Information Theory and Coding Examples for Entropy

م. فؤاد حمـادي 2020-2019

Example6: a source produce a stream of twenty letters (A,B,C,D,E) with probabilities
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{E})$,
$\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{D})$,
$\mathrm{P}(\mathrm{A})=0.5 \mathrm{P}(\mathrm{B})=0.25 \mathrm{P}(\mathrm{C})$.
Find
a. The entropy for this source
b. The amount of information each letter convey
c. The amount of information that the total message convey.

Sol
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{E})=0.1$
$\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{D})=0.2$
$\mathrm{P}(\mathrm{C})=0.4$
a. $\mathbf{H}=-\Sigma \mathbf{p i} \log \mathbf{~ p i}$
$=-(0.1 \log 0.1+0.2 \log 0.2+0.4 \log 0.4+0.2 \log 0.2+0.1 \log 0.1)$
$=-(2 \times 0.1 \log 0.1+2 \times 0.2 \log 0.2+0.4 \log 0.4)$
$=-(2 \times 0.1 \times-3.322+2 \times 0.2 \times-2.322+0.4 \times-1.322)$
$=0.66444+0.92888+0.52888=2.1222$
b. $\quad \mathrm{I}=-\log 0.1=3.3222=\mathrm{I}$ E

I в $=-\log 0.2=2.3222=\mathrm{I}$ D
Iс $=-\log 0.4=1.3222$
c. I message $=2 \times 0.3222+4 \times 2.3222+8 \times 1.3222+4 \times 2.3222+2 \times 3.3222$

$$
=42.444
$$

Or

I message $=$ no. of letters $\times \bar{I}$
$=20 * 2.1222$
$=42.444$

Entropy and Length of the Code

One of the key concepts in coding theory : we want to assign a fewer number of bits to code the more likely events.

$0 \leq$ Entropy $\leq \log 2(M)$ also $0 \leq H \leq L ;$

This illustrate that the more randomness that exist in the source symbols, the more bits per symbol are required to represent those symbols.
on the other hands, entropy provides us with the theoretical minimum for the average number of bits per symbol (average length of the code) that could be used to encode the same symbol. The closer L is to the entropy, the better the coder.

Code Efficiency and Redundancy

$$
\begin{gathered}
\xi_{\text {code }}=\frac{H(x)}{L} * 100 \% \text { where } \xi_{\text {code }}=\text { code Efficiency } \\
R_{\text {code }}=\frac{L-H(x)}{L} * 100 \%=\left(1-\frac{H(x)}{L}\right) * 100 \% \\
=\left(1-\xi_{\text {code }}\right) * 100 \% \quad \text { where } R_{\text {code }}=\text { Code Redundancy }
\end{gathered}
$$

Source Coding Techniques

1. Fixed Length Coding

In fixed length coding technique all symbols assigned with equal length because the coding don't take the probability in account.

The benefit of the fixed length code is ease of applied (easy in coding and decoding)

Example1: Let $\mathrm{x}=\{\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{x} 16\}$ where $\mathrm{pi}=1 / 16$ for all i , find ζ source code

Sol
$\mathrm{H}(\mathrm{x})=\log _{2} \mathrm{M}$
$=\log _{2} 16$
$=4 \mathrm{bit} / \mathrm{symbol}$
(because $\mathrm{p}_{1}=\mathrm{p}_{2}=\ldots=\mathrm{p}_{16}=1 / \mathrm{M}$)
For fixed length code
$L=\mathrm{i}=\left[\log _{2} M\right]=\left[\log _{2} 16\right]=[4]=4$
$\therefore \xi$ source code $=\mathrm{H}(\mathrm{x}) / \mathrm{L} * 100 \%=4 / 4 * 100 \%=100 \%$
source symbols probability codeword code length
$\begin{array}{llll}X_{1} & P_{1} & 0000 & 4\end{array}$
$\begin{array}{llll}X_{2} & P_{2} & 0001 & 4\end{array}$
X_{16}
P_{16}
1111

Example2: Let $\mathrm{x}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x} 4, \mathrm{x}_{5}\right\}$ where $\mathrm{pi}=1 / 5$ for all i ,

Sol
$\mathrm{H}(\mathrm{x})=\log _{2} \mathrm{M}$
$=\log _{2} 5=2.322 \mathrm{bit} / \mathrm{symbol}$
For fixed length code
$L=\mathrm{i}=\left[\log _{2} M\right]=\left[\log _{2} 5\right]=[2.322]=3 \mathrm{bit}$
$\therefore \xi$ source $\operatorname{cod} e=\mathrm{H}(\mathrm{x}) / \mathrm{L} * 100 \%=2.322 / 3 * 100 \%=77 \%$

Symbol		Probability	Code
x_{1}	0.2	$\underline{I_{i}}$	
x_{2}	0.2	000	3
x_{3}	0.2	001	3
x_{4}	0.2	010	3
x_{5}	0.2	011	3
		100	3

Example 3: Let $\mathrm{x}=\{\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{x} 12\}$ where $\mathrm{pi}=1 / 12$ for all i ,find ζ source code

Sol

$\mathrm{H}(\mathrm{x})=\log _{2} \mathrm{M}$
$=\log _{2} 12=3.585 \mathrm{bit} / \mathrm{symbol}$

For fixed length code
$L=\mathrm{i}=\left[\log _{2} M\right]=\left[\log _{2} 12\right]=[3.585]=4 \mathrm{bit}$
$\therefore \xi \quad$ source cod $e=\mathrm{H}(\mathrm{x}) / \mathrm{L} * 100 \%=3.585 / 4 * 100 \%=89 \%$

Symbol		Probability		Code
X_{1}		$1 / 12$		$\underline{I_{i}}$
X_{2}		$1 / 12$	0000	4
\cdot		0001	4	
\cdot	\cdot	\cdot	\cdot	
X_{12}	$1 / 12$		1100	4

