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About me

Aline Roumy
Researcher at Inria, Rennes
Expertise: compression for video streaming

image/signal processing, information theory, machine learning

Web: http://people.rennes.inria.fr/Aline.Roumy/

email: aline.roumy@inria.fr
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Course schedule (tentative)

Information theory (IT):
a self-sufficient course with a lot of connections to probability

• Lecture 1: introduction, reminder on probability

• Lecture 2-3: Data compression (theoretical limits)

• Lecture 4: Construction of codes that can compress data

• Lecture 5: Beyond classical information theory (universality...)

Course organization:

• slides (file available online)

• summary (file available online+hardcopy)

• proofs (see blackboard): take notes!

On my webpage:
http://people.rennes.inria.fr/Aline.Roumy/roumy teaching.html
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Course grading and documents

• Homework:
I exercises (in class and at home)
I correction in front of the class give bonus points.

• Middle Exam:
I (in group) written exam,
I home.

• Final Exam:
I (individual) written exam
I questions de cours, et exercices (in French)
I 2h

• All documents on my webpage:
http://people.rennes.inria.fr/Aline.Roumy/roumy teaching.html

5/ 74



Course material

C.E. Shannon, ”A mathematical theory of communication”,
Bell Sys. Tech. Journal, 27: 379–423, 623–656, 1948.
seminal paper

6/ 74



Course material

T.M. Cover and J.A. Thomas. Elements of Information Theory.
Wiley Series in Telecommunications. Wiley, New York, 2006.
THE reference
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Course material

R. Yeung. Information Theory and Network Coding.
Springer 2008.
network coding
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Course material

A. E. Gamal and Y-H. Kim. Network Information Theory.
Cambridge University Press 2011.
network information theory

Slides:
A. E. Gamal and Y-H. Kim.
Lecture Notes on Network Information Theory. arXiv:1001.3404v5,
2011. web
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Lecture 1

Non mathematical introduction

What does “communicating” means?
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What it is about? A bit of history...

• Information theory (IT) =
“The fundamental problem of communication is that of
reproducing at one point, either exactly or approximately, a
message selected at another point.”

• IT established by Claude E. Shannon (1916-2001) in 1948.
I Seminal paper: “A Mathematical Theory of Communication”

in the Bell System Technical Journal, 1948.
I revolutionary and groundbreaking paper

12/ 74



Teaser 1: compression

Hangman game

• Objective: play... and explain your strategy

- - - - -

• 2 winning ideas

I Letter frequency probability
I Correlation between successive letters dependence
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Teaser 1: compression

Analogy Hangman game-compression

• word

• Answer to a question
(yes/no)

removes uncertainty in word

• Goal: propose a minimum
number of letter

• data (image)

• 1 bit of the bistream that
represents the data

removes uncertainty in data

• Goal: propose a minimum
number of bits

14/ 74



Teaser 2: communication over a noisy channel
• Context:

storing/communicating data on a channel with errors
I scratches on a DVD
I lost data packets: webpage sent over the internet.
I lost or modified received signals: wireless links
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Teaser 2: communication over a noisy channel

1 choose binary vector
(x1, x2, x3, x4)

2 compute x5, x6, x7 s.t.
XOR in each circle is 0

3 add 1 or 2 errors

4 correct errors s.t. rule 2
is satisfied

Quiz 1:

Assume you know how many
errors have been introduced.
Can one correct 1 error?
Can one correct 2 errors?
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Teaser 2: communication over a noisy channel

Take Home Message (THM):

• To get zero error at the receiver, one can send a FINITE
number of additional of bits.

• For a finite number of additional of bits, there is a limit on the
number of errors that can be corrected.
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Summary

• one can compress data by using two ideas:
I Use non-uniformity of the probabilities

this is the source coding theorem (first part of the course)
very surprising...

I Use dependence between the data
in middle exam

• one can send data over a noisy channel and recover the data
without any error

provided the data is encoded (send additional data)
this is the channel coding theorem (second part of the course)
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Communicate what?

Definition

Source of information: something that produces messages.

Definition

Message: a stream of symbols taking their values in an alphabet.

