
��������	
�������

����������	
����

��������	
�
�����������
�������
���������

ii Informix DataStage Developer’s Guide

Published by Informix Press Informix Corporation
4100 Bohannon Drive
Menlo Park, CA 94025-1032

© 1999 Informix Corporation. All rights reserved. The following are trademarks of Informix Corporation
or its affiliates, one or more of which may be registered in the United States or other jurisdictions:

Answers OnLineTM; C-ISAM ; Client SDKTM; DataBlade ; Data DirectorTM; Decision FrontierTM;
Dynamic Scalable ArchitectureTM; Dynamic ServerTM; Dynamic ServerTM, Developer EditionTM;
Dynamic ServerTM with Advanced Decision Support OptionTM; Dynamic ServerTM with Extended
Parallel OptionTM; Dynamic ServerTM with MetaCube ; Dynamic ServerTM with Universal Data OptionTM;
Dynamic ServerTM with Web Integration OptionTM; Dynamic ServerTM, Workgroup EditionTM;
Dynamic Virtual MachineTM; Enterprise Decision ServerTM; FormationTM; Formation ArchitectTM;
Formation Flow EngineTM; Frameworks for Business IntelligenceTM; Frameworks TechnologyTM; Gold Mine
Data Access ; i.ReachTM; i.SellTM; Illustra ; Informix ; Informix 4GL; Informix COM AdapterTM;
Informix Informed DecisionsTM; Informix InquireSM; Informix Internet Foundation.2000TM; InformixLink ;
Informix Red Brick Decision ServerTM; Informix Session ProxyTM; Informix VistaTM; InfoShelfTM;
InterforumTM; I-SpyTM; MediazationTM; MetaCube ; NewEraTM; Office ConnectTM; ON-BarTM;
OnLine Dynamic ServerTM; OnLine/Secure Dynamic ServerTM; OpenCase ; OrcaTM; PaVERTM;
Red Brick and Design; Red Brick Data MineTM; Red Brick Mine BuilderTM; Red Brick DecisionscapeTM;
Red Brick ReadyTM; Red Brick Systems ; Regency Support ; Rely on Red BrickSM; RISQL ; Solution DesignSM;
STARindexTM; STARjoinTM; SuperView ; TARGETindexTM; TARGETjoinTM; The Data Warehouse Company ;
Universal Data Warehouse BlueprintTM; Universal Database ComponentsTM; Universal Web ConnectTM;
ViewPoint ; VisionaryTM; Web Integration SuiteTM. The Informix logo is registered with the United States
Patent and Trademark Office. The DataBlade logo is registered with the United States Patent and
Trademark Office.

GOVERNMENT LICENSE RIGHTS

Software and documentation acquired by or for the US Government are provided with rights as follows:
(1) if for civilian agency use, with rights as restricted by vendor’s standard license, as prescribed in FAR 12.212;
(2) if for Dept. of Defense use, with rights as restricted by vendor ’s standard license, unless superseded by a
negotiated vendor license, as prescribed in DFARS 227.7202. Any whole or partial reproduction of software or
documentation marked with this legend must reproduce this legend.

Table of Contents iii

Table of Contents
Preface
Organization of This Manual .. xiii
Documentation Conventions ... xv
DataStage Documentation ... xvi

Chapter 1. Introduction
About Data Warehousing .. 1-1

Operational Databases Versus Data Warehouses .. 1-2
Constructing the Data Warehouse ... 1-2
Defining the Data Warehouse .. 1-3
Data Extraction ... 1-3
Data Aggregation ... 1-3
Data Transformation .. 1-3
Advantages of Data Warehousing ... 1-4

Main Features in DataStage ... 1-4

Chapter 2. About DataStage
How DataStage Is Packaged .. 2-1

Client Components .. 2-1
Server Components ... 2-2

DataStage Projects ... 2-2
DataStage Jobs ... 2-2
DataStage NLS ... 2-4

Character Set Maps and Locales .. 2-4
DataStage Terms and Concepts ... 2-5

Chapter 3. Your First DataStage Project
Setting Up Your Project .. 3-2

Starting the DataStage Manager .. 3-2
Defining Table Definitions .. 3-4
Assigning Data Elements .. 3-6

iv DataStage Developer’s Guide

Creating a Job ...3-7
Developing a Job ..3-9

Adding Stages ...3-9
Linking Stages ...3-10

Editing the Stages ..3-12
Editing the UniVerse Stage ...3-12
Editing the Transformer Stage ..3-16
Editing the Sequential File Stage ..3-20

Compiling a Job ...3-21
Running a Job ...3-22
Analyzing Your Data Warehouse ..3-23

Chapter 4. Setting Up a Project
Assessing Your Data ...4-1
Creating the Data Warehouse ..4-2
The DataStage Manager ...4-2

Starting the DataStage Manager ..4-2
The DataStage Manager Window ..4-4
Using the DataStage Manager ..4-7
Choosing an Alternative Project ..4-8
Customizing the Tools Menu ..4-9
Exiting the DataStage Manager ..4-10

Table Definitions .. 4-11
Importing a Table Definition .. 4-11
The Table Definition Dialog Box ..4-23
Manually Entering a Table Definition ...4-28
Viewing or Modifying a Table Definition ...4-32
Using the Data Browser ...4-33

Stored Procedure Definitions ...4-35
Importing a Stored Procedure Definition ...4-35
The Table Definition Dialog Box for Stored Procedures 4-38
Manually Entering a Stored Procedure Definition ..4-39
Viewing or Modifying a Stored Procedure Definition 4-42

Table of Contents v

Data Elements .. 4-43
Creating Data Elements .. 4-44
Assigning Data Elements .. 4-46
Viewing or Editing Data Elements .. 4-47
Built-In Data Elements .. 4-47

External ActiveX (OLE) Functions ... 4-48
Importing External ActiveX (OLE) Functions ... 4-49

Chapter 5. Developing a Job
The DataStage Designer ... 5-1

Starting the DataStage Designer .. 5-1
The DataStage Designer Window ... 5-3
Creating a Job ... 5-8
Opening a Job ... 5-9
Saving a Job .. 5-10
Exiting the DataStage Designer ... 5-11

Stages .. 5-11
Built-In Stages ... 5-11
Plug-In Stages ... 5-12

Developing the Job Design .. 5-12
Adding Stages .. 5-13
Moving Stages .. 5-14
Renaming Stages .. 5-14
Deleting Stages ... 5-15
Links .. 5-15
Linking Stages .. 5-16
Editing Stages ... 5-18
Using the Data Browser .. 5-24
The Job Run Options Dialog Box ... 5-26

Containers .. 5-27
Creating a Container ... 5-28
Adding a Container Stage .. 5-28
Viewing or Modifying a Container ... 5-28
Using Input and Output Stages ... 5-29

Job Properties ... 5-30

vi DataStage Developer’s Guide

Specifying Job Parameters ..5-33
Parameter Types ...5-34
Parameter Defaults ...5-35
Defining Job Parameters ...5-35
Editing Job Parameters ..5-36
Deleting Job Parameters ..5-36
Using Job Parameters ..5-36

Job Control Routines ...5-38
Specifying Maps and Locales ..5-41

Defining Character Set Maps ..5-41
Defining Data Formats with Locales ...5-42

Specifying Job Dependencies ...5-43
Specifying Designer Options ...5-45

Chapter 6. ODBC Stages
Defining the Connection ..6-2

ODBC Connection Parameters ...6-2
Defining Character Set Maps ...6-4
Defining ODBC Input Data ..6-5

Using a Generated Query ...6-8
Using a User-Defined SQL Statement ...6-8
Using a Stored Procedure ..6-9

Defining ODBC Output Data ..6-10
Key Fields ..6-12
Using a Generated Query ...6-13
Using a User-Defined SQL Statement ...6-17
Using a Stored Procedure ..6-19

Chapter 7. UniVerse Stages
Defining the Connection ...7-2

UniVerse Connection Parameters ..7-2
Defining UniVerse Input Data ...7-4

Using a Generated Query ...7-6
Using a User-Defined SQL Statement ...7-7

Table of Contents vii

Defining UniVerse Output Data ... 7-8
Key Fields .. 7-10
Using a Generated Query ... 7-10
Using a User-Defined SQL Statement ... 7-15

Chapter 8. UniData Stages
Defining Character Set Maps .. 8-3
Defining UniData Input Data .. 8-4
Defining UniData Output Data ... 8-5

Chapter 9. Hashed File Stages
Defining Hashed File Input Data .. 9-3
Defining Hashed File Output Data .. 9-4

Chapter 10. Sequential File Stages
Defining Character Set Maps .. 10-3
Defining Sequential File Input Data ... 10-4
Defining Sequential File Output Data .. 10-7

Chapter 11. Transformer Stages
Transformer Editor Components .. 11-2

Toolbar ... 11-2
Link Area ... 11-2
Meta Data Area .. 11-2
Shortcut Menus .. 11-3

Transformer Stage Basic Concepts .. 11-4
Input Links .. 11-4
Output Links .. 11-4
Before-Stage and After-Stage Routines ... 11-5

Editing Transformer Stages ... 11-6
Using Drag and Drop .. 11-6
Specifying the Primary Input Link .. 11-7
Creating and Deleting Columns .. 11-7
Moving Columns Within a Link .. 11-8

viii DataStage Developer’s Guide

Editing Column Meta Data ... 11-8
Defining Output Column Derivations .. 11-8
Defining Input Column Key Expressions ... 11-9
Specifying Before-Stage and After-Stage Subroutines 11-10
Defining Constraints and Handling Rejects ... 11-11

The DataStage Expression Editor .. 11-12
Entering Expressions ... 11-13
Completing Variable Names ... 11-14
Validating the Expression ... 11-14
Exiting the Expression Editor ... 11-14
Configuring the Expression Editor .. 11-14

Transforms .. 11-15

Chapter 12. Aggregator Stages
Before-Stage and After-Stage Subroutines ...12-2
Defining Aggregator Input Data ...12-3

Defining the Input Column Sort Order ...12-4
Defining Aggregator Output Data ..12-5

Aggregating Data ...12-7
The AGGREGATOR Plug-In ..12-9

Chapter 13. Plug-Ins and Plug-In Stages
Plug-Ins ...13-1

Manually Registering a Plug-In Definition ..13-2
Viewing Plug-In Definition Details ...13-3
Removing a Registered Plug-In ...13-5
Packaging a Plug-In ...13-5
Using a Plug-In ...13-5

Plug-In Stages ..13-6
Before-Stage and After-Stage Subroutines ...13-7
Defining Plug-In Input Data ...13-8
Defining Plug-In Output Data ..13-9
Editing Properties ...13-10
Defining Character Set Maps ..13-12

Table of Contents ix

Chapter 14. BCPLoad Stages
Overview .. 14-1
Before You Start ... 14-2
Table Definitions ... 14-3
SQL Data Types ... 14-3
The BCPLoad Plug-In Definition .. 14-4

Stage Properties .. 14-4
Using the BCPLoad Stage .. 14-5
Editing the BCPLoad Stage .. 14-6

Using Job Parameters .. 14-6
Defining Character Set Maps ... 14-7
Using Stored Procedures ... 14-7

The BCPLoad Demo ... 14-11

Chapter 15. Orabulk Stages
Using the Orabulk Stage .. 15-1

Renaming Columns and Converting Values ... 15-2
Integrity Constraints ... 15-2
Cleaning and Validating Data .. 15-2

Specifying the Stage Properties ... 15-3
Defining Character Set Maps .. 15-4
Loading the Files into Oracle .. 15-5

Running sqlldr .. 15-5
Errors and Bad Rows ... 15-6
Empty and Null Values ... 15-7

Chapter 16. Programming in DataStage
Programming Components ... 16-2

Routines ... 16-2
Functions ... 16-3
Expressions ... 16-4
Subroutines ... 16-4
Macros ... 16-5

The Routine Dialog Box ... 16-5

x DataStage Developer’s Guide

Creating a Routine ...16-10
Entering Code ... 16-11
Saving Code ..16-12
Compiling Code ...16-12
Testing a Routine ..16-13
Using Find and Replace ..16-15

Viewing and Editing a Routine ...16-17
Copying a Routine ...16-17
Renaming a Routine ..16-18

Chapter 17. Debugging, Compiling, and Releasing a Job
The DataStage Debugger ..17-1
Compiling a Job ...17-5

Compilation Checks ...17-6
Successful Compilation ...17-6
Troubleshooting ..17-7

Releasing a Job ...17-7

Chapter 18. Reporting and Printing
Reporting ..18-1

The Reporting Tool ...18-1
The Documentation Tool ...18-4

Printing from the Designer ..18-9
Producing a Printout ..18-10
Changing the Printer Setup ..18-10

Chapter 19. Importing, Exporting, and Packaging Jobs
Using Import ..19-1
Using Export ..19-3
Using the Packager Wizard ..19-6

Chapter 20. Using MetaBrokers
Importing Meta Data ..20-1
Exporting Meta Data ...20-5

Table of Contents xi

Appendix A. Built-In Transforms and Routines
Built-In Transforms .. A-1

Transforms Resulting in String ... A-2
Transforms Resulting in Date .. A-2
Transform Resulting in Time ... A-4
Transform Resulting in TIMESTAMP .. A-5
Transform Resulting in DATE.TAG ... A-5
Transforms Resulting in WEEK.TAG ... A-5
Transforms Resulting in MONTH.TAG ... A-6
Transforms Resulting in QUARTER.TAG ... A-6
Transforms Resulting in YEAR.TAG .. A-7

Built-In Routines .. A-7
Built-In Before/After Subroutines .. A-8
Example Transform Functions .. A-8

Appendix B. Editing Grids
Grids ..B-1
Navigating in the Grid ...B-2
Editing in the Grid ..B-3

Adding Rows ..B-4
Deleting Rows ..B-4

Appendix C. Troubleshooting
Cannot Start DataStage Clients .. C-1
Problems While Working with UniData ... C-1

Connecting to UniData Databases ... C-1
Importing UniData Meta Data .. C-2
Using the UniData Stage .. C-2

Problems with the Documentation Tool ... C-2
Installing the Documentation Tool ... C-2
Using Plug-In Reports .. C-3

Problems Running Jobs ... C-3
Job Compiles Successfully but Will Not Run .. C-3
Job from Previous DataStage Release Will Not Run C-3

xii DataStage Developer’s Guide

Miscellaneous Problems .. C-3
Turning Grid Lines On and Off ... C-3
Landscape Printing ... C-3
Browsing for Directories ..C-3

Index

Preface xiii

Preface

This manual describes the features of the DataStage Manager and DataStage
Designer. It is intended for application developers and system administrators who
want to use DataStage to design and develop data warehousing applications.

If you are new to DataStage, read the first three chapters for an overview of data
warehousing and the concepts and use of DataStage.

The remaining chapters are organized by tasks you must perform to create a data
warehousing application. Please refer to the chapters in order because initial setup
is the key to a successful DataStage application.

Organization of This Manual
This manual contains the following:

Chapter 1 contains an overview of data warehousing and describes how
DataStage can aid the development and population of a data warehouse.

Chapter 2 introduces the DataStage client and server components and covers
DataStage concepts and terminology.

Chapter 3 describes the minimum steps required to create a DataStage appli-
cation, using the example data provided.

Chapter 4 describes the DataStage Manager and how to set up a DataStage
project, including defining table and stored procedure definitions and creating
data elements.

Chapter 5 describes how to develop a DataStage job using the DataStage
Designer.

Chapter 6 describes how to extract data from or write data to a database table
using an ODBC stage. This chapter also describes an alternative way of aggre-
gating output data.

Chapter 7 describes how to extract data from or write data to a database table
using a UniVerse stage. This chapter also describes an alternative way of
aggregating output data.

Chapter 8 describes how to extract data from or write data to a local UniData
file using the UniData stage.

xiv DataStage Developer’s Guide

Chapter 9 describes how to extract data from or write data to a local UniVerse
file using the Hashed File stage.

Chapter 10 describes how to extract data from or write data to a sequential file
using the Sequential File stage.

Chapter 11 describes how to transform (convert) data using a Transformer
stage.

Chapter 12 describes how to aggregate output data using the Aggregator
stage.

Chapter 13 introduces plug-ins and describes how to create and use them in a
plug-in stage.

Chapter 14 describes how to bulk load data into a Microsoft SQL Server or
Sybase database table using the BCPLoad plug-in stage.

Chapter 15 describes how to bulk load data into an Oracle database table using
the Orabulk plug-in stage.

Chapter 16 describes how to write and test BASIC routines that are used as
before-subroutines and after-subroutines or transform functions.

Chapter 17 describes how to debug, compile, and release a DataStage job.

Chapter 18 covers how to generate reports from the DataStage Manager and
Designer, and how to print from the DataStage Manager and Designer.

Chapter 19 describes how to import and export DataStage components
between development environments, and how to package jobs for deployment
to other systems.

Chapter 20 tells you how to use MetaBrokers to exchange meta data between
DataStage and other data warehousing tools.

Appendix A describes the built-in transforms and routines supplied with
DataStage.

Appendix B covers how to navigate and edit the grids that appear in many
DataStage dialog boxes.

Appendix C gives troubleshooting advice.

Preface xv

Documentation Conventions
This manual uses the following conventions:

The following conventions are also used:

• Syntax definitions and examples are indented for ease in reading.

• All punctuation marks included in the syntax—for example, commas,
parentheses, or quotation marks—are required unless otherwise indicated.

Convention Usage

Bold In syntax, bold indicates commands, function names,
keywords, and options that must be input exactly as shown.
In text, bold indicates keys to press, function names, and
menu selections.

UPPERCASE In syntax, uppercase indicates BASIC statements and func-
tions and SQL statements and keywords.

Italic In syntax, italic indicates information that you supply. In text,
italic also indicates operating system commands and options,
filenames, and pathnames.

Courier Courier indicates examples of source code and system
output.

Courier Bold In examples, courier bold indicates characters that the user
types or keys the user presses (for example, <Return>).

[] Brackets enclose optional items. Do not type the brackets
unless indicated.

{ } Braces enclose nonoptional items from which you must
select at least one. Do not type the braces.

itemA | itemB A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

... Three periods indicate that more of the same type of item can
optionally follow.

➤ A right arrow between menu options indicates you should
choose each option in sequence. For example, “Choose File
➤ Exit” means you should choose File from the menu bar,
then choose Exit from the File pull-down menu.

This line
➥ continues

The continuation character is used in source code examples
to indicate a line that is too long to fit on the page, but must
be entered as a single line on screen.

xvi DataStage Developer’s Guide

• Syntax lines that do not fit on one line in this manual are continued on
subsequent lines. The continuation lines are indented. When entering
syntax, type the entire syntax entry, including the continuation lines, on the
same input line.

DataStage Documentation
DataStage documentation includes the following:

DataStage Developer’s Guide: This guide describes the DataStage Manager
and Designer, and how to create, design, and develop a DataStage application.

DataStage Operator’s Guide: This guide describes the DataStage Director and
how to validate, schedule, run, and monitor DataStage applications.

DataStage Administrator’s Guide: This guide describes DataStage setup,
routine housekeeping, and administration.

These guides are also available online in PDF format. You can read them with the
Adobe Acrobat Reader supplied with DataStage. See DataStage Installation Instruc-
tions in the DataStage CD jewel case for details on installing the manuals and the
Adobe Acrobat Reader.

Introduction 1-1

1
Introduction

This chapter is an overview of data warehousing and Informix DataStage.

The last few years have seen the continued growth of IT (information technology)
and the requirement of organizations to make better use of the data they have at
their disposal. This involves analyzing data in active databases and comparing it
with data in archive systems.

Although offering the advantage of a competitive edge, the cost of consolidating
data into a data mart or data warehouse was high. It also required the use of data
warehousing tools from a number of vendors and the skill to create a data
warehouse.

Developing a data warehouse or data mart involves design of the data warehouse
and development of operational processes to populate and maintain it. In addition
to the initial setup, you must be able to handle on-going evolution to accommodate
new data sources, processing, and goals.

DataStage from Ardent simplifies the data warehousing process. It is an integrated
product that supports extraction of the source data, cleansing, decoding, transfor-
mation, integration, aggregation, and loading of target databases.

Although primarily aimed at data warehousing environments, DataStage can also
be used in any data handling, data migration, or data reengineering projects.

About Data Warehousing
The aim of data warehousing is to make more effective use of the data available in
an organization and to aid decision-making processes.

A data warehouse is a central integrated database containing data from all the
operational sources and archive systems in an organization. It contains a copy of
transaction data specifically structured for query analysis. This database can be
accessed by all users, ensuring that each group in an organization is accessing
valuable, stable data.

1-2 DataStage Developer’s Guide

A data warehouse is a “snapshot” of the operational databases combined with data
from archives. The data warehouse can be created or updated at any time, with
minimum disruption to operational systems. Any number of analyses can be
performed on the data, which would otherwise be impractical on the operational
sources.

Operational Databases Versus Data Warehouses
Operational databases are usually accessed by many concurrent users. The data in
the database changes quickly and often. It is very difficult to obtain an accurate
picture of the contents of the database at any one time.

Because operational databases are task oriented, for example, stock inventory
systems, they are likely to contain “dirty” data. The high throughput of data into
operational databases makes it difficult to trap mistakes or incomplete entries.
However, you can cleanse data before loading it into a data warehouse, ensuring
that you store only “good” complete records.

Constructing the Data Warehouse
A data warehouse is created by extracting data from one or more operational data-
bases. The data is transformed to eliminate inconsistencies, aggregated to
summarize data, and loaded into the data warehouse. The end result is a dedicated
database which contains stable, nonvolatile, integrated data. This data also repre-
sents a number of time variants (for example, daily, weekly, or monthly values),
allowing the user to analyze trends in the data.

The data in a data warehouse is classified based on the subjects of interest to the
organization. For a bank, these subjects may be customer, account number, and
transaction details. For a retailer, these may include product, price, quantity sold,
and order number.

Each data warehouse includes detailed data. However, where only a portion of this
detailed data is required, a data mart may be more suitable. A data mart is gener-
ated from the data contained in the data warehouse and contains focused data that
is frequently accessed or summarized, for example, sales or marketing data.

The person who constructs the data warehouse must know the needs of users who
will use the data warehouse or data marts. This means knowing the data contained
in each operational database and how each database is related (if at all).

Introduction 1-3

Defining the Data Warehouse
Defining the warehouse is one of the first steps in creating a data warehouse. The
definition describes the content of the data warehouse by specifying the data
elements and any transforms (conversions) required before the data is stored. The
definition of the data warehouse is described in terms of meta data. Meta data is
data about the data you are handling – typically a set of column definitions
describing the structure of the data.

Meta data can be created using the schemas or subschemas that are used to define
the operational databases. Although meta data can be difficult to define and be a
time-consuming process, it holds the key to a successful data warehouse.

Data Extraction
The data in operational or archive systems is the primary source of data for the
data warehouse. Operational databases can be indexed files, networked databases,
or relational database systems. Data extraction is the process used to obtain data
from operational sources, archives, and external data sources.

Data Aggregation
An operational data source usually contains records of individual transactions
such as product sales. If the user of a data warehouse only needs a summed total,
you can reduce records to a more manageable number by aggregating the data.

The summed (aggregated) total is stored in the data warehouse. Because the
number of records stored in the data warehouse is greatly reduced, it is easier for
the end user to browse and analyze the data.

Data Transformation
Because the data in a data warehouse comes from many sources, the data may be
in different formats or be inconsistent. Transformation is the process that converts
data to a required definition and value.

Data is transformed using routines based on a transformation rule, for example,
product codes can be mapped to a common format using a transformation rule that
applies only to product codes.

After data has been transformed it can be loaded into the data warehouse in a
recognized and required format.

1-4 DataStage Developer’s Guide

Advantages of Data Warehousing
A data warehousing strategy provides the following advantages:

• Capitalizes on the potential value of the organization’s information

• Improves the quality and accessibility of data

• Combines valuable archive data with the latest data in operational sources

• Increases the amount of information available to users

• Reduces the requirement of users to access operational data

• Reduces the strain on IT departments, as they can produce one database to
serve all user groups

• Allows new reports and studies to be introduced without disrupting opera-
tional systems

• Promotes users to be self sufficient

Main Features in DataStage
DataStage has the following features to aid the design and processing required to
build a data warehouse:

• Uses graphical design tools. With simple point and click techniques you
can draw a scheme to represent your processing requirements.

• Extracts data from any number or types of database.

• Handles all the meta data definitions required to define your data ware-
house. You can view and modify the table definitions at any point during
the design of your application.

• Aggregates data. You can modify SQL SELECT statements used to extract
data.

• Transforms data. DataStage has a set of predefined transforms and func-
tions you can use to convert your data. You can easily extend the
functionality by defining your own transforms to use.

• Loads the data warehouse.

DataStage consists of a number of client and server components. For more infor-
mation, see “Client Components” on page 2-1 and “Server Components” on
page 2-2.

About DataStage 2-1

2
About DataStage

DataStage is a tool set for designing, developing, and running applications that
populate one or more tables in a data warehouse or data mart.

This chapter provides:

• A basic introduction to DataStage components and concepts
• A description of the DataStage terms used throughout this manual

How DataStage Is Packaged
DataStage consists of client and server components. The client and server compo-
nents installed depend on the edition of DataStage you have purchased. DataStage
is packaged in two ways:

• Developer’s Edition. Used by developers to design, develop, and create
executable DataStage jobs. Contains all the client and server components
described next.

• Operator’s Edition. Used by operators to validate, schedule, run, and
monitor executable DataStage jobs. Contains the DataStage Director and
Server components. The DataStage Director and the operator’s role are
described in DataStage Operator’s Guide.

Client Components
DataStage has four client components which are installed on any PC running
Windows 98 or Windows NT 4.0 or later:

• DataStage Designer. A design interface used to create DataStage applica-
tions (known as jobs). Each job specifies the data sources, the transforms
required, and the destination of the data. Jobs are compiled to create
executables that are scheduled by the Director and run by the Server.

2-2 DataStage Developer’s Guide

• DataStage Director. A user interface used to validate, schedule, run, and
monitor DataStage jobs.

• DataStage Manager. A user interface used to view and edit the contents of
the Repository.

• DataStage Administrator. A user interface used to set up DataStage users,
create and move projects, and set up purging criteria.

Server Components
There are three server components:

• Repository. A central store that contains all the information required to
build a data mart or data warehouse.

• DataStage Server. Runs executable jobs that extract, transform, and load
data into a data warehouse.

• DataStage Package Installer. A user interface used to install packaged
DataStage jobs and plug-ins.

DataStage Projects
You always enter DataStage through a DataStage project. When you start a
DataStage client you are prompted to attach to a project. Each project contains:

• DataStage jobs.

• Built-in components. These are predefined components used in a job.

• User-defined components. These are customized components created
using the DataStage Manager. Each user-defined component performs a
specific task in a job.

A complete project may contain several jobs and user-defined components.

DataStage Jobs
DataStage jobs consist of individual stages. Each stage describes a particular data-
base or process. For example, one stage may extract data from a data source, while
another transforms it. Stages are added to a job and linked together using the
Designer.

About DataStage 2-3

There are two types of stage:

• Built-in stages. Supplied with DataStage and used for extracting, aggre-
gating, transforming, or writing data.

• Plug-in stages. Additional stages that can be installed in DataStage to
perform specialized tasks that the built-in stages do not support.

The following diagram represents one of the simplest jobs you could have: a data
source, a transformer (conversion) stage, and the final database. The links between
the stages represent the flow of data into or out of a stage.

You must specify the data you want at each stage, and how it is handled. For
example, do you want all the columns in the source data, or only a select few?
Should the data be aggregated or converted before being passed on to the next
stage?

Project-wide data properties determine the possible operations on your data.
These properties are available to all the jobs in your project and consist of:

• Table definitions. These specify the data you want. Each table definition
contains:

– Information about the table or file that holds the data records.
– A description of the individual columns.

• Data elements. Each data element describes one type of data that can be
stored in a column. The data element associated with a column defines the
operations that can be carried out on that column. DataStage has numerous
predefined data elements representing commonly required data types
(such as date, time, number, and string). You can also define your own
special data elements.

• Transforms. These convert and cleanse your data by transforming it into a
format you want to save and use in your final warehouse.

You can use DataStage in conjunction with Ardent MetaBrokers in order to
exchange meta data with other data warehousing tools. You might, for example,
import table definitions from a data modelling tool.

Data
Source

Transformer
Stage

Data
Warehouse

2-4 DataStage Developer’s Guide

An executable job is created when you compile a job design. When the job is run,
the processing stages described in the job design are performed using the data
properties you defined. Executable jobs can be packaged for use on other
DataStage systems.

DataStage NLS
DataStage has built-in National Language Support (NLS). With NLS installed,
DataStage can do the following:

• Process data in a wide range of languages.

• Accept data in any character set into most DataStage fields.

• Use local formats for dates, times, and money.

• Sort data according to local rules.

• Convert data between different encodings of the same language (for
example, for Japanese it can convert JIS to EUC).

DataStage NLS is optionally installed as part of the DataStage server. If NLS is
installed, various extra features (such as dialog box pages and drop-down lists)
appear in the product. If NLS is not installed, these features do not appear.

Using NLS, the DataStage server engine holds data in UNICODE format. This is
an international standard character set that contains nearly all the characters used
in languages around the world. DataStage maps data to or from UNICODE format
as required.

Character Set Maps and Locales
Each DataStage project has a language assigned to it during installation. This
equates to one or more character set maps and locales which support that
language. One map and one locale are assigned as project defaults.

• The maps define the character sets that the project can use.

• The locales define the local formats for dates, times, sorting order, and so
on that the project can use.

The DataStage client and server components also have maps assigned to them
during installation to ensure that data is transferred between them in the correct
character set. For more information, see DataStage Administrator’s Guide.

About DataStage 2-5

When you design a DataStage job, you can override the project default map at
several levels:

• For a job

• For a stage within a job

• For a column within a stage (for Sequential, ODBC, and generic plug-in
stages)

• For transforms and routines used to manipulate data within a stage

• For imported meta data and table definitions

The locale and character set information becomes an integral part of the job. When
you package and release a job, the NLS support can be used on another system,
provided that the correct maps and locales are installed and loaded.

