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 riginally developed by Claude Shannon in the 1940s, information theory      
  laid the foundations for the digital revolution, and is now an essential 
tool in telecommunications, genetics, linguistics, brain sciences, and deep 
space communication. In this richly illustrated book, accessible examples 
are used to introduce information theory in terms of everyday games like 
‘20 questions’ before more advanced topics are explored. These advanced 
topics include a summary of the relationship between information theory and 
thermodynamic entropy, and a review of applications in telecommunications 
and biology. Online MatLab and Python computer programs provide hands-on 
experience of information theory in action, and PowerPoint slides give support 
for teaching. Written in an informal style, with a comprehensive glossary and 
tutorial appendices, this text is an ideal primer for novices who wish to learn the 
essential principles and applications of information theory.
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“This is a really great book. Stone has managed to distil all of the key ideas in information 
theory into a coherent story. Every idea and equation that underpins recent advances in 
technology and the life sciences can be found in this informative little book.’’

Professor Karl Friston, Fellow of the Royal Society, Scientific Director of the Wellcome Trust Centre 
for Neuroimaging, Institute of Neurology, University College London.

“Stone’s tutorial approach develops a deep intuitive understanding using the minimum 
number of elementary equations. Thus, this superb introduction not only enables scientists 
of all persuasions to appreciate the relevance of information theory, it also equips them to 
start using it.’’

Simon Laughlin, Professor of Neurobiology, Fellow of the Royal Society, Department of Zoology, 
University of Cambridge.
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Reviews of Information Theory

“Information lies at the heart of biology, societies depend on it, and our

ability to process information ever more e�ciently is transforming our lives.

By introducing the theory that enabled our information revolution, this

book describes what information is, how it can be communicated e�ciently,

and why it underpins our understanding of biology, brains, and physical

reality. Its tutorial approach develops a deep intuitive understanding using

the minimum number of elementary equations. Thus, this superb introduction

not only enables scientists of all persuasions to appreciate the relevance of

information theory, it also equips them to start using it. The same goes for

students. I have used a handout to teach elementary information theory to

biologists and neuroscientists for many years. I will throw away my handout

and use this book.”

Simon Laughlin, Professor of Neurobiology, Fellow of the Royal Society,

Department of Zoology, University of Cambridge, England.

“This is a really great book it describes a simple and beautiful idea in a

way that is accessible for novices and experts alike. This ”simple idea” is

that information is a formal quantity that underlies nearly everything we

do. In this book, Stone leads us through Shannons fundamental insights;

starting with the basics of probability and ending with a range of applications

including thermodynamics, telecommunications, computational neuroscience

and evolution. There are some lovely anecdotes: I particularly liked the

account of how Samuel Morse (inventor of the Morse code) pre-empted

modern notions of e�cient coding by counting how many copies of each letter

were held in stock in a printer’s workshop. The treatment of natural selection

as ”a means by which information about the environment is incorporated into

DNA” is both compelling and entertaining. The substance of this book is a

clear exposition of information theory, written in an intuitive fashion (true

to Stone’s observation that ”rigour follows insight”). Indeed, I wish that this

text had been available when I was learning about information theory. Stone

has managed to distil all of the key ideas in information theory into a coherent

story. Every idea and equation that underpins recent advances in technology

and the life sciences can be found in this informative little book.”

Professor Karl Friston, Fellow of the Royal Society. Scientific Director of the

Wellcome Trust Centre for Neuroimaging,

Institute of Neurology, University College London.



Reviews of Bayes’ Rule: A Tutorial Introduction

“An excellent book ... highly recommended.”

CHOICE: Academic Reviews Online, February 2014.

“Short, interesting, and very easy to read, Bayes’ Rule serves as an excellent

primer for students and professionals ... ”

Top Ten Math Books On Bayesian Analysis, July 2014.

“An excellent first step for readers with little background in the topic.”

Computing Reviews, June 2014.

“The author deserves a praise for bringing out some of the main principles

of Bayesian inference using just visuals and plain English. Certainly a nice

intro book that can be read by any newbie to Bayes.”

https://rkbookreviews.wordpress.com/, May 2015.

From the Back Cover

“Bayes’ Rule explains in a very easy to follow manner the basics of Bayesian

analysis.”

Dr Inigo Arregui, Ramon y Cajal Researcher, Institute of Astrophysics,

Spain.

“A crackingly clear tutorial for beginners. Exactly the sort of book required

for those taking their first steps in Bayesian analysis.”

Dr Paul A. Warren, School of Psychological Sciences, University of

Manchester.

“This book is short and eminently readable. It introduces the Bayesian

approach to addressing statistical issues without using any advanced

mathematics, which should make it accessible to students from a wide range

of backgrounds, including biological and social sciences.”

Dr Devinder Sivia, Lecturer in Mathematics, St John’s College, Oxford

University, and author of Data Analysis: A Bayesian Tutorial.

“For those with a limited mathematical background, Stone’s book provides an

ideal introduction to the main concepts of Bayesian analysis.”

Dr Peter M Lee, Department of Mathematics, University of York. Author of

Bayesian Statistics: An Introduction.

“Bayesian analysis involves concepts which can be hard for the uninitiated to

grasp. Stone’s patient pedagogy and gentle examples convey these concepts

with uncommon lucidity.”