Example

Source: camera
Message: picture
Symbol: pixel value: 3 coef. (RGB)
Alphabet={0, . . . , 255}3

Example

Source: writer
Message: a text
Symbol: letter
Alphabet={a, . . . , z , !, ., ?, ...}
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How to model the communication?

• Model for the source:

communication mathematical model
a source of information → a random process
a message of the source a realization of a random vector
a symbol of the source a realization of a random variable
alphabet of the source alphabet of the random variable

• Model for the communication chain:

Encoder Channel Decoder
estimatemessage

Source Destination
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Point-to-point Information theory

Shannon proposed and proved three fundamental theorems for
point-to-point communication (1 sender / 1 receiver):

1 Lossless source coding theorem: For a given source, what is
the minimum rate at which the source can be compressed
losslessly?
rate = nb bits / source symbol

2 Lossy source coding theorem: For a given source and a given
distortion D, what is the minimum rate at which the source can
be compressed within distortion D.
rate = nb bits / source symbol

3 Channel coding theorem: What is the maximum rate at which
data can be transmitted reliably?
rate = nb bits / sent symbol over the channel
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Application of Information Theory

Information theory is everywhere...

1 Lossless source coding theorem:

2 Lossy source coding theorem:

3 Channel coding theorem:

Quiz 2: On which theorem (1/2/3) rely these applications?

(1) zip compression
(2) jpeg and mpeg compression
(3) sending a jpeg file onto internet
(4) the 15 digit social security number
(5) movie stored on a DVD
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Reminder (1)

Definition (Convergence in probability)

Let (Xn)n≥1 be a sequence of r.v. and X a r.v. both defined over R.
(Xn)n≥1 converges in probability to the r.v. X if

∀ε > 0, lim
n→+∞

P(|Xn − X | > ε) = 0.

Notation:
Xn

p−→ X

Quiz 3: Which of the following statements are true?

(1) Xn and X are random
(2) Xn is random and X is deterministic (constant)
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Reminder (2)
Theorem (Weak Law of Large Numbers (WLLN))

Let (Xn)n≥1 be a sequence of r.v. over R.
If (Xn)n≥1 is i.i.d., L2 (i.e. E[X 2

n ] <∞) then

X1 + ... + Xn

n

p−→ E[X1]

Quiz 4: Which of the following statements are true?

(1) for any nonzero margin, with a sufficiently large sample there will
be a very high probability that the average of the observations will be
close to the expected value; that is, within the margin.
(2) LHS and RHS are random
(3) averaging kills randomness
(4) the statistical mean ((a.k.a. true mean) converges to
the empirical mean (a.k.a. sample mean)
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Lecture 2

Mathematical introduction

Definitions: Entropy and Mutual Information
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Some Notation
Specific to information theory are denoted in red
• Upper case letters X ,Y , . . . refer to random process or random

variable
• Calligraphic letters X,Y, . . . refer to alphabets
• |A| is the cardinality of the set A
• X n = (X1,X2, . . . ,Xn) is an n-sequence of random variables or a

random vector

X j
i = (Xi ,Xi+1, . . . ,Xj)

• Lower case x , y , . . . and xn, yn, . . . mean scalars/vectors
realization
• X ∼ p(x) means that the r.v. X has probability mass function

(pmf) P(X = x) = p(x)
• X n ∼ p (xn) means that the discrete random vector X n has joint

pmf p (xn)
• p (yn |xn ) is the conditional pmf of Y n given X n = xn.
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Lecture 1: Entropy (1)

Definition (Entropy)

the entropy of a discrete random variable X ∼ p(x):

H(X ) = −
∑
x∈X

p(x) log p(x)

H(X ) in bits/source sample is the average length of the
shortest description of the r.v. X . (Shown later)

Notation: log := log2

Convention: 0 log 0 := 0
Properties

E1 H(X ) only depends on the pmf p(x) and not x .

E2 H(X ) = −EX log p(X )
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Entropy (2)
E3 H(X ) ≥ 0 with equality iff X is constant.
E4 H(X ) ≤ log |X|. The uniform distribution maximizes entropy.

Example

Binary entropy function: Let 0 ≤ p ≤ 1

hb(p) = −p log p − (1− p) log (1− p)

H(X ) for a binary rv.

