## INFORMATION THEORY

Master 1 - Informatique - Univ. Rennes 1 / ENS Rennes

## Aline Roumy



January 2020

## Outline

(1) Non mathematical introduction
(2) Mathematical introduction: definitions
(3 Typical vectors and the Asymptotic Equipartition Property (AEP)
(4) Lossless Source Coding
© Variable length Source coding - Zero error Compression

## About me

## Aline Roumy

Researcher at Inria, Rennes
Expertise: compression for video streaming image/signal processing, information theory, machine learning

Web: http://people.rennes.inria.fr/Aline.Roumy/ email: aline.roumy@inria.fr

## Course schedule (tentative)

## Information theory (IT):

a self-sufficient course with a lot of connections to probability

- Lecture 1: introduction, reminder on probability
- Lecture 2-3: Data compression (theoretical limits)
- Lecture 4: Construction of codes that can compress data
- Lecture 5: Beyond classical information theory (universality...)


## Course organization:

- slides (file available online)
- summary (file available online+hardcopy)
- proofs (see blackboard): take notes!

On my webpage:
http://people.rennes.inria.fr/Aline.Roumy/roumy_teaching.html

## Course grading and documents

- Homework:
- exercises (in class and at home)
- correction in front of the class give bonus points.
- Middle Exam:
- (in group) written exam,
- home.
- Final Exam:
- (individual) written exam
- questions de cours, et exercices (in French)
- 2 h
- All documents on my webpage: http://people.rennes.inria.fr/Aline.Roumy/roumy_teaching.html


## Course material

C.E. Shannon, "A mathematical theory of communication", Bell Sys. Tech. Journal, 27: 379-423, 623-656, 1948. seminal paper


## Course material

T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley Series in Telecommunications. Wiley, New York, 2006. THE reference


## Course material

R. Yeung. Information Theory and Network Coding. Springer 2008. network coding


## Course material

A. E. Gamal and Y-H. Kim. Network Information Theory. Cambridge University Press 2011. network information theory


Slides:
A. E. Gamal and Y-H. Kim.

Lecture Notes on Network Information Theory. arXiv:1001.3404v5, 2011. web

## Outline

(1) Non mathematical introduction
(2) Mathematical introduction: definitions
(3 Typical vectors and the Asymptotic Equipartition Property (AEP)
(4) Lossless Source Coding
© Variable length Source coding - Zero error Compression

## Lecture 1

## Non mathematical introduction

What does "communicating" means?

## What it is about? A bit of history...

- Information theory (IT) $=$
"The fundamental problem of communication is that of reproducing at one point, either exactly or approximately, a message selected at another point."
- IT established by Claude E. Shannon (1916-2001) in 1948.
- Seminal paper: "A Mathematical Theory of Communication" in the Bell System Technical Journal, 1948.
- revolutionary and groundbreaking paper


## Teaser 1: compression

## Hangman game

- Objective: play... and explain your strategy
-     -         -             -                 - 



## Teaser 1: compression

## Hangman game

- Objective: play... and explain your strategy
----

- 2 winning ideas
- Letter frequency
- Correlation between successive letters


## Teaser 1: compression

## Analogy Hangman game-compression

- word
- Answer to a question (yes/no)
removes uncertainty in word
- Goal: propose a minimum number of letter
- data (image)
- 1 bit of the bistream that represents the data removes uncertainty in data
- Goal: propose a minimum number of bits


## Teaser 2: communication over a noisy channel

- Context: storing/communicating data on a channel with errors
- scratches on a DVD
- lost data packets: webpage sent over the internet.
- lost or modified received signals: wireless links



## Teaser 2: communication over a noisy channel



After channel.

(1) choose binary vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
(2) compute $x_{5}, x_{6}, x_{7}$ s.t. XOR in each circle is 0
(3) add 1 or 2 errors
(4) correct errors s.t. rule 2 is satisfied

## Quiz 1:

Assume you know how many errors have been introduced.
Can one correct 1 error?
Can one correct 2 errors?

## Teaser 2: communication over a noisy channel

Take Home Message (THM):

- To get zero error at the receiver, one can send a FINITE number of additional of bits.
- For a finite number of additional of bits, there is a limit on the number of errors that can be corrected.


## Summary

- one can compress data by using two ideas:
- Use non-uniformity of the probabilities
this is the source coding theorem (first part of the course)
very surprising...
- Use dependence between the data
in middle exam


## Summary

- one can compress data by using two ideas:
- Use non-uniformity of the probabilities
this is the source coding theorem (first part of the course) very surprising...
- Use dependence between the data
in middle exam
- one can send data over a noisy channel and recover the data without any error
provided the data is encoded (send additional data) this is the channel coding theorem (second part of the course)


## Communicate what?

## Definition

Source of information: something that produces messages.

## Definition

Message: a stream of symbols taking their values in an alphabet.

