INFORMATION THEORY

Master 1 - Informatique - Univ. Rennes 1 / ENS Rennes

Aline Roumy

January 2020

Outline

- **1** Non mathematical introduction
- **2** Mathematical introduction: definitions
- **③** Typical vectors and the Asymptotic Equipartition Property (AEP)
- **4** Lossless Source Coding
- **③** Variable length Source coding Zero error Compression

About me

Aline Roumy

Researcher at Inria, Rennes Expertise: compression for video streaming image/signal processing, information theory, machine learning

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Web: http://people.rennes.inria.fr/Aline.Roumy/ email: aline.roumy@inria.fr

Course schedule (tentative)

Information theory (IT):

a self-sufficient course with a lot of connections to probability

- Lecture 1: introduction, reminder on probability
- Lecture 2-3: Data compression (theoretical limits)
- Lecture 4: Construction of codes that can compress data
- Lecture 5: Beyond classical information theory (universality...)

Course organization:

- slides (file available online)
- summary (file available online+hardcopy)
- proofs (see blackboard): take notes!

On my webpage:

 $http://people.rennes.inria.fr/Aline.Roumy/roumy_teaching.html$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

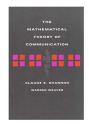
Course grading and documents

- Homework:
 - exercises (in class and at home)
 - correction in front of the class give bonus points.
- Middle Exam:
 - (in group) written exam,
 - home.
- Final Exam:
 - (individual) written exam
 - questions de cours, et exercices (in French)
 - ▶ 2h
- All documents on my webpage: http://people.rennes.inria.fr/Aline.Roumy/roumy_teaching.html

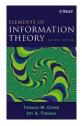
▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

C.E. Shannon, "A mathematical theory of communication", Bell Sys. Tech. Journal, 27: 379-423, 623-656, 1948. seminal paper

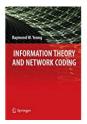
10,00 M.J



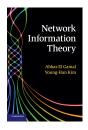
T.M. Cover and J.A. Thomas. *Elements of Information Theory*. Wiley Series in Telecommunications. Wiley, New York, 2006. THE reference



R. Yeung. *Information Theory and Network Coding*. Springer 2008. network coding



A. E. Gamal and Y-H. Kim. *Network Information Theory*. Cambridge University Press 2011. network information theory



Slides:

A. E. Gamal and Y-H. Kim.

Lecture Notes on Network Information Theory. arXiv:1001.3404v5, 2011. web

Outline

- **1** Non mathematical introduction
- **2** Mathematical introduction: definitions
- **③** Typical vectors and the Asymptotic Equipartition Property (AEP)
- **4** Lossless Source Coding
- **③** Variable length Source coding Zero error Compression

Lecture 1

Non mathematical introduction

What does "communicating" means?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What it is about? A bit of history...

• Information theory (IT) =

"The fundamental problem of **communication** is that of reproducing at one point, either exactly or approximately, a message selected at another point."

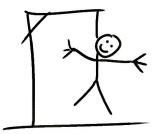
- IT established by Claude E. Shannon (1916-2001) in 1948.
 - Seminal paper: "A Mathematical Theory of Communication" in the Bell System Technical Journal, 1948.

revolutionary and groundbreaking paper

Teaser 1: compression

Hangman game

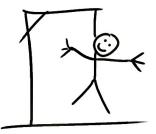
• Objective: play... and explain your strategy



Teaser 1: compression

Hangman game

• Objective: play... and explain your strategy



• 2 winning ideas

- Letter frequency
- Correlation between successive letters

probability dependence

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Teaser 1: compression

Analogy Hangman game-compression

- word
- Answer to a question (yes/no) removes uncertainty in word
- Goal: propose a minimum number of letter

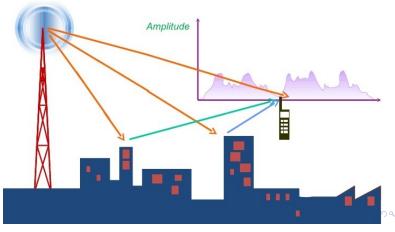
- data (image)
- 1 bit of the bistream that represents the data removes uncertainty in data
- Goal: propose a minimum number of bits

Teaser 2: communication over a noisy channel

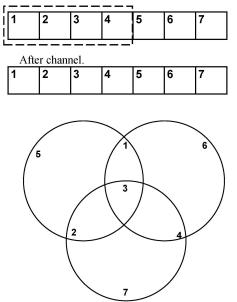
• Context:

storing/communicating data on a channel with errors

- scratches on a DVD
- lost data packets: webpage sent over the internet.
- Iost or modified received signals: wireless links



Teaser 2: communication over a noisy channel



- 1 choose binary vector (x_1, x_2, x_3, x_4)
- **2** compute x_5, x_6, x_7 s.t. XOR in each circle is 0
- 3 add 1 or 2 errors
- correct errors s.t. rule 2 is satisfied

Quiz 1:

Assume you know how many errors have been introduced. Can one correct 1 error? Can one correct 2 errors?

Teaser 2: communication over a noisy channel

Take Home Message (THM):

- To get zero error at the receiver, one can send a **FINITE** number of additional of bits.
- For a finite number of additional of bits, there is a limit on the number of errors that can be corrected.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ りのの

Summary

• one can **compress** data by using two ideas:

 Use non-uniformity of the probabilities this is the source coding theorem (first part of the course) very surprising...