H(X ) measures the amount
of uncertainty on the rv X .
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Entropy (3)
E4 (con’t) Alternative proof with the positivity of the

Kullback-Leibler (KL) divergence.

Definition (Kullback-Leibler (KL) divergence)

Let p(x) and q(x) be 2 pmfs defined on the same set X.
The KL divergence between p and q is:

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

Convention: c log c/0 =∞ for c > 0.

Quiz 5: Which of the following statements are true?

(1) D(p||q) = D(q||p).
(2) If Support(q) ⊂ Support(p) then D(p||q) =∞.
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Entropy (4)

KL1 Positivity of KL [Cover Th. 2.6.3]: D(p||q) ≥ 0
with equality iff ∀x , p(x) = q(x).

This is a consequence of Jensen’s inequality [Cover Th. 2.6.2]:
If f is a convex function and Y is a random variable with numerical
values, then

E[f (Y )] ≥ f (E[Y ])

with equality when f (.) is not strictly convex, or when f (.) is strictly
convex and Y follows a degenerate distribution (i.e. is a constant).

KL2 Let X ∼ p(x) and q(x) = 1
|X| , then D(p||q) = −H(X ) + log |X|
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Reminder (independence)

Definition (independence)

The random variables X and Y are independent, denoted by X ⊥⊥ Y , if

∀(x , y) ∈ X× Y, p(x , y) = p(x)p(y).

Definition (Mutual independence – mutuellement indépendant)

For n ≥ 3, the random variables X1,X2, . . . ,Xn are mutually
independent if

∀(x1, . . . , xn) ∈ X1× . . .×Xn, p(x1, . . . , xn) = p(x1)p(x2) . . . p(xn).

Definition (Pairwise independence – indépendance 2 à 2)

For n ≥ 3, the random variables Xi ,Xj are pairwise independent if
∀(i , j) s.t. 1 ≤ i < j ≤ n, Xi and Xj are independent.
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Quiz 6

Quiz 6: Which of the following statements are/is true?

(1) mutual independence implies pairwise independence.
(2) pairwise independence implies mutual independence
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Reminder (conditional independence)

Definition (conditional independence)

Let X ,Y ,Z be r.v.
X is independent of Z given Y , denoted by X ⊥⊥ Z |Y , if

∀(x , y , z) p(x , z |y) =

{
p(x |y)p(z |y) if p(y) > 0
0 otherwise

or equivalently

∀(x , y , z) p(x , y , z) =

{
p(x ,y)p(y ,z)

p(y)
= p(x , y)p(z |y) if p(y) > 0

0 otherwise

or equivalently

∀(x , y , z) ∈ X× Y× Z, p(x , y , z)p(y) = p(x , y)p(y , z),
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Definition (Markov chain)

Let X1,X2, ...,Xn, n ≥ 3 be r.v.
X1 → X2 → ...→ Xn forms a Markov chain if ∀(x1, ..., xn)

p(x1, x2, ..., xn) =

{
p(x1, x2)p(x3|x2)...p(xn|xn−1) if p(x2),...,p(xn−1)>0

0 otherwise

or equivalently ∀(x1, ..., xn)

p(x1, x2, ..., xn)p(x2)p(x3)...p(xn−1) = p(x1, x2)p(x2, x3)...p(xn−1, xn)

Quiz 7: Which of the following statements are true?

(1) X ⊥⊥ Z |Y is equivalent to X → Z → Y
(2) X ⊥⊥ Z |Y is equivalent to X → Y → Z
(3) X1 → X2 → ...→ Xn ⇒ Xn → ...→ X2 → X1
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Joint and conditional entropy
Definition (Conditional entropy)

For discrete random variables (X ,Y ) ∼ p(x , y),
the Conditional entropy for a given y is:

H (X |Y = y ) = −
∑
x∈X

p(x |y) log p(x |y)

the Conditional entropy is:

H (X |Y ) =
∑
y∈Y

p(y)H (X |Y = y) = −EXY log p (X |Y )

= −
∑
x∈X

∑
y∈Y

p(x , y) log p(x |y) = −
∑
y∈Y

p(y)
∑
x∈X

p(x |y) log p(x |y)

H(X |Y ) in bits/source sample is the average length of the
shortest description of the r.v. X when Y is known.
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Joint entropy

Definition (Joint entropy)

For discrete random variables (X ,Y ) ∼ p(x , y), the Joint entropy
is:

H(X ,Y ) = −EXY log p(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log p(x , y)

H(X ,Y ) in bits/source sample is the average length of the
shortest description of ???.