DataStage Terms and Concepts
The following terms are used in DataStage:

Term Description

administrator The person who is responsible for the maintenance
and configuration of DataStage, and for DataStage
users.

after-job subroutine A routine that is executed after a job runs.

after-stage subroutine A routine that is executed after a stage processes
data.

Aggregator stage A stage type that computes totals or other functions
of sets of data.

BCPLoad stage A plug-in stage supplied with DataStage that bulk
loads data into a Microsoft SQL Server or Sybase
table.

before-job subroutine A routine that is executed before a job is run.

before-stage subroutine A routine that is executed before a stage processes
any data.

built-in data elements There are two types of built-in data elements: those
that represent the base types used by DataStage
during processing and those that describe different
date/time formats.

built-in transforms The transforms supplied with DataStage. See
Appendix A for a complete list.

2-6 DataStage Developer’s Guide

column definition Defines the columns contained in a data table.
Includes the column name and the type of data
contained in the column.

container A group of stages and links in a job design.

Container stage A built-in stage type that represents a group of
stages and links in a job design.

custom transform A transform function defined by the DataStage
developer.

data element A specification that describes the type of data in a
column and how the data is converted.

Data Browser A tool used from within the DataStage Manager or
DataStage Designer to view the content of a table or
file.

DataStage
Administrator

A tool used to configure DataStage projects and
users. For more details, see DataStage Adminis-
trator’s Guide.

DataStage Designer A graphical design tool used by the developer to
design and develop a DataStage job.

DataStage Director A tool used by the operator to run and monitor
DataStage jobs.

DataStage Manager A tool used to view and edit definitions in the
Repository.

DataStage Package
Installer

A tool used to install packaged DataStage jobs and
plug-ins.

developer The person designing and developing DataStage
jobs.

Expression Editor An interactive editor that helps you to enter correct
expressions into a Transformer stage in a DataStage
job design.

Hashed File stage A stage that extracts data from or loads data into a
database that contains hashed files.

job A collection of linked stages, data elements, and
transforms that define how to extract, cleanse,
transform, integrate, and load data into a target
database. A job can be compiled to produce an
executable.

job control routine A routine that is used to create a controlling job,
which invokes and runs other jobs.

Term Description

About DataStage 2-7

meta data Data about data, for example, a table definition
describing columns in which data is structured.

MetaBroker A tool that allows you to exchange meta data
between DataStage and other data warehousing
tools.

NLS National Language Support. With NLS enabled,
DataStage can support the handling of data in a
variety of character sets.

normalization The conversion of records in NF2 (nonfirst-normal
form) format, containing multivalued data, into one
or more 1NF (first normal form) rows.

ODBC stage A stage that extracts data from or loads data into a
database that implements the industry standard
Open Database Connectivity API. Used to represent
a data source, an aggregation step, or a target data
table.

operator The person scheduling and monitoring DataStage
jobs.

Orabulk stage A plug-in stage supplied with DataStage that bulk
loads data into an Oracle database table.

plug-in A definition for a plug-in stage. For more informa-
tion, see Chapter 13, “Plug-Ins and Plug-In Stages.”

plug-in stage A stage that performs specific processing that is not
supported by the Aggregator, Hashed File, ODBC,
UniVerse, UniData, Sequential File, and Trans-
former stages.

Repository A DataStage area where projects and jobs are stored
as well as definitions for all standard and user-
defined data elements, transforms, and stages.

Sequential File stage A stage that extracts data from, or writes data to, a
text file.

source A source in DataStage terms means any database,
whether you are extracting data from it or writing
data to it.

stage A component that represents a data source, a
processing step, or the data mart in a DataStage job.

Term Description

2-8 DataStage Developer’s Guide

table definition A definition describing the data you want including
information about the data table and the columns
associated with it. Also referred to as meta data.

transform function A function that takes one value and computes
another value from it.

Transformer editor A graphical interface for editing Transformer
stages.

Transformer stage

UniData stage

A stage where data is transformed (converted)
using transform functions.

A stage that extracts data from or loads data into a
UniData database. Used to represent a data source
or a target data table.

UniVerse stage A stage that extracts data from or loads data into a
UniVerse database using SQL. Used to represent a
data source, an aggregation step, or a target data
table.

Term Description

Your First DataStage Project 3-1

3
Your First

DataStage Project

This chapter describes the steps you need to follow to create your first data ware-
house, using the sample data provided. The example uses a UniVerse table called
EXAMPLE1, which is automatically copied into your DataStage project during
server installation.

EXAMPLE1 represents an SQL table from a wholesaler who deals in car parts. It
contains details of the wheels they have in stock. There are approximately 255 rows
of data and four columns:

• CODE. The product code for each type of wheel.

• PRODUCT. A text description of each type of wheel.

• DATE. The date new wheels arrived in stock (given in terms of year,
month, and day).

• QTY. The number of wheels in stock.

The aim of this example is to develop and run a DataStage job that:

• Extracts the data from the file.

• Converts (transforms) the data in the DATE column from a complete date
(YYYY-MM-DD) stored in internal data format, to a year and month
(YYYY-MM) stored as a string.

• Loads data from the DATE, CODE, and QTY columns into a data ware-
house. The data warehouse is a sequential file that is created when you run
the job.

To load a data mart or data warehouse, you must do the following:

• Set up your project
• Create a job

3-2 DataStage Developer’s Guide

• Develop the job
• Edit the stages in the job
• Compile the job
• Run the job

This chapter describes the minimum tasks required to create a DataStage job. In the
example, you will use the built-in settings and options supplied with DataStage.
However, because DataStage allows you to customize and extend the built-in func-
tionality provided, it is possible to perform additional processing at each step.
Where this is possible, additional procedures are listed under a section called
Advanced Procedures. These advanced procedures are discussed in detail in subse-
quent chapters.

Setting Up Your Project
Before you create any DataStage jobs, you must set up your project by entering
information about your data. This includes the name and location of the tables or
files holding your data and a definition of the columns they contain.

Information is stored in table definitions in the Repository and is entered using the
DataStage Manager. The easiest way to enter a table definition is to import directly
from the source data.

In this example, you need a table definition for EXAMPLE1.

Starting the DataStage Manager
To start the DataStage Manager, choose Start ➤ Programs ➤ Ardent DataStage ➤
DataStage Manager. The Attach to Project dialog box appears:

Your First DataStage Project 3-3

This dialog box appears when you start the DataStage Manager, Designer, or
Director client components from the DataStage program folder. In all cases, you
must attach to a project by entering your logon details.

Note: The program group may be called something other than Ardent DataStage,
depending on how DataStage was installed.

To connect to a project:

1. Enter the name of your host in the Host system field. This is the name of the
system where the DataStage Server components are installed.

2. Enter your user name in the User name field. This is your user name on the
server system.

3. Enter your password in the Password field.

Note: If you are connecting to the server via LAN Manager, you can select the
Omit check box. The User name and Password fields gray out and you
log on to the server using your Windows NT Domain account details.

4. Choose the project to connect to from the Project drop-down list box. This list
box displays all the projects installed on your DataStage server. Choose your
project from the list box. At this point, you may only have one project
installed on your system and this is displayed by default.

5. Select the Save settings check box to save your logon settings.

6. Click OK. The DataStage Manager window appears:

3-4 DataStage Developer’s Guide

Defining Table Definitions
If you have a hashed file, UniVerse table, UniData, or ODBC data source, the
quickest and simplest way to specify a table definition is to import it directly from
your data source or data warehouse. In this example, you must specify a table defi-
nition for EXAMPLE1.

Importing a Table Definition

The following steps describe how to import a table definition for EXAMPLE1:

1. Choose Tools ➤ Import ➤ UniVerse Table Definitions… . The Import Meta-
data (UniVerse Tables) dialog box appears:

2. Choose localuv from the DSN drop-down list box.

3. Click OK. The updated Import Metadata (UniVerse Tables) dialog box
displays all the files for the chosen data source name:

Your First DataStage Project 3-5

Note: The screen shot shows an example of tables found under localuv. Your
system may contain different files to the ones shown here.

4. Select project.EXAMPLE1 from the Tables list box, where project is the name
of your DataStage project.

5. Click OK. The column information from EXAMPLE1 is imported into
DataStage. A table definition is created and is stored under the Table Defini-
tions ➤ UniVerse ➤ localuv branch in the Repository. The updated
DataStage Manager window displays the new table definition entry in the
display area.

To view the new table definition, double-click the project.EXAMPLE1 entry in the
display area. The Table Definition dialog box appears.

This dialog box has four pages. Click the tabs to display each page. The General
page contains information about where the data is found and when the definition
was created.

3-6 DataStage Developer’s Guide

The Columns page contains information about the columns in the data source
table. You should see the following columns for project.EXAMPLE1:

The Format page contains information describing how the data would be
formatted when written to a sequential file. You do not need to edit this page.

The NLS page shows the current character set map for the table definitions. The
map defines the character set that the data is in. You do not need to edit this page.

Advanced Procedures

To manually enter table definitions, see “Manually Entering a Table Definition” on
page 4-28.

Assigning Data Elements
A DataStage data element describes more precisely the kind of data that can
appear in a given column. When you import a table definition, no DataStage data
elements are set. You can apply a DataStage data element to give more meaning to
a particular column and to specify a transform to use. Transforms are defined such
that they convert one data element to another.

In this example, to transform the data in the DATE column, you assign a DataStage
data element. Initially you assign the Date type. (Later, in the Transformer stage,
you will assign a MONTH.TAG data element to the output column to specify that
the transform produces a string of the format YYYY-MM.)

Your First DataStage Project 3-7

Note: If the data in the other columns required transforming, you could assign
DataStage data elements to these columns too.

To assign a data element:

1. Click the Data element cell for the DATE row in the Columns grid.

2. Choose Date from the Data element drop-down list box.

3. Click OK to save the table definition and to close the Table Definition dialog
box.

Advanced Procedures

For more advanced procedures, see the following topics in Chapter 4:

• “Creating Data Elements” on page 4-44
• “Assigning Data Elements” on page 4-46

Creating a Job
When a DataStage project is installed, it is empty and you must create the jobs you
need. Each DataStage job can load one or more data tables in the final data ware-
house. The number of jobs you have in a project depends on your data sources and
how often you want to extract data or load the data warehouse.

Jobs are created using the DataStage Designer. Start the DataStage Designer from
the Manager by choosing Tools ➤ Run Designer. The DataStage Designer window
appears:

3-8 DataStage Developer’s Guide

When you start the DataStage Designer, a new job is created automatically which
you can save and edit.

To save the job:

1. Choose File ➤ Save Job. The Create New Job dialog box appears:

2. Enter Example1 in the Job Name field.

Your First DataStage Project 3-9

3. Click OK to save the job. The updated DataStage Designer window displays
the name of the saved job.

Developing a Job
Jobs are designed and developed using the Designer. The job design is developed
in the Diagram window (the one with grid lines). Each data source, the data ware-
house, and each processing step is represented by a stage in the job design. The
stages are linked together to show the flow of data.

This example requires three stages:

• A UniVerse stage to represent EXAMPLE1 (the data source)

• A Transformer stage to convert the data in the DATE column from a YYYY-
MM-DD date in internal date format to a string giving just year and month
(YYYY-MM)

• A Sequential File stage to represent the file created at run time (the data
warehouse in this example)

Adding Stages
Stages are added using the tool palette. This palette contains icons that represent
the components you can add to a job.

Container Output

Aggregator Stage

Sequential File Stage

Stage

Link

Container Input
Stage

Hashed File Stage

Transformer Stage

Container Stage

ODBC Stage UniVerse Stage

UniData Stage

3-10 DataStage Developer’s Guide

To add a stage:

1. Click the stage icon on the tool palette that represents the stage type you want
to add.

2. Click in the Diagram window where you want the stage to be positioned. The
stage appears in the Diagram window as a square.

We recommend that you position your stages as follows:

• Data sources on the left
• Data warehouse on the right
• Transformer stage in the center

When you add stages, they are automatically assigned default names. These
names are based on the type of stage and the number of the item in the Diagram
window. You can use the default names in the example.

Once all the stages are in place, you can link them together to show the flow of
data.

Linking Stages
You need to add two links:

• One between the UniVerse and Transformer stages
• One between the Transformer and Sequential File stages

Links are always made in the direction the data will flow, that is, usually left to
right. When you add links, they are assigned default names. You can use the
default names in the example.

To add a link:

1. Click the Link icon on the tool palette.

2. Click the first stage and drag the link to the Transformer stage. The link
appears as soon as you release the mouse button.

3. Click the Link icon on the tool palette again.

Your First DataStage Project 3-11

4. Click the Transformer stage and drag the link to the Sequential File stage. The
following screen shows how the Diagram window looks when you have
added the stages and links:

5. Save the job design by choosing File ➤ Save Job.

Keep the Designer open as you will need it for the next step.

Advanced Procedures

For more advanced procedures, see the following topics in Chapter 5:

• “Plug-In Stages” on page 5-12
• “Moving Stages” on page 5-14
• “Renaming Stages” on page 5-14
• “Deleting Stages” on page 5-15
• “Containers” on page 5-27
• “Specifying Job Parameters” on page 5-33

3-12 DataStage Developer’s Guide

Editing the Stages
Your job design currently displays the stages and the links between them. You
must edit each stage in the job to specify the data to use and what to do with it.
Stages are edited in the job design by double-clicking each stage in turn. Each stage
type has its own editor.

Editing the UniVerse Stage
The data source (EXAMPLE1) is represented by a UniVerse stage. You must specify
the data you want to extract from this file by editing the stage.

Double-click the stage to edit it. The UniVerse Stage dialog box appears:

This dialog box has two pages:

• Stage. Displayed by default. This page contains the name of the stage you
are editing. The General page specifies where the file is found and the
connection type.

• Outputs. Contains information describing the data flowing from the stage.
You edit this page to describe the data you want to extract from the file. In
this example, the output from this stage goes to the Transformer stage.

Your First DataStage Project 3-13

To edit the UniVerse stage:

1. Check that you are displaying the General page on the Stage page. Choose
localuv from the Data source name drop-down list box. localuv is where
EXAMPLE1 is copied to during installation.

The remaining parameters on the General and Details pages are used to enter
logon details and describe where to find the file. Because EXAMPLE1 is
installed in localuv, you do not have to complete these fields, which are
disabled.

2. Click the Outputs tab. The Outputs page appears:

The Outputs page contains the name of the link the data flows along and the
following four pages:

• General. Contains the name of the table to use and an optional description
of the link.

• Columns. Contains information about the columns in the table.

• Selection. Used to enter an optional SQL SELECT clause (an Advanced
procedure).

• View SQL. Displays the SQL SELECT statement used to extract the data.

3-14 DataStage Developer’s Guide

3. Choose dstage.EXAMPLE1 from the Available tables drop-down list box.

4. Click Add to add dstage.EXAMPLE1 to the Table names field.

5. Click the Columns tab. The Columns page appears at the front of the dialog
box.

You must specify the columns contained in the file you want to use. Because
the column definitions are stored in a table definition in the Repository, you
can load them directly.

6. Click Load… . The Table Definitions window appears with the UniVerse ➤
localuv branch highlighted.

7. Select dstage.EXAMPLE1.

8. Click OK. The column definitions specified in the table definition are copied
to the stage. The Columns page contains definitions for the four columns in
EXAMPLE1:

9. You can use the Data Browser to view the actual data that is to be output from
the UniVerse stage. Click the View Data… button to invoke the Data Browser
window.

Your First DataStage Project 3-15

10. Click OK to save the stage edits and to close the UniVerse Stage dialog box.

11. Choose File ➤ Save Job to save your job design so far.

Note: Column definitions are attached to a link. You can view or edit them at
either end of the link. If you change them in a stage at one end of the link,
the changes are automatically seen in the stage at the other end of the link.
This is how column definitions are propagated through all the stages in a
DataStage job, so the column definitions you loaded into the UniVerse
stage are viewed when you edit the Transformer stage.

Advanced Procedures

• To select only some of the data from the table using a WHERE clause, see
“Using a WHERE Clause” on page 6-14 and page 7-12.

• To use SQL SELECT statements to aggregate data (for ODBC and UniVerse
stages only), see “Aggregating Data” on page 6-16 and page 7-13.

3-16 DataStage Developer’s Guide

Editing the Transformer Stage
The Transformer stage performs any data conversion required before the data is
output to another stage in the job design. In this example, the Transformer stage is
used to convert the data in the DATE column from a YYYY-MM-DD date in
internal date format to a string giving just the year and month (YYYY-MM).

There are two links in this stage:

• The input from the data source (EXAMPLE1)
• The output to the Sequential File stage

Double-click the stage to edit it. The Transformer Editor appears:

Input columns are shown on the left, output columns on the right. The upper panes
show the columns together with derivation details, the lower panes show the
column meta data. In this case, input columns have already been defined for input
link DSLink3. No output columns have been defined for output link DSLink4, so
the right panes are blank.

The next steps are to define the columns that will be output by the Transformer
stage, and to specify the transform that will enable the stage to convert the type
and format of dates before they are output.

1. Working in the upper-left pane of the Transformer Editor, select the input
columns that you want to derive output columns from. Click on the CODE,
DATE, and QTY columns while holding down the Ctrl key.

Your First DataStage Project 3-17

2. Click the left mouse button again and, keeping it held down, drag the selected
columns to the output link in the upper-right pane. Drop the columns by
releasing the mouse button. The columns appear in the top pane and the asso-
ciated meta data appears in the lower-right pane.

The next step is to edit the meta data for the output link. You will be trans-
forming dates from YYYY-MM-DD, held in internal date format, to strings
containing the date in the form YYYY-MM. You need to select a new SQL type
and a new date element for the output DATE column, to specify that it will be
carrying a string. You do this in the lower-right pane of the Transformer Editor.

3. In the SQL type field for the DSLink4 DATE column, select Char from the
drop-down list.

4. In the Data element field for the DSLink4 DATE column, select
MONTH.TAG from the drop-down list.

Next you will specify the transform to apply to the input DATE column to
produce the output DATE column. You do this in the upper-right pane of the
Transformer Editor.

3-18 DataStage Developer’s Guide

5. Double-click the Derivation field for the DSLink4 DATE column. The Expres-
sion Editor box appears. At the moment, the box contains the text DSLink3,
which indicates that the output DATE column is directly derived from the
input DATE column. Select the text DSLink3 and delete it by pressing the
Delete key.

6. Right-click in the Expression Editor box to invoke the Suggest Operand
menu.

Your First DataStage Project 3-19

7. Select DS Transform… from the menu. The Expression Editor then displays
the transforms that are applicable to the MONTH.TAG data element:

8. Select the MONTH.TAG transform. It appears in the Expression Editor box
with the argument field [%Arg1%] highlighted.

9. Right-click to invoke the Suggest Operand menu again. This time, select
Input Column. A list of available input columns appears.

10. Select DSLink3.DATE. This then becomes the argument for the transform.

11. Click OK to save the changes and exit the Transformer Editor.

Advanced Procedures

To create and use custom transforms, see “Transforms” on page 11-15.

3-20 DataStage Developer’s Guide

Editing the Sequential File Stage
The data warehouse is represented by a Sequential File stage. The data to be
written to the data warehouse is already specified in the Transformer stage.
However, you must enter the name of a file to which the data is written when the
job runs. If the file does not exist, it is created.

Double-click the stage to edit it. The Sequential File Stage dialog box appears:

This dialog box has two pages:

• Stage. Displayed by default. This page contains the name of the stage you
are editing and two further pages. The General page specifies the directory
path of the sequential file, and the NLS page specifies a character set map
to use with the stage.

• Inputs. Describes the data flowing into the stage. This page only appears
when you have an input to a Sequential File stage. You do not need to edit
the column definitions on this page, because they were all specified in the
Transformer stage.

Your First DataStage Project 3-21

To edit the Sequential File stage:

1. Enter the directory path where the new file will be created in the Directory
where files are held field. By default, this field is empty. If you leave it empty,
the default installation directory is used. If you want to choose an alternative
directory, click Browse… to search the DataStage server for a suitable direc-
tory path.

2. Click the Inputs tab. The Inputs page appears. This page contains:

• The name of the link. This is automatically set to the link name used in the
job design.

• General page. Contains the name of the file, an optional description of the
link, and update action choices. You can use the default settings for this
example, but you must enter a file name.

• Format page. Determines how the data is written to the file. In this
example, the data is written using the default settings, that is, as a comma-
delimited file.

• Columns page. Contains the column definitions for the data you want to
extract. This page contains the column definitions specified in the Trans-
former stage’s output link.

3. Enter the name of the text file you want to create in the File name field, for
example, MyFile.txt.

4. Click OK to close the Sequential File Stage dialog box.

5. Choose File ➤ Save Job to save the job design.

The job design is now complete and ready to be compiled.

Compiling a Job
When you finish your design you must compile it to create an executable job. Jobs
are compiled using the Designer. To compile the job, do one of the following:

• Choose File ➤ Compile.
• Click the Compile icon on the toolbar.

3-22 DataStage Developer’s Guide

The Compile Job window appears:

The job is compiled. The result of the compilation appears in the display area. If the
result of the compilation is Job successfully compiled with no errors
you can go on to schedule or run the job. The executable version of the job is stored
in your project along with your job design.

If an error is displayed, click Show Error. The stage where the problem occurs is
highlighted in the job design. Check that all the input and output column defini-
tions have been specified correctly, and that you have entered directory paths and
file or table names where appropriate.

For more information about the error, click More. Click Close to close the Compile
Job window.

Advanced Procedures

For more information about compiling and releasing a job, see Chapter 17.

Running a Job
Executable jobs are scheduled by the DataStage Director and run by the DataStage
Server. You can start the Director from the Designer by choosing Tools ➤ Run
Director.

Your First DataStage Project 3-23

When the Director is started, the DataStage Director window appears with the
status of all the jobs in your project:

Highlight your job in the Job name column. To run the job, choose Job ➤ Run Now
or click the Run icon on the toolbar. The Job Run Options dialog box appears and
allows you to specify any parameter values and to specify any job run limits.
Supply the required information, then click Run. The status changes to Running.
When the job is complete, the status changes to Finished.

Choose File ➤ Exit to close the DataStage Director window.

Refer to DataStage Operator’s Guide for more information about scheduling and
running jobs.

Advanced Procedures

It is possible to run a job from within another job. For more information, see “Job
Control Routines” on page 5-38.

Analyzing Your Data Warehouse
When you have data in your data mart or data warehouse, you can use any BI
(business intelligence) tool (for example, Cognos Impromptu or PowerPlay) to
analyze and report on the data.

In the example, you can confirm that the data was converted and loaded correctly
by viewing your text file using the Windows WordPad. Alternatively, you could
use the built-in Data Browser to view the data from the Outputs page of the

3-24 DataStage Developer’s Guide

Sequential File stage. See “Using the Data Browser” on page 5-24. The following is
an example of the file produced in WordPad:

Setting Up a Project 4-1

4
Setting Up a Project

This chapter describes how to set up your project using the DataStage Manager
before you start to develop DataStage jobs.

Note: Before users can develop or run DataStage applications, you must define
who has access to the DataStage projects. This configuration is done using
the DataStage Administrator. For more information, see DataStage Admin-
istrator’s Guide.

Before you develop any DataStage job, you must plan and set up your project. This
includes:

• Assessing your data
• Creating the data warehouse

You can then use the DataStage Manager to:

• Import, create, and edit table definitions
• Import, create, and edit stored procedure definitions
• Create, edit, and assign data elements

Assessing Your Data
Before you design your application you must assess your data. DataStage jobs can
be complex and so it is advisable to consider the following before starting a job:

• The number and type of data sources. You need a stage for each data source
you want to access. For each different type of data source you need a
different type of stage.

• The location of the data. Is your data on a networked disk or a tape? You
may find that if your data is on a tape, you need to arrange for a plug-in
stage to extract the data.

4-2 DataStage Developer’s Guide

• The content of the data. What columns are in your data? Can you import
the table definitions, or do you need to define them manually? Are the defi-
nitions of the data items consistent between different data sources?

• The data warehouse. What do you want to store in the data warehouse and
how do you want to store it?

Creating the Data Warehouse
As well as assessing the data in your data sources, you must also determine the
data you want to load into your data mart or data warehouse. The table definitions
used to describe the tables you want to populate are used in the final stage of your
DataStage job.

Note: The data warehouse must be configured before you can execute a
DataStage job.

The DataStage Manager
The DataStage Manager is used to:

• View and edit the contents of the Repository
• Import table or stored procedure definitions
• Create table or stored procedure definitions manually (if necessary)
• Create data elements
• Create routines, plug-ins, and custom transforms
• Assign data elements

Starting the DataStage Manager
To start the DataStage Manager, choose Start ➤ Programs ➤ Ardent DataStage ➤
DataStage Manager. The Attach to Project dialog box appears:

Setting Up a Project 4-3

To connect to a project:

1. Enter the name of your host in the Host system field. This is the name of the
system where the DataStage Server components are installed.

2. Enter your user name in the User name field. This is your user name on the
server system.

3. Enter your password in the Password field.

Note: If you are connecting to the server via LAN Manager, you can select the
Omit check box. The User name and Password fields gray out and you
log on to the server using your Windows NT Domain account details.

4. Choose the project to connect to from the Project drop-down list box. This list
box displays the projects installed on your DataStage server.

5. Select the Save settings check box to save your logon settings.

6. Click OK. The DataStage Manager window appears.

Note: You can also start the DataStage Manager from the DataStage Designer or
Director by choosing Tools ➤ Run Manager.

4-4 DataStage Developer’s Guide

The DataStage Manager Window
The DataStage Manager window appears after you have entered your project
details:

The DataStage Manager window has the following components.

Title Bar

The title bar displays the name of the project you are working in, followed by the
name of the host where the DataStage Server components are installed. The title
bar is updated if you choose to view another project in the Repository.

Menu Bar

There are four pull-down menus:

• File. Creates data elements, table definitions, stage types, and transforms.
Sets up a default printer and copies, renames, and deletes components in
the project tree.

• View. Specifies how information is displayed in the display area. Items can
be displayed as large icons, small icons, a list, or with details. There are also
options to refresh the display and to show or hide the toolbar and status
bar.

Setting Up a Project 4-5

• Tools. Imports and exports projects or job components. Also imports table
definitions from data sources or data marts. Gives access to DataStage
reporting facilities. Starts the DataStage Designer or Director and lets you
invoke third-party applications, or add third-party applications to the
Manager. This menu also contains options to release and package jobs and
job components and to import or export meta data using MetaBrokers.

• Help. Invokes the Help system.

Toolbar

The Manager toolbar contains the following icons:

Project Tree

The project tree is in the left pane of the DataStage Manager window and contains
a summary of the project contents. The tree is divided into six main branches:

• Data Elements. A branch exists for the built-in data elements and the addi-
tional ones you define.

• Jobs. A leaf exists under this branch for each job in the project.

• Routines. Each routine you create or import is stored under this branch.

• Stage Types. Each plug-in you create or import is stored under this branch.

• Table Definitions. Table definitions are stored according to the data
source. If you import a table definition, a branch is created under the data
source type (ODBC, UniVerse, Hashed, UniData, Sequential, or StoredPro-
cedure). If you manually enter a table definition, you can create a new
branch anywhere under the main Table Definitions branch.

• Transforms. A branch exists for the built-in transforms and for each group
of custom transforms created.

New

Copy

Delete

Properties Large
Icons

Small
Icons

List

Details

Report

Help

4-6 DataStage Developer’s Guide

Double-click a branch to expand it to a leaf (item) level. You can display the prop-
erties (definition) of an item by double-clicking it in the display area.

Display Area

The display area is in the right pane of the DataStage Manager window and
displays the contents of a chosen branch. You can display items in the display area
in four ways:

• Large icons. Items are displayed as large icons arranged across the display
area.

• Small icons. Items are displayed as small icons in the display area.

• List. Items are displayed in a list going down the display area.

• Details. Items are displayed in a table. The following information is
displayed for each item:

– Name. The name of the item.

– Description. The description of the item.

– Date/Time Modified. The date and time the branch or item was last
modified.

If you double-click an item in the display area, a dialog box appears with the prop-
erties of the chosen item.

Shortcut Menus

There are a number of shortcut menus available which you display by clicking the
right mouse button. There are three types of menu:

• Branch level. Appears when you click the display area (not an item) or the
project tree. Use this menu to refresh the display or to create a new item
under the chosen branch.

• Item level. Appears when you click a highlighted item in the display area.
Use this menu to copy, rename, delete, or display the properties of the
chosen item.

• Grid level. Appears when you are editing a grid. Use this menu to edit,
insert, or delete a row.

Setting Up a Project 4-7

Using the DataStage Manager
The DataStage Manager provides a means of viewing and managing the contents
of the Repository. You can use the DataStage Manager to:

• Create items
• Rename items
• View and edit item properties
• Delete items
• Copy items

Creating Items in the Repository

You can create new data elements, table definitions, or transforms. To create a new
item, select the top-level branch in the project tree and do one of the following:

• Choose File ➤ New. The New option describes the selected item, for
example, File ➤ New Transform… .

• Choose New… from the shortcut menu.

• Click the New icon on the toolbar.

A dialog box appears for you to enter the properties of the new item. Click OK to
save the new item. A leaf is created for the item in the project tree.

Renaming Items in the Repository

You can rename any of the items in the project tree, except for the top-level
branches, jobs, and built-in items.

To rename an item, select it in the display area and do one of the following:

• Click the item again. An edit box appears and you can enter a different
name or edit the existing one. Save the new name by pressing Enter or by
clicking outside the edit box.

• Double-click the item. A properties dialog box appears and you can edit
the field containing the item’s name. Click OK to save the new name.

• Choose Rename from the shortcut menu. An edit box appears and you can
enter a different name or edit the existing one. Save the new name by
pressing Enter or by clicking outside the edit box.

Viewing or Editing Items in the Repository

You can view or edit the properties of any item in the project tree.

Note: You cannot edit the properties of built-in items.

4-8 DataStage Developer’s Guide

To view or edit the properties of an item, select the item in the display area and do
one of the following:

• Choose File ➤ Properties… .
• Choose Properties… from the shortcut menu.
• Double-click the item in the display area.
• Click the Properties icon on the toolbar.