Use dependence between the data

in middle exam

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Summary

• one can **compress** data by using two ideas:

- Use non-uniformity of the probabilities this is the source coding theorem (first part of the course) very surprising...
- Use dependence between the data

in middle exam

• one can **send** data over a **noisy** channel and recover the data without any error

provided the data is **encoded** (send additional data) this is the channel coding theorem (second part of the course)

Communicate what?

Definition

Source of information: something that produces messages.

Definition

Message: a stream of symbols taking their values in an alphabet.

Example

Source: camera Message: picture Symbol: pixel value: 3 coef. (RGB) Alphabet= $\{0, \dots, 255\}^3$

Example

Source: writer Message: a text Symbol: letter Alphabet= $\{a, ..., z, !, .., ?, ...\}$

How to model the communication?

• Model for the source:

communication

- a source of information a message of the source a symbol of the source alphabet of the source
- Model for the communication chain:

How to model the communication?

• Model for the source:

communication

mathematical model

- a random process
- \rightarrow a realization of a random **vector**
- \rightarrow $\,$ a realization of a random variable
- ightarrow alphabet of the random variable
- Model for the communication chain:

Point-to-point Information theory

Shannon proposed and proved three fundamental theorems for point-to-point communication (1 sender / 1 receiver):

- Lossless source coding theorem: For a given source, what is the minimum rate at which the source can be compressed losslessly? rate = nb bits / source symbol
- **Lossy source** coding theorem: For a given source and a given distortion *D*, what is the minimum rate at which the source can be compressed within distortion *D*.
 rate = nb bits / source symbol
- Channel coding theorem: What is the maximum rate at which data can be transmitted reliably?
 rate = nb bits / sent symbol over the channel

Application of Information Theory

Information theory is everywhere...

- **1** Lossless source coding theorem:
- **2** Lossy source coding theorem:
- **3 Channel coding** theorem:

Quiz 2: On which theorem (1/2/3) rely these applications?

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

- (1) zip compression
- (2) jpeg and mpeg compression
- (3) sending a jpeg file onto internet
- (4) the 15 digit social security number
- (5) movie stored on a DVD

Reminder (1)

Definition (Convergence in probability)

Let $(X_n)_{n\geq 1}$ be a sequence of r.v. and X a r.v. both defined over \mathbb{R} . $(X_n)_{n\geq 1}$ converges in probability to the r.v. X if

$$\forall \epsilon > 0, \lim_{n \to +\infty} \mathbb{P}(|X_n - X| > \epsilon) = 0.$$

Notation:

$$X_n \xrightarrow{p} X$$

Quiz 3: Which of the following statements are true?

(1) X_n and X are random
(2) X_n is random and X is deterministic (constant)

Reminder (2)

Theorem (Weak Law of Large Numbers (WLLN)) Let $(X_n)_{n\geq 1}$ be a sequence of r.v. over \mathbb{R} . If $(X_n)_{n\geq 1}$ is i.i.d., \mathcal{L}^2 (i.e. $\mathbb{E}[X_n^2] < \infty$) then

$$\frac{X_1 + \ldots + X_n}{n} \xrightarrow{p} \mathbb{E}[X_1]$$

Quiz 4: Which of the following statements are true?

(1) for any nonzero margin, with a sufficiently large sample there will be a very high probability that the average of the observations will be close to the expected value; that is, within the margin.

- (2) LHS and RHS are random
- (3) averaging kills randomness
- (4) the statistical mean ((a.k.a. true mean) converges to

the empirical mean (a.k.a. sample mean)

Outline

- **1** Non mathematical introduction
- **2** Mathematical introduction: definitions
- **③** Typical vectors and the Asymptotic Equipartition Property (AEP)
- **4** Lossless Source Coding
- **③** Variable length Source coding Zero error Compression

Lecture 2

Mathematical introduction

Definitions: Entropy and Mutual Information

Some Notation

Specific to information theory are denoted in red

- Upper case letters X, Y, ... refer to random process or random variable
- Calligraphic letters $\mathfrak{X}, \mathfrak{Y}, \dots$ refer to alphabets
- $|\mathcal{A}|$ is the cardinality of the set \mathcal{A}
- $X^n = (X_1, X_2, ..., X_n)$ is an n-sequence of random variables or a random vector

$$X_i^j = (X_i, X_{i+1}, \ldots, X_j)$$

- Lower case x, y, \ldots and x^n, y^n, \ldots mean scalars/vectors realization
- X ~ p(x) means that the r.v. X has probability mass function (pmf) P(X = x) = p(x)
- Xⁿ ~ p(xⁿ) means that the discrete random vector Xⁿ has joint pmf p(xⁿ)
- $p(y^n | x^n)$ is the conditional pmf of Y^n given $X^n = x^n$.

Lecture 1: Entropy (1)

Definition (Entropy)

the **entropy** of a **discrete** random variable $X \sim p(x)$:

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

H(X) in **bits/source sample** is the **average length of the shortest description** of the r.v. X. (Shown later)

Notation: $\log := \log_2$ Convention: $0 \log 0 := 0$ Properties

E1 H(X) only depends on the pmf p(x) and not x. **E2** $H(X) = -\mathbb{E}_X \log p(X)$

Entropy (2)

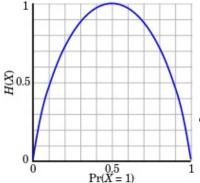
E3 $H(X) \ge 0$ with equality iff X is constant.