Example<br>Source: camera<br>Message: picture<br>Symbol: pixel value: 3 coef. (RGB) Alphabet $=\{0, \ldots, 255\}^{3}$

## Example

Source: writer
Message: a text
Symbol: letter
Alphabet $=\{a, \ldots, z,!, ., ?, \ldots\}$

## How to model the communication?

- Model for the source:


## communication

a source of information
a message of the source
a symbol of the source alphabet of the source

- Model for the communication chain:



## How to model the communication?

- Model for the source:


## communication

a source of information
a message of the source a symbol of the source alphabet of the source

## mathematical model

a random process
$\rightarrow \quad$ a realization of a random vector
$\rightarrow$ a realization of a random variable
$\rightarrow \quad$ alphabet of the random variable

- Model for the communication chain:



## Point-to-point Information theory

Shannon proposed and proved three fundamental theorems for point-to-point communication (1 sender / 1 receiver):
(1) Lossless source coding theorem: For a given source, what is the minimum rate at which the source can be compressed losslessly?
rate $=\mathrm{nb}$ bits / source symbol
(2) Lossy source coding theorem: For a given source and a given distortion $D$, what is the minimum rate at which the source can be compressed within distortion $D$. rate $=\mathrm{nb}$ bits $/$ source symbol
(3) Channel coding theorem: What is the maximum rate at which data can be transmitted reliably?
rate $=\mathrm{nb}$ bits $/$ sent symbol over the channel

## Application of Information Theory

Information theory is everywhere...
(1) Lossless source coding theorem:
(2) Lossy source coding theorem:
(3) Channel coding theorem:

## Quiz 2: On which theorem $(1 / 2 / 3)$ rely these applications?

(1) zip compression
(2) jpeg and mpeg compression
(3) sending a jpeg file onto internet
(4) the 15 digit social security number
(5) movie stored on a DVD

## Reminder (1)

## Definition (Convergence in probability)

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of r.v. and $X$ a r.v. both defined over $\mathbb{R}$. $\left(X_{n}\right)_{n \geq 1}$ converges in probability to the r.v. $X$ if

$$
\forall \epsilon>0, \lim _{n \rightarrow+\infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0
$$

Notation:

$$
X_{n} \xrightarrow{p} X
$$

Quiz 3: Which of the following statements are true?
(1) $X_{n}$ and $X$ are random
(2) $X_{n}$ is random and $X$ is deterministic (constant)

## Reminder (2)

## Theorem (Weak Law of Large Numbers (WLLN))

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of r.v. over $\mathbb{R}$.
If $\left(X_{n}\right)_{n \geq 1}$ is i.i.d., $\mathcal{L}^{2}$ (i.e. $\left.\mathbb{E}\left[X_{n}^{2}\right]<\infty\right)$ then

$$
\frac{X_{1}+\ldots+X_{n}}{n} \xrightarrow{p} \mathbb{E}\left[X_{1}\right]
$$

Quiz 4: Which of the following statements are true?
(1) for any nonzero margin, with a sufficiently large sample there will be a very high probability that the average of the observations will be close to the expected value; that is, within the margin.
(2) LHS and RHS are random
(3) averaging kills randomness
(4) the statistical mean ((a.k.a. true mean) converges to the empirical mean (a.k.a. sample mean)

## Outline

(1) Non mathematical introduction
(2) Mathematical introduction: definitions
(3 Typical vectors and the Asymptotic Equipartition Property (AEP)
(4) Lossless Source Coding
© Variable length Source coding - Zero error Compression

## Lecture 2

## Mathematical introduction

Definitions: Entropy and Mutual Information

## Some Notation

Specific to information theory are denoted in red

- Upper case letters $X, Y, \ldots$ refer to random process or random variable
- Calligraphic letters $\mathcal{X}, \mathcal{Y}, \ldots$ refer to alphabets
- $|\mathcal{A}|$ is the cardinality of the set $\mathcal{A}$
- $X^{n}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is an $n$-sequence of random variables or a random vector

$$
X_{i}^{j}=\left(X_{i}, X_{i+1}, \ldots, X_{j}\right)
$$

- Lower case $x, y, \ldots$ and $x^{n}, y^{n}, \ldots$ mean scalars/vectors realization
- $X \sim p(x)$ means that the r.v. $X$ has probability mass function (pmf) $\mathbb{P}(X=x)=p(x)$
- $X^{n} \sim p\left(x^{n}\right)$ means that the discrete random vector $X^{n}$ has joint pmf $p\left(x^{n}\right)$
- $p\left(y^{n} \mid x^{n}\right)$ is the conditional pmf of $Y^{n}$ given $X^{n}=x^{n}$ :


## Lecture 1: Entropy (1)

## Definition (Entropy)

the entropy of a discrete random variable $X \sim p(x)$ :

$$
H(X)=-\sum_{x \in X} p(x) \log p(x)
$$

$H(X)$ in bits/source sample is the average length of the shortest description of the r.v. $X$. (Shown later)

Notation: $\log :=\log _{2}$
Convention: $0 \log 0:=0$ Properties
E1 $H(X)$ only depends on the $\operatorname{pmf} p(x)$ and not $x$.
E2 $H(X)=-\mathbb{E}_{X} \log p(X)$

## Entropy (2)

E3 $H(X) \geq 0$ with equality iff $X$ is constant.
E4 $H(X) \leq \log |X|$. The uniform distribution maximizes entropy.

## Example

Binary entropy function: Let $0 \leq p \leq 1$

$$
h_{b}(p)=-p \log p-(1-p) \log (1-p)
$$


$H(X)$ for a binary rv.
$H(X)$ measures the amount of uncertainty on the rv $X$.

```
        Pr}(X=1
```


## Entropy (3)

E4 (con't) Alternative proof with the positivity of the Kullback-Leibler (KL) divergence.

## Definition (Kullback-Leibler (KL) divergence)

Let $p(x)$ and $q(x)$ be 2 pmfs defined on the same set $X$.
The KL divergence between $p$ and $q$ is:

$$
D(p \| q)=\sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}
$$

Convention: $c \log c / 0=\infty$ for $c>0$.

Quiz 5: Which of the following statements are true?
(1) $D(p \| q)=D(q \| p)$.
(2) If $\operatorname{Support}(q) \subset \operatorname{Support}(p)$ then $D(p \| q)=\infty$.