Dr Charles Fox, Department of Computer Science, University of She�eld.
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For Nikki



Suppose that we were asked to arrange the following in two

categories – distance, mass, electric force, entropy, beauty,

melody. I think there are the strongest grounds for placing

entropy alongside beauty and melody . . .

Eddington A, The Nature of the Physical World, 1928.
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Preface

This book is intended to provide a coherent and succinct account of

information theory. In order to develop an intuitive understanding

of key ideas, new topics are first presented in an informal tutorial

style before being described more formally. In particular, the equations

which underpin the mathematical foundations of information theory are

introduced on a need-to-know basis, and the meaning of these equations

is made clear by explanatory text and diagrams.

In mathematics, rigour follows insight, and not vice versa. Kepler,

Newton, Fourier and Einstein developed their theories from deep

intuitive insights about the structure of the physical world, which

requires, but is fundamentally di↵erent from, the raw logic of pure

mathematics. Accordingly, this book provides insights into how

information theory works, and why it works in that way. This is entirely

consistent with Shannon’s own approach. In a famously brief book,

Shannon prefaced his account of information theory for continuous

variables with these words:

We will not attempt in the continuous case to obtain our

results with the greatest generality, or with the extreme

rigor of pure mathematics, since this would involve a great

deal of abstract measure theory and would obscure the

main thread of the analysis. . . . The occasional liberties

taken with limiting processes in the present analysis can be

justified in all cases of practical interest.

Shannon C and Weaver W, 194950.



In a similar vein, Jaynes protested that:

Nowadays, if you introduce a variable x without repeating

the incantation that it is some set or ‘space’ X, you are

accused of dealing with an undefined problem . . .

Jaynes ET and Bretthorst GL, 200326.

Even though this is no excuse for sloppy mathematics, it is a clear

recommendation that we should not mistake a particular species of

pedantry for mathematical rigour. The spirit of this liberating and

somewhat cavalier approach is purposely adopted in this book, which

is intended to provide insights, rather than incantations, regarding how

information theory is relevant to problems of practical interest.

MatLab and Python Computer Code

It often aids understanding to be able to examine well-documented

computer code which provides an example of a particular calculation

or method. To support this, MatLab and Python code implementing

key information-theoretic methods can be found online. The code also

reproduces some of the figures in this book.

MatLab code can be downloaded from here:

http://jim-stone.sta↵.shef.ac.uk/BookInfoTheory/InfoTheoryMatlab.html

Python code can be downloaded from here:

http://jim-stone.sta↵.shef.ac.uk/BookInfoTheory/InfoTheoryPython.html

PowerPoint Slides of Figures

Most of the figures used in this book are available for teaching purposes

as a pdf file and as PowerPoint slides. These can be downloaded from

http://jim-stone.sta↵.shef.ac.uk/BookInfoTheory/InfoTheoryFigures.html

Corrections

Please email corrections to j.v.stone@she�eld.ac.uk.

A list of corrections can be found at

http://jim-stone.sta↵.shef.ac.uk/BookInfoTheory/Corrections.html
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Chapter 1

What Is Information?

Most of the fundamental ideas of science are essentially

simple, and may, as a rule, be expressed in a language

comprehensible to everyone.

Einstein A and Infeld L, 1938.

1.1. Introduction

The universe is conventionally described in terms of physical quantities

such as mass and velocity, but a quantity at least as important as

these is information. Whether we consider computers30, evolution2;19,

physics15, artificial intelligence9, quantum computation46, or the

brain17;43, we are driven inexorably to the conclusion that their

behaviours are largely determined by the way they process information.

Figure 1.1. Claude Shannon (1916-2001).

1



1 What Is Information?

In 1948, Claude Shannon published a paper called A Mathematical

Theory of Communication48. This paper heralded a transformation in

our understanding of information. Before Shannon’s paper, information

had been viewed as a kind of poorly defined miasmic fluid. But after

Shannon’s paper, it became apparent that information is a well-defined

and, above all, measurable quantity.

Shannon’s paper describes a subtle theory which tells us something

fundamental about the way the universe works. However, unlike

other great theories such as the Darwin–Wallace theory of evolution,

information theory is not simple, and it is full of caveats. But we

can disregard many of these caveats provided we keep a firm eye on the

physical interpretation of information theory’s defining equations. This

will be our guiding principle in exploring the theory of information.

1.2. Information, Eyes and Evolution

Shannon’s theory of information provides a mathematical definition

of information, and describes precisely how much information can be

communicated between di↵erent elements of a system. This may not

sound like much, but Shannon’s theory underpins our understanding of

how signals and noise are related, and why there are definite limits to

the rate at which information can be communicated within any system,

whether man-made or biological. It represents one of the few examples

of a single theory creating an entirely new field of research. In this

regard, Shannon’s theory ranks alongside those of Darwin–Wallace,

Newton, and Einstein.

When a question is typed into a computer search engine, the results

provide useful information but it is buried in a sea of mostly useless

data. In this internet age, it is easy for us to appreciate the di↵erence

between information and data, and we have learned to treat the

information as a useful ‘signal’ and the rest as distracting ‘noise’. This

experience is now so commonplace that technical phrases like ‘signal

to noise ratio’ are becoming part of everyday language. Even though

most people are unaware of the precise meaning of this phrase, they

have an intuitive grasp of the idea that ‘data’ means a combination of

(useful) signals and (useless) noise.