E4 $H(X) \leq \log |\mathcal{X}|$. The uniform distribution maximizes entropy.

Example

Binary entropy function: Let $0 \le p \le 1$

$$h_b(p) = -p\log p - (1-p)\log (1-p)$$



H(X) for a binary rv.

H(X) measures the amount of uncertainty on the rv X.

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Entropy (3)

E4 (con't) Alternative proof with the positivity of the Kullback-Leibler (KL) divergence.

Definition (Kullback-Leibler (KL) divergence)

Let p(x) and q(x) be 2 pmfs defined on the same set \mathcal{X} . The **KL divergence** between p and q is:

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log rac{p(x)}{q(x)}$$

Convention: $c \log c / 0 = \infty$ for c > 0.

Quiz 5: Which of the following statements are true? (1) D(p||q) = D(q||p). (2) If Support(q) \subset Support(p) then $D(p||q) = \infty$.

Entropy (4)

KL1 Positivity of KL [Cover Th. 2.6.3]: $D(p||q) \ge 0$ with equality iff $\forall x, p(x) = q(x)$.

This is a consequence of Jensen's inequality [Cover Th. 2.6.2]: If f is a convex function and Y is a random variable with numerical values, then

$$\mathbb{E}[f(Y)] \ge f(\mathbb{E}[Y])$$

with equality when f(.) is not strictly convex, or when f(.) is strictly convex and Y follows a degenerate distribution (i.e. is a constant). KL2 Let $X \sim p(x)$ and $q(x) = \frac{1}{|\mathcal{X}|}$, then $D(p||q) = -H(X) + \log |\mathcal{X}|$

Reminder (independence)

Definition (independence)

The random variables X and Y are independent, denoted by $X \perp L Y$, if

$$\forall (x,y) \in \mathfrak{X} \times \mathfrak{Y}, \quad p(x,y) = p(x)p(y).$$

Definition (Mutual independence – mutuellement indépendant) For $n \ge 3$, the random variables X_1, X_2, \ldots, X_n are mutually independent if

$$\forall (x_1,\ldots,x_n) \in \mathfrak{X}_1 \times \ldots \times \mathfrak{X}_n, \quad p(x_1,\ldots,x_n) = p(x_1)p(x_2)\ldots p(x_n).$$

Definition (Pairwise independence – indépendance 2 à 2) For $n \ge 3$, the random variables X_i, X_j are pairwise independent if $\forall (i,j)$ s.t. $1 \le i < j \le n$, X_i and X_j are independent.

Quiz 6

Quiz 6: Which of the following statements are/is true?

mutual independence implies pairwise independence.
 pairwise independence implies mutual independence

Reminder (conditional independence)

Definition (conditional independence)

Let X, Y, Z be r.v. X is independent of Z given Y, denoted by $X \perp\!\!\!\perp Z | Y$, if

$$\forall (x, y, z) \quad p(x, z|y) = \begin{cases} p(x|y)p(z|y) & \text{if } p(y) > 0\\ 0 & \text{otherwise} \end{cases}$$

or equivalently

$$\forall (x, y, z) \quad p(x, y, z) = \begin{cases} \frac{p(x, y)p(y, z)}{p(y)} = p(x, y)p(z|y) & \text{if } p(y) > 0\\ 0 & \text{otherwise} \end{cases}$$

or equivalently

$$\forall (x, y, z) \in \mathfrak{X} \times \mathfrak{Y} \times \mathfrak{Z}, \quad p(x, y, z)p(y) = p(x, y)p(y, z),$$

Definition (Markov chain)

Let $X_1, X_2, ..., X_n, n \ge 3$ be r.v. $X_1 \to X_2 \to ... \to X_n$ forms a Markov chain if $\forall (x_1, ..., x_n)$

 $p(x_1, x_2, ..., x_n) = \begin{cases} p(x_1, x_2)p(x_3|x_2)...p(x_n|x_{n-1}) & \text{if } p(x_2),...,p(x_{n-1}) > 0 \\ 0 & \text{otherwise} \end{cases}$

or equivalently $\forall (x_1, ..., x_n)$

$$p(x_1, x_2, ..., x_n)p(x_2)p(x_3)...p(x_{n-1}) = p(x_1, x_2)p(x_2, x_3)...p(x_{n-1}, x_n)$$

Quiz 7: Which of the following statements are true?

(1)
$$X \perp \!\!\!\perp Z | Y$$
 is equivalent to $X \to Z \to Y$
(2) $X \perp \!\!\!\perp Z | Y$ is equivalent to $X \to Y \to Z$
(3) $X_1 \to X_2 \to ... \to X_n \Rightarrow X_n \to ... \to X_2 \to X_1$

Joint and conditional entropy

Definition (Conditional entropy)

For discrete random variables $(X, Y) \sim p(x, y)$, the **Conditional entropy for a given** y is:

$$H(X|Y = y) = -\sum_{x \in \mathcal{X}} p(x|y) \log p(x|y)$$

the Conditional entropy is:

$$H(X|Y) = \sum_{y \in \mathcal{Y}} p(y)H(X|Y = y) = -\mathbb{E}_{XY} \log p(X|Y)$$
$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x|y) = -\sum_{y \in \mathcal{Y}} p(y) \sum_{x \in \mathcal{X}} p(x|y) \log p(x|y)$$

H(X|Y) in **bits/source sample** is the **average length of the shortest description** of the r.v. X when Y is known.