## Entropy (4)

KL1 Positivity of KL [Cover Th. 2.6.3]: $D(p \| q) \geq 0$ with equality iff $\forall x, p(x)=q(x)$.

This is a consequence of Jensen's inequality [Cover Th. 2.6.2]: If $f$ is a convex function and $Y$ is a random variable with numerical values, then

$$
\mathbb{E}[f(Y)] \geq f(\mathbb{E}[Y])
$$

with equality when $f($.$) is not strictly convex, or when f($.$) is strictly$ convex and $Y$ follows a degenerate distribution (i.e. is a constant).
KL2 Let $X \sim p(x)$ and $q(x)=\frac{1}{|X|}$, then $D(p \| q)=-H(X)+\log |X|$

## Reminder (independence)

## Definition (independence)

The random variables $X$ and $Y$ are independent, denoted by $X \Perp Y$, if

$$
\forall(x, y) \in X \times Y, \quad p(x, y)=p(x) p(y)
$$

Definition (Mutual independence - mutuellement indépendant)
For $n \geq 3$, the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent if
$\forall\left(x_{1}, \ldots, x_{n}\right) \in X_{1} \times \ldots \times X_{n}, \quad p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{n}\right)$.
Definition (Pairwise independence - indépendance 2 à 2)
For $n \geq 3$, the random variables $X_{i}, X_{j}$ are pairwise independent if $\forall(i, j)$ s.t. $1 \leq i<j \leq n, X_{i}$ and $X_{j}$ are independent.

## Quiz 6

## Quiz 6: Which of the following statements are/is true?

(1) mutual independence implies pairwise independence.
(2) pairwise independence implies mutual independence

## Reminder (conditional independence)

## Definition (conditional independence)

Let $X, Y, Z$ be r.v.
$X$ is independent of $Z$ given $Y$, denoted by $X \Perp Z \mid Y$, if

$$
\forall(x, y, z) \quad p(x, z \mid y)= \begin{cases}p(x \mid y) p(z \mid y) & \text { if } p(y)>0 \\ 0 & \text { otherwise }\end{cases}
$$

or equivalently
$\forall(x, y, z) \quad p(x, y, z)= \begin{cases}\frac{p(x, y) p(y, z)}{p(y)}=p(x, y) p(z \mid y) & \text { if } p(y)>0 \\ 0 & \text { otherwise }\end{cases}$ or equivalently

$$
\forall(x, y, z) \in X \times y \times z, \quad p(x, y, z) p(y)=p(x, y) p(y, z),
$$

## Definition (Markov chain)

Let $X_{1}, X_{2}, \ldots, X_{n}, n \geq 3$ be r.v. $X_{1} \rightarrow X_{2} \rightarrow \ldots \rightarrow X_{n}$ forms a Markov chain if $\forall\left(x_{1}, \ldots, x_{n}\right)$
$p\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \begin{cases}p\left(x_{1}, x_{2}\right) p\left(x_{3} \mid x_{2}\right) \ldots p\left(x_{n} \mid x_{n-1}\right) & \text { if } p\left(x_{2}\right), \ldots, p\left(x_{n-1}\right)>0 \\ 0 & \text { otherwise }\end{cases}$
or equivalently $\forall\left(x_{1}, \ldots, x_{n}\right)$
$p\left(x_{1}, x_{2}, \ldots, x_{n}\right) p\left(x_{2}\right) p\left(x_{3}\right) \ldots p\left(x_{n-1}\right)=p\left(x_{1}, x_{2}\right) p\left(x_{2}, x_{3}\right) \ldots p\left(x_{n-1}, x_{n}\right)$
Quiz 7: Which of the following statements are true?
(1) $X \Perp Z \mid Y$ is equivalent to $X \rightarrow Z \rightarrow Y$
(2) $X \Perp Z \mid Y$ is equivalent to $X \rightarrow Y \rightarrow Z$
(3) $X_{1} \rightarrow X_{2} \rightarrow \ldots \rightarrow X_{n} \Rightarrow X_{n} \rightarrow \ldots \rightarrow X_{2} \rightarrow X_{1}$

## Joint and conditional entropy

## Definition (Conditional entropy)

For discrete random variables $(X, Y) \sim p(x, y)$, the Conditional entropy for a given $y$ is:

$$
H(X \mid Y=y)=-\sum_{x \in X} p(x \mid y) \log p(x \mid y)
$$

the Conditional entropy is:

$$
\begin{aligned}
H(X \mid Y) & =\sum_{y \in y} p(y) H(X \mid Y=y)=-\mathbb{E}_{X Y} \log p(X \mid Y) \\
& =-\sum_{x \in X} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x \mid y)=-\sum_{y \in y} p(y) \sum_{x \in X} p(x \mid y) \log p(x \mid y)
\end{aligned}
$$

$H(X \mid Y)$ in bits/source sample is the average length of the shortest description of the r.v. $X$ when $Y$ isknown.

## Joint entropy

## Definition (Joint entropy)

For discrete random variables $(X, Y) \sim p(x, y)$, the Joint entropy is:

$$
H(X, Y)=-\mathbb{E}_{X Y} \log p(X, Y)=-\sum_{x \in X} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)
$$

$H(X, Y)$ in bits/source sample is the average length of the shortest description of ???.