A dialog box appears with the item’s properties. The content of the dialog box
depends on the type of item you are viewing or editing. Click OK to save any
changes and to close the dialog box.

Deleting Items in the Repository

You can delete any item in the project tree, except the built-in items.

CAUTION: You must be absolutely certain you want to remove an item in the
Repository before you delete it. If it is used by another item in the
project, your jobs will fail to compile.

To delete an item, select it in the display area and do one of the following:

• Choose File ➤ Delete.
• Click the Delete icon on the toolbar.

A message box appears. Click Yes to delete the item.

Copying Items in the Repository

You can copy items in the same branch in the project tree. To copy an item, select
the item in the display area and do one of the following:

• Choose File ➤ Copy.
• Choose Copy from the shortcut menu.
• Click the Copy icon on the toolbar.

The item is copied and a new item is created under the same branch in the project
tree. By default, the name of the copy is called CopyOfXXX, where XXX is the
name of the chosen item. An edit box appears allowing you to rename the copy
immediately.

Choosing an Alternative Project
When you start the DataStage Manager, the project specified in the Attach to
Project dialog box is opened. You can choose to view any DataStage project in the
DataStage Manager.

Setting Up a Project 4-9

To choose an alternative project:

1. Choose File ➤ Open Project… . The Open Project dialog box appears.

2. Choose the project you want to open from the Projects list box. This list box
contains all the DataStage projects on the DataStage server (specified in the
Host system field).

3. Click OK to open the chosen project. The DataStage Manager window is
updated and displays the contents of the new project.

To open a project on a different DataStage server, click New host… . The Attach to
Project dialog box appears. You must enter the name of the DataStage server and
your logon details before choosing the project from the Project drop-down list box.
Click OK to open the chosen project. The DataStage Manager window is updated
and displays the contents of the new project.

Customizing the Tools Menu
You can configure the DataStage Manager so that you can invoke third-party appli-
cations from the Tools menu. To configure the menu:

1. Choose Tools ➤ Custom ➤ Customize… . The Customize dialog box
appears.

2. Click the Add… button to display the Add Tool dialog box.

3. Type in, or browse for, the executable of the application that you are adding
and click OK to return to the Customize dialog box. The application appears
in the Menu contents list box.

4-10 DataStage Developer’s Guide

4. Type in the menu name for the application in the Menu text field, and specify
its order in the menu using the arrow keys and the Menu contents field.

5. Specify any required command line arguments for the tool in the Arguments
field. Alternatively click the > button and choose from a predefined list of
argument tokens.

6. Click OK to add the application to the Manager’s Tools menu (Tools ➤
Custom).

Note: Any applications that you add to the DataStage Manager’s Tools menu are
added automatically to the Tools menu of other DataStage applications
(e.g., Designer and Director).

Exiting the DataStage Manager
To exit the DataStage Manager, choose File ➤ Exit from the DataStage Manager
window.

Setting Up a Project 4-11

Table Definitions
Table definitions are the key to your DataStage project and specify the data to be
used at each stage of a DataStage job. Table definitions are stored in the Repository
and are shared by all the jobs in a project. You need, as a minimum, table defini-
tions for each data source and one for each data target in the data mart.

You can import, create, or edit a table definition using the DataStage Manager.

You can use the Data Browser to view the actual data in data sources from which
you are importing table definitions.

Importing a Table Definition
The easiest way to specify a table definition is to import it directly from the source
or target database. A new table definition is created and the properties are auto-
matically filled in with the details of your data source or data mart.

You can import table definitions from an ODBC data source, certain plug-in stages
(including Sybase Open Client and Oracle OCI), a UniVerse table, a hashed
(UniVerse) file, a UniData file, or a sequential file.

You can also import table definitions from other data warehousing tools via a
MetaBroker. For more information about MetaBrokers, see Chapter 20, “Using
MetaBrokers.”

Importing from an ODBC Data Source

To import a table definition from a database via an ODBC connection:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

4-12 DataStage Developer’s Guide

2. Choose Tools ➤ Import ➤ ODBC Table Definitions… . The Import Meta-
data (ODBC) dialog box appears:

3. Choose a data source name from the DSN drop-down list box. This list box
contains the ODBC data sources defined on the server. For more information
about defining ODBC data sources, see DataStage Administrator’s Guide.

4. Enter your user name in the User name field.

5. Enter your password in the Password field.

Note: The user name and password are those required to access the system
specified by the DSN and might not be the same as those used to access
DataStage. Also note that the system specified by the DSN might not
be the same as the one named in the Seen From field.

6. If NLS is enabled, choose a character set map from the NLS map drop-down
list. This map defines the character set that the ODBC data uses.

7. Select the Show System Tables check box if you want system tables to be
included in the list of available tables.

Setting Up a Project 4-13

8. Click OK. A connection is made to the ODBC data source and the updated
Import Metadata (ODBC) dialog box displays the available tables. The To
category field also displays the branch in the Repository where the table defi-
nition will be stored.

9. Select a table or tables from the Tables list box or click Select all to choose all
available tables.

You can click Details to display further information about each table or View
Data… to invoke the Data Browser to examine the actual data in the table. You
can also edit the To category field or choose a new category from the drop-
down list box. The entry here determines where the table definition will be
stored under the Table Definitions branch in the Repository.

Click Refresh to update the list of tables if you think the database contents
have changed since the list was created.

10. Click OK. The table definition for the chosen table or tables is imported and a
new branch is created under the Table Definitions branch in the project tree.

Importing from a Plug-In

To import a table definition from a registered plug-in:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

4-14 DataStage Developer’s Guide

2. Choose Tools ➤ Import ➤ Plug-in Metadata Definitions… . The Import
Plug-in Metadata dialog box appears, listing the plug-ins for which import
meta data facilities are available:

3. Choose the particular plug-in that you want to import meta data from, then
click OK. This invokes a wizard-style dialog that guides you through the rest
of the import process.

4. The wizard prompts you for information needed by the plug-in to generate a
list of available tables. Click Next at each stage. This cycle continues until all
the necessary information has been collected.

5. The wizard displays a list of meta data items available for import. The wizard
screen for the Sybase Open Client (SYBASEOC) plug-in is shown below.

Setting Up a Project 4-15

When you have selected all the items to import and specified the destination
category, click Import.

The table definition for the chosen meta data is imported and a new branch is
created under the Table Definitions branch in the project tree.

Importing from a UniVerse Table

To import a table definition from a UniVerse table:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

2. Choose Tools ➤ Import ➤ UniVerse Table Definitions… . The Import Meta-
data (UniVerse Tables) dialog box appears:

4-16 DataStage Developer’s Guide

3. Choose a data source name from the DSN drop-down list box. This list box
contains the local and remote UniVerse data sources defined in the
uvodbc.config file. For more information, see DataStage Administrator’s Guide.

4. Enter your user name in the User name field.

5. Enter your password in the Password field.

Note: The user name and password are those required to access the system
specified by the DSN and might not be the same as those used to access
DataStage. Also note that the system specified by the DSN might not
be the same as the one named in the Seen From field.

6. Enter an account name in the Account field.

Note: When you choose localuv as the data source name, the User name,
Password, and Account fields gray out.

7. If NLS is enabled and you are connecting to a remote UniVerse source, choose
a character set map from the NLS map drop-down list. This map defines the
character set that the UniVerse table uses.

8. Click OK. A connection is made to the UniVerse data source and the updated
Import Metadata (UniVerse Tables) dialog box displays the available tables.
The To category field also displays the branch in the Repository where the
table definition will be stored.

Setting Up a Project 4-17

9. Select a table or tables from the Tables list box or click Select all to choose all
available tables.

You can click Details to display further information about each table or View
Data… to invoke the Data Browser to examine the actual data in the table. You
can also edit the To category field or choose a new category from the drop-
down list box. The entry here determines where the table definition will be
stored under the Table Definitions branch in the Repository.

Click Refresh to update the tables in the Tables list box.

10. Click OK. The table definition for the chosen table or tables is imported and a
new branch is created under the Table Definitions branch in the project tree.

Importing from a Hashed File

To import a table definition from a hashed (local UniVerse) file:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

2. Choose Tools ➤ Import ➤ UniVerse File Definitions… . The Import Meta-
data (UniVerse Files) dialog box appears:

4-18 DataStage Developer’s Guide

3. Choose an account from the Account drop-down list box. This list box
contains all the accounts in the UV.ACCOUNT file (except uv) for the local
UniVerse system. The updated Files list box displays the files in the chosen
account.

4. Select a file or files from the Files list box or click Select all to highlight all the
files. You can click Details to display further information about each file or
View Data… to invoke the Data Browser to examine the actual data in the
file. Click Refresh to update the files in the Files list box.

5. Enter a category in the To category field or choose one from the drop-down
list box. The entry here determines where the table definition will be stored
under the main Table Definitions branch in the Repository.

6. Click OK. The table definition for the chosen file or files is imported and a
new branch is created under the Table Definitions branch in the project tree.

You can edit the table definition to remove unwanted column definitions, assign
data elements, or change branch names.

Note: UniVerse files are the only supported hashed files.

Importing from a UniData File

To import a table definition from a UniData file:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

2. Choose Tools ➤ Import ➤ UniData File Definitions… . The Import Meta-
data (Unidata Files) dialog box appears:

Setting Up a Project 4-19

3. Enter the name of the host where the UniData files are located in the Server
field.

4. Enter your user name in the User name field.

5. Enter your password in the Password field.

6. If NLS is enabled, choose a character set map from the NLS map drop-down
list. This map defines the character set that the UniData file uses.

7. Click the Database drop-down list box to populate it with the names of
UniData databases on that server.

8. Choose a database and click OK. The updated Import Metadata (Unidata
Files) dialog box displays a list of available UniData files and tables:

9. Choose the files or tables that you want to import meta data from and click
OK. The table definitions for the chosen files or tables are imported and, if
such a branch does not already exist, a new branch is created under the Table
Definitions branch in the project tree. Or you can choose a branch from the
To category list box. Categories are in the form Unidata\Server>Database.

If you encounter an error when connecting to a UniData data source, such as:

UniData Client error: call to UniOpenPos returned 45 - Client
version (11) and server version (12) are incompatible

4-20 DataStage Developer’s Guide

you need to edit the UNIAPI.INI file in the Windows directory on your client
machine to change the value of the PROTOCOL variable to match the server
version. So, in the case of the example error, you would need to change the variable
value from 11 to 12:

PROTOCOL = 12

Importing from a Sequential File

You can import meta data from a sequential file that has fixed-width fields or sepa-
rated values. When you import meta data from a sequential file, you must specify
the name of the file and its location, plus a definition of the file contents. This defi-
nition is used to import the meta data.

To import a table definition from a sequential file:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

2. Choose Tools ➤ Import ➤ Sequential File Definitions… . The Import Meta-
data (Sequential) dialog box appears:

Setting Up a Project 4-21

3. Specify the directory path where the file is found in the Directory field. You
can enter a path directly or click … to search the system for a suitable
directory.

4. Choose the type of file from the File Type drop-down list box:

• Text Files (*.txt). This is the default setting.
• Comma Separated (*.csv)
• All Files (*.*)

The updated Files list box displays all the files of the chosen type in the speci-
fied directory.

5. Choose the file you want from the Files list box.

6. Enter a category in the To category field or choose one from the drop-down
list box. The entry here determines where the table definition will be stored
under the main Table Definitions branch in the Repository.

7. If NLS is enabled, choose a character set map from the NLS map drop-down
list. This map defines the character set that the sequential file uses.

8. Click OK. The Define Sequential Metadata dialog box appears:

4-22 DataStage Developer’s Guide

This dialog box has the following features:

• Filename field. Displays the name and path of the sequential file. You
cannot edit this field. If you want to choose an alternative file, click Cancel.
The Import Metadata (Sequential) dialog box reappears and you can
specify a different directory or file.

• Format page. Displayed by default. Contains options that define how the
file is formatted. There are two check boxes on the left of this page:

– Fixed-width columns. Specifies whether the file contains fixed-width
columns. The setting for this check box determines the options available
on the rest of the page. When this check box is cleared (the default setting)
the options in the Delimited area are available. Select this check box if the
file contains fixed-width columns. You must then use the options in the
Fixed width area to define the column widths.

– First line is column names. Specifies that the first data row in the file
contains the column names. This check box is cleared by default. Select
this check box if the first line contains column names.

The rest of this page is divided into two areas:

– Delimited. The options in this area are available only if the Fixed-width
columns check box is cleared. The option buttons Tab, Space, and
Comma (the default) specify how the fields are separated. To specify an
alternative separation character, enter it in the User field. If values are
quoted, enter the quote character in the Quote Character field. You can
enter a number from 0 to 255 in the User or Quote Character fields to
represent the ASCII code for the character you want to use.

– Fixed width. The options in this area are available only if the Fixed-width
columns check box is selected. Enter the width for each column in the
Column widths field. Widths are entered using the format n,n,n…n,
where n is the width of the column. You must have an entry for each
column in the file. Specify the space between the columns by entering a
value in the Spaces between columns field.

• Define page. Displays the column definition for each column in the file. If
the first row in the file contains the column names, these are displayed in
the Column name column, otherwise, default column names are assigned.
You can edit any of the values in the grid. For more information about
editing grids, see Appendix B, “Editing Grids.”

Setting Up a Project 4-23

• Data Preview grid. This grid displays the first 10 rows of data in the chosen
file using the options specified on the Format page. Click Preview to
update the Data Preview grid using the format options you selected.

9. Complete the relevant details on the Format page and fine tune the SQL prop-
erties on the Define page.

10. Click OK to import the table definition. The table definition for the chosen file
is imported and a new branch is created under the Table Definitions branch
in the project tree.

Note: The OK button is available only when you have viewed the Define
page and checked the column definitions.

The Table Definition Dialog Box
When you create, edit, or view a table definition using the DataStage Manager, the
Table Definition dialog box appears:

4-24 DataStage Developer’s Guide

This dialog box has up to four pages:

• General. This page contains general information about the table definition.
The following fields are on this page:

– Data source type. The type of data source, for example, UniVerse.

– Data source name. If you imported the table definition, this contains a
reference to where the original data is found. For UniVerse and ODBC
data sources, this is the data source name. For hashed file data sources,
this is an account name. For sequential file sources, this is the last compo-
nent of the directory path where the sequential file is found.

– Table/file name. The table or file name containing the data.

– Metadata supports Multi-valued fields. Select this check box if the meta
data supports multivalued data. If the check box is selected, three extra
grid columns used for multivalued data support will appear on the
Columns page. The check box is disabled for ODBC and stored procedure
table definitions.

– ODBC quote character. Allows you to specify what character an ODBC
data source uses as a quote character.

– Short description. A brief description of the data.

– Long description. A long description of the data.

The combination of the data source type, data source name, and table or file
name forms a unique identifier for the table definition. No two table defini-
tions can have the same identifier.

Setting Up a Project 4-25

• Columns. This page contains a grid displaying the column definitions for
each column in the table definition. The grid has the following columns:

– Column name. The name of the column.

– Key. Indicates whether the column is part of the primary key.

– SQL type. The SQL data type.

– Length. The data precision. This is the length for CHAR data and the
maximum length for VARCHAR data.

– Scale. The data scale factor.

– Nullable. Specifies whether the column can contain null values.

– Display. The maximum number of characters required to display the
column data.

– Data element. The type of data in the column.

– Description. A text description of the column.

The following columns appear if you selected the Metadata supports
Multi-valued fields check box on the General page:

– Association. The name of the association (if any) that the column belongs
to.

4-26 DataStage Developer’s Guide

– Position. The field number.

– Type. The nesting type, which can be S, M, MV, or MS.

The following column may appear if NLS is enabled and the data source is
Sequential, ODBC, or a generic plug-in:

– NLS Map. This property is visible only if NLS is enabled and Allow per-
column mapping has been selected on the NLS page of the Table Defini-
tion dialog box. It allows you to specify a separate character set map for a
column (which overrides the map set for the project or table).

The Columns page for each link also contains a Load… button. This loads
(copies) the column definitions from a table definition elsewhere in the
Repository.

A shortcut menu available in grids allows you to edit a cell, delete a row, or
add a row. For more information about editing a grid, see Appendix B,
“Editing Grids.”

• Format. This page contains file format parameters for sequential files.
These fields are automatically set when you import a table definition from
a sequential file.

Setting Up a Project 4-27

There are three check boxes on this page:

– Fixed-width columns. Specifies whether the sequential file contains
fixed-width fields. This check box is cleared by default, that is, the file
does not contain fixed-width fields. When this check box is selected, the
Spaces between columns field appears.

– First line is column names. Specifies whether the first line in the file
contains the column names. This check box is cleared by default, that is,
the first row in the file does not contain the column names.

– Omit last new-line. Specifies whether the last newline character in the
file is ignored. By default this check box is cleared, that is, if a newline
character exists in the file, it is used.

The rest of this page contains four fields. The available fields depend on the
settings for the check boxes.

– Delimiter. Contains the delimiter that separates the data fields in the file.
By default this field contains a comma. You can enter a single printable
character (other than a digit) or a number from 0 through 255 to represent
the ASCII code for the character you want to use.

– Quote character. Contains the character used to enclose a data value that
contains the delimiter character as data. By default this field contains a
double quotation mark. You can enter a single printable character (other
than a digit) or a number from 0 through 255 to represent the ASCII code
for the character you want to use.

– Spaces between columns. Specifies the number of spaces used between
the columns in the file. This field appears when you select Fixed-width
columns.

– NULL string. Contains characters that are written to the file when a
column contains SQL null values.

4-28 DataStage Developer’s Guide

• NLS. If NLS is enabled, this page contains the name of the map to use for
the table definitions. The map should match the character set used in the
definitions. By default, the list box shows all the maps that are loaded and
ready to use. Show all maps lists all the maps that are shipped with
DataStage.

Note: You cannot use a map unless it is loaded into DataStage. You can
load different maps using the DataStage Administrator. For more
information, see DataStage Administrator’s Guide.

Click Allow per-column mapping if you want to assign different character
set maps to individual columns.

Manually Entering a Table Definition
If you are unable to import the table definitions for your source or target data, you
must enter this information manually.

To manually enter table definition properties, you must first create a new table
definition. You can then enter suitable settings for the general properties before
specifying the column definitions. You only need to specify file format settings for
a sequential file table definition.

Setting Up a Project 4-29

Creating a Table Definition

To create a table definition:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

2. Select the Table Definitions branch and do one of the following:

• Choose File ➤ New Table Definition… .
• Choose New Table Definition… from the shortcut menu.
• Click the New icon on the toolbar.

The Table Definition dialog box appears. You must enter suitable values in the
fields on the General page.

3. Enter the type of data source in the Data source type field. The name entered
here determines how the definition appears under the Table Definitions
branch.

4. Enter the name of the data source in the Data source name field. This forms
the second part of the table definition identifier and is the name of the branch
created under the data source type branch.

5. Enter the name of the table or file containing the data in the Table/file name
field. This is the last part of the table definition identifier and is the name of
the leaf created under the data source branch.

6. Select the Metadata supports Multi-valued fields check box if the meta data
supports multivalued data.

7. Enter a brief description of the data in the Short description field. This is an
optional field. The text entered here is displayed when you choose View ➤
Details from the DataStage Manager window.

8. Enter a more detailed description of the data in the Long description field.
This is an optional field.

9. Click the Columns tab. The Columns page appears at the front of the Table
Definition dialog box. You can now enter or load column definitions for your
data.

Entering Column Definitions

You can enter column definitions directly in the Columns grid. To add a new
column definition, you must edit the empty row (indicated by a star) in the
Columns grid.

4-30 DataStage Developer’s Guide

1. Click the first cell in the row (Column name) and enter the name of the
column you want to add. This is the minimum requirement for adding a new
column definition. You can then click the other cells you want to edit, or press
Tab to move between the cells. For more information about adding and
deleting rows, or moving between the cells of a grid, see Appendix B,
“Editing Grids.”

2. Specify whether this column is a key column. If it is, choose Y from the drop-
down list in the Key cell.

3. Specify the SQL data type by choosing an appropriate type from the drop-
down list in the SQL type cell.

4. Enter an appropriate value for the data precision in the Length cell.

5. Enter an appropriate data scale factor in the Scale cell.

6. Specify whether the column can contain null values by choosing an appro-
priate option from the drop-down list in the Nullable cell.

7. Enter the maximum number of characters required to display the column
data in the Display cell.

8. Choose the type of data the column contains from the drop-down list in the
Data element cell. This list contains all the built-in data elements supplied
with DataStage and any additional data elements you have defined. You do
not need to edit this cell to create a column definition. You can assign a data
element at any point during the development of your job. For more informa-
tion, see “Assigning Data Elements” on page 4-46.

9. Enter text to describe the column in the Description cell. This cell expands to
a drop-down text entry box if you enter more characters than the display
width of the column. You can increase the display width of the column if you
want to see the full text description. If you want to divide the text into para-
graphs, press Ctrl-Enter at the point where you want to end each paragraph.

10. If you previously selected Metadata supports Multi-valued fields, then you
will also need to fill in the Association, Position, and Type cells. Enter the
name of the association the column belongs to (if any) in Association, enter
the field number in Position, then choose S, M, MV, or MS from the Type
drop-down list.

11. If you selected Allow per-column mapping on the NLS page, select the NLS
map name that you want to use in the column from the drop-down list in the
NLS Map cell.

Setting Up a Project 4-31

You can continue to add more column definitions by editing the last row in the
grid. New column definitions are always added to the bottom of the grid, but
you can select and drag the row to a new position in the grid.

12. Click OK to save the column definitions and to close the Table Definition
dialog box.

Loading Column Definitions

Instead of entering column definitions, you can load (copy) the column definitions
from an existing table definition. To load column definitions:

1. Click Load… . The Table Definitions window appears:

This window displays all the table definitions in the project in the form of a
table definition tree.

2. Double-click the appropriate branch to display the table definitions available.

3. Select the table definition you want to use.

Note: You can use the Find… button to enter the name of the table definition
you want. The table definition is automatically highlighted in the tree
when you click OK.

4. Click OK. The column definitions from the chosen table definition are copied
into your new table definition.

5. Save the table definition by clicking OK.

4-32 DataStage Developer’s Guide

You can edit the table definition to remove unwanted column definitions, assign
data elements, or change branch names.

Viewing or Modifying a Table Definition
You can view or modify any table definition in your project. To view a table defi-
nition, select it in the display area and do one of the following:

• Choose File ➤ Properties… .
• Choose Properties… from the shortcut menu.
• Double-click the table definition in the display area.
• Click the Properties icon on the toolbar.

The Table Definition dialog box appears. You can edit any of the column definition
properties or delete unwanted definitions.

Editing Column Definitions

To edit a column definition in the grid, click the cell you want to change. The way
you edit the cell depends on the cell contents. If the cell contains a drop-down list,
choose an alternative option from the drop-down list. If the cell contains text, you
can start typing to change the value, or press F2 or choose Edit cell… from the
shortcut menu to put the cell into edit mode.

For more information about adding and deleting rows, or moving between the
cells of a grid, see Appendix B, “Editing Grids.”

Deleting Column Definitions

When you import a table definition, all the column definitions in the data table are
imported. Also, when you load column definitions, all the column definitions in
the existing table definition are copied.

If you do not want to extract the data in a particular column, or do not want to
write data to a particular column in the data mart, you must delete the corre-
sponding column definition.

Unwanted column definitions can be easily removed from the Columns grid. To
delete a column definition, click any cell in the row you want to remove and press
the Delete key or choose Delete row from the shortcut menu. Click OK to save any
changes and to close the Table Definition dialog box.

To delete several column definitions at once, hold down the Ctrl key and click in
the row selector column for the rows you want to remove. Press the Delete key or
choose Delete row from the shortcut menu to remove the selected rows.

Setting Up a Project 4-33

Using the Data Browser
When importing table definitions from a data source, you can view the actual data
in the tables using the Data Browser. The Data Browser can be used when
importing table definitions from the following sources:

• ODBC table
• UniVerse table
• Hashed (UniVerse) file
• UniData file
• Some types of plug-in

Note: Sequential files can be viewed through standard Windows tools, such as
WordPad.

The Data Browser is invoked by clicking the View Data… button on the Import
Metadata dialog box. The Data Browser window appears:

The Data Browser uses the meta data defined in the data source. If there is no data,
a Data source is empty message appears instead of the Data Browser.

You can view a row containing a specific data item using the Find… button. The
Find dialog box repositions the view to the row containing the data you are inter-
ested in. The search is started from the current row.

4-34 DataStage Developer’s Guide

The Display… button invokes the Column Display dialog box. This allows you to
simplify the data displayed by the Data Browser by choosing to hide some of the
columns. It also allows you to normalize multivalued data to provide a 1NF view
in the Data Browser.

This dialog box lists all the columns in the display, and initially these are all
checked. To hide a column, uncheck it.

The Normalize on drop-down list box allows you to select an association or an
unassociated multivalued column on which to normalize the data. The default is
Un-Normalized, and choosing Un-Normalized will display the data in NF2 form
with each row shown on a single line. Alternatively you can select Un-Normalize
(formatted), which displays multivalued rows split over several lines.

In the example, the Data Browser would display all columns except STARTDATE.
The view would be normalized on the association PRICES.

Setting Up a Project 4-35

Stored Procedure Definitions
If you are accessing data from or writing data to a database via an ODBC connec-
tion, you can use a stored procedure to define the data to use. A stored procedure
can:

• Have associated parameters, which may be input or output
• Return a value (like a function call)
• Create a result set in the same way as an SQL SELECT statement

Note: DataStage supports the use of stored procedures with or without input
arguments and the creation of a result set, but does not support output
arguments or return values. A stored procedure may have a return value
defined, but it is ignored at run time. A stored procedure may not have
output parameters.

The definition for a stored procedure (including the associated parameters and
meta data) can be stored in the Repository. These stored procedure definitions can
be used when you edit an ODBC or UniVerse stage in your job design. For more
information about developing a job, see Chapter 5, “Developing a Job.” For more
information about the use of stored procedures in UniVerse and ODBC stages, see
Chapter 7, “UniVerse Stages” and Chapter 6, “ODBC Stages.”

You can import, create, or edit a stored procedure definition using the DataStage
Manager.

Importing a Stored Procedure Definition
The easiest way to specify a definition for a stored procedure is to import it directly
from the stored procedure on the source or target ODBC database. A new defini-
tion for the stored procedure is created and stored in the Repository.

To import a definition for a stored procedure via an ODBC connection:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

4-36 DataStage Developer’s Guide

2. Choose Tools ➤ Import ➤ Stored Procedure Definitions… . The Import
Metadata (Stored Procedures) dialog box appears:

3. Choose a data source name from the DSN drop-down list box. This list box
contains the system DSNs defined on the server. For more information about
defining ODBC data sources, see DataStage Administrator’s Guide.

4. Enter your user name in the User name field.

5. Enter your password in the Password field.

Note: The user name and password are those required to access the system
specified by the DSN and might not be the same as those used to access
DataStage. Also note that the system specified by the DSN might not
be the same as the one named in the Seen from field.

6. If NLS is enabled, and you do not want to use the default project map, choose
an NLS character set map from the NLS map drop-down list. This map
defines the character set that the stored procedure uses.

Setting Up a Project 4-37

7. Click OK. A connection is made to the ODBC data source and the updated
Import Metadata (Stored Procedures) dialog box displays the available stored
procedures:

The To category field also displays the branch (under the main Table Defini-
tions branch) in the Repository where the definition will be stored. This is
always the StoredProcedures ➤ DSN branch for stored procedures. DSN is the
data source name you are importing from.

8. Select a procedure or procedures from the Procedures list box or click Select
all to choose all available procedures.

You can use Details to display further information about each procedure. The
displayed information includes the fully qualified procedure name, the names
of the associated parameters, and the columns in the result set.

Use Refresh to update the Procedures list box.

9. Click OK. The definition for the chosen procedure or procedures is imported
and a new definition is created under the Table Definitions ➤ StoredProce-
dures branch in the project tree.

Note: If the stored procedure you chose contains output parameters, an error
message appears and the import fails. If the stored procedure has a return
value, a message appears to warn that this value will be ignored.

4-38 DataStage Developer’s Guide

The Table Definition Dialog Box for Stored Procedures
When you create, edit, or view a stored procedure definition, the Table Definition
dialog box appears. This dialog box is described under “The Table Definition
Dialog Box” on page 4-23.

The dialog box for a stored procedure has up to five pages:

• General. Contains general information about the stored procedure. The
Data source type field on this page must contain StoredProcedures to
display the additional Parameters page.

• Columns. Contains a grid displaying the column definitions for each
column in the stored procedure result set. You can add new column defini-
tions, delete unwanted definitions, or edit existing ones. For more
information about editing a grid, see Appendix B, “Editing Grids.”

• Parameters. Contains a grid displaying the properties of each input
parameter.

Note: If you cannot see the Parameters page, you must enter StoredPro-
cedures in the Data source type field on the General page.

The grid has the following columns:

– Column name. The name of the parameter column.

Setting Up a Project 4-39

– Key. Indicates whether the column is part of the primary key.

– SQL type. The SQL data type.

– Length. The data precision. This is the length for CHAR data and the
maximum length for VARCHAR data.

– Scale. The data scale factor.

– Nullable. Specifies whether the column can contain null values.

– Display. The maximum number of characters required to display the
column data.

– Data element. The type of data in the column.

– Description. A text description of the column.

• Format. Contains file format parameters for sequential files. This page is
not used for a stored procedure definition.

• NLS. Contains the name of the character set map to use with the table
definitions.

Manually Entering a Stored Procedure Definition
If you are unable to import the definition for your stored procedure, you must
enter this information manually.

To manually enter a stored procedure definition, first create the definition using
the DataStage Manager. You can then enter suitable settings for the general prop-
erties, before specifying definitions for the columns in the result set and the input
parameters.

Note: You do not need to edit the Format page for a stored procedure definition.