Joint entropy

Definition (Joint entropy)

For discrete random variables $(X, Y) \sim p(x, y)$, the **Joint entropy** is:

$$H(X,Y) = -\mathbb{E}_{XY}\log p(X,Y) = -\sum_{x\in\mathfrak{X}}\sum_{y\in\mathfrak{Y}}p(x,y)\log p(x,y)$$

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

H(X, Y) in **bits/source sample** is the **average length of the shortest description** of ???.

Properties

- **JCE1** trick H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)
- JCE2 $H(X, Y) \le H(X) + H(Y)$ with equality iff X and Y are independent (denoted $X \perp Y$).
- **JCE3** Conditioning reduces entropy $H(X|Y) \le H(X)$ with equality iff $X \perp Y$
- **JCE4** Chain rule for entropy (formule des conditionnements successifs) Let X^n be a discrete random vector

$$H(X^{n}) = H(X_{1}) + H(X_{2}|X_{1}) + \ldots + H(X_{n}|X_{n-1},\ldots,X_{1})$$

= $\sum_{i=1}^{n} H(X_{i}|X_{i-1},\ldots,X_{1})$
= $\sum_{i=1}^{n} H(X_{i}|X^{i-1}) \leq \sum_{i=1}^{n} H(X_{i})$

with notation $H(X_1|X^0) = H(X_1)$.

- **JCE5** $H(X|Y) \ge 0$ with equality iff X = f(Y) a.s.
- **JCE6** H(X|X) = 0 and H(X,X) = H(X)
- **JCE7** Data processing inequality. Let X be a discrete random variable and g(X) be a function of X, then

 $H(g(X)) \leq H(X)$

with equality iff g(x) is injective on the support of p(x). JCE8 Fano's inequality: link between entropy and error prob. Let $(X, Y) \sim p(x, y)$ and $P_e = \mathbb{P}\{X \neq Y\}$, then

 $H(X|Y) \leq h_b(P_e) + P_e \log(|\mathcal{X}| - 1) \leq 1 + P_e \log(|\mathcal{X}| - 1)$

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

JCE9 $H(X|Z) \ge H(X|Y,Z)$ with equality iff X and Y are independent given Z (denoted $X \perp Y|Z$).

JCE10 $H(X, Y|Z) \le H(X|Z) + H(Y|Z)$ with equality iff $X \perp Y|Z$.

Venn diagram
is represented byX (a r.v.) \rightarrow H(X) \rightarrow H(X) \rightarrow area of the setH(X, Y) \rightarrow area of the union of sets

Exercise

- **1** Draw a Venn Diagram for 2 r.v. X and Y. Show H(X), H(Y), H(X, Y) and H(Y|X).
- **2** Show the case $X \perp \!\!\!\perp Y$
- **3** Draw a Venn Diagram for 3 r.v. X, Y and Z and show the decomposition H(X, Y, Z) = H(X) + H(Y|X) + H(Z|X, Y).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

4 Show the case $X \perp Y | Z$

Mutual Information

Definition (Mutual Information)

For discrete random variables $(X, Y) \sim p(x, y)$, the **Mutual** Information is:

$$I(X;Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

= $H(X) - H(X|Y) = H(Y) - H(Y|X)$
= $H(X) + H(Y) - H(X,Y)$

Exercise Show I(X; Y) on the Venn Diagram representing X and Y.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mutual Information: properties

MI1 I(X; Y) is a function of p(x, y)MI2 I(X; Y) is symmetric: I(X; Y) = I(Y; X)MI3 I(X; X) = H(X)MI4 I(X; Y) = D(p(x, y)||p(x)p(y))MI5 $I(X; Y) \ge 0$ with equality iff $X \perp Y$ MI6 $I(X; Y) \le \min(H(X), H(Y))$ with equality iff X = f(Y) a.s. or Y = f(X) a.s.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Conditional Mutual Information

Definition (Conditional Mutual Information)

For discrete random variables $(X, Y, Z) \sim p(x, y, z)$, the **Conditional Mutual Information** is:

$$I(X; Y|Z) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \sum_{z \in \mathcal{Z}} p(x, y, z) \log \frac{p(x, y|z)}{p(x|z)p(y|z)}$$

= $H(X|Z) - H(X|Y, Z)$
= $H(Y|Z) - H(Y|X, Z)$

Exercise Show I(X; Y|Z) and I(X; Z) on the Venn Diagram representing X, Y, Z.

CMI1 $I(X; Y|Z) \ge 0$ with equality iff $X \perp Y|Z$

Exercise Compare I(X;Y,Z) with I(X;Y|Z) + I(X;Z) on the Venn Diagram representing X, Y, Z.