## Properties

JCE1 trick $H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)$
JCE2 $H(X, Y) \leq H(X)+H(Y)$ with equality iff $X$ and $Y$ are independent (denoted $X \Perp Y$ ).
JCE3 Conditioning reduces entropy $H(X \mid Y) \leq H(X)$ with equality iff $X \Perp Y$
JCE4 Chain rule for entropy (formule des conditionnements successifs) Let $X^{n}$ be a discrete random vector

$$
\begin{aligned}
H\left(X^{n}\right) & =H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{n} \mid X_{n-1}, \ldots, X_{1}\right) \\
& =\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right) \\
& =\sum_{i=1}^{n} H\left(X_{i} \mid X^{i-1}\right) \leq \sum_{i=1}^{n} H\left(X_{i}\right)
\end{aligned}
$$

with notation $H\left(X_{1} \mid X^{0}\right)=H\left(X_{1}\right)$.

JCE5 $H(X \mid Y) \geq 0$ with equality iff $X=f(Y)$ a.s.
JCE6 $H(X \mid X)=0$ and $H(X, X)=H(X)$
JCE7 Data processing inequality. Let $X$ be a discrete random variable and $g(X)$ be a function of $X$, then

$$
H(g(X)) \leq H(X)
$$

with equality iff $g(x)$ is injective on the support of $p(x)$.
JCE8 Fano's inequality: link between entropy and error prob. Let $(X, Y) \sim p(x, y)$ and $P_{e}=\mathbb{P}\{X \neq Y\}$, then

$$
H(X \mid Y) \leq h_{b}\left(P_{e}\right)+P_{e} \log (|X|-1) \leq 1+P_{e} \log (|X|-1)
$$

JCE9 $H(X \mid Z) \geq H(X \mid Y, Z)$ with equality iff $X$ and $Y$ are independent given $Z$ (denoted $X \Perp Y \mid Z)$.
JCE10 $H(X, Y \mid Z) \leq H(X \mid Z)+H(Y \mid Z)$ with equality iff $X \Perp Y \mid Z$.

## Venn diagram

is represented by

| $X($ a r.v. $)$ | $\rightarrow$ | set (set of realizations) |
| :---: | :---: | :---: |
| $H(X)$ | $\rightarrow$ | area of the set |
| $H(X, Y)$ | $\rightarrow$ | area of the union of sets |

## Exercise

(1) Draw a Venn Diagram for 2 r.v. $X$ and $Y$. Show $H(X), H(Y), H(X, Y)$ and $H(Y \mid X)$.
(2) Show the case $X \Perp Y$

3 Draw a Venn Diagram for 3 r.v. $X, Y$ and $Z$ and show the decomposition $H(X, Y, Z)=H(X)+H(Y \mid X)+H(Z \mid X, Y)$.
(4) Show the case $X \Perp Y \mid Z$

## Mutual Information

## Definition (Mutual Information)

For discrete random variables $(X, Y) \sim p(x, y)$, the Mutual Information is:

$$
\begin{aligned}
& \text { tion IS: } \\
& I(X ; Y)=\sum_{x \in X} \sum_{y \in y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
&=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X) \\
&=H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

Exercise Show $I(X ; Y)$ on the Venn Diagram representing $X$ and $Y$.

## Mutual Information: properties

MI1 $I(X ; Y)$ is a function of $p(x, y)$
MI2 $I(X ; Y)$ is symmetric: $I(X ; Y)=I(Y ; X)$
MI3 $I(X ; X)=H(X)$
MI4 $I(X ; Y)=D(p(x, y) \| p(x) p(y))$
MI5 $I(X ; Y) \geq 0$
with equality iff $X \Perp Y$
MI6 $I(X ; Y) \leq \min (H(X), H(Y))$ with equality iff $X=f(Y)$ a.s. or $Y=f(X)$ a.s.

## Conditional Mutual Information

## Definition (Conditional Mutual Information)

For discrete random variables $(X, Y, Z) \sim p(x, y, z)$, the
Conditional Mutual Information is:

$$
\begin{aligned}
I(X ; Y \mid Z) & =\sum_{x \in X} \sum_{y \in y} \sum_{z \in \mathcal{Z}} p(x, y, z) \log \frac{p(x, y \mid z)}{p(x \mid z) p(y \mid z)} \\
& =H(X \mid Z)-H(X \mid Y, Z) \\
& =H(Y \mid Z)-H(Y \mid X, Z)
\end{aligned}
$$

Exercise Show $I(X ; Y \mid Z)$ and $I(X ; Z)$ on the Venn Diagram representing $X, Y, Z$.
CMI1 $I(X ; Y \mid Z) \geq 0$ with equality iff $X \Perp Y \mid Z$
Exercise Compare $I(X ; Y, Z)$ with $I(X ; Y \mid Z)+I(X ; Z)$ on the Venn Diagram representing $X, Y, Z$.

## CMI2 Chain rule

$$
I\left(X^{n} ; Y\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X^{i-1}\right)
$$

CMI3 If $X \rightarrow Y \rightarrow Z$ form a Markov chain, then $I(X ; Z \mid Y)=0$
CMI4 Corollary: If $X \rightarrow Y \rightarrow Z$, then $I(X ; Y) \geq I(X ; Y \mid Z)$
CMI5 Corollary: Data processing inequality: If $X \rightarrow Y \rightarrow Z$ form a Markov chain, then $I(X ; Y) \geq I(X ; Z)$
Exercise Draw the Venn Diagram of the Markov chain $X \rightarrow Y \rightarrow Z$ CMI6 There is no order relation between $I(X ; Y)$ and $I(X ; Y \mid Z)$ Faux amis: Recall $H(X \mid Z) \leq H(X)$
Hint: show an example s.t. $I(X ; Y)>I(X ; Y \mid Z)$ and an example s.t. $I(X ; Y)<I(X ; Y \mid Z)$
Exercise Show the area that represents $I(X ; Y)-I(X ; Y \mid Z)$ on the Venn Diagram...