2



1.3. Finding a Route, Bit by Bit

The ability to separate signal from noise, to extract information from

data, is crucial for modern telecommunications. For example, it allows

a television picture to be compressed to its bare information bones and

transmitted to a satellite, then to a TV, before being decompressed to

reveal the original picture on the TV screen.

This type of scenario is also ubiquitous in the natural world. The

ability of eyes and ears to extract useful signals from noisy sensory data,

and to package those signals e�ciently, is the key to survival51. Indeed,

the e�cient coding hypothesis5;8;43;55 suggests that the evolution of

sense organs, and of the brains that process data from those organs, is

primarily driven by the need to minimise the energy expended for each

bit of information acquired from the environment. More generally, a

particular branch of brain science, computational neuroscience, relies

on information theory to provide a benchmark against which the

performance of neurons can be objectively measured.

On a grander biological scale, the ability to separate signal from noise

is fundamental to the Darwin–Wallace theory of evolution by natural

selection12. Evolution works by selecting the individuals best suited to

a particular environment so that, over many generations, information

about the environment gradually accumulates within the gene pool.

Thus, natural selection is essentially a means by which information

about the environment is incorporated into DNA (deoxyribonucleic

acid). And it seems likely that the rate at which information is

incorporated into DNA is accelerated by an age-old biological mystery,

sex. These and other applications of information theory are described

in Chapter 9.

1.3. Finding a Route, Bit by Bit

Information is usually measured in bits, and one bit of information

allows you to choose between two equally probable alternatives. The

word bit is derived from binary digit (i.e. a zero or a one). However, as

we shall see, bits and binary digits are fundamentally di↵erent types of

entities.

Imagine you are standing at the fork in the road at point A in Figure

1.2, and that you want to get to the point marked D. Note that this

figure represents a bird’s-eye view, which you do not have; all you have

3



1 What Is Information?

is a fork in front of you, and a decision to make. If you have no prior

information about which road to choose then the fork at A represents

two equally probable alternatives. If I tell you to go left then you have

received one bit of information. If we represent my instruction with a

binary digit (0=left and 1=right) then this binary digit provides you

with one bit of information, which tells you which road to choose.

Now imagine that you stroll on down the road and you come to

another fork, at point B in Figure 1.2. Again, because you have no

idea which road to choose, a binary digit (1=right) provides one bit

of information, allowing you to choose the correct road, which leads to

the point marked C.

Note that C is one of four possible interim destinations that you

could have reached after making two decisions. The two binary

digits that allow you to make the correct decisions provided two bits

of information, allowing you to choose from four (equally probable)

possible alternatives; 4 happens to equal 2⇥ 2 = 22.

A third binary digit (1=right) provides you with one more bit of

information, which allows you to again choose the correct road, leading

to the point marked D.

A

B

D 0 1 1 = 3

0 0 0 = 0

0 0 1 = 1

0 1 0 = 2

1 0 0 = 4

1 0 1 = 5

1 1 0 = 6

1 1 1 = 7

C

-----

-----

-----

    --

-----

-----

-----

-----

Left

Right

0

1

0

0

1

1

1

1

1

1

0

0

0

0

Figure 1.2. How many roads must a man walk down? For a traveller who
does not know the way, each fork in the road requires one bit of information
to make a correct decision. The 0s and 1s on the right-hand side summarise
the instructions needed to arrive at each destination; a left turn is indicated
by a 0 and a right turn by a 1.
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1.3. Finding a Route, Bit by Bit

There are now eight roads you could have chosen from when you

started at A, so three binary digits (which provide you with three

bits of information) allow you to choose from eight equally probable

alternatives; 8 happens to equal 2⇥ 2⇥ 2 = 23 = 8.

The decision taken at A excluded half of the eight possible

destinations shown in Figure 1.2 that you could have arrived at.

Similarly, the decision taken at each successive fork in the road halved

the number of remaining possible destinations.

A Journey of Eight Alternatives

Let’s summarise your journey in terms of the number of equally

probable alternatives:

If you have 1 bit of information then you can choose between 2

equally probable alternatives (i.e. 21 = 2).

If you have 2 bits of information then you can choose between 4

equally probable alternatives (i.e. 22 = 4).

Finally, if you have 3 bits of information then you can choose

between 8 equally probable alternatives (i.e. 23 = 8).

We can restate this in more general terms if we use n to represent the

number of forks, and m to represent the number of final destinations.

If you have come to n forks, then you have e↵ectively chosen from

m = 2n final destinations. (1.1)

Because the decision at each fork requires one bit of information, n

forks require n bits of information, which allow you to choose from 2n

equally probable alternatives.

There is a saying that “a journey of a thousand miles begins with a

single step”. In fact, a journey of a thousand miles begins with a single

decision: the direction in which to take the first step.

Key point. One bit is the amount of information required to

choose between two equally probable alternatives.