CMI2 Chain rule

$$I(X^{n};Y) = \sum_{i=1}^{n} I(X_{i};Y|X^{i-1})$$

CMI3 If $X \to Y \to Z$ form a Markov chain, then I(X; Z|Y) = 0 **CMI4** Corollary: If $X \to Y \to Z$, then $I(X; Y) \ge I(X; Y|Z)$ **CMI5** Corollary: **Data processing inequality:** If $X \to Y \to Z$ form a Markov chain, then $I(X; Y) \ge I(X; Z)$

Exercise Draw the Venn Diagram of the Markov chain $X \to Y \to Z$

CMI6 There is no order relation between I(X; Y) and I(X; Y|Z)Faux amis: Recall $H(X|Z) \le H(X)$

Hint: show an example s.t. I(X; Y) > I(X; Y|Z) and an example s.t. I(X; Y) < I(X; Y|Z)

Exercise Show the area that represents I(X; Y) - I(X; Y|Z) on the Venn Diagram...

Outline

- **1** Non mathematical introduction
- **2** Mathematical introduction: definitions
- **③** Typical vectors and the Asymptotic Equipartition Property (AEP)
- **4** Lossless Source Coding
- **③** Variable length Source coding Zero error Compression

Lecture 3

Typical vectors and Asymptotic Equipartition Property (AEP)

Re-reminder

Definition (Convergence in probability)

Let $(X_n)_{n\geq 1}$ be a sequence of r.v. and X a r.v. both defined over \mathbb{R}^d . $(X_n)_{n\geq 1}$ converges in probability to the r.v. X if

$$\forall \epsilon > 0, \lim_{n \to +\infty} \mathbb{P}(|X_n - X| > \epsilon) = 0.$$

Notation:

$$X_n \xrightarrow{p} X$$

Theorem (Weak Law of Large Numbers (WLLN)) Let $(X_n)_{n\geq 1}$ be a vector of r.v. over \mathbb{R} .

If $(X_n)_{n\geq 1}$ is i.i.d., \mathcal{L}^2 (i.e. $\mathbb{E}[X_n^2] < \infty$) then

$$\frac{X_1 + \ldots + X_n}{n} \xrightarrow{p} \mathbb{E}[X_1]$$

Theorem (Asymptotic Equipartition Property (AEP)) Let $X_1, X_2, ...$ be *i.i.d.* $\sim p(x)$ finite random process (source), let us denote $p(x^n) = \prod_{i=1}^n p(x_i)$, then

$$-rac{1}{n}\log p\left(X^n
ight)
ightarrow H(X)$$
 in probability

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Definition (Typical set)

Let $\epsilon > 0$, n > 0 and $X \sim p(x)$, the set $A_{\epsilon}^{(n)}(X)$ of ϵ -**typical** vectors x^n , where $p(x^n) = \prod_{i=1}^n p(x_i)$ is defined as

$$A_{\epsilon}^{(n)}(X) = \left\{ x^n : \left| -\frac{1}{n} \log p(x^n) - H(X) \right| \le \epsilon \right\}$$

Properties

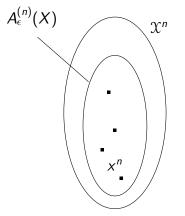
AEP1 $\forall (\epsilon, n)$, all these statements are equivalent:

$$\begin{aligned} x^{n} \in A_{\epsilon}^{(n)} & \Leftrightarrow \quad 2^{-n(H(X)+\epsilon)} \leq p(x^{n}) \leq 2^{-n(H(X)-\epsilon)} \\ & \Leftrightarrow \quad p(x^{n}) \doteq 2^{-n(H(X)\pm\epsilon)} \end{aligned}$$

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Notation: $a_n \doteq 2^{n(b\pm\epsilon)} \Leftrightarrow \left|\frac{1}{n}\log a_n - b\right| \le \epsilon$ for n sufficiently large. "uniform distribution on the typical set"

Interpretation of typicality



Example of typical vectors

$$\mathbb{P}[X = x] = p(x)$$

 $x^n = (x_1, ..., x_i, ..., x_n)$
 $n_x = |\{i : x_i = x\}|$

Let
$$x^n$$
 satisfies $\frac{n_x}{n} = p(x)$ then

$$p(x^n) = \prod_i p(x_i) = \prod_{x \in \mathcal{X}} p(x)^{n_x}$$
$$= 2^{\sum_x np(x) \log p(x)} = 2^{-nH(X)}$$

 x^n represents well the distribution So, x^n is ϵ -typical, $\forall \epsilon$.

Quiz

• Let $X \sim \mathcal{B}(0.2)$, $\epsilon = 0.1$ and n=10. Which of the following x^n vector is ϵ -typical? a = (010000100) b = (110000000) c = (11111111)• Let $X \sim \mathcal{B}(0.5)$, $\epsilon = 0.1$ and n=10. Which x^n vectors are ϵ -typical? ^{50/74}

Properties

AEP2
$$\forall \epsilon > 0, \lim_{n \to +\infty} \mathbb{P}\left(\left\{X^n \in A_{\epsilon}^{(n)}(X)\right\}\right) = 1$$

"for a given ϵ , asymptotically a.s. typical"

Theorem (CT Th. 3.1.2)