## Outline

(1) Non mathematical introduction
(2) Mathematical introduction: definitions
(3 Typical vectors and the Asymptotic Equipartition Property (AEP)
(4) Lossless Source Coding
© Variable length Source coding - Zero error Compression

## Lecture 3

## Typical vectors and <br> Asymptotic Equipartition Property (AEP)

## Re-reminder

## Definition (Convergence in probability)

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of r.v. and $X$ a r.v. both defined over $\mathbb{R}^{d}$. $\left(X_{n}\right)_{n \geq 1}$ converges in probability to the r.v. $X$ if

$$
\forall \epsilon>0, \lim _{n \rightarrow+\infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0
$$

Notation:

$$
X_{n} \xrightarrow{p} X
$$

Theorem (Weak Law of Large Numbers (WLLN))
Let $\left(X_{n}\right)_{n \geq 1}$ be a vector of r.v. over $\mathbb{R}$.
If $\left(X_{n}\right)_{n \geq 1}$ is i.i.d., $\mathcal{L}^{2}$ (i.e. $\left.\mathbb{E}\left[X_{n}^{2}\right]<\infty\right)$ then

$$
\frac{X_{1}+\ldots+X_{n}}{n} \xrightarrow{p} \mathbb{E}\left[X_{1}\right]
$$

## Theorem (Asymptotic Equipartition Property (AEP))

Let $X_{1}, X_{2}, \ldots$ be i.i.d. $\sim p(x)$ finite random process (source), let us denote $p\left(x^{n}\right)=\prod_{i=1}^{n} p\left(x_{i}\right)$, then

$$
-\frac{1}{n} \log p\left(X^{n}\right) \rightarrow H(X) \quad \text { in probability }
$$

## Definition (Typical set)

Let $\epsilon>0, n>0$ and $X \sim p(x)$, the set $A_{\epsilon}^{(n)}(X)$ of $\epsilon$-typical vectors $x^{n}$, where $p\left(x^{n}\right)=\prod_{i=1}^{n} p\left(x_{i}\right)$ is defined as

$$
A_{\epsilon}^{(n)}(X)=\left\{x^{n}:\left|-\frac{1}{n} \log p\left(x^{n}\right)-H(X)\right| \leq \epsilon\right\}
$$

## Properties

AEP1 $\forall(\epsilon, n)$, all these statements are equivalent:

$$
\begin{aligned}
x^{n} \in A_{\epsilon}^{(n)} & \Leftrightarrow 2^{-n(H(X)+\epsilon)} \leq p\left(x^{n}\right) \leq 2^{-n(H(X)-\epsilon)} \\
& \Leftrightarrow p\left(x^{n}\right) \doteq 2^{-n(H(X) \pm \epsilon)}
\end{aligned}
$$

Notation: $a_{n} \doteq 2^{n(b \pm \epsilon)} \Leftrightarrow\left|\frac{1}{n} \log a_{n}-b\right| \leq \epsilon$ for $n$ sufficiently large.
"uniform distribution on the typical set"

Interpretation of typicality


Example of typical vectors
$\mathbb{P}[X=x]=p(x)$
$x^{n}=\left(x_{1}, \ldots x_{i}, \ldots x_{n}\right)$
$n_{x}=\left|\left\{i: x_{i}=x\right\}\right|$
Let $x^{n}$ satisfies $\frac{n_{x}}{n}=p(x)$ then

$$
\begin{aligned}
p\left(x^{n}\right) & =\prod_{i} p\left(x_{i}\right)=\prod_{x \in \mathcal{X}} p(x)^{n_{x}} \\
& =2^{\sum_{x} n p(x) \log p(x)}=2^{-n H(X)}
\end{aligned}
$$

$x^{n}$ represents well the distribution So, $x^{n}$ is $\epsilon$-typical, $\forall \epsilon$.

## Quiz

- Let $X \sim \mathcal{B}(0.2), \epsilon=0.1$ and $n=10$. Which of the following $x^{n}$ vector is $\epsilon$-typical? $a=(0100000100) \quad b=(1100000000) \quad c=(1111111111)$
- Let $X \sim \mathcal{B}(0.5), \epsilon=0.1$ and $\mathrm{n}=10$. Which $x^{n}$ vectors are $\epsilon$-typical?


## Properties

AEP2 $\forall \epsilon>0, \lim _{n \rightarrow+\infty} \mathbb{P}\left(\left\{X^{n} \in A_{\epsilon}^{(n)}(X)\right\}\right)=1$ "for a given $\epsilon$, asymptotically a.s. typical"

## Theorem (CT Th. 3.1.2)

Given $\epsilon>0$. Assume that $\forall n, X^{n} \sim \prod_{i=1}^{n} p\left(x_{i}\right)$.
Then, for $n$ sufficiently large, we have
(1) $\mathbb{P}\left(A_{\epsilon}^{(n)}(X)\right)=\mathbb{P}\left(\left\{X^{n} \in A_{\epsilon}^{(n)}(X)\right\}\right)>1-\epsilon$
(2) $\left|A_{\epsilon}^{(n)}(X)\right| \leq 2^{n(H(X)+\epsilon)}$
(3) $\left|A_{\epsilon}^{(n)}(X)\right|>(1-\epsilon) 2^{n(H(X)-\epsilon)}$

2 and 3 can be summarized in $\left|A_{\epsilon}^{(n)}\right| \doteq 2^{n(H(X) \pm 2 \epsilon)}$.