Creating a Stored Procedure Definition

To create a stored procedure definition:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

2. Select the Table Definitions branch and do one of the following:

• Choose File ➤ New Table Definition… .
• Choose New Table Definition… from the shortcut menu.
• Click the New icon on the toolbar.

4-40 DataStage Developer’s Guide

The Table Definition dialog box appears. You must enter suitable values in the
fields on the General page.

3. Enter StoredProcedures in the Data source type field. This specifies that
the new definition will be stored under the Table Definitions ➤ StoredProce-
dures branch in the Repository. The Parameters page appears in the Table
Definition dialog box.

4. Enter the name of the data source in the Data source name field. This forms
the second part of the table definition identifier and is the name of the branch
created under the data source type branch.

5. Enter the name of the procedure in the Procedure name field. This is the last
part of the table definition identifier and is the name of the leaf created under
the data source branch.

6. Optionally enter a brief description of the data in the Short description field.
The text entered here is displayed when you choose View ➤ Details from the
DataStage Manager window.

7. Optionally enter a detailed description of the data in the Long description
field.

8. Specify the column definitions for the result set on the Columns page and the
input parameters (if any) for the stored procedure on the Parameters page.

9. If NLS is enabled and you do not want to use the default project NLS map,
select the required map from the NLS page.

Specifying Column Definitions for the Result Set

To specify the column definitions for the result set, click the Columns tab in the
Table Definition dialog box. The Columns page appears at the front of the Table
Definition dialog box. You can now enter or load column definitions. For more
information, see “Entering Column Definitions” on page 4-29 and “Loading
Column Definitions” on page 4-31.

Note: You do not need a result set if the stored procedure is used for input
(writing to a database). However, in this case, you must have input
parameters.

Specifying Input Parameters

To specify input parameters for the stored procedure, click the Parameters tab in
the Table Definition dialog box. The Parameters page appears at the front of the
Table Definition dialog box.

Setting Up a Project 4-41

Parameter definitions are entered directly in the Parameters grid. To add a new
parameter definition, you must edit the empty row (indicated by a star) in the
Parameters grid:

1. Click the first cell in the row (Column name) and enter the name of the
parameter you want to add. This is the minimum requirement for adding a
new parameter definition. Click the other cells you want to edit, or press Tab
to move between the cells. For more information about adding and deleting
rows, or moving between the cells of a grid, see Appendix B, “Editing Grids.”

2. Specify the SQL data type by choosing an appropriate type from the drop-
down list in the SQL type cell.

3. Enter an appropriate value for the data precision in the Length cell.

4. Enter an appropriate data scale factor in the Scale cell.

5. Specify whether the parameter can contain null values by choosing an appro-
priate option from the drop-down list in the Nullable cell.

6. Enter the maximum number of characters required to display the parameter
data in the Display cell.

7. Choose the type of data the column contains from the drop-down list in the
Data element cell. This list contains all the built-in data elements supplied
with DataStage and any additional data elements you have defined. You do
not need to edit this cell to create a column definition. You can assign a data
element at any point during the development of your job. For more informa-
tion, see “Assigning Data Elements” on page 4-46.

8. Enter text to describe the column in the Description cell. This cell expands to
a drop-down text entry box if you enter more characters than the display
width of the column. You can increase the display width of the column if you
want to see the full text description.

You can continue to add more parameter definitions by editing the last row in
the grid. New parameters are always added to the bottom of the grid, but you
can select and drag the row to a new position in the grid.

9. Click OK to save and close the Table Definition dialog box.

4-42 DataStage Developer’s Guide

Specifying NLS Mapping

If NLS is enabled and you want to use a different character set map than that
defined as the project default, click the NLS tab in the Table Definition dialog box.
The NLS page appears at the front of the Table Definition dialog box. Choose the
name of the map to use from the list box. By default, the list box shows all the maps
that are loaded and ready to use. Show all maps lists all the maps that are shipped
with DataStage. Click Allow per-column mapping if you want to assign different
character set maps to individual columns.

Note: You cannot use a map unless it is loaded into DataStage. You can
load different maps using the DataStage Administrator. For more
information, see DataStage Administrator’s Guide.

Viewing or Modifying a Stored Procedure Definition
You can view or modify any stored procedure definition in your project. To view a
stored procedure definition, select it in the display area and do one of the
following:

• Choose File ➤ Properties… .
• Choose Properties… from the shortcut menu.
• Double-click the stored procedure definition in the display area.
• Click the Properties icon on the toolbar.

The Table Definition dialog box appears. You can edit or delete any of the column
or parameter definitions.

Editing Column or Parameter Definitions

You can edit the settings for a column or parameter definition by editing directly
in the Columns or Parameters grid. To edit a definition, click the cell you want to
change. The way you edit the cell depends on the cell contents. If the cell contains
a drop-down list, choose an alternative option from the drop-down list. If the cell
contains text, you can start typing to change the value, or press F2 or choose Edit
cell… from the shortcut menu to put the cell into edit mode.

For more information about adding and deleting rows, or moving between the
cells of a grid, see Appendix B, “Editing Grids.”

Deleting Column or Parameter Definitions

When you import a stored procedure definition, all the column definitions speci-
fied for the result set are imported. Also, when you load column definitions, all the
column definitions in the existing table definition are copied.

Setting Up a Project 4-43

If you do not want to extract or write the data in a particular column or use a partic-
ular input parameter, you must delete the corresponding definition.

Unwanted column or parameter definitions can be easily removed from the
Columns or Parameters grid. To delete a column or parameter definition, click any
cell in the row you want to remove and press the Delete key or choose Delete row
from the shortcut menu. Click OK to save any changes and to close the Table Defi-
nition dialog box.

To delete several column or parameter definitions at once, hold down the Ctrl key
and click in the row selector column for the rows you want to remove. Press the
Delete key or choose Delete row from the shortcut menu to remove the selected
rows.

Data Elements
Each column definition may have a data element assigned to it. A data element spec-
ifies the type of data a column contains, which in turn determines the transforms
that can be applied in a Transformer stage.

You can choose to use any of the data elements supplied with DataStage, or you
can create and use data elements specific to your application. For a list of the built-
in data elements, see “Built-In Data Elements” on page 4-47. You can also import
data elements from another data warehousing tool using a MetaBroker. For more
information, see Chapter 20, “Using MetaBrokers.”

Application-specific data elements allow you to describe the data in a particular
column in more detail. The more information you supply to DataStage about your
data, the more DataStage can help to define the processing needed in each Trans-
former stage.

For example, if you have a column containing a numeric product code, you might
assign it the built-in data element Number. There is a range of built-in transforms
associated with this data element. However, all of these would be unsuitable, as it
is unlikely that you would want to perform a calculation on a product code. In this
case, you could create a new data element called PCode.

Each data element has its own specific set of transforms which relate it to other
data elements. When the data elements associated with the columns of a target
table are not the same as the data elements of the source data, you must ensure that
you have the transforms needed to convert the data as required. For each target
column, you should have either a source column with the same data element, or a
source column that you can convert to the required data element.

4-44 DataStage Developer’s Guide

For example, suppose that the target table requires a product code using the data
element PCode, but the source table holds product data using an older product
numbering scheme. In this case, you could create a separate data element for old-
format product codes called Old_PCode, and you then create a custom transform
to link the two data elements; that is, its source data element is Old_PCode, while
its target data element is PCode. This transform, which you could call
Convert_PCode, would convert an old product code to a new product code. See
“Transforms” on page 11-15 for details on how to use and create custom
transforms.

A data element can also be used to “stamp” a column with SQL properties when
you manually create a table definition or define a column definition for a link in a
job. For details on how to edit the column definition for a link, see “Editing
Column Definitions” on page 5-20.

Creating Data Elements
To create a data element:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

2. Select the Data Elements branch in the project tree and do one of the
following:

• Choose File ➤ New Data Element… .
• Choose New Data Element… from the shortcut menu.
• Click the New icon on the toolbar.

The Data Element dialog box appears:

Setting Up a Project 4-45

This dialog box has four pages:

• General. Displayed by default. Contains general information about the
data element.

• SQL Properties. Contains fields that describe the properties of the associ-
ated SQL data type. This page is used when this data element is used to
manually create a new column definition for use with an SQL data source.
If you import the column definition from an SQL data source, the SQL
properties are already defined.

• Generated From. Lists the transforms that result in this data element.

• Converts To. Lists the transforms that can be used to convert this data
element into another data element.

3. Enter the name of the data element in the Data element name field. This
name is used to create a leaf under the category branch. The name entered
here must be unique as no two data elements can have the same name.

4. Enter a category name in the Category field. This name is used to create a
branch under the main Data Elements branch. If you do not enter a name in
this field, the data type is created under the main Data Elements branch.

You can create more than one branch level for the category by including \ in
the name. For example, if you enter Custom\Elements, the following
branches are created:

Data Elements ➤ Custom ➤ Elements

The new data element is stored as a leaf under the Elements branch.

5. Choose the most appropriate base data type from the Base type drop-down
list box. The base types are the fundamental data types used internally by
DataStage for processing.

There are five base types:

• Date. The column contains a date, represented in DataStage internal
format. There are many built-in transforms available to convert dates to
character strings. See Appendix A, “Built-In Transforms and Routines,” for
a list of the built-in transforms available.

• Number. The column contains a numeric value.

• String. The column contains data as a string of characters. DataStage inter-
prets the string as a number if needed.

• Time. The column contains data as a time.

4-46 DataStage Developer’s Guide

• Default. The data has an SQL data type already assigned and the most
appropriate base type is used.

6. Optionally enter a brief description of the data in the Short description field.
The text entered here is displayed when you choose View ➤ Details from the
DataStage Manager window or print a data elements report.

7. Optionally enter a detailed description of the data in the Long description
field. This description is displayed only when you view the properties of a
data element.

8. Click OK to save the data element and to close the Data Element dialog box.
You must edit your table definition to assign this new data element.

Assigning Data Elements
If you created a new data element or you want to use one of the data elements
supplied with DataStage, you need to assign it. Data elements are assigned by
editing the column definitions. If you want to set up the data elements before you
develop your job, you can edit the column definitions in the table definition.

To assign a data element:

1. Start the DataStage Manager and enter your project details in the Attach to
Project dialog box. The DataStage Manager window appears.

2. Expand the Table Definitions branch until you can see the table definition
you want to edit in the display area.

3. Select the table definition and do one of the following:

• Choose File ➤ Properties… .
• Choose Properties… from the shortcut menu.
• Double-click the table definition in the display area.
• Click the Properties icon on the toolbar.

The Table Definition dialog box appears.

4. Click the Columns tab. The Columns page appears at the front of the Table
Definition dialog box.

5. Click the Data element cell for the column definition you want to edit.

6. Choose the data element you want to use from the drop-down list. This list
contains all the built-in data elements supplied with DataStage and any data
elements you created. For a description of the built-in data elements supplied
with DataStage, see “Built-In Data Elements” on page 4-47.

Setting Up a Project 4-47

7. Click OK to save the column definition and to close the Table Definition
dialog box.

Note: You can assign data elements at any point during the development of your
job. For details on how to edit column definitions, see “Editing Column
Definitions” on page 5-20.

Viewing or Editing Data Elements
You can view the properties of any data element in your project. To view the prop-
erties of a data element, select it in the display area and do one of the following:

• Choose File ➤ Properties… .
• Choose Properties… from the shortcut menu.
• Double-click the data element in the display area.
• Click the Properties icon on the toolbar.

The Data Element dialog box appears. Click OK to close the dialog box.

If you are viewing the properties of a data element that you created, you can edit
any of the fields on the General or SQL Properties page. The changes are saved
when you click OK.

If you are viewing the properties of a built-in data element, you cannot edit any of
the settings on the General or SQL Properties page.

Built-In Data Elements
DataStage has a number of built-in data elements. There are six data elements that
represent each of the base types used internally by DataStage:

• Date. The column contains a date, represented in DataStage internal
format. There are many built-in transforms available to convert dates to
character strings.

• Number. The column contains a numeric value.

• String. The column contains data as a string of characters. DataStage inter-
prets the string as a number if needed.

• Time. The column contains data as a time.

• Default. The data has an SQL data type already assigned and the most
appropriate base type is used.

4-48 DataStage Developer’s Guide

• Timestamp. The column contains a string that represents a combined
date/time:

YYYY-MM-DD HH:MM:SS

In addition, there are some data elements that are used to express dates in alterna-
tive ways:

• DATE.TAG. The data specifies a date and is stored in the following format:

1993-02-14 (February 14, 1993)

• WEEK.TAG. The data specifies a week and is stored in the following
format:

1993W06 (week 6 of 1993)

• MONTH.TAG. The data specifies a month and is stored in the following
format:

1993-02 (February 1993)

• QUARTER.TAG. The data specifies a quarter and is stored in the following
format:

1993Q1 (quarter 1, 1993)

• YEAR.TAG. The data specifies a year and is stored in the following format:

1993

Each of these data elements has a base type of String. The format of the date
complies with various ISO 8601 date formats.

You can view the properties of these data elements. You cannot edit them.

External ActiveX (OLE) Functions
DataStage provides you with the ability to call external ActiveX (OLE) functions
which have been installed on the DataStage server. These functions can then be
used when you define custom transforms.

To use this facility, you need an automation server that exposes functions via the
IDispatch interface and which has an associated type library. This can be achieved
via a number of development tools, including Visual Basic.

The first step in using external functions is importing them into the DataStage
Repository. The action of importing an external function creates a DataStage
routine containing code which calls the external function. The code uses a

Setting Up a Project 4-49

DataStage BASIC function that accepts only certain data types. These data types
are defined in the DSOLETYPES.H file in the dsinclude directory for each project
and are listed in the DataStage Developer’s Help.

Once imported, you can then call the functions when you define a custom
transform.

Note: This facility is available only on Windows NT servers.

Importing External ActiveX (OLE) Functions
To import ActiveX (OLE) functions:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

2. Choose Tools ➤ Import ➤ External Function Definitions… . The Import
Transform Functions Definitions Wizard appears and prompts you to supply
the pathname of the file containing the transforms to be imported. This is
normally a DLL file which must have already been installed on the server
machine.

3. Enter or browse for the pathname, then click Next. The wizard queries the
specified DLL file to establish what automation classes it contains and
presents these in a drop-down list.

4. Select an automation class and click Next. The wizard interrogates the auto-
mation class to obtain details of the suitable functions it supports. It then
displays these.

5. Select the functions that you want to import and specify the Repository cate-
gory under which the functions will appear (the default is Routines ➤ class
name). Click Next. The wizard displays the details of the proposed import.

6. If you are happy with the details, click Import. DataStage starts to generate
the required routines and displays a progress bar. On completion a summary
screen appears.

7. Click Finish to exit the wizard.

4-50 DataStage Developer’s Guide

Developing a Job 5-1

5
Developing a Job

This chapter describes the DataStage Designer, DataStage stages, how to develop
a job, and how to specify job properties.

A DataStage job populates one or more tables in the target database. There is no
limit to the number of jobs you can create in a DataStage project.

Jobs are designed and developed using the DataStage Designer. A job design
contains:

• Stages to represent the processing steps required
• Links between the stages to represent the flow of data

Before you start to develop your job, you must plan and set up your project. This
is described in Chapter 4, “Setting Up a Project.”

Note: If you want to use the reporting tool described in Chapter 18, “Reporting
and Printing,” you should ensure that the names of your DataStage compo-
nents (jobs, stage, links etc.) do not exceed 64 characters.

The DataStage Designer
The DataStage Designer is installed by default in the Ardent DataStage program
folder in the Windows Program Manager.

Starting the DataStage Designer
To start the DataStage Designer, choose Start ➤ Programs ➤ Ardent DataStage ➤
DataStage Designer.

5-2 DataStage Developer’s Guide

The Attach to Project dialog box appears:

You must connect to a project as follows:

1. Enter the name of your host in the Host system field. This is the name of the
system where the DataStage Server components are installed.

2. Enter your user name in the User name field. This is your user name on the
server system.

3. Enter your password in the Password field.

Note: If you are connecting to the server via LAN Manager, you can select the
Omit check box. The User name and Password fields gray out and you
log on to the server using your Windows NT Domain account details.

4. Choose the project to connect to from the Project drop-down list box. This list
box displays all the projects installed on your DataStage server.

5. Select the Save settings check box to save your logon settings.

6. Click OK. The DataStage Designer window appears.

Note: You can also start the DataStage Designer from the DataStage Manager or
Director by choosing Tools ➤ Run Designer.

Developing a Job 5-3

The DataStage Designer Window
The DataStage Designer window appears when you start the Designer:

This window has the following components.

Menu Bar

There are eight pull-down menus:

• File. Creates, opens, and saves DataStage jobs. Also sets up printers,
compiles and debugs jobs, and exits the Designer.

• Edit. Deletes stages and links in the Diagram window, defines job proper-
ties, and displays the stage dialog boxes.

• View. Determines what is displayed in the DataStage Designer window.
Displays or hides the toolbar, tool palette, Job Details window, debugger
toolbar, Watch window, and status bar.

5-4 DataStage Developer’s Guide

• Diagram. Determines what actions are performed in the Diagram window.
Displays or hides the grid or print lines, activates or deactivates the Snap
to Grid option, and zooms in or out of the Diagram window. Also
constructs containers.

• Insert. Adds a link, built-in stage, or plug-in stage to the Diagram window.
The options on this menu perform the same task as the icons on the tool
palette.

• Tools. Defines the Designer options and starts the DataStage Manager or
Director. Also lets you invoke third party applications, or add third party
applications to the Designer (see “Customizing the Tools Menu” on
page 4-9 for details).

• Window. Specifies how the windows are displayed and arranges the icons.

• Help. Invokes the Help system. Help is available from all areas of the
Designer.

The Diagram Window

The Diagram window is the canvas on which you design and display your job. By
default, this window is empty when you start the Designer allowing you to
develop a new job. This window has the following components:

• Title bar. Displays “Job” or the name of a container. See “Containers” on
page 5-27 for a more detailed description.

• Grid lines. Allow you to position stages more precisely in the window. The
grid lines are displayed by default. Choose Diagram ➤ Show Grid Lines
to disable them.

• Scroll bars. Allow you to view the job components that do not fit in the
display area.

• Print lines. Display the area that is printed when you choose File ➤ Print.

You can use the resize handles or the Maximize button to resize the Diagram
window. To resize the contents of the window, use the zoom options in the
Diagram pull-down menu.

By default, any stages you add to the Diagram window will snap to the grid lines.
You can, however, turn this option off by unchecking Diagram ➤ Snap to Grid,
clicking the Snap to Grid icon in the toolbar, or from the Designer Options dialog
box.

Developing a Job 5-5

Toolbar

The Designer toolbar contains the following icons:

The toolbar appears under the menu bar by default, but you can drag and drop it
anywhere on the screen. If you move the toolbar to the edge of the DataStage
Designer window, it attaches to the side of the window. Alternatively, you can hide
the toolbar by choosing View ➤ Toolbar.

Tool Palette

The tool palette contains icons that represent the components you can add to your
job design:

Print

Help

 Plug-in Stage

Grid Lines

Snap to Grid
Zoom In

Zoom Out
Save

CompileOpen Job

New Job

Container Output

Aggregator Stage

Sequential File Stage

Stage

Link

Container Input
Stage

Hashed File Stage

Transformer Stage

Container Stage

ODBC Stage UniVerse Stage

UniData Stage

5-6 DataStage Developer’s Guide

To add a stage to the Diagram window, choose it from the tool palette and click the
Diagram window. The stage is added at the insertion point in the Diagram
window.

To link two stages, choose the Link icon. Click the first stage, then drag the mouse
to the second stage. The stages are linked when you release the mouse button.

The tool palette appears in the DataStage Designer window by default, but you can
move it anywhere on the screen. You can hide the tool palette by choosing View ➤
Palette.

The Job Details Window

The Job Details window appears when you choose View ➤ Job Details. If you are
using containers in your job design, it lists the containers that make up the job.

Double-click the name of a container in the list to display the component stages in
a Diagram window. If you choose a container from the list which is already
displayed in a Diagram window, the window appears at the front of the screen.

The Job Details window appears by default in the DataStage Designer window, but
you can move it anywhere on the screen. You can hide the Job Details window by
choosing View ➤ Job Details again.

Status Bar

The status bar appears at the bottom of the DataStage Designer window. It displays
one-line help for the window components and information on the current state of
job operations, for example, compilation. You can hide the status bar by choosing
View ➤ Status Bar.

Developing a Job 5-7

Debugger Toolbar

The debugger toolbar contains icons representing debugger functions. You can
hide the debugger toolbar by choosing View ➤ Debug Bar.

Shortcut Menus

There are four shortcut menus available which you display by clicking the right
mouse button. The menu displayed depends on the item you click in the DataStage
window.

• Diagram. Appears when you click the right mouse button on the window
background. This menu contains options to display or hide the grid or
print lines, activate or deactivate the Snap to Grid option, zoom in or out of
the Diagram window, and construct a container.

• Stage. Appears when you click the right mouse button on a highlighted
stage. This menu contains options to display the stage dialog box and the
input or output link properties and to delete the stage. On passive, built-in
stages there are also options for invoking the Data Browser on any input or
output link meta data.

• Link. Appears when you click the right mouse button on a highlighted
link. This menu contains options to move or delete the link, change the link
type, toggle any breakpoint on the link, or invoke the edit breakpoints
dialog box.

• Job Details. Appears when you click the right mouse button in the Job
Details window. This menu contains options to create, open, save, and
compile the job.

Go Stop Job

Job

Edit

Toggle
Parameters Breakpoint

Breakpoints
Clear All
Breakpoints

Step to
Next Link

Step to
Next Row

Debug
Window

5-8 DataStage Developer’s Guide

Creating a Job
An empty job is created when you start the Designer. To save the job:

1. Choose File ➤ Save Job. The Create New Job dialog box appears:

2. Enter the name of the job in the Job Name field.

3. Click OK. If the job name is unique, the job is created and saved in the Repos-
itory. If the job name is not unique, a message box appears. You must
acknowledge this message before you can enter an alternative name.

If you are displaying an existing job design and you want to create a new one, do
one of the following:

• Choose File ➤ New.
• Click the New icon on the toolbar.

The existing job is closed and the updated DataStage Designer window displays
an empty Diagram window. Save the job as described earlier.

Developing a Job 5-9

Opening a Job
If you have previously worked on the job you want to open, then you can select it
from the list of most recently used jobs in the File menu in the DataStage Designer
window. Otherwise, to open a job, do one of the following:

• Choose File ➤ Open Job… .
• Click the Open icon on the toolbar.

The Open Job dialog box appears:

Choose the job you want to open from the Jobs list box and click OK.

The DataStage Designer window is updated to display the chosen job in a Diagram
window.

Opening a Job from the DataStage Manager

You can also open a job from the DataStage Manager.

1. Select the job to open from the project tree in the DataStage Manager window.

2. Choose Tools ➤ Run Designer. The Designer is started and the selected job is
opened in the DataStage Designer window.

5-10 DataStage Developer’s Guide

Saving a Job
There are two ways of saving jobs in the DataStage Designer:

• File ➤ Save Job. Choose this option to save changes in an open job or to
save a new (untitled) job. If you choose this option for a new job, the Create
New Job dialog box appears:

Enter a name for the job in the Job Name field and click OK. The updated
title bar in the DataStage Designer window displays the job name.

• File ➤ Save Job As… . Choose this option to save an open job as a new job.
The Save As New Job dialog box appears:

Enter a name for the job in the Job Name field and click OK. A copy of the
job design is made, a new job is created, and the new job is opened in the
Diagram window.

Developing a Job 5-11

Exiting the DataStage Designer
To exit the DataStage Designer, choose File ➤ Exit from the DataStage Designer
window. If you are currently debugging a job, it is stopped. Your personal settings,
such as Diagram window size and position, are preserved and restored when you
next use the DataStage Designer.

Stages
A job consists of stages linked together which describe the flow of data from a data
source to a final data warehouse. A stage usually has at least one data input and
one data output. However, some stages can accept more than one data input, and
output to more than one stage.

DataStage has several built-in stage types that are used to represent data sources,
data marts, or conversion stages. These stages are either Passive or Active stages.
A Passive stage handles access to databases for the extraction or writing of data.
Active stages model the flow of data and provide mechanisms for combining data
streams, aggregating data, and converting data from one data type to another.

As well as using the built-in stage types, you can also use plug-in stages for specific
operations that the built-in stages do not support.

Stages and links can be grouped together to form a container. A container is repre-
sented by a Container stage. The links to and from a container are represented by
Container Input and Container Output stages.

Each stage type has a set of predefined and editable properties. These properties
are viewed or edited using stage editors. A stage editor exists for each stage type
and these are described in detail in individual chapters.

At this point in your job development you need to decide which stage types to use
in your job design.

Built-In Stages
These are the following built-in stage types:

• Aggregator. Classifies incoming data into groups, computes totals and
other summary functions for each group, and passes them to another stage
in the job. This is an active stage.

• Hashed File. Extracts data from or loads data into databases that contain
hashed files. Also acts as an intermediate stage for quick lookups. This is a
passive stage.

5-12 DataStage Developer’s Guide

• ODBC. Extracts data from or loads data into databases that support the
industry standard Open Database Connectivity API. This stage is also used
as an intermediate stage for aggregating data. This is a passive stage.

• UniVerse. Extracts data from or loads data into UniVerse databases. This
stage is also used as an intermediate stage for aggregating data. This is a
passive stage.

• UniData. Extracts data from or loads data into UniData databases. This is a
passive stage.

• Sequential File. Extracts data from, or loads data into, operating system
text files. This is a passive stage.

• Transformer. Receives incoming data, transforms it in a variety of ways,
and outputs it to another stage in the job. This is an active stage.

• Container. Represents a group of stages and links. The group is replaced by
a single Container stage in the Diagram window.

• Container Input and Output. Represent the interface that links a container
stage to the rest of the job design.

Containers, Container stages, and Input and Output stages are described under
“Containers” on page 5-27.

Plug-In Stages
You may find that the built-in stage types do not meet all your requirements for
data extraction or transformation. In this case, you need to use a plug-in stage. The
function and properties of a plug-in stage are determined by the particular plug-in
specified when the stage is inserted. plug-ins are written to perform specific tasks,
for example, to bulk load data into a data mart.

There are two plug-ins installed with DataStage: the BCPLoad plug-in and the
Orabulk plug-in. These are described in Chapter 14 and Chapter 15 respectively. A
range of other plug-ins are supplied with DataStage for you to install if required.
Alternatively, you can write your own plug-ins. For more information, see
Chapter 13.

Developing the Job Design
Jobs are designed and developed in the Diagram window. Stages are added and
linked together using the tool palette. You can add, move, rename, delete, link, or
edit stages in a job design.

Developing a Job 5-13

Adding Stages
There is no limit to the number of stages you can add to a job. We recommend you
position the stages as follows in the Diagram window:

• Data sources on the left
• Data warehouse on the right
• Transformer stages in the middle of the diagram

Add a stage for each data source and one for the final data mart. Add Transformer
stages to convert incoming data and to output the result to another stage in the job.
To add a stage:

1. Do one of the following:

• Choose the stage from the Insert menu.
• Click the stage icon on the tool palette.

2. Click in the Diagram window where you want to position the stage. The stage
appears as a square in the Diagram window.

Each stage is given a default name which you can change if required (see
“Renaming Stages” on page 5-14).

If you want to add more than one stage of a particular type, press Shift before
clicking the icon on the tool palette. You can continue to click the Diagram window
without having to reselect the icon. Release the Shift key when you have added the
stages you need; press Esc if you change your mind.

Adding Plug-In Stages

Plug-in stages cannot be added to the Diagram window using the tool palette. To
add a plug-in stage:

1. Do one of the following to display the Plug-In Stage dialog box:

• Choose Insert ➤ Plug-in… .
• Click the Plug-in Stage icon on the toolbar.

5-14 DataStage Developer’s Guide

2. Select the plug-in to use from the list box. This list box contains all the plug-
ins defined in your project. The plug-in you choose determines the properties
of the plug-in stage.

3. Click OK.

4. Click in the Diagram window where you want to position the stage. The stage
is added to the Diagram window, which you can edit to define the input and
output data.

Moving Stages
Once positioned, stages can be moved by clicking and dragging them to a new
location in the Diagram window. If you have grid lines displayed and the Snap to
Grid option activated, the stage is attached to the nearest grid position when you
release the mouse button. If stages are linked together, the link is maintained when
you move a stage.

Renaming Stages
There are two ways to rename a stage: you can either replace its name entirely or
edit the existing name.

To enter a new name:

1. Select the stage in the Diagram window.

2. Type in the new name; as soon as you start typing an edit box appears over
the current name showing the characters being typed.

3. Press Enter or click outside the stage to accept the edit. The stage name is
changed in the Diagram window.

To modify a stage name:

1. Select the stage in the diagram window.

2. Choose Edit ➤ Rename, choose Rename from the shortcut menu, or press
Ctrl-R. An edit box appears over the existing name.

3. Make the required changes in the edit box.

4. Press Enter or click outside the stage to accept the edit. The stage name is
changed in the Diagram window.

Developing a Job 5-15

Deleting Stages
Stages can be deleted from the Diagram window. Choose one or more stages and
do one of the following:

• Press the Delete key.
• Choose Edit ➤ Delete.
• Choose Delete from the shortcut menu.

A message box appears. Click Yes to delete the stage or stages and remove them
from the Diagram window.

Links
DataStage supports two types of input link:

• Stream. A link representing the flow of data. This is the principal type of
link, and is used by both active and passive stages.

• Reference. A link representing a table lookup. Reference links are only
used by active stages. They are used to provide information that might
affect the way data is changed, but do not supply the data to be changed.

The two link types are displayed differently in the Designer Diagram window:
stream links are represented by solid lines and reference links by dotted lines.
There is only one type of output link, although some stages permit an output link
to be used as a reference input to the next stage and some do not.

Built-in stages have maximum and minimum numbers of links as follows:

Stage Type Stream Inputs Reference Inputs Outputs Reference
Max Min Max Min Max Min Outputs?