Given $\epsilon > 0$. Assume that $\forall n, X^n \sim \prod_{i=1}^n p(x_i)$. Then, for n sufficiently large, we have **1** $\mathbb{P}(A_{\epsilon}^{(n)}(X)) = \mathbb{P}(\{X^n \in A_{\epsilon}^{(n)}(X)\}) > 1 - \epsilon$ **2** $|A_{\epsilon}^{(n)}(X)| \leq 2^{n(H(X)+\epsilon)}$

$$\mathbf{3} \left| A_{\epsilon}^{(n)}(X) \right| > (1-\epsilon) 2^{n(H(X)-\epsilon)}$$

2 and 3 can be summarized in $\left|A_{\epsilon}^{(n)}\right| \doteq 2^{n(H(X)\pm 2\epsilon)}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

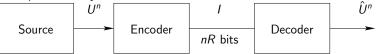
Outline

- **1** Non mathematical introduction
- **2** Mathematical introduction: definitions
- **③** Typical vectors and the Asymptotic Equipartition Property (AEP)
- **4** Lossless Source Coding
- **③** Variable length Source coding Zero error Compression

Lecture 4

Lossless Source Coding ↓ data compression

Compression system model:



We assume a **finite** alphabet i.i.d. source $U_1, U_2, \ldots \sim p(u)$.

Definition (Fixed-length Source code (FLC))

Let $R \in \mathbb{R}^+$, $n \in \mathbb{N}^*$. A $(2^{nR}, n)$ fixed-length source code consists of:

1 An encoding function that assigns to each $u^n \in \mathcal{U}^n$ an index $i \in \{1, 2, ..., 2^{nR}\}$, i.e., a codeword of length nR bits:

$$\begin{array}{lll} \mathcal{U}^n & \to & \mathcal{I} = \{1, 2, ..., 2^{nR}\} \\ u^n & \mapsto & i(u^n) \end{array}$$

A decoding function that assigns an estimate $\hat{u}^n(i)$ to each received index *i*

$$\begin{array}{cccc} \mathcal{I} &
ightarrow & \mathcal{U}^n \\ i &
ightarrow & \hat{u}^n(i) \end{array}$$

Definition (Probability of decoding error) Let $n \in \mathbb{N}^*$. The probability of decoding error is $P_e^{(n)} = \mathbb{P}\{\hat{U}^n \neq U^n\}$

R is called the **compression rate**: number of bits per source sample.

Definition (Achievable rate) Let $R \in \mathbb{R}^+$. A rate R is **achievable** if there exists a sequence of $(2^{nR}, n)$ codes with $P_e^{(n)} \to 0$ as $n \to \infty$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Source Coding Theorem

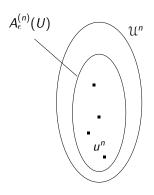
The source coding problem is to find the infimum of all achievable rates.

Theorem (Source coding theorem (Shannon'48)) Let $U \sim p(u)$ be a **finite** alphabet i.i.d. source. Let $R \in \mathbb{R}^+$. [Achievability]. If R > H(U), then there exists a sequence of $(2^{nR}, n)$ codes s.t. $P_e^{(n)} \rightarrow 0$. [Converse]. For any sequence of $(2^{nR}, n)$ codes s.t. $P_e^{(n)} \rightarrow 0$, $R \ge H(U)$

Classical (and equivalent) statement of [Converse]: If there exists a sequence of $(2^{nR}, n)$ codes s.t. $P_e^{(n)} \rightarrow 0$, then $R \ge H(U)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of achievability [CT Th. 3.2.1]



Let $U \sim p(u)$ a finite alphabet i.i.d. process. Let $R \in \mathbb{R}$, $\epsilon > 0$.

- Assume that $R > H(U) + \epsilon$. Then $\left| A_{\epsilon}^{(n)} \right| \le 2^{n(H(U)+\epsilon)} < 2^{nR}$. Assume that nR is an integer.
- Encoding: Assign a distinct index i (uⁿ) to each uⁿ ∈ A_ε⁽ⁿ⁾
 Assign the same index (not assigned to any typical vector) to all uⁿ ∉ A_ε⁽ⁿ⁾

The probability of error
$$P_e^{(n)} = 1 - \mathbb{P}\left(\mathcal{A}_{\epsilon}^{(n)}
ight) o 0$$
 as $n o \infty$

Proof of converse [Yeung Sec. 5.2, ElGamal Page 3-34]

• Given a sequence of $(2^{nR}, n)$ codes with $P_e^{(n)} \rightarrow 0$, let I be the random variable corresponding to the index of the $(2^{nR}, n)$ encoder.

By Fano's inequality

$$H\left(U^{n}\left|I\right) \leq H\left(U^{n}\left|\hat{U}^{n}\right.
ight) \leq nP_{e}^{\left(n
ight)}\log\left|\mathcal{U}\right| + 1 \stackrel{\Delta}{=} n\epsilon_{n}$$

where $\epsilon_n \to 0$ as $n \to \infty$, since $|\mathcal{U}|$ is finite.

Now consider

$$nR \geq H(I)$$

= $I(U^n; I)$
= $nH(U) - H(U^n|I) \geq nH(U) - n\epsilon_r$

Thus as $n \to \infty, R \ge H(U)$

• The above source coding theorem also holds for any discrete stationary and ergodic source

Outline

- **1** Non mathematical introduction
- **2** Mathematical introduction: definitions
- **③** Typical vectors and the Asymptotic Equipartition Property (AEP)
- **4** Lossless Source Coding
- **③** Variable length Source coding Zero error Compression

Lecture 5

Variable length Source coding

Zero error Data Compression

A code

Definition (Variable length Source code (VLC))

Let X be a r.v. with finite alphabet \mathcal{X} . A variable-length source code C for a random variable X is a mapping

$$C:\mathfrak{X}\to\mathcal{A}^*$$

where \mathcal{X} is a set of *M* symbols,

 \mathcal{A} is a set of D **letters**, and

 \mathcal{A}^* the set of finite length sequences (or strings) of letters from \mathcal{A} . C(x) denotes the **codeword** corresponding to the symbol x.