## Outline

(1) Non mathematical introduction
(2) Mathematical introduction: definitions
(3 Typical vectors and the Asymptotic Equipartition Property (AEP)
(4) Lossless Source Coding
© Variable length Source coding - Zero error Compression

## Lecture 4

Lossless $\frac{\text { Source Coding }}{\downarrow}$
data compression

Compression system model:


We assume a finite alphabet i.i.d. source $U_{1}, U_{2}, \ldots \sim p(u)$.

## Definition (Fixed-length Source code (FLC))

Let $R \in \mathbb{R}^{+}, n \in \mathbb{N}^{*}$. A $\left(2^{n R}, n\right)$ fixed-length source code consists of:
(1) An encoding function that assigns to each $u^{n} \in \mathcal{U}^{n}$ an index $i \in\left\{1,2, \ldots, 2^{n R}\right\}$, ie., a codeword of length $n R$ bits:

$$
\begin{aligned}
U^{n} & \rightarrow \mathcal{J}=\left\{1,2, \ldots, 2^{n R}\right\} \\
u^{n} & \mapsto i\left(u^{n}\right)
\end{aligned}
$$

(2) A decoding function that assigns an estimate $\hat{u}^{n}(i)$ to each received index $i$

$$
\begin{aligned}
\mathcal{J} & \rightarrow \mathcal{U}^{n} \\
i & \mapsto \hat{u}^{n}(i)
\end{aligned}
$$

# Definition (Probability of decoding error) 

Let $n \in \mathbb{N}^{*}$. The probability of decoding error is $P_{e}^{(n)}=\mathbb{P}\left\{\hat{U}^{n} \neq U^{n}\right\}$
$R$ is called the compression rate: number of bits per source sample.

## Definition (Achievable rate)

Let $R \in \mathbb{R}^{+}$. A rate $R$ is achievable if there exists a sequence of $\left(2^{n R}, n\right)$ codes with $P_{e}^{(n)} \rightarrow 0$ as $n \rightarrow \infty$

## Source Coding Theorem

The source coding problem is to find the infimum of all achievable rates.

Theorem (Source coding theorem (Shannon'48))
Let $U \sim p(u)$ be a finite alphabet i.i.d. source. Let $R \in \mathbb{R}^{+}$. [Achievability]. If $R>H(U)$, then there exists a sequence of $\left(2^{n R}, n\right)$ codes s.t. $P_{e}^{(n)} \rightarrow 0$.
[Converse]. For any sequence of $\left(2^{n R}, n\right)$ codes s.t. $P_{e}^{(n)} \rightarrow 0$, $R \geq H(U)$

Classical (and equivalent) statement of [Converse]: If there exists a sequence of $\left(2^{n R}, n\right)$ codes s.t. $P_{e}^{(n)} \rightarrow 0$, then $R \geq H(U)$

## Proof of achievability [CT Th. 3.2.1]

Let $U \sim p(u)$ a finite alphabet i.i.d. process.
Let $R \in \mathbb{R}, \epsilon>0$.


- Assume that $R>H(U)+\epsilon$.

Then $\left|A_{\epsilon}^{(n)}\right| \leq 2^{n(H(U)+\epsilon)}<2^{n R}$.
Assume that $n R$ is an integer.

- Encoding: Assign a distinct index $i\left(u^{n}\right)$ to each $u^{n} \in A_{\epsilon}^{(n)}$
Assign the same index (not assigned to any typical vector) to all $u^{n} \notin A_{\epsilon}^{(n)}$
- The probability of error

$$
P_{e}^{(n)}=1-\mathbb{P}\left(A_{\epsilon}^{(n)}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

## Proof of converse [Yeung Sec. 5.2, EIGamal Page 3-34]

- Given a sequence of $\left(2^{n R}, n\right)$ codes with $P_{e}^{(n)} \rightarrow 0$, let $/$ be the random variable corresponding to the index of the $\left(2^{n R}, n\right)$ encoder.
By Fano's inequality

$$
H\left(U^{n} \mid I\right) \leq H\left(U^{n} \mid \hat{U}^{n}\right) \leq n P_{e}^{(n)} \log |\mathcal{U}|+1 \triangleq n \epsilon_{n}
$$

where $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$, since $|\mathcal{U}|$ is finite.

- Now consider

$$
\begin{aligned}
n R & \geq H(I) \\
& =I\left(U^{n} ; I\right) \\
& =n H(U)-H\left(U^{n} \mid I\right) \geq n H(U)-n \epsilon_{n}
\end{aligned}
$$

Thus as $n \rightarrow \infty, R \geq H(U)$

- The above source coding theorem also holds for any discrete stationary and ergodic source


## Outline

(1) Non mathematical introduction
(2) Mathematical introduction: definitions
(3 Typical vectors and the Asymptotic Equipartition Property (AEP)
(4) Lossless Source Coding
© Variable length Source coding - Zero error Compression

## Lecture 5

## Variable length Source coding

Zero error Data Compression

## A code

## Definition (Variable length Source code (VLC))

Let $X$ be a r.v. with finite alphabet $X$. A variable-length source code $C$ for a random variable $X$ is a mapping

$$
C: X \rightarrow \mathcal{A}^{*}
$$

where $X$ is a set of $M$ symbols,
$\mathcal{A}$ is a set of $D$ letters, and
$\mathcal{A}^{*}$ the set of finite length sequences (or strings) of letters from $\mathcal{A}$. $C(x)$ denotes the codeword corresponding to the symbol $x$.

In the following, we will say Source code for VLC. Examples 1, 2

## The length of a code

Let $L: \mathcal{A}^{*} \rightarrow \mathbb{N}$ denote the length mapping of a codeword (sequence of letters).
$L(C(x)) \quad$ is the number of letters of $C(x)$, and $L(C(x)) \log |\mathcal{A}| \quad$ the number of bits.