Container no limit 0 no limit 0 no limit 0 yes

ODBC no limit 0 0 0 no limit 0 yes
UniVerse no limit 0 0 0 no limit 0 yes
Hashed File no limit 0 0 0 no limit 0 yes

UniData no limit 0 0 0 no limit 0 yes
Sequential
File

no limit 0 0 0 no limit 0 no

Transformer 1 1 no limit 0 no limit 1 no
Aggregator 1 1 0 0 no limit 1 no

5-16 DataStage Developer’s Guide

Plug-in stages supplied with DataStage generally have the following maximums
and minimums:

When designing your own plug-ins, you can specify maximum and minimum
inputs and outputs as required.

Linking Stages
You can link stages in three ways:

• Using the Link icon. Choose the Link icon from the tool palette. Click the
first stage and drag the link to the second stage. The link is made when you
release the mouse button.

• Choosing Insert ➤ Link. Click the first stage and drag the link to the
second stage. The link is made when you release the mouse button.

• Using the mouse. Select the first stage. Position the mouse cursor on the
edge of a stage until the mouse cursor changes to a circle. Click and drag
the mouse to the other stage. The link is made when you release the mouse
button.

Each link is given a default name which you can change.

Moving Links

Once positioned, a link (and its associated meta data) can be moved to a new loca-
tion in the Diagram window. You can choose a new source or destination for the
link, but not both.

To move a link:

1. Click the link to move in the Diagram window. The link is highlighted.

2. Click on the box at the end you wish to move and drag the end to its new
location.

Stage Type Stream Inputs Reference Inputs Outputs Reference
Max Min Max Min Max Min Outputs?

Active 1 1 no limit 0 no limit 1 no

Passive no limit 0 0 0 no limit 0 yes

Developing a Job 5-17

Deleting Links

Links can be deleted from the Diagram window. Choose the link and do one of the
following:

• Press the Delete key.
• Choose Edit ➤ Delete.
• Choose Delete from the shortcut menu.

A message box appears. Click Yes to delete the link. The link is removed from the
Diagram window.

Note: Meta data is associated with a link, not a stage. If you delete a link, the asso-
ciated meta data is deleted too. If you want to retain the meta data you have
defined, do not delete the link; move it instead.

Renaming Links

There are two ways to rename a link; you can either replace its name entirely or edit
the existing name.

To enter a new name:

1. Select the link in the Diagram window.

2. Type the new name. As soon as you start typing, an edit box appears over the
current name showing the characters being typed.

3. Press Enter or click outside the link to accept the edit. The link name is
changed in the Diagram window.

To modify a link name:

1. Select the link in the Diagram window.

2. Choose Edit ➤ Rename, choose Rename from the shortcut menu, or press
Ctrl-R. An edit box appears over the existing name.

3. Make the required changes in the edit box.

4. Press Enter or click outside the link to accept the edit. The link name is
changed in the Diagram window.

Dealing with Multiple Links

If you have multiple links from one stage to another, you may want to resize the
stages in order to make the links clearer by spreading them out. Do this by
selecting each stage and dragging on one of the sizing handles in the bounding
box.

5-18 DataStage Developer’s Guide

Editing Stages
When you have added the stages and links to the Diagram window, you must edit
the stages to specify the data you want to use and any aggregations or conversions
required.

Data arrives into a stage on an input link and is output from a stage on an output
link. The properties of the stage, the data on each input and output link, and any
aggregation or transforms required are specified using a stage editor.

To edit a stage, do one of the following:

• Double-click the stage in the Diagram window.
• Select the stage and choose Properties… from the shortcut menu.
• Choose Edit ➤ Rename.

A dialog box appears. The content of this dialog box depends on the type of stage
you are editing. See the individual stage chapters for a detailed description of the
stage dialog box.

The data on a link is specified using column definitions. The column definitions for
a link are specified by editing a stage at either end of the link.

Column definitions are entered and edited identically for each stage type.

Specifying Column Definitions

Each stage dialog box has a page for data inputs and/or data outputs (depending
on what links are present on the stage). The data flowing along each input or
output link is specified using column definitions. The column definitions are
displayed in a grid on the Columns page for each link.

The Columns grid has a row for each column definition and always has the
following entries:

• Column name. The name of the column.

• Key. Indicates whether the column is part of the primary key.

• SQL type. The SQL data type.

• Length. The data precision. This is the length for CHAR data and the
maximum length for VARCHAR data.

• Scale. The data scale factor.

• Nullable. Specifies whether the column can contain null values.

• Display. The maximum number of characters required to display the
column data.

Developing a Job 5-19

• Data element. The type of data in the column.

• Description. A text description of the column.

The grid may contain additional entries, depending on the type of stage you are
editing. Specifically, stages that permit aggregating of output data (ODBC and
UniVerse stages) also contain the following:

• Group. Choose Yes to specify that you want to group by this column.

• Derivation. Allows you to specify that you want to summarize using this
column.

Stages that support multivalued data (UniVerse, UniData, and Hashed File) also
contain:

• Association. The name of the association (if any) that the column belongs
to.

• Position. The field number.

• Type. The nesting type, which can be S, M, MV, or MS.

Stages that support per-column mapping (Sequential, ODBC, and generic plug-in
stages) may contain:

• NLS Map. Appears if Allow per-column mapping has been selected on
the NLS page of the stage dialog box. Allows you to choose a separate map
for a particular column. This map overrides the default map set for the
project, job, stage, or table.

Some entries contain text (which you can edit) and others have a drop-down list
containing all the available options for the cell.

You can edit the grid to add new column definitions or change values for existing
definitions. For a detailed description of how to edit a grid, see Appendix B,
“Editing Grids.” Any changes are saved when you save your job design.

The Columns page for each link also contains the following buttons which you can
use to edit the column definitions:

• Save… . Saves column definitions as a table definition in the Repository.

• Load… . Loads (copies) the column definitions from a table definition in
the Repository.

5-20 DataStage Developer’s Guide

Editing Column Definitions

You can edit the column definitions for any input or output link. Do this by editing
the Columns grid.

To edit a column definition, click the cell you want to change. The way you edit the
cell depends on the cell contents. If the cell contains a drop-down list, choose an
alternative option from the drop-down list. If the cell contains text, you can start
typing to change the value, or press F2 or choose Edit cell… from the shortcut
menu to put the cell into edit mode.

Some cells are complex, and require more than one piece of information. The Deri-
vation column in the Aggregator stage output link is an example of this. In the case
of complex cells, editing will invoke a dialog box, allowing you to supply the
required information.

Inserting Column Definitions

If you want to create a new output column or write to a table that does not have a
table definition, you can manually enter column definitions by editing the columns
grid.

To add a new column at the bottom of the grid, edit the empty row (indicated by a
star).

To add a new column between existing rows, position the cursor in the row below
the desired position and press the Insert key or choose Insert row… from the
shortcut menu.

In either case, you can select and drag the new row to a new position in the grid.

For more information about adding and deleting rows, or moving between the
cells of a grid, see Appendix B, “Editing Grids.”

Deleting Column Definitions

If you have a column definition you do not want, you can delete it. Unwanted
column definitions can arise if you load column definitions from a table definition
in the Repository (see “Loading Column Definitions” on page 5-22).

To delete a column definition, click anywhere in the row you want to remove and
press the Delete key or choose Delete row from the shortcut menu. The column
definition is removed from the grid. Click OK to close the Stage dialog box.
Changes are saved when you save your job design.

Developing a Job 5-21

If you want to delete more than one column definition at once, press Ctrl and click
in the row selector column for the rows you want to remove. Press the Delete key
or choose Delete row from the shortcut menu to remove the selected column
definitions.

Saving Column Definitions

If you edit column definitions or insert new definitions, you can save them in a
table definition in the Repository. You can then load the definitions into other
stages in your job design.

To save the column definitions:

1. Click Save… . The Save Table Definition dialog box appears:

2. Enter a category name in the Data source type field. The name entered here
determines how the definition will be stored under the main Table Defini-
tions branch. By default, this field contains Saved.

3. Enter a name in the Data source name field. This forms the second part of the
table definition identifier and is the name of the branch created under the
data source type branch. By default, this field contains the name of the stage
you are editing.

4. Enter a name in the Table/file name field. This is the last part of the table defi-
nition identifier and is the name of the leaf created under the data source
name branch. By default, this field contains the name of the link you are
editing.

5-22 DataStage Developer’s Guide

5. Optionally enter a brief description of the table definition in the Short
description field. By default, this field contains the date and time you clicked
Save… . The format of the date and time depend on your Windows setup.

6. Optionally enter a more detailed description of the table definition in the
Long description field.

7. Click OK. The column definitions are saved under the specified branches in
the Repository.

Loading Column Definitions

You can load column definitions from a table definition in the Repository. For a
description of how to create or import table definitions, see “Table Definitions” on
page 4-11.

To load column definitions:

1. Click Load… . The Table Definitions window appears. This window displays
all the table definitions in your project in the form of a table definition tree.
The table definition categories are listed alphabetically in the tree.

2. Double-click the appropriate category branch.

3. Continue to expand the branches until you see the table definition leaves.

4. Select the table definition you want.

Developing a Job 5-23

Note: You can use Find… to enter the name of the table definition you want.
The table definition is selected in the tree when you click OK.

5. Click OK. All the column definitions from the chosen table definition are
copied into the Columns grid. You can now edit or delete the column
definitions.

6. Click OK to close the stage dialog box. Changes are saved when you save
your job design.

Browsing Server Directories

When you edit a UniVerse, Sequential File, or Hashed File stage, you may need to
specify a directory path on the DataStage server where the required files are found.
You can specify a directory path in one of three ways:

• Enter a job parameter in the respective text entry box in the stage dialog
box. For more information about defining and using job parameters, see
“Specifying Job Parameters” on page 5-33.

• Enter the directory path directly in the respective text entry box in the Stage
dialog box.

• Use Browse… .

If you use Browse…, the Browse directories dialog box appears. This dialog box
has the following components:

• Directory on field. Displays the directory path. This field is automatically
updated with the drive and directory you choose. You can also enter a
directory path directly in this field.

• Directory list. Displays the directories on the chosen drive. Double-click
the directory you want. Double-click .. to move up a level in the directory
structure.

• Drive on list (only shown when connected to a Windows NT server).
Displays the mounted drives on the DataStage server. Choose the drive
you want from the drop-down list. The Directory list box is automatically
updated when you choose a drive.

• OK button. Accepts the directory path in the Directory on field and closes
the Browse directories dialog box.

• Cancel button. Closes the dialog box without specifying a directory path.

• Help button. Invokes the Help system.

5-24 DataStage Developer’s Guide

Using the Data Browser
You can browse the data associated with the input or output links of any built-in
passive stage. The Data Browser is invoked by clicking the View Data… button
from a Stage Inputs or Outputs page, or by choosing the View link Data… option
from the shortcut menu. The Data Browser window appears:

The Data Browser uses the meta data defined for that link. If there is insufficient
data associated with a link to allow browsing, the View Data… button and
shortcut menu option used to invoke the Data Browser are disabled. If the Data
Browser requires you to input some parameters before it can determine what data
to display, the Job Run Options dialog appears and collects the parameters (see
“The Job Run Options Dialog Box” on page 5-26).

You can view a row containing a specific data item using the Find… button. The
Find dialog box will reposition the view to the row containing the data you are
interested in. The search is started from the current row.

Developing a Job 5-25

The Display… button invokes the Column Display dialog box. This allows you to
simplify the data displayed by the Data Browser by choosing to hide some of the
columns. It also allows you to normalize multivalued data to provide a 1NF view
in the Data Browser.

This dialog box lists all the columns in the display, all of which are initially
selected. To hide a column, uncheck it.

The Normalize on drop-down list box allows you to select an association or an
unassociated multivalued column on which to normalize the data. The default is
Un-normalized, and choosing Un-normalized will display the data in NF2 form
with each row shown on a single line. Alternatively you can select Un-Normalized
(formatted), which displays multivalued rows split over several lines.

In the example, the Data Browser would display all columns except STARTDATE.
The view would be normalized on the association PRICES.

5-26 DataStage Developer’s Guide

The Job Run Options Dialog Box
When the DataStage Designer needs you to specify information about the running
of a job, it displays the Job Run Options dialog box. This has two pages: one to
collect any parameters the job requires and one to let you specify any run-time
limits. This dialog box may appear when you are using the Data Browser, speci-
fying a job control routine, or using the debugger.

The Parameters page lists any parameters that have been defined for the job. If
default values have been specified, these are displayed too. You can enter a value
in the Value column, edit the default, or accept the default as it is. Click Set to
Default to set a parameter to its default value, or click All to Default to set all
parameters to their default values. Click Property Help to display any help text
that has been defined for the selected parameter (this button is disabled if no help
has been defined). Click OK when you are satisfied with the values for the
parameters.

Developing a Job 5-27

The Limits page allows you to specify whether stages in the job should be limited
in how many rows they process and whether run-time error warnings should be
ignored.

To specify a row’s limits:

1. Click the Stop stages after option button.

2. Select the number of rows from the drop-down list box.

To specify that the job should abort after a certain number of warnings:

1. Click the Abort job after option button.

2. Select the number of warnings from the drop-down list box.

Containers
A container is a group of stages and links. A job always consists of one container
(the top-level container), which is displayed in the Diagram window when you
open a job. If your job consists of only the top-level container, this is the only
container listed in the Job Details window.

If the DataStage job has lots of stages and links, it may be easier to create additional
containers to describe a particular sequence of steps. The container is displayed in
the Diagram window as a Container stage and is listed in the Job Details window.

5-28 DataStage Developer’s Guide

A job can be made up of any number of containers. A container can contain any
number of stages and links. Containers are linked to other stages or containers in
the project by input and output stages.

Creating a Container
If your job design is becoming complex, you can modularize the design by
grouping stages and links into a container. To save a group of stages and links in a
container:

1. Choose the stages and links by doing one of the following:

• Click and drag the mouse over all the stages you want in the container.

• Select a stage. Press Shift and click the other stages and links you want to
add to the container.

All the chosen stages and links are highlighted in red.

2. Choose Diagram ➤ Construct Container. The group is replaced by a
Container stage in the Diagram window. A new Designer window is created
containing the contents of the new container stage.

Adding a Container Stage
If you want to describe a series of processing steps in a contained group, you can
add a Container stage to your job design. The Container stage is edited to include
the stages and links required.

To add a Container stage, do one of the following:

• Choose Insert ➤ Container.
• Click the Container icon on the tool palette.

A Container stage is added to the Diagram window and the container name is
added to the Job Details window.

Viewing or Modifying a Container
To view or modify the stages or links in a container, do one of the following:

• Double-click the container stage in the Diagram window.
• Double-click the container name in the Job Details window.
• Select the container and choose Edit ➤ Properties… .
• Select the container and choose Properties… from the shortcut menu.

Developing a Job 5-29

Another Diagram window appears with the contents of the container. You can tile
the Diagram windows so that the container is displayed beneath the main Diagram
window.

You can edit the stages and links in a container in the same way you do for the top-
level container.

Click the Close button to close the Diagram window for the container.

Using Input and Output Stages
When you use containers in a job design, a link is displayed going in to or out of
the container. However, it is not apparent which stage in the container forms the
other end of the link.

The link between a stage and a container is represented in the container Diagram
window by a Container Input or Output stage.

The way in which the Container Input and Output stages are used depends on
whether you create or add a container:

• If you create a container, the input and output stages are automatically
added. The link between the input or output stage and the stage in the
container has the same name as the link in the main Diagram window.

• If you add a container stage, you must add stages to the container Diagram
window between the input and output stages. Link the stages together and
edit the link names to match the ones in the main Diagram window.

For example, the following Diagram window shows two ODBC stages linked to a
container:

The first ODBC stage links to a stage in the container, which is represented by a
Container Input stage. A different stage in the container links to the second ODBC
stage, which is represented by a Container Output stage.

5-30 DataStage Developer’s Guide

The container Diagram window includes the input and output stages required to
link to the two ODBC stages. Note that the link names match those used for the
links between the ODBC stages and the container in the main Diagram window.

Job Properties
Each job in a project has properties including optional descriptions and job param-
eters. You can view and edit the job properties from the DataStage Designer or the
DataStage Manager:

• From the Designer. Open the job in the DataStage Designer window and
choose Edit ➤ Job Properties… .

• From the Manager. Double-click a job in the project tree in the DataStage
Manager window or, alternatively, select the job and choose File ➤ Proper-
ties… .

Developing a Job 5-31

The Job Properties dialog box appears:

This dialog box has up to five pages: General, Parameters, Job control, NLS, and
Dependencies. The General page contains the following fields:

• Short job description. An optional brief description of the job.

• Full job description. An optional detailed description of the job.

• Job Version Number. The version number of the job. A job version number
has several components:

– The version number: N.n.n. This number checks the compatibility of the
job with the version of DataStage installed. This number is automatically
set when DataStage is installed and cannot be edited.

– The release number: n.N.n. This number is automatically incremented
every time you release a job. For more information about releasing jobs,
see “Releasing a Job” on page 17-7.

– The bug fix number: n.n.N. This number reflects minor changes to the job
design or properties. To change this number, select it and enter a new
value directly or use the arrow buttons to increase the number.

5-32 DataStage Developer’s Guide

• Before-job subroutine and Input Value. Optionally contain the name (and
input parameter value) of a subroutine that is executed before the job runs.
For example, you can specify a routine that prepares the data before
processing starts.

Choose a routine from the drop-down list box. This list box contains all the
built routines defined as a Before/After Subroutine under the Routines
branch in the Repository. Enter an appropriate value for the routine’s input
argument in the Input Value field.

If you use a routine that is defined in the Repository, but which was edited
and not compiled, a warning message reminds you to compile the routine
when you close the Job Properties dialog box.

If you installed or imported a job, the Before-job subroutine field may
reference a routine which does not exist on your system. In this case, a
warning message appears when you close the Job Properties dialog box.
You must install or import the “missing” routine or choose an alternative
one to use.

• After-job subroutine and Input Value. Optionally contain the name (and
input parameter value) of a subroutine that is executed after the job has
finished. For example, you can specify a routine that sends an electronic
message when the job finishes.

Choose a routine from the drop-down list box. This list box contains all the
built routines defined as a Before/After Subroutine under the Routines
branch in the Repository. Enter an appropriate value for the routine’s input
argument in the Input Value field.

If you use a routine that is defined in the Repository, but which was edited
but not compiled, a warning message reminds you to compile the routine
when you close the Job Properties dialog box.

If you installed or imported a job, the After-job subroutine field may reference a
routine that does not exist on your system. In this case, a warning message appears
when you close the Job Properties dialog box. You must install or import the
“missing” routine or choose an alternative one to use.

For information on the Parameters, Job control, NLS, and Dependencies pages,
see “Specifying Job Parameters” on page 5-33, “Job Control Routines” on
page 5-38, “Specifying Maps and Locales” on page 5-41, and “Specifying Job
Dependencies” on page 5-43.

Click OK to record your changes in the job design. Changes are not saved to the
Repository until you save the job design.

Developing a Job 5-33

Specifying Job Parameters
Job parameters allow you to design flexible, reusable jobs. If you want to process
data based on the results for a particular week, location, or product you can
include these settings as part of your job design. However, when you want to use
the job again for a different week or product, you must edit the design and recom-
pile the job.

Instead of entering inherently variable factors as part of the job design you can set
up parameters which represent processing variables. Operators are prompted for
values when they run or schedule the job.

Job parameters are defined, edited, and deleted in the Parameters page of the Job
Properties dialog box. For information on how to display this dialog box, see “Job
Properties” on page 5-30.

5-34 DataStage Developer’s Guide

The Job Parameters grid has the following columns:

• Parameter. The name of the parameter.
• Prompt. Text used as the field name in the run-time dialog box.
• Type. The type of the parameter (to enable validation)
• Default Value. The default setting for the parameter.
• Help Text. The text that appears if a user clicks Property Help in the Job

Run Options dialog box when running the job.

Parameter Types
Specify the type of the parameter by choosing one of the following from the drop-
down list:

• String. The default type.

• Encrypted. Used to specify a password. The default value is set by double-
clicking the Default Value cell to invoke the Setup Password dialog box.
Type the password in the Encrypted String field and retype it in the
Confirm Encrypted String field. It is displayed as asterisks.

• Integer. Long int (–2147483648 to +2147483647).

• Float. Double (1.79769313486232E308 to –4.94065645841247E–324 and
4.94065645841247E–324 to –1.79769313486232E308).

• Pathname. Enter a default pathname or filename by typing it into Default
Value or double-click the Default Value cell to invoke the Browse dialog
box.

• List. A list of valid string variables. To set up a list, double-click the Default
Value cell to invoke the Set Defaults dialog box. Build up a list by typing in
each item into the Value field then clicking Add. The item then appears in
the List box. To remove an item, select it in the List box and click Remove.
Select one of the items from the Set Default drop-down list box to be the
default.

Developing a Job 5-35

• Date. Date in the ISO format yyy-mm-dd.

• Time. Time in the format hh:mm:ss.

DataStage uses the parameter type to validate any values that are subsequently
supplied for that parameter, be it in the Director or the Designer.

Parameter Defaults
You can supply default values for parameters, which are used unless another value
is specified when the job is run. For most parameter types, you simply type an
appropriate default value into the Default Value cell. When specifying a password
or a list variable, double-click the Default Value cell to invoke further dialog boxes
which allow you to supply defaults.

Defining Job Parameters
Job parameters are defined by editing the empty row (indicated by a star) in the
Job Parameters grid. For more information about adding and deleting rows, or
moving between the cells of a grid, see Appendix B, “Editing Grids.”

When you have added all the job parameters you need, click OK to close the Job
Properties dialog box.

5-36 DataStage Developer’s Guide

Editing Job Parameters
You can edit any existing job parameter definition. To edit a job parameter, click the
cell you want to change. The way you edit the cell depends on the cell contents. If
the cell contains a drop-down list, choose an alternative option from the drop-
down list.

If the cell contains text, you can start typing to change the value or press F2 to put
the cell into edit mode. When you finish making any changes, click OK to close the
Job Properties dialog box.

Deleting Job Parameters
You can delete any of the job parameters defined in the Job Properties dialog box.

CAUTION: Before you remove a job parameter definition you must make sure
that you remove the references to this parameter in your job design.
If you do not do this, your job may fail to run.

To delete a job parameter definition:

1. Click anywhere in the row for the job parameter you want to remove and
press the Delete key or choose Delete row from the shortcut menu. A
message box appears.

2. Click Yes to delete the job parameter.

3. Click OK to close the Job Properties dialog box.

To delete more than one job parameter at once, press Ctrl and click in the row
selector column for the rows you want to remove, then press the Delete key or
choose Delete row from the shortcut menu. A message box appears. Click Yes to
delete the parameters.

Using Job Parameters
To use the defined job parameters, you must specify them when you edit a stage.
When you edit a field that you wish to use a parameter for, enter #Param#, where
Param is the name of the job parameter. The string #Param# is replaced by the value
for the job parameter when the job is run. (For more details about editing stages,
see “Editing Stages” on page 5-18.)

Developing a Job 5-37

A job parameter can be used in any stage or link property, for example:

• In Transformer stages. You can use job parameters in the following fields
when you edit a Transformer stage:

– Key Expression cell of a reference input link

– Constraint on an output link.

– Derivation cell of an output link.

You can use the Expression Editor to insert a job parameter in these fields.
For information about the Expression Editor, see “The DataStage Expres-
sion Editor” on page 11-12.

• In Sequential File stages. You can use job parameters in the following fields
in the Sequential File Stage dialog box:

– Directory where files are held field on the Stage page
– File name field on the Inputs or Outputs page

• In ODBC or UniVerse stages. You can use job parameters in the following
fields in the Stage dialog box:

– Data source name field on the General page on the Stage page

– User name and Password fields on the General page on the Stage page

– Account name or Use directory path fields on the Details page on the
Stage page (UniVerse stage only)

– Table name field on the General page on the Inputs or Outputs page

– WHERE clause field on the Selection page on the Outputs page

– Value cell on the Parameters page, which appears in the Outputs page
when you use a stored procedure (ODBC stage only)

– Expression field on the Derivation dialog box, invoked from the Deriva-
tion column in the Outputs page of a UniVerse or ODBC Stage dialog box

• In Hashed File stages. You can use job parameters in the following fields in
the Hashed File Stage dialog box:

– Use account name or Use directory path fields on the Stage page
– File name field on the General page on the Inputs or Outputs page

5-38 DataStage Developer’s Guide

• In UniData stages. You can use job parameters in the following fields in the
UniData Stage dialog box:

– Server, Database, User name, and Password fields on the Stage page
– File name field on the General page on the Inputs or Outputs page

• Before and after subroutines. You can use job parameters to specify argu-
ment values for before and after subroutines.

Note: You can also use job parameters in the Property name field on the Proper-
ties page in the Stage Type dialog box when you create a plug-in. For more
information, see “Manually Registering a Plug-In Definition” on page 13-2.

Job Control Routines
A job control routine provides the means of controlling other jobs from within the
current job. A set of one or more jobs can be validated, run, reset, stopped, and
scheduled in much the same way as the current job can be. You can, if required, set
up a job whose only function is to control a set of other jobs.

To control other jobs in this way, you must define a job control routine in the Job
control page of the Job Properties dialog box. The routine uses a set of BASIC func-
tions provided for the purpose. For more information about these routines, see
DataStage Developer’s Help. The Job control page provides a basic editor to let
you construct a job control routine using the functions.

The toolbar contains buttons for cutting, copying, pasting, and formatting code,
and for activating Find (and Replace). The main part of this page consists of a
multiline text box with scroll bars. The Add Job field provides a drop-down list
box of all the jobs in the current project. When you select a compiled job from the
list and click Add, the Job Run Options dialog box appears, allowing you to specify
any parameters or run-time limits to apply when the selected job is run (see “The
Job Run Options Dialog Box” on page 5-26). The job will also be added to the list
of dependencies (see “Specifying Job Dependencies” on page 5-43). When you
click OK in the Job Run Options dialog box, you return to the Job control page,
where you will find that DataStage has added job control code for the selected job.
The code sets any required job parameters and/or limits, runs the job, waits for it
to finish, then tests for success.

Developing a Job 5-39

Alternatively, you can type your routine directly into the text box on the Job
control page, specifying jobs, parameters, and any run-time limits directly in the
code.

The following is an example of a job control routine. It schedules two jobs, waits
for them to finish running, tests their status, and then schedules another one. After
the third job has finished, the routine gets its finishing status.

* get a handle for the first job
Hjob1 = DSAttachJob("DailyJob1",DSJ.ERRFATAL)
* set the job’s parameters
Dummy = DSSetParam(Hjob1,"Param1","Value1")
* run the first job
Dummy = DSRunJob(Hjob1,DSJ.RUNNORMAL)

* get a handle for the second job
Hjob2 = DSAttachJob("DailyJob2",DSJ.ERRFATAL)
* set the job’s parameters
Dummy = DSSetParam(Hjob2,"Param2","Value2")
* run the second job
Dummy = DSRunJob(Hjob2,DSJ.RUNNORMAL)

* Now wait for both jobs to finish before scheduling the third job
Dummy = DSWaitForJob(Hjob1)
Dummy = DSWaitForJob(Hjob2)

5-40 DataStage Developer’s Guide

* Test the status of the first job (failure causes routine to exit)
J1stat = DSGetJobInfo(Hjob1, DSJ.JOBSTATUS)
If J1stat = DSJS.RUNFAILED

Then Call DSLogFatal("Job DailyJob1 failed","JobControl")
End

* Test the status of the second job (failure causes routine to exit)
J2stat = DSGetJobInfo(Hjob2, DSJ.JOBSTATUS)
If J2stat = DSJS.RUNFAILED

Then Call DSLogFatal("Job DailyJob2 failed","JobControl")
End

* Now get a handle for the third job
Hjob3 = DSAttachJob("DailyJob3",DSJ.ERRFATAL)
* and run it
Dummy = DSRunJob(Hjob3,DSJ.RUNNORMAL)
* then wait for it to finish
Dummy = DSWaitForJob(Hjob3)

* Finally, get the finishing status for the third job and test it
J3stat = DSGetJobInfo(Hjob3, DSJ.JOBSTATUS)
If J3stat = DSJS.RUNFAILED

Then Call DSLogFatal("Job DailyJob3 failed","JobControl")
End

Possible status conditions returned for a job are as follows.

A job that is in progress is identified by:

• DSJS.RUNNING – Job running; this is the only status that means the job is
actually running.

Jobs that are not running may have the following statuses:

• DSJS.RUNOK – Job finished a normal run with no warnings.

• DSJS.RUNWARN – Job finished a normal run with warnings.

• DSJS.RUNFAILED – Job finished a normal run with a fatal error.

• DSJS.VALOK – Job finished a validation run with no warnings.

• DSJS.VALWARN – Job finished a validation run with warnings.

• DSJS.VALFAILED – Job failed a validation run.

• DSJS.RESET – Job finished a reset run.

• DSJS.STOPPED – Job was stopped by operator intervention (cannot tell run
type).

Developing a Job 5-41

Specifying Maps and Locales
You can ensure that DataStage uses the correct character set map and formatting
rules for your job by specifying character set maps and locales on the NLS page of
the Job Properties dialog box.

Defining Character Set Maps
The character set map defines the character set DataStage uses for this job. You can
select a specific character set map from the list or accept the default setting for the
whole project.

Note: The list contains all character set maps that are loaded and ready for use.
You can view other maps that are supplied with DataStage by clicking
Show all maps, but these maps cannot be used unless they are loaded
using the DataStage Administrator. For more information, see DataStage
Administrator’s Guide.

5-42 DataStage Developer’s Guide

Defining Data Formats with Locales
Different countries and territories have different formatting conventions for
common data types such as times, dates, numbers, and currency. The set of
conventions used in a particular place with a particular language is called a locale.
For example, there is a Canadian-French locale whose conventions differ from the
French-French locale.

DataStage recognizes the locales for many territories. A default locale is set for
each project during installation. You can override the default for a particular job by
selecting the locale you require for each category on the NLS page of the Job Prop-
erties dialog box:

• Time/Date specifies the locale to use for formatting times and dates.

• Numeric specifies the locale to use for formatting numbers, for example,
the thousands separator and radix character.