37/ 74



Properties
JCE1 trick H(X ,Y ) = H(X ) + H(Y |X ) = H(Y ) + H(X |Y )

JCE2 H(X ,Y ) ≤ H(X ) + H(Y ) with equality iff X and Y are
independent (denoted X ⊥⊥ Y ).

JCE3 Conditioning reduces entropy
H (X |Y ) ≤ H(X ) with equality iff X ⊥⊥ Y

JCE4 Chain rule for entropy (formule des conditionnements successifs)

Let X n be a discrete random vector

H (X n) = H (X1) + H (X2 |X1) + . . . + H (Xn|Xn−1, . . . ,X1)

=
n∑

i=1

H (Xi |Xi−1, . . . ,X1)

=
n∑

i=1

H
(
Xi |X i−1

)
≤

n∑
i=1

H(Xi)

with notation H(X1|X 0) = H(X1).
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JCE5 H(X |Y ) ≥ 0 with equality iff X = f (Y ) a.s.

JCE6 H(X |X ) = 0 and H(X ,X ) = H(X )

JCE7 Data processing inequality. Let X be a discrete random
variable and g(X ) be a function of X , then

H(g(X )) ≤ H(X )

with equality iff g(x) is injective on the support of p(x).

JCE8 Fano’s inequality: link between entropy and error prob.
Let (X ,Y ) ∼ p(x , y) and Pe = P{X 6= Y }, then

H(X |Y ) ≤ hb (Pe) + Pe log(|X| − 1) ≤ 1 + Pe log(|X| − 1)

JCE9 H(X |Z ) ≥ H(X |Y ,Z ) with equality iff X and Y are
independent given Z (denoted X ⊥⊥ Y |Z ).

JCE10 H(X ,Y |Z ) ≤ H(X |Z ) + H(Y |Z ) with equality iff X ⊥⊥ Y |Z .
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Venn diagram
is represented by

X (a r.v.) → set (set of realizations)
H(X ) → area of the set

H(X ,Y ) → area of the union of sets

Exercise

1 Draw a Venn Diagram for 2 r.v. X and Y .
Show H(X ),H(Y ),H(X ,Y ) and H(Y |X ).

2 Show the case X ⊥⊥ Y

3 Draw a Venn Diagram for 3 r.v. X ,Y and Z and show the
decomposition H(X ,Y ,Z ) = H(X ) + H(Y |X ) + H(Z |X ,Y ).

4 Show the case X ⊥⊥ Y |Z
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Mutual Information

Definition (Mutual Information)

For discrete random variables (X ,Y ) ∼ p(x , y), the Mutual
Information is:

I (X ;Y ) =
∑
x∈X

∑
y∈Y

p(x , y) log
p(x , y)

p(x)p(y)

= H(X )− H(X |Y ) = H(Y )− H(Y |X )

= H(X ) + H(Y )− H(X ,Y )

Exercise Show I (X ; Y ) on the Venn Diagram representing X and Y .
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Mutual Information: properties

MI1 I (X ; Y ) is a function of p(x , y)

MI2 I (X ; Y ) is symmetric: I (X ; Y ) = I (Y ; X )

MI3 I (X ; X ) = H(X )

MI4 I (X ; Y ) = D(p(x , y)||p(x)p(y))

MI5 I (X ; Y ) ≥ 0
with equality iff X ⊥⊥ Y

MI6 I (X ; Y ) ≤ min(H(X ),H(Y ))
with equality iff X = f (Y ) a.s. or Y = f (X ) a.s.
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Conditional Mutual Information

Definition (Conditional Mutual Information)

For discrete random variables (X ,Y ,Z ) ∼ p(x , y , z), the
Conditional Mutual Information is:

I (X ; Y |Z ) =
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x , y , z) log
p(x , y |z)

p(x |z)p(y |z)

= H(X |Z )− H(X |Y ,Z )

= H(Y |Z )− H(Y |X ,Z )

Exercise Show I (X ; Y |Z ) and I (X ; Z ) on the Venn Diagram
representing X ,Y ,Z .