## Definition

The expected length $L(C)$ of a source code $C$ for a random variable $X$ with $p m f p(x)$ is given by:

$$
L(C)=\mathbb{E}[L(C(X))]=\sum_{x \in x} L(C(x)) p(x)
$$

Goal Find a source code $C$ for $X$ with smallest $L(C)$.

## Encoding a sequence of source symbols

## Definition

A source message= a sequence of symbols
A coded sequence $=$ a sequence of codewords

## Definition

The extension of a code $C$ is the mapping from finite length sequences of $\mathcal{X}$ (of any length) to finite length strings of $\mathcal{A}$, defined by:

$$
C: \begin{array}{ccc}
x^{*} & \rightarrow & \mathcal{A}^{*} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto & \mapsto\left(x_{1}, \ldots, x_{n}\right)=C\left(x_{1}\right) C\left(x_{2}\right) \ldots C\left(x_{n}\right)
\end{array}
$$

where $C\left(x_{1}\right) C\left(x_{2}\right) \ldots C\left(x_{n}\right)$ indicates the concatenation of the corresponding codewords.

## Characteristics of good codes

## Definition

A (source) code $C$ is said to be non-singular iff $C$ is injective:

$$
\forall\left(x_{i}, x_{j}\right) \in X^{2}, x_{i} \neq x_{j} \Rightarrow C\left(x_{i}\right) \neq C\left(x_{j}\right)
$$

## Definition

A code is called uniquely decodable iff its extension is non-singular.

## Definition

A code is called a prefix code (or an instantaneous code) if no codeword is a prefix of any other codeword.
prefix code
uniquely decodable $\nLeftarrow$ prefix code

## Examples

## Kraft inequality

## Theorem (prefix code $\Leftrightarrow$ KI [CT Th 5.2.1])

Let $C$ be an prefix code for the source $X$ with $|X|=M$ over an alphabet $\mathcal{A}=\left\{a_{1}, \ldots, a_{D}\right\}$ of size $D$. Let $I_{1}, l_{2}, \ldots, I_{M}$ the lengths of the codewords associated to the realizations of $X$. These codeword lengths must satisfy the Kraft inequality

$$
\begin{equation*}
\sum_{i=1}^{M} D^{-l_{i}} \leq 1 \tag{KI}
\end{equation*}
$$

Conversely, let $I_{1}, l_{2}, \ldots, l_{M}$ be $M$ lengths that satisfy this inequality (KI), there exists an prefix code with M symbols, constructed with D letters, and with these word lengths.

- from the lengths, one can always construct a prefix code
- finding prefix code is equivalent to finding the codeword lengths


## uniquely decodable

Theorem (uniquely decodable code $\Leftrightarrow \mathrm{KI}$ [CT Th 5.5.1])
The codeword lengths of any uniquely decodable code must satisfy the Kraft inequality.
Conversely, given a set of codeword lengths that satisfy this inequality, it is possible to construct a uniquely decodable code with these codeword lengths.

## uniquely decodable

Theorem (uniquely decodable code $\Leftrightarrow$ KI [CT Th 5.5.1])
The codeword lengths of any uniquely decodable code must satisfy the Kraft inequality.
Conversely, given a set of codeword lengths that satisfy this inequality, it is possible to construct a uniquely decodable code with these codeword lengths.

## Good news!!

$$
\begin{array}{ccc}
\text { prefix code } & \Leftrightarrow & \mathrm{KI} \\
\text { uniquely decodable code (UDC) } & \Leftrightarrow & \mathrm{KI}
\end{array}
$$

$\Rightarrow$ same set of achievable codeword lengths for UDC and prefix
$\Rightarrow$ restrict the search of good codes to the set of prefix codes.

## Optimal source codes

Let $X$ be a r.v. taking $M$ values in $X=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{M}\right\}$, with probabilities $p_{1}, p_{2}, \ldots, p_{M}$.
Each symbol $\alpha_{i}$ is associated with a codeword $W_{i}$ i.e. a sequence of $l_{i}$ letters, where each letter takes value in an alphabet of size $D$.

## G0al

Find a uniquely decodable code with minimum expected length.
Find a prefix code with minimum expected length.
Find a set of lengths satisfying KI with minimum expected length.

$$
\begin{equation*}
\left\{l_{1}^{*}, l_{2}^{*}, \ldots, l_{M}^{*}\right\}=\arg \min _{\left\{l_{1}, l_{2}, \ldots, l_{M}\right\}} \sum_{i=1}^{M} p_{i} l_{i} \tag{Pb1}
\end{equation*}
$$

$$
\text { s.t. } \forall i, l_{i} \geq 0 \text { and } \sum_{i=1}^{M} D^{-l_{i}} \leq 1
$$

## Battle plan to solve (Pb1)

(1) find a lower bound for $L(C)$,
(2) find an upper bound,
(3) construct an optimal prefix code.

## Lower bound of prefix code

Theorem (Lower bound on the expected length of any prefix code [CT Th. 5.3.1])
The expected length $L(C)$ of any prefix $D$-ary code for the r.v. $X$ taking $M$ values in $X=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{M}\right\}$, with probabilities $p_{1}, p_{2}, \ldots, p_{M}$, is greater than or equal to the entropy $H(X) / \log (D)$ i.e.,

$$
L(C)=\sum_{i=1}^{M} p_{i} I_{i} \geq \frac{H(X)}{\log D}
$$

with equality iff $p_{i}=D^{-l_{i}}$, for $i=1, \ldots, M$, and $\sum_{i=1}^{M} D^{-l_{i}}=1$

## Lower and upper bound of Shannon code

## Definition

A Shannon code (defined on an alphabet with $D$ symbols) for each source symbol $\alpha_{i} \in \mathcal{X}=\left\{\alpha_{i}\right\}_{i=1}^{M}$ of probability $p_{i}>0$, assigns codewords of length $L\left(C\left(\alpha_{i}\right)\right)=I_{i}=\left\lceil-\log _{D}\left(p_{i}\right)\right\rceil$.