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

In the following, we will say Source code for VLC. **Examples 1, 2**

The length of a code

Let $L : \mathcal{A}^* \to \mathbb{N}$ denote the **length mapping** of a codeword (sequence of letters).

L(C(x)) is the number of letters of C(x), and $L(C(x)) \log |\mathcal{A}|$ the number of bits.

Definition

The **expected length** L(C) of a source code C for a random variable X with pmf p(x) is given by:

$$L(C) = \mathbb{E}[L(C(X))] = \sum_{x \in \mathcal{X}} L(C(x))p(x)$$

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Goal Find a source code C for X with smallest L(C).

Encoding a sequence of source symbols

Definition

```
A source message= a sequence of symbols
A coded sequence= a sequence of codewords
```

Definition

The extension of a code C is the mapping from finite length sequences of \mathcal{X} (of any length) to finite length strings of \mathcal{A} , defined by:

$$C: \qquad \mathfrak{X}^* \quad o \quad \mathcal{A}^* \ (x_1,...,x_n) \quad \mapsto \quad C(x_1,...,x_n) = C(x_1)C(x_2)...C(x_n)$$

where $C(x_1)C(x_2)...C(x_n)$ indicates the concatenation of the corresponding codewords.

Characteristics of good codes

Definition

A (source) code C is said to be **non-singular** iff C is injective:

$$\forall (x_i, x_j) \in \mathfrak{X}^2, x_i \neq x_j \Rightarrow C(x_i) \neq C(x_j)$$

Definition

A code is called **uniquely decodable** iff its extension is non-singular.

Definition

A code is called a **prefix code** (or an **instantaneous code**) if no codeword is a prefix of any other codeword.

prefix code⇒uniquely decodableuniquely decodable∉prefix code

Examples

Kraft inequality

Theorem (prefix code \Leftrightarrow KI [CT Th 5.2.1])

Let C be an **prefix code** for the source X with $|\mathcal{X}| = M$ over an alphabet $\mathcal{A} = \{a_1, ..., a_D\}$ of size D. Let $l_1, l_2, ..., l_M$ the lengths of the codewords associated to the realizations of X. These codeword lengths must satisfy the **Kraft inequality**

$$\sum_{i=1}^{M} D^{-l_i} \le 1 \tag{KI}$$

Conversely, let $l_1, l_2, ..., l_M$ be M lengths that satisfy this inequality (KI), there exists an **prefix code** with M symbols, constructed with D letters, and with these word lengths.

- from the lengths, one can always construct a prefix code
- finding prefix code is equivalent to finding the codeword lengths

uniquely decodable

Theorem (uniquely decodable code \Leftrightarrow KI [CT Th 5.5.1])

The codeword lengths of any **uniquely decodable** code must satisfy the Kraft inequality.

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Conversely, given a set of codeword lengths that satisfy this inequality, it is possible to construct a **uniquely decodable** code with these codeword lengths.

uniquely decodable

Theorem (uniquely decodable code \Leftrightarrow KI [CT Th 5.5.1])

The codeword lengths of any **uniquely decodable** code must satisfy the Kraft inequality.

Conversely, given a set of codeword lengths that satisfy this inequality, it is possible to construct a **uniquely decodable** code with these codeword lengths.

Good news!!

prefix code \Leftrightarrow KI uniquely decodable code (UDC) \Leftrightarrow KI

 $\Rightarrow\,$ same set of achievable codeword lengths for UDC and prefix

 \Rightarrow restrict the search of good codes to the set of prefix codes.

Optimal source codes

Let X be a r.v. taking M values in $\mathfrak{X} = \{\alpha_1, \alpha_2, ..., \alpha_M\}$, with probabilities $p_1, p_2, ..., p_M$.

Each symbol α_i is associated with a codeword W_i i.e. a sequence of I_i letters, where each letter takes value in an alphabet of size D.

Goal Find a uniquely decodable code with minimum expected length. \Leftrightarrow Find a prefix code with minimum expected length. \hookrightarrow Find a set of lengths satisfying KI with minimum expected length. $\{l_1^*, l_2^*, ..., l_M^*\} = \arg \min_{\{l_1, l_2, ..., l_M\}} \sum_{i=1} p_i l_i$ (Pb1) s.t. $\forall i, l_i \geq 0$ and $\sum_{i=1}^{m} D^{-l_i} \leq 1$

Battle plan to solve (Pb1)

- 1 find a lower bound for L(C),
- 2 find an upper bound,
- **3** construct an optimal prefix code.