CMI1 I (X ; Y |Z ) ≥ 0 with equality iff X ⊥⊥ Y |Z

Exercise Compare I (X ;Y ,Z ) with I (X ; Y |Z ) + I (X ; Z ) on the Venn
Diagram representing X ,Y ,Z .

43/ 74



CMI2 Chain rule

I (X n; Y ) =
n∑

i=1

I
(
Xi ; Y

∣∣X i−1
)

CMI3 If X → Y → Z form a Markov chain, then I (X ; Z |Y ) = 0

CMI4 Corollary: If X → Y → Z , then I (X ; Y ) ≥ I (X ; Y |Z )

CMI5 Corollary: Data processing inequality:
If X → Y → Z form a Markov chain, then I (X ; Y ) ≥ I (X ; Z )

Exercise Draw the Venn Diagram of the Markov chain X → Y → Z

CMI6 There is no order relation between I (X ; Y ) and I (X ; Y |Z )
Faux amis: Recall H(X |Z ) ≤ H(X )

Hint: show an example s.t. I (X ; Y ) > I (X ; Y |Z ) and an
example s.t. I (X ; Y ) < I (X ; Y |Z )

Exercise Show the area that represents I (X ; Y )− I (X ; Y |Z ) on the
Venn Diagram...
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Lecture 3

Typical vectors and
Asymptotic Equipartition Property (AEP)
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Re-reminder
Definition (Convergence in probability)

Let (Xn)n≥1 be a sequence of r.v. and X a r.v. both defined over Rd .
(Xn)n≥1 converges in probability to the r.v. X if

∀ε > 0, lim
n→+∞

P(|Xn − X | > ε) = 0.

Notation:
Xn

p−→ X

Theorem (Weak Law of Large Numbers (WLLN))

Let (Xn)n≥1 be a vector of r.v. over R.
If (Xn)n≥1 is i.i.d., L2 (i.e. E[X 2

n ] <∞) then

X1 + ... + Xn

n

p−→ E[X1]
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Theorem (Asymptotic Equipartition Property (AEP))

Let X1,X2, . . . be i.i.d. ∼ p(x) finite random process (source), let
us denote p (xn) =

∏n
i=1 p (xi), then

−1

n
log p (X n)→ H(X ) in probability
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Definition (Typical set)

Let ε > 0, n > 0 and X ∼ p(x), the set A
(n)
ε (X ) of ε-typical vectors

xn, where p (xn) =
∏n

i=1 p (xi) is defined as

A(n)
ε (X ) =

{
xn :

∣∣∣∣−1

n
log p (xn)− H(X )

∣∣∣∣ ≤ ε

}
Properties

AEP1 ∀(ε, n), all these statements are equivalent:

xn ∈ A(n)
ε ⇔ 2−n(H(X )+ε) ≤ p (xn) ≤ 2−n(H(X )−ε)

⇔ p (xn)
.

= 2−n(H(X )±ε)

Notation: an
.

= 2n(b±ε) ⇔
∣∣∣∣1n log an − b

∣∣∣∣ ≤ ε for n sufficiently large.

“uniform distribution on the typical set”
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Interpretation of typicality

A
(n)
ε (X )

.
..
.xn

Xn

.

.

Example of typical vectors

P[X = x ] = p(x)
xn = (x1, ...xi , ...xn)
nx = |{i : xi = x}|

Let xn satisfies
nx

n
= p(x) then

p(xn) =
∏
i

p(xi) =
∏
x∈X

p(x)nx

= 2
∑

x np(x) log p(x) = 2−nH(X )

xn represents well the distribution
So, xn is ε-typical, ∀ε.

Quiz

• Let X ∼ B(0.2), ε = 0.1 and n=10. Which of the following xn vector is
ε-typical? a = (0100000100) b = (1100000000) c = (1111111111)
• Let X ∼ B(0.5), ε = 0.1 and n=10. Which xn vectors are ε-typical?
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Properties

AEP2 ∀ε > 0, lim
n→+∞

P
({

X n ∈ A(n)
ε (X )

})
= 1

“for a given ε, asymptotically a.s. typical”

Theorem (CT Th. 3.1.2)

Given ε > 0. Assume that ∀n,X n ∼
∏n

i=1 p (xi ).