Theorem (Expected length of a Shannon code [CT Sec. 5.4])
Let $X$ be a r.v. with entropy $H(X)$. The Shannon code for the source $X$ can be turned into a prefix code and its expected length $L(C)$ satisfies

$$
\begin{equation*}
\frac{H(X)}{\log D} \leq L(C)<\frac{H(X)}{\log D}+1 \tag{1}
\end{equation*}
$$

## Lower and upper bound of Shannon code

## Definition

A Shannon code (defined on an alphabet with $D$ symbols) for each source symbol $\alpha_{i} \in \mathcal{X}=\left\{\alpha_{i}\right\}_{i=1}^{M}$ of probability $p_{i}>0$, assigns codewords of length $L\left(C\left(\alpha_{i}\right)\right)=I_{i}=\left\lceil-\log _{D}\left(p_{i}\right)\right\rceil$.

Theorem (Expected length of a Shannon code [CT Sec. 5.4]) Let $X$ be a r.v. with entropy $H(X)$. The Shannon code for the source $X$ can be turned into a prefix code and its expected length $L(C)$ satisfies

$$
\begin{equation*}
\frac{H(X)}{\log D} \leq L(C)<\frac{H(X)}{\log D}+1 \tag{1}
\end{equation*}
$$

## Corollary

Let $X$ be a r.v. with entropy $H(X)$. There exists a prefix code with expected length $L(C)$ that satisfies (1).

## Lower and upper bound of optimal code

## Definition

A code is optimal if it achieves the lowest expected length among all prefix codes.

Theorem (Lower and upper bound on the expected length of an optimal code [CT Th 5.4.1])
Let $X$ be a r.v. with entropy $H(X)$. Any optimal code $C^{*}$ for $X$ with codeword lengths $I_{1}^{*}, \ldots, l_{M}^{*}$ and expected length $L\left(C^{*}\right)=\sum p_{i} \|_{i}^{*}$ satisfies

$$
\frac{H(X)}{\log D} \leq L\left(C^{*}\right)<\frac{H(X)}{\log D}+1
$$

Quiz Improve the upper bound.

## Improved upper bound

Theorem (Lower and upper bound on the expected length of an optimal code for a sequence of symbols[CT Th 5.4.2])
Let $X$ be a r.v. with entropy $H(X)$. Any optimal code $C^{*}$ for a sequence of s i.i.d. symbols $\left(X_{1}, \ldots, X_{s}\right)$ with expected length $L\left(C^{*}\right)$ per source symbol $X$ satisfies

$$
\frac{H(X)}{\log D} \leq L\left(C^{*}\right)<\frac{H(X)}{\log D}+\frac{1}{s}
$$

This is the zero-error source coding Theorem.
Same average achievable rate for vanishing and error-free compression.
This is not true in general for distributed coding of multiple sources.

## Construction of optimal codes

Lemma (Necessary conditions on optimal prefix codes[CT Le5.8.1]) Given a binary prefix code $C$ with word lengths $I_{1}, \ldots, I_{M}$ associated with a set of symbols with probabilities $p_{1}, \ldots, p_{M}$.
Without loss of generality, assume that
(i) $p_{1} \geq p_{2} \geq \ldots \geq p_{M}$,
(ii) a group of symbols with the same probability is arranged in order of increasing codeword length (i.e. if $p_{i}=p_{i+1}=\ldots=p_{i+r}$ then $\left.I_{i} \leq I_{i+1} \ldots \leq I_{i+r}\right)$.
If $C$ is optimal within the class of prefix codes, C must satisfy:
(1) higher probabilities symbols have shorter codewords $\left(p_{i}>p_{k} \Rightarrow I_{i}<I_{k}\right)$,
(2) the two least probable symbols have equal length ( $I_{M}=I_{M-1}$ ),
(3) among the codewords of length $I_{M}$, there must be at least two words that agree in all digits except the last.

## Huffman code

Let $X$ be a r.v. taking $M$ values in $\mathcal{X}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{M}\right\}$, with probabilities $p_{1}, p_{2}, \ldots, p_{M}$ s.t. $p_{1} \geq p_{2} \geq \ldots \geq p_{M}$.
Each letter $\alpha_{i}$ is associated with a codeword $W_{i}$ i.e. a sequence of $I_{i}$ letters, where each letter takes value in an alphabet of size $D=2$.
(1) Combine the last 2 symbols $\alpha_{M-1}, \alpha_{M}$ into an equivalent symbol $\alpha_{M, M-1}$ w.p. $p_{M}+p_{M-1}$,
(2) Suppose we can construct an optimal code $C_{2}\left(W_{1}, \ldots, W_{M, M-1}\right)$ for the new set of symbols $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{M, M-1}\right\}$.
Then, construct the code $C_{1}$ for the original set as:

$$
\begin{aligned}
& C_{1}: \quad \alpha_{i} \mapsto W_{i}, \forall i \in[1, M-2] \text {, same codewords as in } C_{2} \\
& \alpha_{M-1} \mapsto W_{M, M-1} 0 \\
& \alpha_{M} \mapsto W_{M, M-1} 1
\end{aligned}
$$

## Theorem (Huffman code is optimal [CT Th. 5.8.1])

