

j
t+l ?

S
iÏ

Xi

t for any j and
any l� 1. Since ÏS

t 2
S

iÏ
Xi

t , then

Öit+l ?ÏS
t 1 8 i1 l0 (17)

The h-step-ahead forecast of process St made in period
t is Ŝt1 t+h = àhát + àh+1átÉ1 + · · · + àqSát+hÉqS

. We denote

Var4
Ph

l=14St+l É Ŝt1 t+l5 óÏS
t 5 as Var4

Ph
l=14St+l É Ŝt1 t+l55 in the

proof.
The Value of Information Sharing. We first prove the state-

ment under the assumption Öit ? Ö
j
t for any i 6= j . We rewrite

Var4St+h É Ŝt1 t+h5 as Var4St+h É PN
i=1 X̂

i
t1 t+h + PN

i=1 X̂
i
t1 t+h É

Ŝt1 t+h5. According to the orthogonal condition (16) and (17),
Var4

Ph
l=14St+l É Ŝt1 t+l55 can be simplified to

Var
✓ hX

l=1

4St+lÉ Ŝt1 t+l5

◆
= Var

✓ hX

l=1

✓
St+lÉ

NX

i=1
X̂i

t1 t+l

◆◆

+Var
✓ hX

l=1

✓
Ŝt1 t+lÉ

NX

i=1
X̂i

t1 t+l

◆◆
0 (18)

Var4
Ph

l=14St+l É Ŝt1 t+l55> Var4
Ph

l=14St+l É
PN

i=1 X̂
i
t1 t+l55 if and

only if
Ph

l=14Ŝt1 t+lÉ
PN

i=1 X̂
i
t1 t+l5 6= 0. We prove that if ïi4B5 6=

ïj4B5 for some i1 j , then
Ph

l=14Ŝt1 t+l É
PN

i=1 X̂
i
t1 t+l5 6= 0.

Suppose that there exists a finite forecast lead time h,
where hmaxi8qi9 such that

hX

l=1

Ŝt1 t+l =
hX

l=1

NX

i=1
X̂i

t1 t+l0

This is equivalent to
Ph

l=1 ŜtÉh1 t+lÉh = Ph
l=1

PN
i=1 X̂

i
tÉh1 t+lÉh,

which can be expanded as
✓ hX

j=1
àj

◆
átÉh+

✓h+1X

j=2
àj

◆
átÉhÉ1+···+4àqSÉ1+àqS 5átÉqSÉh+2

+àqSátÉqSÉh+1

=
NX

i=1

✓✓ hX

j=1
ãi
j

◆
ÖtÉh+

✓h+1X

j=2
ãi
j

◆
ÖitÉhÉ1+···

+4ãi
qiÉ1+ãi

qi
5ÖitÉqiÉh+2+ãi

qi
ÖitÉqiÉh+1

◆
0

For notational convenience, let ãi
j = 0 for j > qi. We define

Pk
j=0 àj as à̃k and

Pk
j=0 ã

i
j as ã̃i

k. Given St =
PN

i=1X
i
t , we sub-

tract the above equation from
PtÉh+1

r=t Sr =
PtÉh+1

r=t

PN
i=1X

i
r :

át + à̃1átÉ1 + · · ·+ à̃hÉ1átÉh+1

=
NX

i=1

�
Öit + ã̃i

1Ö
i
tÉ1 + · · ·+ ã̃i

hÉ1Ö
i
tÉh+1

�
0 (19)

Since ïS4B5 is invertible, ïÉ1
S 4B5 has finite degree. We replace

átÉj with ïÉ1
S 4B5

PN
i=1 ïi4B5Ö

i
tÉj for all j :

át+ à̃1átÉ1+···+ à̃hÉ1átÉh+1=
hÉ1X

j=0
à̃jï

É1
S 4B5

NX

i=1
ïi4B5Ö

i
tÉj 0 (20)

According to Assumption A2, there exists at least one
process k such that ïÉ1

S 4B5ïk4B5 is of infinite degree. There-
fore, the degree with respect to Ökt is infinite in (20) whereas
the degree is finite in (19). We have reached a contradiction.
Therefore, the value of information sharing is positive.

Note that in the above analysis, we use the assumption
that the shocks are independent across processes. We next
extend the above proof to the situation where contempo-
raneous signals are correlated. We prove that, when there
exist two processes with different coefficients, St equals to

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

49
.1

60
.1

89
.2

41
] o

n 
18

 A
ug

us
t 2

01
5,

 a
t 1

4:
07

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Cui et al.: Information Sharing in Supply Chains
22 Management Science, Articles in Advance, pp. 1–22, © 2015 INFORMS

the sum of N time-series processes with orthogonal signals
and the two processes still have different coefficients. We
denote the two different processes as XNÉ1

t and XN
t , where

ïNÉ14B5 6= ïN 4B5. Since Assumption A1 requires that Öit is
not a linear combination of ÖÉi

t for any i, we can decompose
Ö2t into Ç211Ö

1
t and Ö̂2t , where Ö̂2t ? Ö1t . For the same reason, we

can decompose Öit into Çi11Ö
1
t , Çi12Ö̂

2
t , 0 0 0and Ö̂it , where Ö̂it ? Ö

j
t

for any j < i. The aggregate process can be written as N pro-
cesses with orthogonal signals, and the last two processes
are 4ïNÉ14B5+ÇN 1NÉ1ïN 4B55Ö̂

NÉ1
t and ïN 4B5Ö̂

N
t .

If ÇN 11 6= 0, then ïNÉ14B5+ÇN 1NÉ1ïN 4B5 6= 41+ÇN 115ïN 4B5,
and thus their coefficients are different. If ÇN 1NÉ1 = 0, then
according to the assumption, we have ïNÉ14B5 6= ïN 4B5. We
can apply the above results to show that for h maxi8qi9,
the value is positive. É
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