• Currency specifies the locale to use for monetary amounts, for example, the
currency symbol and where it is placed.

• CType specifies the locale to use for determining character types, for
example, which letters are uppercase and which lowercase.

• Collate specifies the locale to use for determining the order for sorted data.

In most cases you should use the same locale for every category to ensure that the
data is formatted consistently.

Developing a Job 5-43

Specifying Job Dependencies
The Dependencies page of the Job Properties dialog box allows you to specify any
dependencies the job has. These may be functions, routines, or other jobs that the
job requires in order to run successfully.

Enter details as follows:

• Type. The type of item upon which the job depends. Choose from the
following:

– Job. Released or unreleased job. If you have added a job on the Job
control page (see page 5-38), this will automatically be included in the
dependencies. If you subsequently delete the job from the job control
routine, you must remove it from the dependencies list manually.

– Local. Locally cataloged UniVerse BASIC functions and subroutines.

– Global. Globally cataloged UniVerse BASIC functions and subroutines.

– File. A standard file.

– ActiveX. An ActiveX (OLE) object (not available on UNIX-based
systems).

5-44 DataStage Developer’s Guide

• Name. The name of the function or routine. The name required varies
according to the Type of the dependency:

– Job. The name of a released, or unreleased, job.

– Local. The catalog name.

– Global. The catalog name.

– File. The file name.

– ActiveX. The Name entry is actually irrelevant for ActiveX objects. Enter
something meaningful to you (ActiveX objects are identified by the Loca-
tion field).

• Location. The location of the dependency. A browse dialog is available to
help with this. This location can be an absolute path, but it is recommended
you specify a relative path using the following environment variables:

– %SERVERENGINE% – UniVerse UV account directory (normally
C:\Ardent\DataStage\ServerEngine).

– %PROJECT% – Current project directory.

– %SYSTEM% – System directory on Windows NT or /usr/lib on UNIX.

The Browse Files dialog box is as shown below. You cannot navigate to the parent
directory of an environment variable.

When browsing for the location of a file on a UNIX server, there is an entry called
Root in the Base Locations drop-down list.

Developing a Job 5-45

Specifying Designer Options
You can specify default display settings and the level of prompting used when the
Designer is started. To specify the Designer options, choose Tools ➤ Options… .
The Options dialog box appears:

This dialog box has four pages:

• Defaults. Determines the actions set in the Diagram window when you
start the Designer. There are three check boxes on this page:

– Gridlines shown
– Snap to grid on
– Printer lines shown

These check boxes are selected by default. Clear the check box you do not
want to set on startup.

• Printer. Specifies the printing orientation. When you choose File ➤ Print,
the default printing orientation is determined by the setting on this page.
You can choose portrait or landscape orientation. To use portrait, select the
Portrait orientation check box. The default setting for this option is
unchecked, i.e., landscape orientation is used.

5-46 DataStage Developer’s Guide

• Prompting. Determines the level of prompting displayed when you delete
a stage or link in a job design. This page has options for deleting a link and
options for deleting a stage or a container.

The following options describe the action that occurs when you delete a
link:

– Always prompt. You are always prompted to confirm the deletion.

– Never prompt. The chosen link or links are deleted without any confir-
mation. If you choose this option, containers (and the stages and links in
them) are deleted without prompting.

The following options describe the action that occurs when you delete a
stage or a container:

– Always prompt. You are always prompted to confirm the deletion.

– Container deletion. This is the default setting. You are prompted if you
delete a container. If you do not choose this option or the Always prompt
option, the container (and all the stages and links in it) is deleted.

– Never prompt. The chosen stage or container is deleted without any
confirmation.

Developing a Job 5-47

The Autosave before compile check box specifies whether a job is auto-
matically saved when you compile it (without prompting). This check box
is cleared by default, that is, the job is not saved automatically.

• Expression Editor. Specifies the features available in the DataStage Expres-
sion Editor. For more details on how to use the Expression Editor, see “The
DataStage Expression Editor” on page 11-12.

There are four check boxes on this page:

– Check expression syntax
– Check variable names in expressions
– Suggest expression elements
– Complete variable names in expressions

These check boxes are selected by default. The settings are stored in the
Repository and are used when you edit any job on this client machine.

Number of lines displayed allows you to specify the size of the Expression
Editor box.

Click OK to save any changes and to close the Options dialog box. The chosen
settings take effect immediately.

5-48 DataStage Developer’s Guide

ODBC Stages 6-1

6
ODBC Stages

ODBC stages are used to represent a database that supports the industry standard
Open Database Connectivity API. You can use an ODBC stage to extract, write, or
aggregate data.

Each ODBC stage can have any number of inputs or outputs. Input links specify
the data you are writing. Output links specify the data you are extracting and any
aggregations required.

You can specify the data on an input or output link using an SQL statement
constructed by DataStage, a user-defined query, or a stored procedure.

When you edit an ODBC stage, the ODBC Stage dialog box appears:

6-2 DataStage Developer’s Guide

This dialog box can have up to three pages (depending on whether there are inputs
to and outputs from the stage):

• Stage. Displays the name of the stage you are editing. You can enter text to
describe the purpose of the stage in the Description field. The General
page defines the data source name. The NLS page defines a character set
map to use with the stage, if required. For details see “Defining Character
Set Maps” on page 6-4.

Note: You cannot change the name of the stage from this dialog box. For
details on how to change stage names, see “Renaming Stages” on
page 5-14.

• Inputs. This page is displayed only if you have an input link to this stage.
Specifies the SQL table or stored procedure to use and the associated
column definitions for each data input link. This page also specifies how
data is written and contains the SQL statement or call syntax used to write
the data.

• Outputs. This page is displayed only if you have an output link to this
stage. Specifies the SQL tables or stored procedure to use and the associ-
ated column definitions for each data output link. This page also contains
the SQL SELECT statement or call syntax used to extract the data.

You must perform the following steps to edit an ODBC stage:

1. Define the connection.

2. Define the data on the input links.

3. Define the data on the output links.

These steps are performed in the ODBC Stage dialog box. Click OK to close this
dialog box. Changes are saved when you save the job design.

Defining the Connection
To connect to an ODBC data source, you must install and configure a suitable
ODBC driver on your system. For more information, see DataStage Administrator’s
Guide.

ODBC Connection Parameters
The ODBC connection parameters are set on the General page on the Stage page.

ODBC Stages 6-3

To connect to an ODBC data source:

1. Choose the data source name from the Data source name drop-down list box.
This drop-down list box contains all the data sources defined under the Table
Definitions ➤ ODBC branch in the Repository.

Note: If the data source name you want is not listed, enter the name in the
Data source name field or define a table definition. For details on how
to import or create a table definition, see Chapter 4, “Setting Up a
Project.”

You can also enter a job parameter in this field. For details on how to define
and use job parameters, see “Specifying Job Parameters” on page 5-33.

2. Enter the name to use to connect to the data source in the User name field.
(You can also enter a job parameter in this field.)

3. Enter the password to use in the Password field. (You can also enter a job
parameter in this field.)

Note: Certain ODBC drivers allow you to specify the user name and pass-
word to use on connection. If you are connecting to an ODBC data
using a driver that has a user name and password already specified,
you do not need to enter a user name and password on the General
page.

4. Choose an appropriate transaction isolation level to use from the Transaction
isolation level drop-down list box.

5. Enter a suitable value in the Rows per transaction field. This is the number of
rows written before the data is committed to the data table. The default value
is 0, that is, all the rows are written before being committed to the data table.

6. Enter a suitable value in the Parameter array size field. This is the number of
rows written at a time. The default is 1, that is, each row is written in a sepa-
rate operation.

7. Enter an optional description of the ODBC stage in the Description field.

6-4 DataStage Developer’s Guide

Defining Character Set Maps
You can define a character set map for an ODBC stage using the NLS page of the
ODBC Stage dialog box.

The default character set map (defined for the project or the job) can be changed by
selecting a map name from the list. The page also has the following fields:

• Show all maps. Displays in the list all the maps supplied with DataStage.
Maps cannot be used unless they have been loaded using the DataStage
Administrator.

• Loaded maps only. Displays the maps that are loaded and ready for use.

• Use Job Parameter… . Allows you to specify a character set map as a
parameter to the job containing the stage. If the parameter has not yet been
defined, you are prompted to define it from the Job Properties dialog box
(see page 5-30).

• Allow per-column mapping. Allows character set maps to be specified for
individual columns within the table definition. If per-column mapping is
selected, an extra property, NLS Map, appears in the grid in the Columns
page.

ODBC Stages 6-5

Defining ODBC Input Data
When you write data to a table (or a stored procedure) in an ODBC database, the
ODBC stage has an input link. The properties of this link and the column defini-
tions of the data are defined on the Inputs page of the ODBC Stage dialog box.

The Inputs page has the following field and up to five pages:

• Input name. The name of the input link. Choose the link you want to edit
from the Input name drop-down list box. This list box displays all the input
links to the ODBC stage.

• General. This page is displayed by default. It contains the following
parameters:

– Table name. This field appears when the update action is not Call stored
procedure or User-defined SQL. It is the name of the table the data is
written to. Choose the table from the Table name drop-down list box. This
list box contains all the tables defined under the Table Definitions ➤
ODBC ➤ Data source branch in the Repository. Data source is the data
source name chosen on the General page on the Stage page.

6-6 DataStage Developer’s Guide

Note: If the table you want is not listed, you need to define a table defi-
nition. For details on how to import or create a table definition, see
“Table Definitions” on page 4-11. Alternatively, use Browse… to
display the Table Definitions window and choose a suitable table
definition.

You can also enter a job parameter in this field. For details on how to
define and use job parameters, see “Specifying Job Parameters” on
page 5-33.

– Procedure name. This field appears only when the update action is Call
stored procedure. It is the name of the procedure the data is written to.
Choose the stored procedure you want to use from the drop-down list
box. This list box contains all the stored procedures defined under the
Table Definitions ➤ StoredProcedures branch in the Repository for the
specified DSN.

Note: If the stored procedure you want is not listed, you need to define
it. For details on how to import or create a stored procedure defi-
nition, see “Stored Procedure Definitions” on page 4-35.
Alternatively, use Browse… to search for the stored procedure
you want.

– Update action. Specifies how the data is written. Choose the option you
want from the drop-down list box:

Clear the table, then insert rows. Deletes the contents of the table and
adds the new rows.

Insert rows without clearing. Inserts the new rows in the table.

Replace existing rows completely. Deletes the existing rows, then adds
the new rows to the table.

Update existing rows only. Updates the existing data rows. Any rows in
the data that do not exist in the table are ignored.

Insert new or update existing rows. New rows are added or, if the insert
fails, the existing rows are updated.

Update existing or insert new rows. The existing data rows are updated
or, if this fails, new rows are added.

Call stored procedure. Writes the data using a stored procedure. When
you select this option, the Procedure name field appears.

ODBC Stages 6-7

User-defined SQL. Writes the data using a user-defined SQL statement.
When you select this option, the View SQL page is replaced by the Enter
SQL page.

– Create table in target database. Select this check box if you want to auto-
matically create a table in the target database at run time. A table is
created based on the defined column set for this stage. If you select this
option, an additional page, Edit DDL, appears. This shows the SQL
CREATE statement to be used for table generation.

– Description. Contains an optional description of the input link.

• Columns. This page contains the column definitions for the data written to
the table or file. If you are using a stored procedure, the column definitions
represent the stored procedure input parameters. You must have at least
the same number of column definitions as expected parameters. The
column definitions are used in the order they appear in the Columns grid.
For a description of how to enter and edit column definitions, see “Speci-
fying Column Definitions” on page 5-18.

• View SQL. This page displays the SQL statement or stored procedure call
syntax used to write the data. You cannot edit this statement, but you can
use Copy to copy it to the Clipboard for use elsewhere.

• Enter SQL. This page displays the user-defined SQL statement. It appears
only when you set the update action to User-defined SQL.

• Edit DDL. This page appears if you have chosen to automatically generate
a table at run time by selecting the Create table in target database check
box on the General page. It displays the SQL CREATE statement that will
be used to create the table. To generate the statement, click the Create DDL
button. DataStage will connect to the target database and generate the
statement. (If you are creating a table in a Sybase database, the Sybase data-
base needs to have the “Data definition language in transaction” option
set.) You can edit the statement on this page to make any required changes.
This page also allows you to specify that any existing table by this name
should be dropped first. If you do not select this option, and such a table
already exists in the target database, then the create will fail.

Click the View Data… button to invoke the Data Browser. This enables you to look
at the data associated with the input link. For a description of the Data Browser, see
“Using the Data Browser” on page 5-24.

6-8 DataStage Developer’s Guide

Using a Generated Query
You can write data to an SQL table using an SQL statement constructed by
DataStage. When you specify the table and the column definitions to use, the SQL
statement is automatically constructed and can be viewed on the View SQL page.

To use a generated query:

1. Choose a table from the Table name drop-down list box on the General page.

2. Specify how you want the data to be written by choosing a suitable option
from the Update action drop-down list box. There are six options for a gener-
ated query:

• Clear the table, then insert rows
• Insert rows without clearing
• Replace existing rows completely
• Update existing rows only
• Insert new or update existing rows
• Update existing or insert new rows

See page 6-6 for a description of each update action.

3. Enter an optional description of the input link in the Description field.

4. Click the Columns tab. The Columns page appears at the front of the Inputs
page.

5. Edit the Columns grid to specify column definitions for the columns you
want to write. For more information, see “Specifying Column Definitions” on
page 5-18.

The SQL statement is automatically constructed using your chosen update
action and the columns you have specified. You can now optionally view this
SQL statement.

6. Click the View SQL tab. The View SQL page appears at the front of the
Inputs page.

7. Click OK to close the ODBC Stage dialog box. Changes are saved when you
save your job design.

Using a User-Defined SQL Statement
Instead of writing data using an SQL statement constructed by DataStage, you can
enter your own SQL statement for each ODBC input link.

ODBC Stages 6-9

To enter an SQL statement:

1. Choose User-defined SQL from the Update action drop-down list box. The
View SQL page is replaced with the Enter SQL page.

2. Click the Columns tab. The Columns page appears at the front of the Inputs
page.

3. Edit the Columns grid to specify column definitions for the columns you
want to write. For more information, see “Specifying Column Definitions” on
page 5-18.

4. Click the Enter SQL tab. The Enter SQL page appears at the front of the
Inputs page.

5. Enter the SQL statement you want to use. This statement must contain the
table name, the type of update action you want to perform, and the columns
you want to write.

Note: You must also ensure that the statement contains the correct number of
? parameter markers. You must have a parameter marker for each
column you have defined on the Columns page.

6. Click OK to close the ODBC Stage dialog box. Changes are saved when you
save your job design.

Using a Stored Procedure
Instead of writing data to a table using an SQL statement, you can write data to a
stored procedure. The columns you define are bound (in order) to the input param-
eters in the stored procedure. The call syntax used to write the data is constructed
by DataStage and can be viewed on the View SQL page.

The procedure is called once for each row of data presented to the input link.

To use a stored procedure:

1. Choose Call stored procedure from the Update action drop-down list box on
the General page. The Table name drop-down list box is replaced by the
Procedure name drop-down list box.

2. Choose the stored procedure from the Procedure name drop-down list box.

3. Enter an optional description of the input link in the Description field.

4. Click the Columns tab. The Columns page appears at the front of the Inputs
page.

6-10 DataStage Developer’s Guide

5. Edit the Columns grid to specify column definitions. For more information,
see “Specifying Column Definitions” on page 5-18. The column definitions
are used as the input parameters to the stored procedure. You must have at
least the same number of column definitions as the number of expected input
parameters.

The call statement is automatically constructed using the stored procedure
name and the columns you have specified. You can now optionally view this
SQL statement.

6. Click the View SQL tab. The View SQL page appears at the front of the
Inputs page.

7. Click OK to close the ODBC Stage dialog box. Changes are saved when you
save your job design.

Defining ODBC Output Data
When you extract data from an ODBC data source, the ODBC stage has an output
link. The properties of this link and the column definitions of the data are defined
on the Outputs page in the ODBC Stage dialog box.

ODBC Stages 6-11

The Outputs page has the following field and up to six pages. The pages displayed
depend on how you choose to specify the SQL statement to output the data.

• Output name. The name of the output link. Choose the link you want to
edit from the Output name drop-down list box. This list box displays all the
output links from the ODBC stage.

• General. Displayed by default. Contains the following features:

– Table names. This field appears only when you select Generated query
or User-defined SQL query. It contains the names of the tables or files
being accessed. You can also use a job parameter to specify the table
name. For details on how to define and use job parameters, see “Speci-
fying Job Parameters” on page 5-33.

– Available tables. This drop-down list box appears only when you select
Generated query or User-defined SQL query. It displays the names of
the available tables or files that have definitions in the Repository.

– Add. This button appears only when you select Generated query or
User-defined SQL query. It adds a table from the Available tables drop-
down list box to the Table names field.

– Stored procedure name. This drop-down list box is available only when
you select Stored procedure. It displays the name of the stored procedure
you want to use. This drop-down list box displays all the stored proce-
dure definitions under the Table Definitions ➤ StoredProcedures ➤
DSN branch in the Repository.

– Apply. This button appears only when you select Stored procedure. It
updates the Columns and Parameters pages with the settings for the
chosen stored procedure.

– Generated query. This is the default setting. When this option is selected,
the Selection and View SQL pages appear. It specifies that the data is
extracted using an SQL statement constructed by DataStage.

– Stored procedure. Specifies that the data is extracted using a stored
procedure. When this option is selected, the View SQL and Parameters
pages appear.

– User-defined SQL query. Specifies that the data is extracted using a user-
defined SQL query. When this option is selected, the SQL Query page
appears.

– Description. Contains an optional description of the output link.

6-12 DataStage Developer’s Guide

– Browse… . Displays the Table Definitions window, allowing you to
choose a suitable table or stored procedure definition.

• Columns. Contains the column definitions for the data being output on the
chosen link. For a description of how to enter and edit column definitions,
see “Specifying Column Definitions” on page 5-18. Also specifies which
columns are aggregated.

• Selection. This page appears when you select Generated query. It contains
optional SQL SELECT clauses for the conditional extraction of data.

• View SQL. This page appears when you select Generated query or Stored
procedure. It displays the SQL statement used to extract the data from the
chosen table or tables. The SQL statement exists in two forms and you can
choose which one to display:

– SQL for reference inputs. Choose this to view the SQL statement used
when this link is a reference input to a Transformer stage.

– SQL for primary inputs. Choose this to view the SQL statement used in
all other cases.

You cannot edit the SQL statement, but you can use Copy to copy it to the
Clipboard for use elsewhere.

• Parameters. Contains the input parameters for a chosen stored procedure.
This page appears when you select Stored procedure.

• SQL Query. Contains a user-defined SQL query. This page appears when
you select User-defined SQL query. This page is divided into two areas:

– SQL for primary inputs. Contains a user-defined SQL query for a link
that is a primary input to a Transformer stage, or an input to any other
type of stage.

– SQL for reference inputs. Contains a user-defined SQL query for a link
that is a reference input to a Transformer stage.

Click the View Data… button to invoke the Data Browser. This enables you to look
at the data associated with the output link. For a description of the Data Browser,
see “Using the Data Browser” on page 5-24.

Key Fields
The column definitions for output links contain a key field. Key fields are used to
join primary and reference inputs to a Transformer stage. For details on how key
fields are specified and used, see “Defining Input Column Key Expressions” on
page 11-9.

ODBC Stages 6-13

Using a Generated Query
When you select Generated query, data is extracted from an ODBC data source
using an SQL SELECT statement constructed by DataStage. SQL SELECT state-
ments have the following syntax:

SELECT clause FROM clause
[WHERE clause]
[GROUP BY clause]
[HAVING clause]
[ORDER BY clause] ;

When you specify the tables to use and the columns to be output from the ODBC
stage, the SQL SELECT statement is automatically constructed and can be viewed
by clicking the View SQL tab on the Outputs page.

Note: The View SQL page appears only when you select Generated query or
Stored procedure from the General page on the Outputs page.

For example, if you extract the columns Name, Address, and Phone from a table
called Table1, the SQL statement displayed on the View SQL page is:

SELECT Name, Address, Phone FROM Table1;

The SELECT and FROM clauses are the minimum required and are automatically
generated by DataStage. However, you can use any of these SQL SELECT clauses:

SELECT clause Specifies the columns to select from the database.

FROM clause Specifies the tables containing the selected columns.

WHERE clause Specifies the criteria that rows must meet to be selected.

GROUP BY clause Groups rows to summarize results. See “Aggregating
Data” on page 6-16 for a description of how this clause is
used.

HAVING clause Specifies the criteria that grouped rows must meet to be
selected. See “Aggregating Data” on page 6-16 for a
description of how this clause is used.

ORDER BY clause Sorts selected rows.

6-14 DataStage Developer’s Guide

If you want to use the additional SQL SELECT clauses, you must enter them on the
Selection page on the Outputs page:

The Selection page is divided into two parts:

• WHERE clause. This text box allows you to insert an SQL WHERE clause
to specify criteria that the data must meet before being selected.

• Other clauses. This text box allows you to insert a HAVING or an ORDER
BY clause.

Using a WHERE Clause

You can use a WHERE clause to:

• Select only the data that meets certain criteria
• Join two tables from the same data source

To use a WHERE clause, type the column and the condition into the WHERE
clause text entry box.

For example, if you have a table (Sales1) containing sales data, you can choose to
only output data where the value in the Price column is greater than $10.00. In this
case, enter:

Price>10

ODBC Stages 6-15

Alternatively, if you are extracting data from two tables in the data source, you can
use a WHERE clause to relate a column in one table to a column in the another
table.

For example, Table1 contains the columns Pcode, OrderNo, and SaleDate and
Table2 contains Pcode, CustNo, Quantity, and Cost. You can use the WHERE
clause to join the two tables together by the related column. In this case, the column
is Pcode and you enter:

Table1.Pcode = Table2.Pcode

Note: Only one column definition called Pcode is loaded or inserted into the grid
on the Columns page.

You can also use a job parameter in the WHERE clause. For details on how to
define and use job parameters, see “Specifying Job Parameters” on page 5-33.

The SQL SELECT statement is automatically updated to include the WHERE
clause. Click the View SQL tab to display the statement.

Using a HAVING Clause

If you use an ODBC stage to aggregate data, you can use a HAVING clause to
specify conditions the grouped data must meet before it is selected. For more infor-
mation about using an ODBC stage to aggregate data, see “Aggregating Data” on
page 6-16.

To use a HAVING clause, enter the clause, column, and condition into the Other
clauses text entry box on the Selection page on the Outputs page.

For example, you could choose to only output summed quantities that are greater
than or equal to 1000. In this case you enter:

HAVING SUM(QtySold)>=1000

The SQL SELECT statement is updated automatically. Click the View SQL tab to
display the statement.

You can also use a job parameter in the HAVING clause. For details on how to
define and use job parameters, see “Specifying Job Parameters” on page 5-33.

Using an ORDER BY Clause

You can sort data based on a chosen column by including an ORDER BY clause in
the SELECT statement. Records are sorted by data in the chosen column before
being output. You can specify a column name or a column position and whether to
sort in ascending or descending order.

6-16 DataStage Developer’s Guide

To use an ORDER BY clause, enter the clause, column, and condition into the Other
clauses text entry box on the Selection page on the Outputs page.

For example, if your table contains a Name column, you may want to sort the
column alphabetically (A to Z). In this case you enter:

ORDER BY Name ASC

The SQL SELECT statement is updated automatically. Click the View SQL tab to
display the statement.

Aggregating Data

If you are using a generated query, you can use an ODBC stage to aggregate data
at the source instead of using an intermediate Aggregator stage. By aggregating
data you can add values in a particular column for all data records in a table. This
summed total is then output from the stage.

You can aggregate data in two ways:

• Using an Aggregator stage. For more information, see Chapter 12, “Aggre-
gator Stages.”

• Using an ODBC stage.

If you aggregate data using an ODBC stage, the columns to group by and sum
together are also specified by the SQL SELECT statement. To specify the columns
to group by and summarize, you must edit the column definitions in the Columns
grid on the Columns page. For more information about editing column defini-
tions, see “Specifying Column Definitions” on page 5-18.

For example, if you have a sales database (Sales1) it may contain the following
columns: Product, SaleDate, and QtySold. If this database is updated daily, you
have a record of how many of each product are sold each day. However, if you
want to know how many of each product were sold since 01/01/96 you need to
specify a WHERE clause for the SaleDate and group (and summarize) the data.

Because you want the total for each product, you need to group all the occurrences
of the same value in the Product column and sum the value in the QtySold
column.

To group by a column, click in the Group cell for the column definition you want
to group by and choose Yes from the drop-down list. In the example, you would
choose the Product column to edit.

ODBC Stages 6-17

To summarize a column, edit the Derivation cell for the column you want to aggre-
gate (using SUM or COUNT). The Derivation cell contains by default the name of
the table and column in the format tablename.columnname. You can edit this cell to
add SUM or COUNT. In the example, you would edit the Derivation cell for the
QtySold column. The resulting expression would be SUM(Sales1.QtySold).

When you group by or summarize columns, the SQL statement is automatically
updated to include the GROUP BY clause and the aggregation expression. To view
the SQL statement, click the View SQL tab on the Outputs page.

For example, the SQL statement for the example would be:

SELECT Product, SUM(QtySold) FROM Sales1
WHERE Saledate>=01/01/96
GROUP BY Product;

See “Using a WHERE Clause” on page 6-14 for details of how to use a WHERE
clause.

Using a User-Defined SQL Statement
Instead of using the SQL statement constructed by DataStage, you can enter your
own SQL statement for each ODBC output link.

To enter an SQL statement:

1. Click the User-defined SQL query option button on the General page on the
Outputs page. The SQL Query tab appears.

6-18 DataStage Developer’s Guide

2. Click the SQL Query tab. The SQL Query page appears at the front of the
Outputs page:

When you first view this page, the SQL for primary inputs and SQL for refer-
ence inputs fields may contain the SQL statements constructed by DataStage.
These are displayed if you selected Generated query or Stored procedure
before selecting User-defined SQL query. You can modify or overwrite each
statement to construct your own SQL query or call to a stored procedure.

The entries in these fields depend on whether the output is a primary input to
a stage or a reference input to a Transformer stage:

• If the output is a primary input to any stage, whether or not it is a Trans-
former stage, edit the SQL for primary inputs field. The SQL query must
contain the same number of columns (and column names) as the SQL state-
ment constructed by DataStage.

You must ensure that the table definitions for the output link are correct
and represent the columns that are expected. The result set generated from
this statement returns at least one row.

Note: If more than one result set is produced, only the first set is used.

ODBC Stages 6-19

• If the output is a reference input to a Transformer stage, edit the SQL for
reference inputs field. The SQL query must contain the same number of
columns as the SQL statement constructed by DataStage. You must ensure
that the table definitions for the output link are correct and represent the
columns that are expected. The statement must have the same number of
parameter values (?) as key columns on the link. The result set generated
by this statement or procedure contains at most one row.

3. Click OK to close the ODBC Stage dialog box. Changes are saved when you
save your job design.

Using a Stored Procedure
Instead of using a user-defined SQL statement or one constructed by DataStage,
you can use a stored procedure to define the data you want to extract for each
ODBC output link.

The way in which you use a stored procedure depends on whether the output link
is a primary input to another stage or a reference input to a Transformer stage.

Note: If the output from a stored procedure is used as a reference input to a Trans-
former stage, you may experience some loss of performance when the job
is run.

Using a Stored Procedure for a Primary Input

If the ODBC output is a primary input to another stage in the job design, you must
specify values for the stored procedure’s parameters. To use a stored procedure for
a primary input:

1. Click the Stored procedure option button on the General page on the
Outputs page. The View SQL and Parameters tabs appear.

2. Choose the stored procedure you want to use from the Stored procedure
name drop-down list box on the General page. This list box contains the
names of the defined stored procedures under the Table Definitions ➤
StoredProcedures ➤ DSN branch in the Repository.

Note: If you can’t see the name of the stored procedure you want to use, you
must define it using the DataStage Manager. For more information
about importing, creating, and editing stored procedure definitions,
see “Stored Procedure Definitions” on page 4-35. Alternatively, use
Browse… to search the system for the stored procedure you want.

6-20 DataStage Developer’s Guide

3. Click the Apply button. The Columns and Parameters pages are updated
with the column and parameter definitions for the chosen stored procedure.

4. Click the Parameters tab. The Parameters page appears at the front of the
Outputs page:

5. Click in the Value cell for each parameter and enter suitable values. You can
enter constants or use job parameters. For more information about using job
parameters, see “Specifying Job Parameters” on page 5-33.

The call syntax used to extract the data is automatically updated with the
parameter values. You can view this syntax on the View SQL page.

6. Click OK to close the ODBC Stage dialog box. Changes are saved when you
save your job design.

When the job runs, the stored procedure is called once with the given parameter
values. The result set generated should contain at least one row.

ODBC Stages 6-21

Using a Stored Procedure for a Reference Input

If the ODBC output is a reference input to a Transformer stage, you must check that
there is a parameter definition for each key column on the output link. When the
job is run, the parameter values are set to the values in the corresponding key
columns. To use a stored procedure for a reference input:

1. Click the Stored procedure option button on the General page on the
Outputs page. The View SQL and Parameters tabs appear.

2. Choose the stored procedure you want to use from the Stored procedure
name drop-down list box. This list box contains the names of the defined
stored procedures under the Table Definitions ➤ StoredProcedures ➤ DSN
branch in the Repository.

Note: If you can’t see the name of the stored procedure you want to use, you
must define it using the DataStage Manager. For more information
about importing, creating, and editing stored procedure definitions,
see “Stored Procedure Definitions” on page 4-35. Alternatively, use
Browse… to search the system for the stored procedure you want.

3. Click the Apply button. The Columns and Parameters pages are updated
with the column and parameter definitions for the chosen stored procedure.

4. Click the Parameters tab. The Parameters page appears at the front of the
Outputs page.

5. Check that there is a parameter definition for each key column specified on
the Columns page.

The call syntax used to extract the data is automatically updated. You can view
this syntax on the View SQL page.