5



1 What Is Information?

Binary Numbers

We could label each of the eight possible destinations with a decimal

number between 0 and 7, or with the equivalent binary number, as

in Figure 1.2. These decimal numbers and their equivalent binary

representations are shown in Table 1.1. Counting in binary is analogous

to counting in decimal. Just as each decimal digit in a decimal number

specifies how many 1s, 10s, 100s (etc) there are, each binary digit in

a binary number specifies how many 1s, 2s, 4s (etc) there are. For

example, the value of the decimal number 101 equals the number of

100s (i.e. 102), plus the number of 10s (i.e. 101), plus the number of 1s

(i.e. 100):

(1⇥ 100) + (0⇥ 10) + (1⇥ 1) = 101. (1.2)

Similarly, the value of the binary number 101 equals the number of 4s

(i.e. 22), plus the number of 2s (i.e. 21), plus the number of 1s (i.e. 20):

(1⇥ 4) + (0⇥ 2) + (1⇥ 1) = 5. (1.3)

The binary representation of numbers has many advantages. For

instance, the binary number that labels each destination (e.g. 011)

explicitly represents the set of left/right instructions required to reach

that destination. This representation can be applied to any problem

that consists of making a number of two-way (i.e. binary) decisions.

Logarithms

The complexity of any journey can be represented either as the number

of possible final destinations or as the number of forks in the road which

must be traversed in order to reach a given destination. We know that

as the number of forks increases, so the number of possible destinations

also increases. As we have already seen, if there are three forks then

there are 8 = 23 possible destinations.

Decimal 0 1 2 3 4 5 6 7
Binary 000 001 010 011 100 101 110 111

Table 1.1. Decimal numbers and their equivalent binary representations.
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1.3. Finding a Route, Bit by Bit

Viewed from another perspective, if there are m = 8 possible

destinations then how many forks n does this imply? In other words,

given eight destinations, what power of 2 is required in order to get

8? In this case, we know the answer is n = 3, which is called the

logarithm of 8. Thus, 3 = log
2

8 is the number of forks implied by eight

destinations.

More generally, the logarithm of m is the power to which 2 must be

raised in order to obtain m; that is, m = 2n. Equivalently, given a

number m which we wish to express as a logarithm,

n = log
2

m. (1.4)

The subscript
2

indicates that we are using logs to the base 2 (all

logarithms in this book use base 2 unless stated otherwise). See

Appendix C for a tutorial on logarithms.

A Journey of log2(8) Decisions

Now that we know about logarithms, we can summarise your journey

from a di↵erent perspective, in terms of bits:

If you have to choose between 2 equally probable alternatives

(i.e. 21) then you need 1(= log
2

21 = log
2

2) bit of information.

If you have to choose between 4 equally probable alternatives

(i.e. 22) then you need 2(= log
2

22 = log
2

4) bits of information.

If you have to choose between 8 equally probable alternatives

(i.e. 23) then you need 3(= log
2

23 = log
2

8) bits of information.

More generally, if you have to choose between m equally probable

alternatives, then you need n = log
2

m bits of information.

Key point. If you have n bits of information, then you

can choose from m = 2n equally probable alternatives.

Equivalently, if you have to choose betweenm equally probable

alternatives, then you need n = log
2

m bits of information.
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1 What Is Information?

1.4. A Million Answers to Twenty Questions

Navigating a series of forks in the road is, in some respects, similar to

the game of ‘20 questions’. In this game, your opponent chooses a word

(usually a noun), and you (the astute questioner) are allowed to ask

20 questions in order to discover the identity of this word. Crucially,

each question must have a yes/no (i.e. binary) answer, and therefore

provides you with a maximum of one bit of information.

By analogy with the navigation example, where each decision at a

road fork halved the number of remaining destinations, each question

should halve the number of remaining possible words. In doing so, each

answer provides you with exactly one bit of information. A question to

which you already know the answer is a poor choice of question. For

example, if your question is, “Is the word in the dictionary?”, then the

answer is almost certainly, “Yes!”, an answer which is predictable, and

which therefore provides you with no information.

Conversely, a well-chosen question is one to which you have no idea

whether the answer will be yes or no; in this case, the answer provides

exactly one bit of information. The cut-down version of ‘20 questions’

in Figure 1.3 shows this more clearly.

0 1 1 = 3

0 0 0 = 0

0 0 1 = 1

0 1 0 = 2

1 0 0 = 4

1 0 1 = 5

1 1 0 = 6

1 1 1 = 7

Fish

Bird

Dog

Car

Van

Truck

Bus

No

Yes

Yes

Yes

Q1

Q2

Q3

Cat

Figure 1.3. The game of ‘20 questions’, here abbreviated to ‘3 questions’.
Given an opponent who has one of eight words in mind, each yes/no question
halves the number of remaining possible words. Each binary number on the
right summarises the sequence of answers required to arrive at one word
(no=0 and yes=1).
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1.4. A Million Answers to Twenty Questions

In this game, your opponent has a vocabulary of exactly eight words,

and you know which words they are. Your first question (Q1) could be,

“Is it inanimate?”, and the answer should halve the number of possible

words to four, leading you to your second question (Q2). If your second

question (Q2) is, “Is it a mammal?”, then the answer should again

halve the number of possible words, leading to your third question

(Q3). By the time you arrive at Q3, there are just two possible words

left, and after you have asked the third question (e.g. “Is it ‘cat’?”),

your opponent’s yes/no response leads you to the correct answer. In

summary, you have asked three questions, and excluded all but one out

of eight possible words.