Then, for n sufficiently large, we have

1 P
(
A(n)
ε (X )

)
= P

({
X n ∈ A(n)

ε (X )
})

> 1− ε
2
∣∣A(n)

ε (X )
∣∣ ≤ 2n(H(X )+ε)

3
∣∣A(n)

ε (X )
∣∣ > (1− ε)2n(H(X )−ε)

2 and 3 can be summarized in
∣∣∣A(n)

ε

∣∣∣ .
= 2n(H(X )±2ε).
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Lecture 4

Lossless Source Coding

Lossless Source ↓ Coding
Lossless data compression
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Compression system model:

Source Encoder Decoder

Un I

nR bits

Ûn

We assume a finite alphabet i.i.d. source U1,U2, . . . ∼ p(u).

Definition (Fixed-length Source code (FLC))

Let R ∈ R+, n ∈ N∗. A
(
2nR , n

)
fixed-length source code consists of:

1 An encoding function that assigns to each un ∈ Un an index
i ∈ {1, 2, . . . , 2nR}, i.e., a codeword of length nR bits:

Un → I = {1, 2, ..., 2nR}
un 7→ i(un)

2 A decoding function that assigns an estimate ûn(i) to each
received index i

I → Un

i 7→ ûn(i)
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Definition (Probability of decoding error)

Let n ∈ N∗. The probability of decoding error is
P

(n)
e = P{Ûn 6= Un}

R is called the compression rate: number of bits per source sample.

Definition (Achievable rate)

Let R ∈ R+. A rate R is achievable if there exists a sequence of(
2nR , n

)
codes with P

(n)
e → 0 as n→∞
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Source Coding Theorem

The source coding problem is to find the infimum of all achievable
rates.

Theorem (Source coding theorem (Shannon’48))

Let U ∼ p(u) be a finite alphabet i.i.d. source. Let R ∈ R+.
[Achievability]. If R > H(U),

then there exists a sequence of
(
2nR , n

)
codes s.t. P

(n)
e → 0.

[Converse]. For any sequence of
(
2nR , n

)
codes s.t. P

(n)
e → 0,

R ≥ H(U)

Classical (and equivalent) statement of [Converse]:

If there exists a sequence of
(
2nR , n

)
codes s.t. P

(n)
e → 0,

then R ≥ H(U)
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Proof of achievability [CT Th. 3.2.1]

A
(n)
ε (U)

.
..
.un

Un

Let U ∼ p(u) a finite alphabet i.i.d. process.
Let R ∈ R, ε > 0.

• Assume that R > H(U) + ε.

Then
∣∣∣A(n)

ε

∣∣∣ ≤ 2n(H(U)+ε) < 2nR .

Assume that nR is an integer.

• Encoding: Assign a distinct index i (un)

to each un ∈ A
(n)
ε

Assign the same index (not assigned to

any typical vector) to all un 6∈ A
(n)
ε

• The probability of error

P
(n)
e = 1− P

(
A

(n)
ε

)
→ 0 as n→∞
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Proof of converse [Yeung Sec. 5.2, ElGamal Page 3-34]

• Given a sequence of
(
2nR , n

)
codes with P

(n)
e → 0, let I be the

random variable corresponding to the index of the
(
2nR , n

)
encoder.
By Fano’s inequality

H (Un |I ) ≤ H
(

Un
∣∣∣Ûn

)
≤ nP (n)

e log |U|+ 1
∆
= nεn

where εn → 0 as n→∞, since |U| is finite.
• Now consider

nR ≥ H(I )

= I (Un; I )

= nH(U)− H (Un|I ) ≥ nH(U)− nεn

Thus as n→∞,R ≥ H(U)
• The above source coding theorem also holds for any discrete

stationary and ergodic source
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Lecture 5

Variable length Source coding

Zero error Data Compression
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A code

Definition (Variable length Source code (VLC))

Let X be a r.v. with finite alphabet X. A variable-length source
code C for a random variable X is a mapping

C : X→ A∗

where X is a set of M symbols,
A is a set of D letters, and
A∗ the set of finite length sequences (or strings) of letters from A.
C (x) denotes the codeword corresponding to the symbol x .