6. Click OK to close the ODBC Stage dialog box. Changes are saved when you
save your job design.

When the job runs, the stored procedure is called once for each row on the output
link. The values in the key columns on the Columns page are bound to the stored
procedure parameters. The result set generated should contain at least one row.
The columns in the result set should match the column definitions on the output
link.

6-22 DataStage Developer’s Guide

UniVerse Stages 7-1

7
UniVerse Stages

UniVerse stages allow you to connect to UniVerse tables using SQL. You can use a
UniVerse stage to extract, write, or aggregate data. (Use a Hashed File stage to
connect to UniVerse files.)

Each UniVerse stage can have any number of inputs or outputs. Input links specify
the data you are writing. Output links specify the data you are extracting and any
aggregations required.

You can specify the data on an input or output link using an SQL statement
constructed by DataStage or a user-defined query.

When you edit a UniVerse stage, the UniVerse Stage dialog box appears:

7-2 DataStage Developer’s Guide

This dialog box can have up to three pages (depending on whether there are inputs
to and outputs from the stage):

• Stage. Displays the name of the stage you are editing. You can enter text to
describe the purpose of the stage in the Description field. The General
page defines the data source name.

Note: You cannot change the name of the stage from this dialog box. For
details on how to change stage names, see “Renaming Stages” on
page 5-14.

• Inputs. This page is displayed only if you have an input link to this stage.
Specifies the UniVerse table to use and the associated column definitions
for each data input link. This page also specifies how data is written and
contains the SQL statement or call syntax used to write the data.

• Outputs. This page is displayed only if you have an output link to this
stage. Specifies the UniVerse tables to use and the associated column defi-
nitions for each data output link. This page also contains the SQL SELECT
statement or call syntax used to extract the data.

You must perform the following steps to edit a UniVerse stage:

1. Define the connection.

2. Define the data on the input links.

3. Define the data on the output links.

These steps are performed in the UniVerse Stage dialog box. Click OK to close this
dialog box. Changes are saved when you save the job design.

Defining the Connection
The UniVerse connection parameters are set on the General page on the Stage
page. To connect to a UniVerse data source, the data source must be configured in
the uvodbc.config file. For more information, see DataStage Administrator’s Guide.

UniVerse Connection Parameters
The UniVerse connection parameters are set on the General and Details pages on
the Stage page. To connect to a UniVerse data source:

1. Choose the data source name from the Data source name drop-down list box.
This drop-down list box contains all the data sources defined under the Table
Definitions ➤ UniVerse branch in the Repository.

UniVerse Stages 7-3

Note: If the data source name you want is not listed, you can either enter the
name in the Data source name field or define a table definition. For
details on how to import or create a table definition, see Chapter 4,
“Setting Up a Project.”

You can also enter a job parameter in this field. For details on how to define
and use job parameters, see “Specifying Job Parameters” on page 5-33.

2. Enter the user name to use in the User name field. You can enter a job param-
eter here, in the form #parameter#.

3. Enter the password to use in the Password field. You can enter a job param-
eter here, in the form #parameter#, but it will be displayed as asterisks.

Note: If you are connecting to a remote UniVerse system using LAN
Manager, or accessing a data file in localuv, you do not need to enter a
user name and password. In the case of localuv data sources, the User
name and Password fields are disabled.

4. Choose an appropriate transaction isolation level to use from the Transaction
isolation level drop-down list box.

5. Enter an optional description of the UniVerse stage in the Description field.

6. If you are using a DSN other than localuv, click the Details tab. The Details
page appears at the front of the Stage page.

7. Specify where to find the file to use by clicking the appropriate option button:

• Use account name. Enter the account name in the Account name field.

• Use directory path. Enter the directory path where the file is stored in the
Directory path field or use Browse… to search the system for a suitable
directory. For more information about using Browse…, see “Browsing
Server Directories” on page 5-23.

Note: If you are accessing a file on localuv, you do not need to specify an
account or directory path, and the Details tab is disabled.

You can use a job parameter in any of the fields described in steps 1, 2, 3, 4, and 7.
For details on how to define and use job parameters, see “Specifying Job Parame-
ters” on page 5-33.

7-4 DataStage Developer’s Guide

Defining UniVerse Input Data
When you write data to a table in a UniVerse database, the UniVerse stage has an
input link. The properties of this link and the column definitions of the data are
defined on the Inputs page of the UniVerse Stage dialog box.

The Inputs page has the following field and up to five pages:

• Input name. The name of the input link. Choose the link you want to edit
from the Input name drop-down list box. This list box displays all the input
links to the UniVerse stage.

• General. This page is displayed by default. It contains the following
parameters:

– Table name. The name of the table or UniVerse file the data is written to.
Choose the table or file from the Table name drop-down list box. This list
box contains all the tables defined under the Table Definitions ➤
UniVerse ➤ Data source branch in the Repository. Data source is the data
source name chosen on the General page on the Stage page.

UniVerse Stages 7-5

Note: If the table you want is not listed, you need to define a table defi-
nition. For details on how to import or create a table definition, see
“Table Definitions” on page 4-11. Alternatively, use Browse… to
display the Table Definitions window and choose a suitable table
definition.

You can also enter a job parameter in this field. For details on how to
define and use job parameters, see “Specifying Job Parameters” on
page 5-33.

This field appears when the update action is not User-defined SQL.

– Update action. Specifies how the data is written. Choose the option you
want from the drop-down list box:

Clear the table, then insert rows. Deletes the contents of the table and
adds the new rows.

Insert rows without clearing. Inserts the new rows in the table.

Replace existing rows completely. Deletes the existing rows, then adds
the new rows to the table.

Update existing rows only. Updates the existing data rows. Any rows in
the data that do not exist in the table are ignored.

Update existing rows or insert new ones. The existing data rows are
updated and new rows are added.

User-defined SQL. The data is written using a user-defined SQL state-
ment. When you select this option, the View SQL page is replaced by the
Enter SQL page.

– Create table in target database. Select this check box if you want to auto-
matically create a table in the target database at run time. A table is
created based on the defined column set for this stage. If you select this
box, an additional page, Edit DDL, appears. This shows the SQL CREATE
statement to be used for table generation.

– Description. Contains an optional description of the input link.

• Columns. Contains the column definitions for the data written to the table
or file. The column definitions are used in the order they appear in the
Columns grid. For a description of how to enter and edit column defini-
tions, see “Specifying Column Definitions” on page 5-18.

7-6 DataStage Developer’s Guide

• View SQL. Displays the SQL statement call syntax used to write the data.
You cannot edit this statement, but you can use Copy to copy it to the Clip-
board for use elsewhere. (This page is not displayed if the update action is
User-defined SQL.)

• Enter SQL. Displays the user-defined SQL statement. This page appears
only when you set the update action to User-defined SQL.

• Edit DDL. This page appears if you have chosen to automatically generate
a table at run time by selecting the Create table in target database check
box on the General page. It displays the SQL CREATE statement that will
be used to create the table. To generate the statement, click the Create DDL
button. DataStage will connect to the target database and generate the
statement. You can edit the statement on this page to make any required
changes. This page also allows you to specify that any existing table by this
name should be dropped first. If you do not select this option, and such a
table already exists in the target database, then the create will fail.

Click the View Data… button to invoke the Data Browser. This enables you to look
at the data associated with the input link. For a description of the Data Browser, see
“Using the Data Browser” on page 5-24.

Using a Generated Query
You can write data to a UniVerse table using an SQL statement constructed by
DataStage. When you specify the table and the column definitions to use, the SQL
statement is automatically constructed and can be viewed on the View SQL page.

To use a generated query:

1. Choose a table from the Table name drop-down list box on the General page.

2. Specify how you want the data to be written by choosing a suitable option
from the Update action drop-down list box. There are five options for a gener-
ated query:

• Clear the table, then insert rows
• Insert rows without clearing
• Replace existing rows completely
• Update existing rows only
• Update existing rows or insert new ones

See page 7-5 for a description of each update action.

3. Enter an optional description of the input link in the Description field.

UniVerse Stages 7-7

4. Click the Columns tab. The Columns page appears at the front of the Inputs
page.

5. Edit the Columns grid to specify column definitions for the columns you
want to write. For more information, see “Specifying Column Definitions” on
page 5-18.

The SQL statement is automatically constructed using your chosen update
action and the columns you have specified. You can now optionally view this
SQL statement.

6. Click the View SQL tab. The View SQL page appears at the front of the
Inputs page.

7. Click OK to close the UniVerse Stage dialog box. Changes are saved when
you save your job design.

Using a User-Defined SQL Statement
Instead of writing data using an SQL statement constructed by DataStage, you can
enter your own SQL statement for each UniVerse input link.

To enter an SQL statement:

1. Choose User-defined SQL from the Update action drop-down list box on the
General page. The View SQL tab is replaced with the Enter SQL tab.

2. Click the Columns tab. The Columns page appears at the front of the Inputs
page.

3. Edit the Columns grid to specify column definitions for the columns you
want to write. For more information, see “Specifying Column Definitions” on
page 5-18.

4. Click the Enter SQL tab. The Enter SQL page appears at the front of the
Inputs page.

5. Enter the SQL statement you want to use. This statement must contain the
table name, the type of update action you want to perform, and the columns
you want to write.

Note: You must also ensure that the statement contains the correct number of
? parameter markers. You must have a parameter marker for each
column you have defined on the Columns page.

6. Click OK to close the UniVerse Stage dialog box. Changes are saved when
you save your job design.

7-8 DataStage Developer’s Guide

Defining UniVerse Output Data
When you extract data from a UniVerse data source, the UniVerse stage has an
output link. The properties of this link and the column definitions of the data are
defined on the Outputs page in the UniVerse Stage dialog box.

The Outputs page has the following two fields and up to five pages. The pages
displayed depend on how you choose to specify the SQL statement to output the
data.

• Output name. The name of the output link. Choose the link you want to
edit from the Output name drop-down list box. This list box displays all the
output links from the UniVerse stage.

• Normalize on. This drop-down list box allows you to normalize (or
unnest) data. You can normalize either on an association or on a single
unassociated multivalued column. The Normalize on drop-down list box is
only enabled for nonreference output links where meta data has been
defined that contains multivalued fields.

UniVerse Stages 7-9

• General. Displayed by default. Contains the following features:

– Table names. Contains the names of the tables or files being accessed in a
comma-separated list. You can also use a job parameter to specify the
table name. For details on how to define and use job parameters, see
“Specifying Job Parameters” on page 5-33.

– Available tables. Displays the names of the available tables or files that
have definitions in the Repository.

– Add. Adds a table from the Available tables drop-down list box to the
Table names field.

– Generated query. Specifies that the data is extracted using an SQL state-
ment constructed by DataStage. This is the default setting. When this
option is selected, the Selection and View SQL pages appear.

– User-defined SQL query. Specifies that the data is extracted using a user-
defined SQL query. When this option is selected, the SQL Query page
appears.

– Description. Contains an optional description of the output link.

– Browse… . Displays the Table Definitions window, allowing you to
choose a suitable table or stored procedure definition.

• Columns. Contains the column definitions for the data being output on the
chosen link. For a description of how to enter and edit column definitions,
see “Specifying Column Definitions” on page 5-18. Also specifies which
columns are aggregated.

• Selection. Contains optional SQL SELECT clauses for the conditional
extraction of data. This page appears when you select Generated query.

• View SQL. Displays the SQL statement used to extract the data from the
chosen table or tables. This page appears when you select Generated
query. The SQL statement exists in two forms and you can choose which
one to display:

– SQL for reference inputs. Choose this to view the SQL statement used
when this link is a reference input to a Transformer stage.

– SQL for primary inputs. Choose this to view the SQL statement used in
all other cases.

You cannot edit the SQL statement, but you can use Copy to copy it to the
Clipboard for use elsewhere.

7-10 DataStage Developer’s Guide

• SQL Query. Contains a user-defined SQL query. This page appears when
you select User-defined SQL query. This page is divided into two areas:

– SQL for primary inputs. Contains a user-defined SQL query for a link
that is a primary input to a Transformer stage, or an input to any other
type of stage.

– SQL for reference inputs. Contains a user-defined SQL query for a link
that is a reference input to a Transformer stage.

Click the View Data… button to invoke the Data Browser. This enables you to look
at the data associated with the input link. For a description of the Data Browser, see
“Using the Data Browser” on page 5-24.

Key Fields
The column definitions for output links contain a key field. Key fields are used to
join primary and reference inputs to a Transformer stage. For details on how key
fields are specified and used, see “Defining Input Column Key Expressions”on
page 11-9.

Using a Generated Query
When you select Generated query, data is extracted from a UniVerse data source
using an SQL SELECT statement constructed by DataStage. SQL SELECT state-
ments have the following syntax:

SELECT clause FROM clause
[WHERE clause]
[GROUP BY clause]
[HAVING clause]
[ORDER BY clause] ;

When you specify the tables to use and the columns to be output from the UniVerse
stage, the SQL SELECT statement is automatically constructed and can be viewed
by clicking the View SQL tab on the Outputs page.

Note: The View SQL page appears only when you select Generated query on the
General page on the Outputs page.

For example, if you extract the columns Name, Address, and Phone from a table
called Table1, the SQL statement displayed on the View SQL page is:

SELECT Name, Address, Phone FROM Table1;

UniVerse Stages 7-11

The SELECT and FROM clauses are the minimum required and are automatically
generated by DataStage. However, you can use any of these SQL SELECT clauses:

If you want to use the additional SQL SELECT clauses, you must enter them on the
Selection page on the Outputs page:

SELECT clause Specifies the columns to select from the database.

FROM clause Specifies the tables containing the selected columns.

WHERE clause Specifies the criteria that rows must meet to be selected.

GROUP BY clause Groups rows to summarize results. See “Aggregating
Data” on page 7-13 for a description of how this clause is
used.

HAVING clause Specifies the criteria that grouped rows must meet to be
selected. See “Aggregating Data” on page 7-13 for a
description of how this clause is used.

ORDER BY clause Sorts selected rows.

7-12 DataStage Developer’s Guide

The Selection page is divided into two parts:

• WHERE clause. This text box allows you to insert an SQL WHERE clause
to specify criteria that the data must meet before being selected.

• Other clauses. This text box allows you to insert a HAVING or an ORDER
BY clause.

Using a WHERE Clause

You can use a WHERE clause to:

• Select only the data that meets certain criteria
• Join two tables from the same data source

To use a WHERE clause, type the column and the condition into the WHERE
clause text entry box.

For example, if you have a table (Sales1) containing sales data, you can choose to
only output data where the value in the Price column is greater than $10.00. In this
case, enter:

Price>10

Alternatively, if you are extracting data from two tables in the data source, you can
use a WHERE clause to relate a column in one table to a column in the another
table.

For example, Table1 contains the columns Pcode, OrderNo, and SaleDate and
Table2 contains Pcode, CustNo, Quantity, and Cost. You can use the WHERE
clause to join the two tables together by the related column. In this case, the column
is Pcode and you enter:

Table1.Pcode = Table2.Pcode

Note: Only one column definition called Pcode is loaded or inserted into the grid
on the Columns page.

You can also use a job parameter in the WHERE clause. For details on how to
define and use job parameters, see “Specifying Job Parameters” on page 5-33.

The SQL SELECT statement is automatically updated to include the WHERE
clause. Click the View SQL tab to display the statement.

UniVerse Stages 7-13

Using a HAVING Clause

If you use a UniVerse stage to aggregate data, you can use a HAVING clause to
specify conditions the grouped data must meet before it is selected. For more infor-
mation about using a UniVerse stage to aggregate data, see “Aggregating Data” on
page 7-13.

To use a HAVING clause, enter the clause, column, and condition into the Other
clauses text entry box on the Selection page on the Outputs page.

For example, you could choose to only output summed quantities that are greater
than or equal to 1000. In this case you enter:

HAVING SUM(QtySold)>=1000

The SQL SELECT statement is updated automatically. Click the View SQL tab to
display the statement.

You can also use a job parameter in the HAVING clause. For details on how to
define and use job parameters, see “Specifying Job Parameters” on page 5-33.

Using an ORDER BY Clause

You can sort data based on a chosen column by including an ORDER BY clause in
the SELECT statement. Records are sorted by data in the chosen column before
being output. You can specify a column name or a column position and whether to
sort in ascending or descending order.

To use an ORDER BY clause, enter the clause, column, and condition into the Other
clauses text entry box on the Selection page on the Outputs page.

For example, if your table contains a Name column, you may want to sort the
column alphabetically (A to Z). In this case you enter:

ORDER BY Name ASC

The SQL SELECT statement is updated automatically. Click the View SQL tab to
display the statement.

Aggregating Data

If you are using a generated query, you can use a UniVerse stage to aggregate data
at the source instead of using an intermediate Aggregator stage. By aggregating
data you can add values in a particular column for all data records in a table. This
summed total is then output from the stage.

7-14 DataStage Developer’s Guide

You can aggregate data in two ways:

• Using an Aggregator stage. For more information, see Chapter 12, “Aggre-
gator Stages.”

• Using a UniVerse stage.

If you aggregate data using a UniVerse stage, the columns to group by and sum
together are also specified by the SQL SELECT statement. To specify the columns
to group by and summarize, you must edit the column definitions in the Columns
grid on the Columns page. For more information about editing column defini-
tions, see “Specifying Column Definitions” on page 5-18.

For example, if you have a sales database (Sales1) it may contain the following
columns: Product, SaleDate, and QtySold. If this database is updated daily, you
have a record of how many of each product are sold each day. However, if you
want to know how many of each product were sold since 01/01/96 you need to
specify a WHERE clause for the SaleDate and group (and summarize) the data.

Because you want the total for each product, you need to group all the occurrences
of the same value in the Product column and sum the value in the QtySold
column.

To group by a column, click in the Group cell for the column definition you want
to group by and choose Yes from the drop-down list. In the example, you would
choose the Product column to edit.

To summarize a column, click in the Derivation cell for the column you want to
aggregate (using SUM or COUNT). The Derivation cell contains by default the
name of the table and column in the format tablename.columnname. You can edit this
cell to add SUM or COUNT. In the example, you would edit the Derivation cell for
the QtySold column. The resulting expression would be SUM(Sales1.QtySold).

When you group by or summarize columns, the SQL statement is automatically
updated to include the GROUP BY clause and the aggregation expression. To view
the SQL statement, click the View SQL tab on the Outputs page.

For example, the SQL statement for the example would be:

SELECT Product, SUM(QtySold) FROM Sales1
WHERE Saledate>=01/01/96
GROUP BY Product;

See “Using a WHERE Clause” on page 7-12 for details of how to use a WHERE
clause.

UniVerse Stages 7-15

Using a User-Defined SQL Statement
Instead of using the SQL statement constructed by DataStage, you can enter your
own SQL statement for each UniVerse output link.

To enter an SQL statement:

1. Click the User-defined SQL query option on the General page on the
Outputs page. The SQL Query tab appears.

2. Click the SQL Query tab. The SQL Query page appears at the front of the
Outputs page:

When you first view this page, the SQL for primary inputs and SQL for refer-
ence inputs fields may contain the SQL statements constructed by DataStage.
These are displayed if you selected Generated query before selecting User-
defined SQL query. You can modify or overwrite each statement to construct
your own SQL query or call to a stored procedure.

7-16 DataStage Developer’s Guide

The entries in these fields depend on whether the output is a primary input to
a stage or a reference input to a Transformer stage:

• If the output is a primary input to any stage, whether or not it is a Trans-
former stage, edit the SQL for primary inputs field. The SQL query must
contain the same number of columns (and column names) as the SQL state-
ment constructed by DataStage.

You must ensure that the table definitions for the output link are correct
and represent the columns that are expected. The result set generated from
this statement returns at least one row.

Note: If more than one result set is produced, only the first set is used.

• If the output is a reference input to a Transformer stage, edit the SQL for
reference inputs field. The SQL query must contain the same number of
columns as the SQL statement constructed by DataStage. You must ensure
that the table definitions for the output link are correct and represent the
columns that are expected. The statement must have the same number of
parameter values (?) as key columns on the link. The result set generated
by this statement or procedure contains at most one row.

3. Click OK to close the UniVerse Stage dialog box. Changes are saved when
you save your job design.

UniData Stages 8-1

8
UniData Stages

UniData stages represent a UniData file. You can use a UniData stage to extract or
write data, or to act as an intermediate file in a job.

Each UniData stage can have any number of inputs or outputs. When you edit a
UniData stage, the UniData Stage dialog box appears:

8-2 DataStage Developer’s Guide

This dialog box can have up to three pages (depending on whether there are inputs
to and outputs from the stage):

• Stage. Displays the name of the stage you are editing. This page has a
General page, where you can enter text to describe the purpose of the stage
in the Description field. You can also specify where the data files are by
selecting a data source name and supplying logon details for the server
where the data source is located.

– Server. Choose a server name from the drop-down list or type a server
name. The list is populated from the Table Definitions ➤ UniData
branch in the Manager. You can use a job parameter in this field. For
details on how to define and use job parameters, see “Specifying Job
Parameters” on page 5-33.

– Database. Choose a database from the drop-down list or type a database
name. The list is populated from the Table Definitions ➤ UniData
branch in the Manager. You can use a job parameter in this field.

– User name. Enter the user name to be used for logging on to the server.
You can use a job parameter in this field.

– Password. Enter the password to be used for logging on to the server. You
can use a job parameter in this field.

– UniVerse Stage Compatibility. Select this check box to ensure that any
job conversions will work correctly. With this option selected, the date or
time will be represented in ISO format (depending on the Extended type)
and numerics will be scaled according to the meta data. (The job conver-
sion utility is a special standalone tool – it is not available within the
DataStage Designer.)

The NLS page defines a character set map to use with this stage if NLS is
enabled. For details, see “Defining Character Set Maps” on page 8-3.

Note: You cannot change the name of the stage from this dialog box. For
details on how to change stage names, see “Renaming Stages” on
page 5-14.

• Inputs. This page is displayed only if you have an input link to this stage.
Specifies the data file to use and the associated column definitions for each
data input link. This page also specifies how data is written to the data file.

• Outputs. This page is displayed only if you have an output link to this
stage. Specifies the data file to use and the associated column definitions
for each data output link.

UniData Stages 8-3

Click OK to close this dialog box. Changes are saved when you save the job.

If you encounter an error when connecting to a UniData data source, such as:

UniData Client error: call to UniOpenPos returned 45 - Client
version (11) and server version (12) are incompatible

you need to edit the UNIAPI.INI file in the Windows directory on your client
machine to change the value of the PROTOCOL variable to match the server
version. So, in the case of the example error, you would need to change the variable
value from 11 to 12:

PROTOCOL = 12

Defining Character Set Maps
You can define a character set map for a UniData stage using the NLS page of the
UniData Stage dialog box.

8-4 DataStage Developer’s Guide

The default character set map (defined for the project or the job) can be changed by
selecting a map name from the list. The page also has the following fields:

• Show all maps. Displays in the list all the maps supplied with DataStage.
Maps cannot be used unless they have been loaded using the DataStage
Administrator.

• Loaded maps only. Display the maps that are loaded and ready for use.

• Use Job Parameter… . Allows you to specify a character set map as a
parameter to the job containing the stage. If the parameter has not yet been
defined, you are prompted to define it from the Job Properties dialog box
(see page 5-30).

Defining UniData Input Data
When you write data to a UniData file, the UniData stage has an input link. The
properties of this link and the column definitions of the data are defined on the
Inputs page in the UniData Stage dialog box.

UniData Stages 8-5

The Inputs page has the following field and two pages:

• Input name. The name of the input link. Choose the link you want to edit
from the Input name drop-down list box. This list box displays all the input
links to the UniData stage.

• General. Displayed by default. Contains the following fields and options:

– File name. The name of the file the data is written to. You can use a job
parameter to represent the file created during run time (see page 5-33 for
more details), choose the file from the File name drop-down list box, or
enter a file name. This list box contains all the files defined under the
Table Definitions ➤ UniData ➤ Server ➤ Database branch in the
Manager.

Note: If the file you want is not listed, you may need to define a table
definition. For details on how to create a table definition, see
Chapter 4, “Setting Up a Project.”

– Clear file before writing. If you select this check box, the existing file is
cleared and new data records are written to the empty file. This check box
is cleared by default.

– Description. Contains an optional description of the input link.

• Columns. Contains the column definitions for the data written to the file.
For a description of how to enter and edit column definitions, see “Speci-
fying Column Definitions” on page 5-18.

Note: If you are using meta data that does not specify column positions,
then the first column definition describes the UniData file’s key field.
The remaining columns are ordered according to their position in the
file. Do not reorder the column definitions in the grid unless you are
certain you understand the consequences of your action.

Click the View Data… button to invoke the Data Browser. This enables you to look
at the data associated with the input link. For a description of the Data Browser, see
“Using the Data Browser” on page 5-24.

Defining UniData Output Data
When you extract data from a UniData file, the UniData stage has an output link.
The properties of this link and the column definitions of the data are defined on the
Outputs page in the UniData Stage dialog box.

8-6 DataStage Developer’s Guide

The Outputs page has the following two fields and three pages:

• Output name. The name of the output link. Choose the link you want to
edit from the Output name drop-down list box. This list box displays all the
output links from the UniData stage.

• Normalize on. This drop-down list box allows you to normalize (or
unnest) data. You can normalize either on an association or on a single
unassociated multivalued column. The Normalize on drop-down list box is
only enabled for nonreference output links where meta data has been
defined that contains multivalued fields.

• General. Displayed by default. Contains the following fields and options:

– File name. The name of the file the data is read from. You can use a job
parameter to represent the file created during run time (see “Specifying
Job Parameters”on page 5-33 for more details) or choose the file from the
File name drop-down list box. This list box contains all the files defined
under the Table Definitions ➤ UniData ➤ Server ➤ Database branch in
the Repository.

Note: If the file you want is not listed, you need to define a table defini-
tion. For more information, see Chapter 4, “Setting Up a Project.”

UniData Stages 8-7

– Pre-load file to memory. You can use this check box to improve perfor-
mance if the output link is a reference input to a Transformer stage. If
selected, the UniData file is read into memory when the job is run. This
check box is cleared by default.

– Description. Contains an optional description of the output link.

• Columns. Contains the column definitions for the data on the chosen
output link. For a description of how to enter or edit column definitions,
see “Specifying Column Definitions” on page 5-18.

Note: If you are using meta data that does not specify column positions,
then the first column definition describes the UniData file’s key field.
The remaining columns are ordered according to their position in the
file. Do not reorder the column definitions in the grid unless you are
certain you understand the consequences of your action.

• Selection. Contains optional SQL SELECT clauses for the conditional
extraction of data from a file.

Click the View Data… button to invoke the Data Browser. This enables you to look
at the data associated with the output link. For a description of the Data Browser,
see “Using the Data Browser” on page 5-24.

8-8 DataStage Developer’s Guide

Hashed File Stages 9-1

9
Hashed File Stages

Hashed File stages represent a hashed file, i.e., a file that uses a hashing algorithm
for distributing records in one or more groups on disk. You can use a Hashed File
stage to extract or write data, or to act as an intermediate file in a job. The primary
role of a Hashed File stage is as a reference table based on a single key field.

Each Hashed File stage can have any number of inputs or outputs. When you edit
a Hashed File stage, the Hashed File Stage dialog box appears:

9-2 DataStage Developer’s Guide

This dialog box can have up to three pages (depending on whether there are inputs
to and outputs from the stage):

• Stage. Displays the name of the stage you are editing. This page has a
General page, where you can enter text to describe the purpose of the stage
in the Description field and specify where the data files are by clicking one
of the option buttons:

– Use account name. If you choose this option, you must choose the name
of the account from the Account name drop-down list box. This list box
contains all the accounts defined under the Table Definitions ➤ Hashed
branch in the DataStage Manager. If the account you want is not listed,
you need to define a table definition. For details on how to create a table
definition, see Chapter 4, “Setting Up a Project.” Alternatively, you can
enter an account name or use a job parameter. For details on how to define
and use job parameters, see “Specifying Job Parameters” on page 5-33.

– Use directory path. If you choose this option, you must specify a direc-
tory path containing the data file. The directory must be a UniVerse
account and is used for UniVerse accounts that do not appear in the
UV.ACCOUNT file. The directory is specified in the Directory path field.
You can enter a path directly, click Browse… to search the system for a
suitable directory, or use a job parameter. For more information about
using Browse…, see “Browsing Server Directories” on page 5-23.

– UniVerse Stage Compatibility. Select this check box to ensure that any
job conversions will work correctly. With this option selected, the date or
time will be represented in ISO format (depending on the Extended type)
and numerics will be scaled according to the meta data. (The job conver-
sion utility is a special standalone tool – it is not available within the
DataStage Designer.)

Note: You cannot change the name of the stage from this dialog box. For
details on how to change stage names, see “Renaming Stages” on
page 5-14.

• Inputs. This page is only displayed if you have an input link to this stage.
Specifies the data file to use and the associated column definitions for each
data input link. This page also specifies how data is written to the data file.

• Outputs. This page is only displayed if you have an output link to this
stage. Specifies the data file to use and the associated column definitions
for each data output link.

Click OK to close this dialog box. Changes are saved when you save the job.

Hashed File Stages 9-3

Defining Hashed File Input Data
When you write data to a hashed file, the Hashed File stage has an input link. The
properties of this link and the column definitions of the data are defined on the
Inputs page in the Hashed File Stage dialog box.

The Inputs page has the following field and two pages:

• Input name. The name of the input link. Choose the link you want to edit
from the Input name drop-down list box. This list box displays all the input
links to the Hashed File stage.

• General. Displayed by default. Contains the following fields and options:

– File name. The name of the file the data is written to. You can either use
a job parameter to represent the file created during run time (see
page 5-33 for more details) or choose the file from the File name drop-
down list box. This list box contains all the files defined under the Table
Definitions ➤ Hashed ➤ Account name branch in the Manager, where
Account name is the name of the account chosen on the Stage page.

9-4 DataStage Developer’s Guide

Note: If the file you want is not listed, you may need to define a table
definition. For details on how to create a table definition, see
Chapter 4, “Setting Up a Project.”

– Clear file before writing. If you select this check box, the existing file is
cleared and new data records are written to the empty file. This check box
is cleared by default.