More realistically, let’s assume your opponent has the same

vocabulary as you do (most of us have similar vocabularies, so this

assumption is not entirely unreasonable). Specifically, let’s assume

this vocabulary contains exactly 1,048,576 words. Armed with this

knowledge, each question can, in principle, be chosen to halve the

number of remaining possible words. So, in an ideal world, your first

question should halve the number of possible words to 524,288. Your

next question should halve this to 262,144 words, and so on. By the

time you get to the 19th question there should be just two words left,

and after the 20th question, there should be only one word remaining.

The reason this works out so neatly is because 20 questions allow

you to choose from exactly 1, 048, 576 = 220 equally probable words

(i.e. about one million). Thus, the 20 bits of information you have

acquired with your questioning provide you with the ability to narrow

down the range of possible words from about 1 million to just one. In

other words, 20 questions allow you to find the correct word out of

about a million possible words.

Adding one more question would not only create a new game, ‘21

questions’, it would also double the number of possible words (to

about 2 million) that you could narrow down to one. By extension,

each additional question allows you to acquire up to one more bit of

information, and can therefore double the initial number of words. In

principle, a game of ‘40 questions’ allows you to acquire 40 bits of

information, allowing you to find one out of 240 ⇡ 1012 words.

9



1 What Is Information?

In terms of the navigation example, 40 bits would allow you to

navigate 40 forks in the road, and would therefore permit you to

choose one out of about a trillion possible routes. So the next

time you arrive at your destination after a journey that involved 40

decisions, remember that you have avoided arriving at a trillion-minus-

one incorrect destinations.

1.5. Information, Bits and Binary Digits

Despite the fact that the word bit is derived from binary digit, there is

a subtle, but vital, di↵erence between them. A binary digit is the value

of a binary variable, where this value can be either a 0 or a 1, but a

binary digit is not information per se. In contrast, a bit is a definite

amount of information. Bits and binary digits are di↵erent types of

entity, and to confuse one with the other is known as a category error.

To illustrate this point, consider the following two extreme examples.

At one extreme, if you already know that you should take the left-hand

road from point A in Figure 1.2 and I show you the binary digit 0

(=left), then you have been given a binary digit but you have gained

no information. At the other extreme, if you have no idea about which

road to choose and I show you a 0, then you have been given a binary

digit and you have also gained one bit of information. Between these

extremes, if someone tells you there is a 71% probability that the left-

hand road represents the correct decision and I subsequently confirm

this by showing you a 0, then this 0 provides you with less than one bit

of information (because you already had some information about which

road to choose). In fact, when you receive my 0, you gain precisely half

a bit of information (see Section 5.8). Thus, even though I cannot give

you a half a binary digit, I can use a binary digit to give you half a bit

of information.

The distinction between binary digits and bits is often ignored,

with Pierce’s book40 being a notable exception. Even some of the

best textbooks use the terms ‘bit’ and ‘binary digit’ interchangeably.

This does not cause problems for experienced readers as they can

interpret the term ‘bit’ as meaning a binary digit or a bit’s worth of

information according to context. But for novices the failure to respect

this distinction is a source of genuine confusion.
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1.6. Example 1: Telegraphy

Sadly, in modern usage, the terms bit and binary digit have

become synonymous, and MacKay (2003)34 proposed that the unit

of information should be called the Shannon.

Key point. A bit is the amount of information

required to choose between two equally probable alternatives

(e.g. left/right), whereas a binary digit is the value of a binary

variable, which can adopt one of two possible values (i.e. 0/1).

1.6. Example 1: Telegraphy

Suppose you have just discovered that if you hold a compass next to a

wire, then the compass needle changes position when you pass a current

through the wire. If the wire is long enough to connect two towns like

London and Manchester, then a current initiated in London can deflect

a compass needle held near to the wire in Manchester.

You would like to use this new technology to send messages in the

form of individual letters. Sadly, the year is 1820, so you will have to

wait over 100 years for Shannon’s paper to be published. Undeterred,

you forge ahead. Let’s say you want to send only upper-case letters, to

keep matters simple. So you set up 26 electric lines, one per letter from

A to Z, with the first line being A, the second line being B, and so on.

Each line is set up next to a compass which is kept some distance from

all the other lines, to prevent each line from deflecting more than one

compass.

In London, each line is labelled with a letter, and the corresponding

line is labelled with the same letter in Manchester. For example, if

you want to send the letter D, you press a switch on the fourth line

in London, which sends an electric current to Manchester along the

wire which is next to the compass labelled with the letter D. Of course,

lines fail from time to time, and it is about 200 miles from London to

Manchester, so finding the location of the break in a line is di�cult

and expensive. Naturally, if there were fewer lines then there would be

fewer failures.

With this in mind, Cooke and Wheatstone devised a complicated

two-needle system, which could send only 23 di↵erent letters. Despite

11



1 What Is Information?

the complexity of their system, it famously led to the arrest of a

murderer. On the first of January 1845, John Tawell poisoned his

mistress, Sarah Hart, in a place called Salt Hill in the county of

Berkshire, before escaping on a train to Paddington station in London.

In order to ensure Tawell’s arrest when he reached his destination, the

following telegraph was sent to London:

A MURDER HAS GUST BEEN COMMITTED AT SALT

HILL AND THE SUSPECTED MURDERER WAS SEEN

TO TAKE A FIRST CLASS TICKET TO LONDON BY

THE TRAIN WHICH LEFT SLOUGH AT 742 PM HE IS

IN THE GARB OF A KWAKER ...