In the following, we will say Source code for VLC.
Examples 1, 2
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The length of a code

Let L : A∗ → N denote the length mapping of a codeword
(sequence of letters).

L(C (x))log |A| is the number of letters of C (x), and
L(C (x)) log |A| is the number of bits.

Definition

The expected length L(C ) of a source code C for a random
variable X with pmf p(x) is given by:

L(C ) = E[L(C (X ))] =
∑
x∈X

L(C (x))p(x)

Goal Find a source code C for X with smallest L(C ).
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Encoding a sequence of source symbols

Definition

A source message= a sequence of symbols
A coded sequence= a sequence of codewords

Definition

The extension of a code C is the mapping from finite length
sequences of X (of any length) to finite length strings of A, defined
by:

C : X∗ → A∗

(x1, ..., xn) 7→ C (x1, ..., xn) = C (x1)C (x2)...C (xn)

where C (x1)C (x2)...C (xn) indicates the concatenation of the
corresponding codewords.
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Characteristics of good codes
Definition

A (source) code C is said to be non-singular iff C is injective:

∀(xi , xj) ∈ X2, xi 6= xj ⇒ C (xi) 6= C (xj)

Definition

A code is called uniquely decodable iff its extension is non-singular.

Definition

A code is called a prefix code (or an instantaneous code) if no
codeword is a prefix of any other codeword.

prefix code ⇒ uniquely decodable
uniquely decodable : prefix code

Examples
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Kraft inequality
Theorem (prefix code ⇔ KI [CT Th 5.2.1])

Let C be an prefix code for the source X with |X| = M over an
alphabet A = {a1, ..., aD} of size D. Let l1, l2, ..., lM the lengths of
the codewords associated to the realizations of X . These codeword
lengths must satisfy the Kraft inequality

M∑
i=1

D−li ≤ 1 (KI)

Conversely, let l1, l2, ..., lM be M lengths that satisfy this inequality
(KI), there exists an prefix code with M symbols, constructed with
D letters, and with these word lengths.

• from the lengths, one can always construct a prefix code
• finding prefix code is equivalent to finding the codeword lengths
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uniquely decodable

Theorem (uniquely decodable code ⇔ KI [CT Th 5.5.1])

The codeword lengths of any uniquely decodable code must satisfy
the Kraft inequality.
Conversely, given a set of codeword lengths that satisfy this
inequality, it is possible to construct a uniquely decodable code
with these codeword lengths.

Good news!!

prefix code ⇔ KI
uniquely decodable code (UDC) ⇔ KI

⇒ same set of achievable codeword lengths for UDC and prefix

⇒ restrict the search of good codes to the set of prefix codes.
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Optimal source codes
Let X be a r.v. taking M values in X = {α1, α2, ..., αM}, with
probabilities p1, p2, ..., pM .
Each symbol αi is associated with a codeword Wi i.e. a sequence of
li letters, where each letter takes value in an alphabet of size D.

Goal
Find a uniquely decodable code with minimum expected length.⇔
Find a prefix code with minimum expected length.⇔
Find a set of lengths satisfying KI with minimum expected length.

{l∗1 , l∗2 , ..., l∗M} = arg min
{l1,l2,...,lM}

M∑
i=1

pi li (Pb1)

s.t. ∀i , li ≥ 0 and
M∑
i=1

D−li ≤ 1
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Battle plan to solve (Pb1)

1 find a lower bound for L(C ),

2 find an upper bound,

3 construct an optimal prefix code.
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Lower bound of prefix code

Theorem (Lower bound on the expected length of any prefix
code [CT Th. 5.3.1])

The expected length L(C ) of any prefix D-ary code
for the r.v. X taking M values in X = {α1, α2, ..., αM}, with
probabilities p1, p2, ..., pM ,
is greater than or equal to the entropy H(X )/ log(D) i.e.,

L(C ) =
M∑
i=1

pi li ≥
H(X )

log D

with equality iff pi = D−li , for i = 1, ...,M, and
∑M

i=1 D−li = 1

69/ 74



Lower and upper bound of Shannon code
Definition

A Shannon code (defined on an alphabet with D symbols)
for each source symbol αi ∈ X = {αi}Mi=1 of probability pi > 0,
assigns codewords of length L(C (αi)) = li = d− logD(pi)e.