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Lower bound of prefix code

Theorem (Lower bound on the expected length of any prefix code [CT Th. 5.3.1])

The expected length L(C) of any prefix *D*-ary code for the r.v. *X* taking *M* values in $\mathcal{X} = \{\alpha_1, \alpha_2, ..., \alpha_M\}$, with probabilities $p_1, p_2, ..., p_M$, is greater than or equal to the entropy $H(X)/\log(D)$ i.e.,

$$L(C) = \sum_{i=1}^{M} p_i l_i \geq \frac{H(X)}{\log D}$$

with equality iff $p_i = D^{-l_i}$, for i = 1, ..., M, and $\sum_{i=1}^{M} D^{-l_i} = 1$

Lower and upper bound of Shannon code

Definition

A Shannon code (defined on an alphabet with *D* symbols) for each source symbol $\alpha_i \in \mathcal{X} = {\alpha_i}_{i=1}^M$ of probability $p_i > 0$, assigns codewords of length $L(C(\alpha_i)) = I_i = [-\log_D(p_i)]$.

Theorem (Expected length of a Shannon code [CT Sec. 5.4]) Let X be a r.v. with entropy H(X). The Shannon code for the source X can be turned into a prefix code and its expected length L(C) satisfies

$$\frac{H(X)}{\log D} \leq L(C) < \frac{H(X)}{\log D} + 1$$

(1)

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Lower and upper bound of Shannon code

Definition

A Shannon code (defined on an alphabet with *D* symbols) for each source symbol $\alpha_i \in \mathcal{X} = {\alpha_i}_{i=1}^M$ of probability $p_i > 0$, assigns codewords of length $L(C(\alpha_i)) = I_i = [-\log_D(p_i)]$.

Theorem (Expected length of a Shannon code [CT Sec. 5.4]) Let X be a r.v. with entropy H(X). The Shannon code for the source X can be turned into a prefix code and its expected length L(C) satisfies

$$rac{H(X)}{\log D} \leq L(C) < rac{H(X)}{\log D} + 1$$

(1)

Corollary

Let X be a r.v. with entropy H(X). There exists a prefix code with expected length L(C) that satisfies (1).

Lower and upper bound of optimal code

Definition

A code is **optimal** if it achieves the lowest expected length **among all prefix codes**.

Theorem (Lower and upper bound on the expected length of an optimal code [CT Th 5.4.1])

Let X be a r.v. with entropy H(X). Any optimal code C^* for X with codeword lengths $l_1^*, ..., l_M^*$ and expected length $L(C^*) = \sum p_i l_i^*$ satisfies

$$\frac{H(X)}{\log D} \leq L(C^*) < \frac{H(X)}{\log D} + 1$$

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Quiz Improve the upper bound.

Improved upper bound

Theorem (Lower and upper bound on the expected length of an optimal code for a sequence of symbols[**CT Th 5.4.2**]) Let X be a r.v. with entropy H(X). Any **optimal code** C* for a sequence of s i.i.d. symbols $(X_1, ..., X_s)$ with expected length $L(C^*)$ **per source symbol** X satisfies

$$\frac{H(X)}{\log D} \leq L(C^*) < \frac{H(X)}{\log D} + \frac{1}{s}$$

This is the zero-error source coding Theorem.

Same average achievable rate for vanishing and error-free compression.

This is not true in general for distributed coding of multiple sources.

Construction of optimal codes

Lemma (Necessary conditions on optimal prefix codes[CT Le5.8.1])

Given a binary prefix code C with word lengths $I_1, ..., I_M$ associated with a set of symbols with probabilities $p_1, ..., p_M$.

Without loss of generality, assume that

(*i*) $p_1 \ge p_2 \ge ... \ge p_M$,

(ii) a group of symbols with the same probability is arranged in order of increasing codeword length (i.e. if $p_i = p_{i+1} = ... = p_{i+r}$ then $l_i \leq l_{i+1}... \leq l_{i+r}$).

If C is optimal within the class of prefix codes, C must satisfy:

• higher probabilities symbols have shorter codewords $(p_i > p_k \Rightarrow l_i < l_k),$

2 the two least probable symbols have equal length $(I_M = I_{M-1})$,

3 among the codewords of length I_M , there must be at least two words that agree in all digits except the last.

Huffman code

Let X be a r.v. taking M values in $\mathcal{X} = \{\alpha_1, \alpha_2, ..., \alpha_M\}$, with probabilities $p_1, p_2, ..., p_M$ s.t. $p_1 \ge p_2 \ge ... \ge p_M$. Each letter α_i is associated with a codeword W_i i.e. a sequence of l_i letters, where each letter takes value in an alphabet of size D = 2.

- **1** Combine the last 2 symbols α_{M-1}, α_M into an equivalent symbol $\alpha_{M,M-1}$ w.p. $p_M + p_{M-1}$,
- Suppose we can construct an optimal code C₂ (W₁,..., W_{M,M-1}) for the new set of symbols {α₁, α₂, ..., α_{M,M-1}}. Then, construct the code C₁ for the original set as:

$$\begin{array}{rcl} \mathcal{C}_{1}: & \alpha_{i} & \mapsto & \mathcal{W}_{i}, \ \forall i \in [1, M-2], \ \text{same codewords as in } \mathcal{C}_{2} \\ & \alpha_{M-1} & \mapsto & \mathcal{W}_{M, M-1} \ 0 \\ & \alpha_{M} & \mapsto & \mathcal{W}_{M, M-1} \ 1 \end{array}$$

Theorem (Huffman code is optimal [CT Th. 5.8.1])