The unusual spellings of the words JUST and QUAKER were a result

of the telegrapher doing his best in the absence of the letters J, Q and Z

in the array of 23 letters before him. As a result of this telegram, Tawell

was arrested and subsequently hanged for murder. The role of Cooke

and Wheatstone’s telegraph in Tawell’s arrest was widely reported in

the press, and established the practicality of telegraphy.

In the 1830s, Samuel Morse and Alfred Vail developed the first

version of (what came to be known as) the Morse code. Because

this specified each letter as dots and dashes, it could be used to send

messages over a single line.

An important property of Morse code is that it uses short codewords

for the most common letters, and longer codewords for less common

letters, as shown in Table 1.2. Morse adopted a simple strategy to

find out which letters were most common. Reasoning that newspaper

A • - J • - - - S • • •
B - • • • K - • - T -
C - • - • L • - • • U • • -
D - • • M - - V • • -
E • N - • W • - -
F • • - • O - - - X - • • -
G - - • P • - - • Y - • - -
H • • • • Q - - • - Z - - • •
I • • R • - •

Table 1.2. Morse code. Common letters (e.g. E) have the shortest codewords,
whereas rare letters (e.g. Z) have the longest codewords.

12



1.7. Example 2: Binary Images

printers would have only as many copies of each letter as were required,

he went to a printer’s workshop and counted the copies of each letter.

As a result, the most common letter E is specified as a single dot,

whereas the rare J is specified as a dot followed by three dashes.

The ingenious strategy adopted by Morse is important because it

enables e�cient use of the communication channel (a single wire). We

will return to this theme many times, and it raises a fundamental

question: how can we tell if a communication channel is being used

as e�ciently as possible?

1.7. Example 2: Binary Images

The internal structure of most images is highly predictable. For

example, most of the individual picture elements or pixels in the image

of stars in Figure 1.4 are black, with an occasional white pixel, a

star. Because almost all pixels are black, it follows that most pairs

of adjacent pixels are also black, which makes the image’s internal

structure predictable. If this picture were taken by the orbiting Hubble

telescope then its predictable structure would allow it to be e�ciently

transmitted to Earth.

Suppose you were in charge of writing the computer code which

conveys the information in Figure 1.4 from the Hubble telescope to

Earth. You could naively send the value of each pixel; let’s call this

method A. Because there are only two values in this particular image

(black and white), you could choose to indicate the colour black with

the binary digit 0, and the colour white with a 1. You would therefore

need to send as many 0s and 1s as there are pixels in the image. For

example, if the image was 100 ⇥ 100 pixels then you would need to

send ten thousand 0s or 1s for the image to be reconstructed on Earth.

Because almost all the pixels are black, you would send sequences of

hundreds of 0s interrupted by the occasional 1. It is not hard to see that

this is a wasteful use of the expensive satellite communication channel.

How could it be made more e�cient?

Another method consists of sending only the locations of the white

pixels (method B). This would yield a code like [(19, 13), (22, 30), . . . ],

where each pair of numbers represents the row and column of a white

pixel.

13



1 What Is Information?

Figure 1.4. The night sky. Each pixel contains one of just two values.

Yet another method consists of concatenating all of the rows of

the image, and then sending the number of black pixels that occur

before the next white pixel (method C). If the number of black pixels

that precede the first white pixel is 13 and there are 9 pixels before

the next white pixel, then the first row of the image begins with

000000000000010000000001 . . . , and the code for communicating this

would be [13, 9, . . . ], which is clearly more compact than the 24 binary

digits which begin the first row of the image.

Notice that method A consists of sending the image itself, whereas

methods B and C do not send the image, but they do send all of the

information required to reconstruct the image on Earth. Crucially,

the end results of all three methods are identical, and it is only the

e�ciency of the methods that di↵ers.

In fact, whether A, B, or C is the most e�cient method depends on

the structure of the image. This can be seen if we take an extreme

example consisting of just one white pixel in the centre of the image.

For this image, method A is fairly useless, because it would require

10,000 binary values to be sent. Method B would consist of two

numbers, (50, 50), and method C would consist of a single number,

5, 050. If we ignore the brackets and commas then we end up with four

decimal digits for both methods B and C. So these methods seem to

be equivalent, at least for the example considered here.

For other images, with other structures, di↵erent encoding methods

will be more or less e�cient. For example, Figure 1.5 contains just

two grey-levels, but these occur in large regions of pure black or pure

14



1.8. Example 3: Grey-Level Images

Figure 1.5. In a binary image, each pixel has 1 out of 2 possible grey-levels.

white. In this case, it seems silly to use method B to send the location

of every white pixel, because so many of them occur in long runs of

white pixels. This observation makes method C seem to be an obvious

choice – but with a slight change. Because there are roughly equal

numbers of black and white pixels which occur in regions of pure black

or pure white, we could just send the number of pixels which precede

the next change from black to white or from white to black. This is

known as run-length encoding.

To illustrate this, if the distance from the first black pixel in the

middle row to the first white pixel (the girl’s hair) is 87 pixels, and

the distance from there to the next black pixel is 31 pixels, and the

distance to the next white pixel is 18 pixels, then this part of the image

would be encoded as [87, 31, 18, . . . ]. Provided we know the method

used to encode an image, it is a relatively simple matter to reconstruct

the original image from the encoded image.