Theorem (Expected length of a Shannon code [CT Sec. 5.4])

Let X be a r.v. with entropy H(X ). The Shannon code for the
source X can be turned into a prefix code
and its expected length L(C ) satisfies

H(X )

log D
≤ L(C ) <

H(X )

log D
+ 1 (1)

Corollary

Let X be a r.v. with entropy H(X ). There exists a prefix code
with expected length L(C ) that satisfies (1).
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Definition

A Shannon code (defined on an alphabet with D symbols)
for each source symbol αi ∈ X = {αi}Mi=1 of probability pi > 0,
assigns codewords of length L(C (αi)) = li = d− logD(pi)e.

Theorem (Expected length of a Shannon code [CT Sec. 5.4])

Let X be a r.v. with entropy H(X ). The Shannon code for the
source X can be turned into a prefix code
and its expected length L(C ) satisfies

H(X )

log D
≤ L(C ) <

H(X )

log D
+ 1 (1)

Corollary

Let X be a r.v. with entropy H(X ). There exists a prefix code
with expected length L(C ) that satisfies (1).

70/ 74



Lower and upper bound of optimal code

Definition

A code is optimal if it achieves the lowest expected length among
all prefix codes.

Theorem (Lower and upper bound on the expected length of
an optimal code [CT Th 5.4.1])

Let X be a r.v. with entropy H(X ). Any optimal code C ∗ for X
with codeword lengths l∗1 , ..., l

∗
M and expected length

L(C ∗) =
∑

pi l
∗
i satisfies

H(X )

log D
≤ L(C ∗) <

H(X )

log D
+ 1

Quiz Improve the upper bound.
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Improved upper bound

Theorem (Lower and upper bound on the expected length of
an optimal code for a sequence of symbols[CT Th 5.4.2])

Let X be a r.v. with entropy H(X ). Any optimal code C ∗ for a
sequence of s i.i.d. symbols (X1, ...,Xs) with expected length L(C ∗)
per source symbol X satisfies

H(X )

log D
≤ L(C ∗) <

H(X )

log D
+

1

s

This is the zero-error source coding Theorem.

Same average achievable rate for vanishing and error-free
compression.
This is not true in general for distributed coding of multiple sources.
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Construction of optimal codes

Lemma (Necessary conditions on optimal prefix codes[CT Le5.8.1])

Given a binary prefix code C with word lengths l1, ..., lM associated
with a set of symbols with probabilities p1, ..., pM .
Without loss of generality, assume that
(i) p1 ≥ p2 ≥ ... ≥ pM ,
(ii) a group of symbols with the same probability is arranged in order
of increasing codeword length (i.e. if pi = pi+1 = ... = pi+r then
li ≤ li+1... ≤ li+r ).
If C is optimal within the class of prefix codes, C must satisfy:

1 higher probabilities symbols have shorter codewords
(pi > pk ⇒ li < lk),

2 the two least probable symbols have equal length (lM = lM−1),

3 among the codewords of length lM , there must be at least two
words that agree in all digits except the last.
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Huffman code
Let X be a r.v. taking M values in X = {α1, α2, ..., αM}, with
probabilities p1, p2, ..., pM s.t. p1 ≥ p2 ≥ ... ≥ pM .
Each letter αi is associated with a codeword Wi i.e. a sequence of li
letters, where each letter takes value in an alphabet of size D = 2.

1 Combine the last 2 symbols αM−1, αM into an
equivalent symbol αM,M−1 w.p. pM + pM−1,

2 Suppose we can construct an optimal code C2 (W1, ...,WM,M−1)
for the new set of symbols {α1, α2, ..., αM,M−1}.
Then, construct the code C1 for the original set as:

C1 : αi 7→ Wi , ∀i∈[1,M−2], same codewords as in C2

αM−1 7→ WM,M−1 0

αM 7→ WM,M−1 1

Theorem (Huffman code is optimal [CT Th. 5.8.1])
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