1.8. Example 3: Grey-Level Images

Suppose we wanted to transmit an image of 100⇥ 100 pixels, in which

each pixel has more than two possible grey-level values. A reasonable

number of grey-levels turns out to be 256, as shown in Figure 1.6a. As

before, there are large regions that look as if they contain only one grey-

level. In fact, each such region contains grey-levels which are similar,

but not identical, as shown in Figure 1.7. The similarity between nearby

pixel values means that adjacent pixel values are not independent of
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Figure 1.6. Grey-level image. (a) An image in which each pixel has one
out of 256 possible grey-levels, between 0 and 255, each of which can be
represented by a binary number with 8 binary digits (e.g. 255=11111111).
(b) Histogram of grey-levels in the picture.

each other, and that the image has a degree of redundancy. How can

this observation be used to encode the image?

One method consists of encoding the image in terms of the di↵erences

between the grey-levels of adjacent pixels. For brevity, we will call this

di↵erence coding. (More complex methods exist, but most are similar

in spirit to this simple method.) In principle, pixel di↵erences could

be measured in any direction within the image, but, for simplicity, we

concatenate consecutive rows to form a single row of 10,000 pixels,

and then take the di↵erence between adjacent grey-levels. We can

see the result of di↵erence coding by ‘un-concatenating’ the rows to

reconstitute an image, as shown in Figure 1.8a, which looks like a badly

printed version of Figure 1.6a. As we shall see, both images contain

the same amount of information.

If adjacent pixel grey-levels in a given row are similar, then the

di↵erence between the grey-levels is close to zero. In fact, a histogram

of di↵erence values shown in Figure 1.8b shows that the most common

di↵erence values are indeed close to zero, and only rarely greater than

±63. Thus, using di↵erence coding, we could represent almost every

one of the 9,999 di↵erence values in Figure 1.8a as a number between

�63 and +63.

In those rare cases where the grey-level di↵erence is larger than ±63,

we could list these separately as each pixel’s location (row and column
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1.8. Example 3: Grey-Level Images

(a) (b) (c) 

Figure 1.7. Adjacent pixels tend to have similar grey-levels, so the image
has a large amount of redundancy, which can be used for e�cient encoding.
(a) Grey-level image. (b) Magnified square from a. (c) Magnified square
from b, with individual pixel grey-levels indicated.

as 2⇥7 binary digits), and its grey-level (8 binary digits). Most coding

procedures have special ‘housekeeping’ fragments of computer code to

deal with things like this, but these account for a negligible percentage

of the total storage space required. For simplicity, we will assume that

this percentage is zero.

At first, it is not obvious how di↵erence coding represents any saving

over simply sending the value of each pixel’s grey-level. However,

because these di↵erences are between �63 and +63, they span a range

of 127 di↵erent values, i.e. [�63,�62, . . . , 0, . . . , 62, 63]. Any number

in this range can be represented using seven binary digits, because

7 = log 128 (leaving one spare value).

In contrast, if we were to send each pixel’s grey-level in Figure 1.6a

individually, then we would need to send 10,000 grey-levels. Because

each grey-level could be any value between 0 and 255, we would have

to send eight binary digits (8 = log 256) for each pixel.

Once we have encoded an image into 9,999 pixel grey-level di↵erences

(d
1

, d
2

, . . . , d
9999

), how do we use them to reconstruct the original

image? If the di↵erence d
1

between the first pixel grey-level x
1

and

the second pixel grey-level x
2

is, say, d
1

= (x
2

� x
1

) = 10 grey-levels

and the grey-level of x
1

is 5, then we obtain the original grey-level of

x
2

by adding 10 to x
1

; that is, x
2

= x
1

+ d
1

so x
2

= 5 + 10 = 15. We

then continue this process for the third pixel (x
3

= x
2

+d
2

), and so on.

Thus, provided we know the grey-level of the first pixel in the original

image (which can be encoded as eight binary digits), we can use the

17



1 What Is Information?

(a)

-60 -40 -20 0 20 40 600

1000

2000

3000

4000

5000

6000

Grey-level difference, d

N
um

be
r o

f p
ix

el
 d

iff
er

en
ce

s 
eq

ua
l t

o 
d

(b)

Figure 1.8. Di↵erence coding. (a) Each pixel grey-level is the di↵erence
between adjacent horizontal grey-level values in Figure 1.6a (grey = zero
di↵erence). (b) Histogram of grey-level di↵erences between adjacent pixel
grey-levels in Figure 1.6a. Only di↵erences between ±63 are plotted.

pixel grey-level di↵erences to recover the grey-level of every pixel in

the original image. The fact that we can reconstruct the original image

(Figure 1.6a) from the grey-level di↵erences (Figure 1.8a) proves that

they both contain exactly the same amount of information.

Let’s work out the total saving from using this di↵erence coding

method. The naive method of sending all pixel grey-levels, which vary

between 0 and 255, would need eight binary digits per pixel, requiring

a total of 80,000 binary digits. Using di↵erence coding we would need

seven binary digits per di↵erence value, making a total of 70,000 binary

digits. Therefore, using di↵erence coding provides a saving of 10,000

binary digits, or 12.5%.

In practice, a form of di↵erence coding is used to reduce the amount

of data required to transmit voices over the telephone, where it is known

as di↵erential pulse code modulation. Using the di↵erences between

consecutive values, a voice signal which would otherwise require eight

binary digits per value can be transmitted with just five binary digits.

As we shall see in subsequent chapters, a histogram of data values

(e.g. image grey-levels) can be used to find an upper bound for

the average amount of information each data value could convey.

Accordingly, the histogram (Figure 1.6b) of the grey-levels in Figure

1.6a defines an upper bound of 7.84 bits/pixel. In contrast, the

histogram (Figure 1.8b) of the grey-level di↵erences in Figure 1.8a

defines an upper bound of just 5.92 bits/pixel.
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Given that the images in Figures 1.6a and 1.8a contain the same

amount of information, and that Figure 1.8a contains no more than 5.92

bits/pixel, it follows that Figure 1.6a cannot contain more than 5.92

bits/pixel either. This matters because Shannon’s work guarantees that

if each pixel’s grey-level contains an average of 5.92 bits of information,

then we should be able to represent Figure 1.6a using no more than 5.92

binary digits per pixel. But this still represents an upper bound. In

fact, the smallest number of binary digits required to represent each

pixel is equal to the amount of information (measured in bits) implicit

in each pixel. So what we really want to know is: how much information

does each pixel contain?

This is a hard question, but we can get an idea of the answer by

comparing the amount of computer memory required to represent the

image in two di↵erent contexts (for simplicity, we assume that each

pixel has eight binary digits). First, in order to display the image

on a computer screen, the value of each pixel occupies eight binary

digits, so the bigger the picture, the more memory it requires to be

displayed. Second, a compressed version of the image can be stored on

the computer’s hard drive using an average of less than eight binary

digits per pixel (e.g. by using the di↵erence coding method above).

Consequently, storing the (compressed) version of an image on the hard

drive requires less memory than displaying that image on the screen.

In practice, image files are usually stored in compressed form with the

method used to compress the image indicated by the file name extension

(e.g. ‘.jpeg’).

The image in Figure 1.6a is actually 344 by 299 pixels, where each

pixel grey-level is between 0 and 255, which can be represented as eight

binary digits (because 28 = 256), or one byte. This amounts to a total

of 102,856 pixels, each of which is represented on a computer screen as

one byte. However, when the file containing this image is inspected,

it is found to contain only 45,180 bytes; the image in Figure 1.6a can

be compressed by a factor of 2.28(= 102856/45180) without any loss

of information. This means that the information implicit in each pixel,

which requires eight binary digits for it to be displayed on a screen,
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can be represented with about four binary digits on a computer’s hard

drive.

Thus, even though each pixel can adopt any one of 256 possible grey-

levels, and is displayed using eight binary digits of computer memory,

the grey-level of each pixel can be stored in about four binary digits.

This is important, because it implies that each set of eight binary digits

used to display each pixel in Figure 1.6a contains an average of only four

bits of information, and therefore each binary digit contains only half

a bit of information. At first sight, this seems like an odd result. But

we already know from Section 1.5 that a binary digit can represent half

a bit, and we shall see later (especially in Chapter 5) that a fraction

of a bit is a well-defined quantity which has a reasonably intuitive

interpretation.

1.9. Summary

From navigating a series of forks in the road, and playing the game

of ‘20 questions’, we have seen how making binary choices requires

information in the form of simple yes/no answers. These choices can

also be used to choose from a set of letters, and can therefore be used

to send typed messages along telegraph wires.

We found that increasing the number of choices from two (forks in the

road) to 26 (letters) to 256 (pixel grey-levels) allowed us to transmit

whole images down a single wire as a sequence of binary digits. In

each case, the redundancy of the data in a message allowed it to be

compressed before being transmitted. This redundancy emphasises

a key point: a binary digit does not necessarily provide one bit of

information. More importantly, a binary digit is not the same type of

entity as a bit of information.

So, what is information? It is what remains after every iota of natural

redundancy has been squeezed out of a message, and after every aimless

syllable of noise has been removed. It is the unfettered essence that

passes from computer to computer, from satellite to Earth, from eye

to brain, and (over many generations of natural selection) from the

natural world to the collective gene pool of every species.
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Chapter 2

Entropy of Discrete Variables

Information is the resolution of uncertainty.

Shannon C, 1948.

2.1. Introduction

Now that we have an idea of the key concepts of information theory,

we can begin to explore its inner workings on a more formal basis.

But first, we need to establish a few ground rules regarding probability,

discrete variables and random variables. Only then can we make sense

of entropy, which lies at the core of information theory.

2.2. Ground Rules and Terminology

Probability

We will assume a fairly informal notion of probability based on the

number of times particular events occur. For example, if a bag

contains 40 white balls and 60 black balls then we will assume that

the probability of reaching into the bag and choosing a black ball is

the same as the proportion, or relative frequency, of black balls in the

bag (i.e. 60/100 = 0.6). From this, it follows that the probability of an

event (e.g. choosing a black ball) can adopt any value between zero and

one, with zero meaning it definitely will not occur, and one meaning it

definitely will occur. Finally, given a set of mutually exclusive events

(such as choosing a ball, which has to be either black or white), the

probabilities of those events must add up to one (e.g. 0.4 + 0.6 = 1).

See Appendix F for an overview of the rules of probability.
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