– Backup existing file. If you select this check box, a backup copy of the
existing file is made before the new data records are written to the file.
The backup can be used to reset the file if a job is stopped or aborted at
run time. See DataStage Operator’s Guide for more details. This check box
is cleared by default.

– Description. Contains an optional description of the input link.

• Columns. Contains the column definitions for the data written to the file.
For a description of how to enter and edit column definitions, see “Speci-
fying Column Definitions” on page 5-18.

Note: If you are using meta data that does not specify column positions,
then the first column definition describes the hashed file’s key field.
The remaining columns are ordered according to their position in the
file. Do not reorder the column definitions in the grid unless you are
certain you understand the consequences of your action.

Click the View Data… button to invoke the Data Browser. This enables you to look
at the data associated with the input link. For a description of the Data Browser, see
“Using the Data Browser” on page 5-24.

Defining Hashed File Output Data
When you extract data from a hashed file, the Hashed File stage has an output link.
The properties of this link and the column definitions of the data are defined on the
Outputs page in the Hashed File Stage dialog box.

Hashed File Stages 9-5

The Outputs page has the following two fields and three pages:

• Output name. The name of the output link. Choose the link you want to
edit from the Output name drop-down list box. This list box displays all the
output links from the Hashed File stage.

• Normalize on. This drop-down list box allows you to normalize (or
unnest) data. You can normalize either on an association or on a single
unassociated multivalued column. The Normalize on drop-down list box
is only enabled for nonreference output links where meta data has been
defined that contains multivalued fields.

• General. Displayed by default. Contains the following fields and options:

– File name. The name of the file the data is read from. You can use a job
parameter to represent the file created during run time (see “Specifying
Job Parameters” on page 5-33 for more details) or choose the file from the
File name drop-down list box. This list box contains all the files defined
under the Table Definitions ➤ Hashed ➤ Account name branch in the
Repository, where Account name is the name of the account chosen on the
Stage page.

9-6 DataStage Developer’s Guide

Note: If the file you want is not listed, you need to define a table defini-
tion. For more information, see Chapter 4, “Setting Up a Project.”

– Pre-load file to memory. You can use this check box to improve perfor-
mance if the output link is a reference input to a Transformer stage. If
selected, the hashed file is read into memory when the job is run. This
check box is cleared by default.

– Description. Contains an optional description of the output link.

• Columns. Contains the column definitions for the data on the chosen
output link. For a description of how to enter or edit column definitions,
see “Specifying Column Definitions” in page 5-18.

Note: If you are using meta data that does not specify column positions,
then the first column definition describes the hashed file’s key field.
The remaining columns are ordered according to their position in the
file. Do not reorder the column definitions in the grid unless you are
certain you understand the consequences of your action.

• Selection. Contains optional SQL SELECT clauses for the conditional
extraction of data from a file. This page is only available if you have speci-
fied the hashed file by account name, rather than directory path, on the
Stage page.

Click the View Data… button to invoke the Data Browser. This enables you to look
at the data associated with the output link. For a description of the Data Browser,
see “Using the Data Browser” on page 5-24.

Sequential File Stages 10-1

10
Sequential File Stages

Sequential File stages are used to extract data from, or write data to, a text file. The
text file can be created or exist on any drive that is either local or mapped to the
server. Each Sequential File stage can have any number of inputs or outputs.

When you edit a Sequential File stage, the Sequential File Stage dialog box appears:

10-2 DataStage Developer’s Guide

This dialog box can have up to three pages (depending on whether there are inputs
to and outputs from the stage):

• Stage. Displays the name of the stage you are editing. The General page
allows you to enter the location of the files, line termination options, and an
optional description of the stage.

You must choose the directory containing the files you want to read or
write to. The operating system directory is specified in the Directory where
files are held field. You can edit this field in two ways:

– Enter the directory path in the field. You can also include a job parameter
in the directory path. For details of how to define and use job parameters,
see “Specifying Job Parameters” on page 5-33.

– Click Browse… . The Browse directories dialog box appears. Expand the
file system to display the directory you want. Highlight the directory and
click OK. The Directory where files are held field is updated with the
chosen directory. For more information about using Browse…, see
“Browsing Server Directories” on page 5-23.

The line termination options let you set the type of line terminator to use in
the Sequential File stage. By default, line termination matches the type
used on your DataStage server. To change the value, choose one of Unix
style (LF), DOS style (CR LF), or None.

Select the Stage uses named pipes check box if you want to make use of
the named pipe facilities. These allow you to split up a large job into a
number of smaller jobs. You may want to do this where there is a large
degree of parallelism in your design, as it will increase performance and
allow several developers to work on the design at the same time. With this
check box selected, all inputs and outputs to the stage use named pipes,
and you cannot specify a directory in the Directory where files are held
field. Examples of how to use the named pipe facilities are given in the
online Help.

Note: You cannot change the name of the stage from this dialog box. For
details on changing stage names, see “Renaming Stages” on
page 5-14.

If NLS is enabled, the NLS page allows you to define character set
mapping and UNICODE settings for the stage. For more information, see
“Defining Character Set Maps” on page 10-3.

• Inputs. Contains information about the file formats and column definitions
for each data input link. This page is displayed only if you have an input
link to this stage.

Sequential File Stages 10-3

• Outputs. Contains information about the file format and column defini-
tions for the data output links. This page is displayed only if you have an
output link to this stage.

Click OK to close this dialog box. Changes are saved when you save the job.

Defining Character Set Maps
You can define a character set map for a Sequential File stage using the NLS page
of the Sequential File Stage dialog box.

The default character set map (defined for the project or the job) can be changed by
selecting a map name from the list. The page also has the following fields:

• Show all maps. Choose this to display all the maps supplied with
DataStage in the list. Maps cannot be used unless they have been loaded
using the DataStage Administrator.

• Loaded maps only. Displays the maps that are loaded and ready for use.

10-4 DataStage Developer’s Guide

• Use Job Parameter… . Allows you to specify a character set map as a
parameter to the job containing the stage. If the parameter has not yet been
defined, you are prompted to define it from the Job Properties dialog box
(see page 5-30).

• Use UNICODE map. If you select this, the character set map is overridden,
and all data is read and written in UNICODE format with two bytes per
character.

– If Byte swapped is selected, the data is read or written with the lower-
order byte first. For example, 0X0041 (that is, “A”) is written as bytes
0X41,0X00. Otherwise it is written as 0X00,0X41.

– If First character is Byte Order Mark is selected, the stage reads or writes
the sequence 0XFE,0XFF if byte swapped, or 0XFF,0XFE if not byte
swapped.

Defining Sequential File Input Data
When you write data to a sequential file, the Sequential File stage has an input link.
The properties of this link and the column definitions of the data are defined on the
Inputs page in the Sequential File Stage dialog box.

Sequential File Stages 10-5

The Inputs page has the following field and three pages:

• Input name. The name of the input link. Choose the link you want to edit
from the Input name drop-down list box. This list box displays all the
input links to the Sequential File stage.

• General. Displayed by default. Contains the following parameters:

– File name. The name of the file the data is written to. You can enter a job
parameter to represent the file created during run time. For details on
how to define job parameters, see “Specifying Job Parameters” on
page 5-33.

– Description. Contains an optional description of the input link.

The General page also contains options that determine how the data is
written to the file. These are displayed under the Update action area:

– Overwrite existing file. This is the default option. If this option button is
selected, the existing file is truncated and new data records are written to
the empty file.

– Append to existing file. If you select this option button, the data records
are appended to the end of the existing file.

– Backup existing file. If you select this check box, a backup copy of the
existing file is taken. The new data records are written based on whether
you chose to append to or overwrite the existing file.

Note: The backup can be used to reset the file if a job is stopped or
aborted at run time. See DataStage Operator’s Guide for more
details.

• Format. Contains parameters that determine the format of the data in the
file. There are up to five check boxes:

– Fixed-width columns. If you select this check box, the data is written to
the file in fixed-width columns. The width of each column is specified by
the SQL display size (set in the Display column in the Columns grid).
This option is cleared by default.

– First line is column names. Select this check box if the first row of data in
the file contains column names. This option is cleared by default, that is,
the first row in the file contains data.

– Omit last new-line. Select this check box if you want to remove the last
newline character in the file. This option is cleared by default, i.e., the
newline character is not removed.

10-6 DataStage Developer’s Guide

– Check data against meta data. This is only enabled if you have selected
Fixed-width columns. Select this to check data in the file against the meta
data. A message is written to the log if a final column in a row is found to
be longer or shorter than the length specified by the Length field for that
column.

– Flush after every row. This only appears if you have selected Stage uses
named pipes on the Stage page. Selecting this check box causes data to be
passed between the reader and writer of the pipe one record at a time.

There are up to six fields on the Format page:

– Delimiter. Contains the delimiter that separates the data fields in the file.
By default this field contains a comma. You can enter a single printable
character (other than a digit) or a number from 0 through 255 to represent
the ASCII code for the character you want to use.

– Quote character. Contains the character used to enclose a data value that
contains the delimiter character as data. By default this field contains a
double quotation mark. You can enter a single printable character (other
than a digit) or a number from 1 through 255 to represent the ASCII code
for the character you want to use. You can suppress the quote character
by entering 0.

– Spaces between columns. This field is only active when you select the
Fixed-width columns check box. Contains a number to represent the
number of spaces used between columns.

– NULL string. Contains characters that are written to the file when a
column contains an SQL NULL.

The following fields appear only if you have selected Stage uses named
pipes on the Stage page:

– Wait for reader timeout. Specifies how long the stage will wait for a
connection when reading from a pipe before timing out. Recommended
values are between 30 and 600 seconds. If the stage times out an error is
raised and the job is aborted.

– Write timeout. Specifies how long the stage will attempt to write data to
a pipe befiore timing out. Recommended values are between 30 and 600
seconds. If the stage times out an error is raised and the job is aborted.

• Columns. Contains the column definitions for the data on the chosen input
link. For a description of how to enter and edit column definitions, see
“Specifying Column Definitions”on page 5-18.

Sequential File Stages 10-7

Note: The SQL data type properties affect how data is written to a sequen-
tial file. The SQL display size determines the size of fixed-width
columns. The SQL data type determines how the data is justified in
a column: character data types are quoted and left justified, numeric
data types are not quoted and are right justified. The SQL properties
are in the Columns grid when you edit an input column.

Click the View Data… button to invoke the Data Browser. This enables you to look
at the data associated with the input link. For a description of the Data Browser, see
“Using the Data Browser” on page 5-24.

Defining Sequential File Output Data
When you extract (read) data from a sequential file, the Sequential File stage has
an output link. The properties of this link and the column definitions of the data
are defined on the Outputs page in the Sequential File Stage dialog box.

10-8 DataStage Developer’s Guide

The Outputs page has the following field and three pages:

• Output name. The name of the output link. Choose the link you want to
edit from the Output name drop-down list box. This list box displays all the
output links to the Sequential File stage.

• General. Displayed by default. There are two fields:

– File name. The name of the file the data is extracted from. You can enter
a job parameter to represent the file created during run time. For details
on how to define job parameters, see “Specifying Job Parameters” on
page 5-33.

– Description. Contains an optional description of the output link.

• Format. Contains parameters that determine the format of the data in the
file. There are up to three check boxes:

– Fixed-width columns. If you select this check box, the data is extracted
from the file in fixed-width columns. The width of each column is speci-
fied by the SQL display size (set in the Display column in the Columns
grid). This option is cleared by default.

– First line is column names. Select this check box if the first row of data in
the file contains column names. This option is cleared by default, that is,
the first row in the file contains data.

– Check data against meta data. This is only enabled if you have selected
Fixed-width columns. Select this to check data in the file against the meta
data. A message is written to the log if a final column in a row is found to
be longer or shorter than the length specified by the Length field for that
column.

There are up to six fields on the Format page:

– Delimiter. Contains the delimiter that separates the data fields in the file.
By default this field contains a comma. You can enter a single printable
character (other than a digit) or a number 0 through 255 to represent the
ASCII code for the character you want to use.

– Quote character. Contains the character used to enclose a data value that
contains the delimiter character as data. By default this field contains a
double quotation mark. You can enter a single printable character (other
than a digit) or a number 0 through 255 to represent the ASCII code for
the character you want to use.

Sequential File Stages 10-9

– Spaces between columns. This field is only active when you select the
Fixed-width columns check box. Contains a number to represent the
number of spaces used between columns.

– NULL string. Contains characters which, when encountered in a sequen-
tial file being read, are interpreted as the SQL NULL value.

The following fields appear only if you have selected Stage uses named
pipes on the Stage page:

– Wait for writer timeout. Specifies how long the stage will wait for a
connection when writing to a pipe before timing out. Recommended
values are between 30 and 600 seconds. If the stage times out an error is
raised and the job is aborted.

– Read timeout. Specifies how long the stage will attempt to read data from
a pipe before timing out. Recommended values are between 30 and 600
seconds. If the stage times out an error is raised and the job is aborted.

• Columns. Contains the column definitions for the data on the chosen
output link. For a description of how to enter and edit column definitions,
see “Specifying Column Definitions” on page 5-18.

Click the View Data… button to invoke the Data Browser. This enables you to look
at the data associated with the output link. For a description of the Data Browser,
see “Using the Data Browser” on page 5-24.

10-10 DataStage Developer’s Guide

Transformer Stages 11-1

11
Transformer Stages

Transformer stages do not extract data or write data to a target database. They are
used to handle extracted data, perform any conversions required, and pass data to
another Transformer stage or a stage that writes data to a target data table.

Transformer stages can have any number of inputs and outputs. The link from the
main data input source is designated the primary input link. There can only be one
primary input link, but there can be any number of reference inputs.

When you edit a Transformer stage, the Transformer Editor appears. For an
example Transformer stage with two inputs and two outputs, the Transformer
Editor appears as follows. In this example, meta data has previously been defined
for the input links, but not the output links.

11-2 DataStage Developer’s Guide

Transformer Editor Components
The Transformer Editor has the following components.

Toolbar
The Transformer toolbar contains the following icons:

Link Area
The top area displays links to and from the Transformer stage, showing their
columns and the relationships between them.

The link area is where all column definitions and key expressions are defined.

The link area is divided into two panes; you can drag the splitter bar between them
to resize the panes relative to one another. There is also a horizontal scroll bar,
allowing you to scroll the view left or right.

The left pane shows input links, the right pane shows output links. The input link
shown at the top of the left pane is always the primary link. Any subsequent links
are reference links. For all types of link, key fields are shown in bold. Reference link
key fields that have no expression defined are shown in red, as are output columns
that have no derivation defined.

Within the Transformer Editor, a single link may be selected at any one time. When
selected, the link’s title bar is highlighted.

Meta Data Area
The bottom area shows the column meta data for input and output links. Again
this area is divided into two panes: the left showing input link meta data and the
right showing output link meta data.

stage
properties

show all or selected relations

constraints cut copy
paste load column definition

save column definition

Transformer Stages 11-3

The meta data for each link is shown in a grid contained within a tabbed page.
Click the tab to bring the required link to the front. That link is also selected in the
link area.

If you select a link in the link area, its meta data page is brought to the front
automatically.

You can edit the grids to change the column meta data on any of the links. You can
also add and delete meta data.

Shortcut Menus
The Transformer Editor shortcut menus are invoked by right-clicking the links in
the links area.

There are two slightly different menus, depending on whether you right-click an
input link or an output link. The input link menu offers you operations on key
expressions; the output link menu offers you operations on derivations.

The shortcut menu enables you to:

• Edit, validate, or clear a key expression or derivation.
• Append a new column to the selected link.
• Find a particular column.
• Select all columns on a link.
• Insert or delete columns.
• Cut, copy, and paste a column or a key expression or a derivation.

If you invoke the menu from a link header, you can:

• Invoke the Properties dialog box to enter a description of the link.

• Invoke the Constraints dialog box to specify a constraint (only available for
output links).

Right-clicking in the links area background invokes the background shortcut
menu. This menu allows you to invoke the Stage Properties dialog box in order to
specify a before- or after-stage subroutine, or the Constraints dialog box in order
to specify a constraint for the selected output link. This menu also allows you to
toggle between viewing link relations for all links, or for the selected link only.

Right-clicking in the meta data area of the Transformer Editor invokes the standard
grid editing shortcut menus.

11-4 DataStage Developer’s Guide

Transformer Stage Basic Concepts
When you first edit a Transformer stage, it is likely that you will have already
defined what data is input to the stage on the input links. You will use the Trans-
former Editor to define the data that will be output by the stage and how it will be
transformed. (You can define input data using the Transformer Editor if required.)

This section explains some of the basic concepts of using a Transformer stage.

Input Links
The main data source is joined to the Transformer stage via the primary link, but
the stage can also have any number of reference input links.

A reference link represents a table lookup. These are used to provide information
that might affect the way the data is changed, but do not supply the actual data to
be changed.

Reference input columns can be designated as key fields. You can specify key
expressions that are used to evaluate the key fields. The most common use for the
key expression is to specify an equijoin, which is a link between a primary link
column and a reference link column. For example, if your primary input data
contains names and addresses, and a reference input contains names and phone
numbers, the reference link name column is marked as a key field and the key
expression refers to the primary link’s name column. During processing, the name
in the primary input is looked up in the reference input. If the names match, the
reference data is consolidated with the primary data. If the names do not match,
i.e., there is no record in the reference input whose key matches the expression
given, all the columns specified for the reference input are set to the null value.

Output Links
You can have any number of output links from your Transformer stage.

You may want to pass some data straight through the Transformer stage unaltered,
but it’s likely that you’ll want to transform data from some input columns before
outputting it from the Transformer stage.

You can specify such an operation by entering a BASIC expression or by selecting
a transform function to apply to the data. DataStage has many built-in transforms,
or you can define your own custom transforms that are stored in the Repository
and can be reused as required.

Transformer Stages 11-5

The source of an output link column is defined in that column’s Derivation cell
within the Transformer Editor. You can use the Expression Editor to enter expres-
sions or transforms in this cell. You can also simply drag an input column to an
output column’s Derivation cell, to pass the data straight through the Transformer
stage.

In addition to specifying derivation details for individual output columns, you can
also specify constraints that operate on entire output links. A constraint is a BASIC
expression that specifies criteria that data must meet before it can be passed to the
output link. You can also specify a reject link, which is an output link that carries
all the data not output on other links, that is, columns that have not met the criteria.

Each output link is processed in turn. If the constraint expression evaluates to
TRUE for an input row, the data row is output on that link. Conversely, if a
constraint expression evaluates to FALSE for an input row, the data row is not
output on that link.

Constraint expressions on different links are independent. If you have more than
one output link, an input row may result in a data row being output from some,
none, or all of the output links.

For example, if you consider the data that comes from a paint shop, it could include
information about any number of different colors. If you want to separate the
colors into different files, you would set up different constraints. You could output
the information about green and blue paint on LinkA, red and yellow paint on
LinkB, and black paint on LinkC.

When an input row contains information about yellow paint, the LinkA constraint
expression evaluates to FALSE and the row is not output on LinkA. However, the
input data does satisfy the constraint criterion for LinkB and the rows are output
on LinkB.

If the input data contains information about white paint, this does not satisfy any
constraint and the data row is not output on Links A, B or C, but will be output on
the reject link. The reject link is used to route data to a table or file that is a “catch-
all” for rows that are not output on any other link. The table or file containing these
rejects is represented by another stage in the job design.

Before-Stage and After-Stage Routines
Because the Transformer stage is an active stage type, you can specify routines to
be executed before or after the stage has processed the data. For example, you
might use a before-stage routine to prepare the data before processing starts. You
might use an after-stage routine to send an electronic message when the stage has
finished.

11-6 DataStage Developer’s Guide

Editing Transformer Stages
The Transformer Editor enables you to perform the following operations on a
Transformer stage:

• Create new columns on a link
• Delete columns from within a link
• Move columns within a link
• Edit column meta data
• Define output column derivations
• Define input column key expressions
• Specify before- and after-stage subroutines
• Define link constraints and handle rejects

Using Drag and Drop
Many of the Transformer stage edits can be made simpler by using the Transformer
Editor’s drag and drop functionality. You can drag columns from any link to any
other link. Common uses are:

• Copying input columns to output links
• Moving columns within a link
• Copying derivations in output links
• Copying key expressions in input links

To use drag and drop:

1. Click the source cell to select it.

2. Click the selected cell again and, without releasing the mouse button, drag
the mouse pointer to the desired location within the target link. An insert
point appears on the target link to indicate where the new cell will go.

3. Release the mouse button to drop the selected cell.

You can drag and drop multiple columns, key expressions, or derivations. Use the
standard Explorer keys when selecting the source column cells, then proceed as for
a single cell.

You can add a column to the end of an existing derivation or key expression by
holding down the Ctrl key as you drag the column.

Transformer Stages 11-7

The drag and drop insert point is shown below:

Specifying the Primary Input Link
The first link to a Transformer stage is always designated as the primary input link.
However, you can choose an alternative link to be the primary link if necessary. To
do this:

1. Select the current primary input link in the Diagram window.

2. Choose Convert to Reference from the Diagram window shortcut menu.

3. Select the reference link that you want to be the new primary input link.

4. Choose Convert to Stream from the Diagram window shortcut menu.

Creating and Deleting Columns
You can create columns on links to the Transformer stage using any of the
following methods:

• Select the link, then click the load column definition icon in the toolbar to
invoke the standard load columns dialog box.

• Use drag and drop or copy and paste functionality to create a new column
by copying from an existing column on another link.

• Use the shortcut menus to create a new column definition.

• Edit the grids in the link’s meta data page to insert a new column.

When copying columns, a new column is created with the same meta data as the
column it was copied from.

To delete a column from within the Transformer Editor, select the column you want
to delete and click the cut icon or choose Delete Column from the shortcut menu.

11-8 DataStage Developer’s Guide

Moving Columns Within a Link
You can move columns within a link using either drag and drop or cut and paste.
Select the required column, then drag it to its new location, or cut it and paste it in
its new location.

Editing Column Meta Data
You can edit column meta data from within the grid in the bottom of the Trans-
former Editor. Select the page for the link meta data that you want to edit, then use
the standard DataStage edit grid controls.

The meta data shown does not include column derivations or key expressions,
since these are edited in the links area.

Defining Output Column Derivations
You can define the derivation of output columns from within the Transformer
Editor in three ways:

• If you require an output column to be directly derived from an input
column, with no transformations performed, then you can use drag and
drop or copy and paste to copy an input column to an output link. The
output columns will have the same names as the input columns from
which they were derived.

• You may need one output link column derivation to be the same as another
output link column derivation. In this case you can use drag and drop or
copy and paste to copy the derivation cell from one column to another.

• In many cases you will need to transform data before deriving an output
column from it. For these purposes you can use the Expression Editor. To
display the Expression Editor, double-click on the required output link
column Derivation cell. (You can also invoke the Expression Editor using
the shortcut menu or the shortcut keys.)

If a derivation is displayed in red it means that the Transformer Editor considers it
incorrect. (In some cases this may simply mean that the derivation does not meet
the strict usage pattern rules of the DataStage engine, but will actually function
correctly.)

Once an output link column has a derivation defined that contains any input link
columns, then a relationship line is drawn between the input column and the
output column, as shown in the following example. This is a simple example; there
can be multiple relationship lines either in or out of columns. You can choose

Transformer Stages 11-9

whether to view the relationships for all links, or just the relationships for the
selected links, using the icon in the toolbar.

Defining Input Column Key Expressions
You can define key expressions for key fields of reference inputs. This is similar to
defining derivations for output columns.

In most cases a key expression will be an equijoin from a primary input link
column. You can specify an equijoin in two ways:

• Use drag and drop to drag a primary input link column to the appropriate
key expression cell.

• Use copy and paste to copy a primary input link column and paste it on the
appropriate key expression cell.

A relationship link is drawn between the primary input link column and the key
expression.

You can also use drag and drop or copy and paste to copy an existing key expres-
sion to another input column, and you can drag or copy multiple selections.

If you require a more complex expression than an equijoin, then you can double-
click the required key expression cell to invoke the Expression Editor.

If a key expression is displayed in red it means that the Transformer Editor
considers it incorrect. (In some cases this may simply mean that the key expression
does not meet the strict usage pattern rules of the DataStage engine, but will actu-
ally function correctly.)

Initially, key expression cells occupy a very narrow column. In most cases the rela-
tionship line gives sufficient information about the key expression, but otherwise
you can drag the left edge of the column to expand it.

11-10 DataStage Developer’s Guide

Specifying Before-Stage and After-Stage Subroutines
Because the Transformer stage is an active stage type, you can specify routines to
be executed before or after the stage has processed the data.

To specify a routine, click the stage properties icon in the toolbar to invoke the
following dialog box:

Transformer Stages 11-11

The dialog box contains the following fields:

• Before-stage subroutine and Input Value. Contain the name (and value) of
a subroutine that is executed before the stage starts to process any data.

• After-stage subroutine and Input Value. Contain the name (and value) of
a subroutine that is executed after the stage has processed the data.

Choose a routine from the drop-down list box. This list box contains all the built
routines defined as a Before/After Subroutine under the Routines branch in the
Repository. Enter an appropriate value for the routine’s input argument in the
Input Value field.

If you choose a routine that is defined in the Repository, but which was edited but
not compiled, a warning message reminds you to compile the routine when you
close the Transformer stage dialog box.

If you installed or imported a job, the Before-stage subroutine or After-stage
subroutine field may reference a routine that does not exist on your system. In this
case, a warning message appears when you close the dialog box. You must install
or import the “missing” routine or choose an alternative one to use.

If you edit a job created using Release 1 of DataStage, the Before-stage subroutine
or After-stage subroutine field may contain the name of a routine created at
Release 1. When DataStage is upgraded, these routines are identified and automat-
ically renamed. For example, if you used a before-stage subroutine called
BeforeSubr, this appears as BeforeSubr\<Rev1> in the Before-stage subroutine
field. You can continue to use these routines. However, because you could not
specify input values for routines at Release 1 of DataStage, the Input Value field
grays out when you use one of these “old” routines.

Defining Constraints and Handling Rejects
You can define limits for output data by specifying a constraint. Constraints are
BASIC expressions and you can specify a constraint for each output link from a
Transformer stage. You can also specify that a particular link is to act as a reject link.
Reject links output rows that have not been written on any other output links from
the transformer stage.

To define a constraint or specify a reject link, do one of the following:

• Select an output link and click the constraints icon.
• Double-click the output link’s constraint entry field.
• Choose Constraints from the background or header shortcut menus.

11-12 DataStage Developer’s Guide

A dialog box appears which allows you either to define constraints for any of the
Transformer output links or to define a link as a reject link.

Define a constraint by entering a BASIC expression in the Constraint field for that
link. Once you have done this, any constraints will appear below the link’s title bar
in the Transformer Editor.

Define a reject link by leaving the Constraint field blank, and choosing Yes in the
Reject Row field. If you have defined a link as a reject link, then [Reject] appears
below the link’s title bar.

The Constraint field is left blank when you specify a reject link. You can, however,
select Yes in the Reject Row field of a link for which you have specified a
constraint. This causes the number of rows written to that link (i.e., rows that
satisfy the constraint) to be recorded in the job log file at run time.

The DataStage Expression Editor
The DataStage Expression Editor helps you to enter correct expressions when you
edit Transformer stages. It also helps you to define custom transforms within the
DataStage Manager. The Expression Editor can:

• Facilitate the entry of expression elements
• Complete the names of frequently used variables
• Validate variable names and the complete expression

Transformer Stages 11-13

The Expression Editor can be invoked from:

• Output link Derivation cells
• Input link Key Expression cells
• Constraint dialog box
• Transform dialog box in the DataStage Manager

Entering Expressions
Whenever the insertion point is in an expression box, you can use the Expression
Editor to suggest the next element in your expression. Do this by right-clicking the
box, or by clicking the Suggest button to the right of the box. This invokes the
Suggest Operand or Suggest Operator menu. Which menu appears depends on
context, i.e., whether you should be entering an operand or an operator as the next
expression element.

You will be offered a different selection on the Suggest Operand menu depending
on whether you are defining key expressions, derivations and constraints, or a
custom transform. The Suggest Operator menu is always the same.

Suggest Operand

Transformer Stage

Suggest Operand

Defining Custom
Menu Menu

Transforms

Suggest Operator Menu

11-14 DataStage Developer’s Guide

Completing Variable Names
The Expression Editor stores variable names. When you enter a variable name you
have used before, you can type the first few characters, then press F5. The Expres-
sion Editor completes the variable name for you.

If you enter the name of an input link followed by a period, for example,
DailySales., the Expression Editor displays a list of the column names of that
link. If you continue typing, the list selection changes to match what you type. You
can also select a column name using the mouse. Enter a selected column name into
the expression by pressing Tab or Enter. Press Esc to dismiss the list without
selecting a column name.

Validating the Expression
When you have entered an expression in the Transformer Editor, press Enter to
validate it. The Expression Editor checks that the syntax is correct and that any
variable names used are acceptable to the compiler. When using the Expression
Editor to define a custom transform, click OK to validate the expression.

If there is an error, a message appears and the element causing the error is high-
lighted in the expression box. You can either correct the expression or close the
Transformer Editor or Transform dialog box.

Within the Transformer Editor, the invalid expressions are shown in red. (In some
cases this may simply mean that the expression does not meet the strict usage
pattern rules of the DataStage engine, but will actually function correctly.)

For more information about the syntax you can use in an expression, see DataStage
Developer’s Help.

Exiting the Expression Editor
You can exit the Expression Editor in the following ways:

• Press Esc (which discards changes).
• Press Return (which accepts changes).
• Click outside the Expression Editor box (which accepts changes).

Configuring the Expression Editor
The Expression Editor is switched on by default. If you prefer not to use it, you can
switch it off or use selected features only. The Expression Editor is configured by
editing the Designer options. For more information, see “Specifying Designer
Options” on page 5-45.

Transformer Stages 11-15

Transforms
Transforms are used in the Transformer stage to convert your data to a format you
want to use in the final data mart. Each transform specifies the BASIC function
used to convert the data from one type to another. There are a number of built-in
transforms supplied with DataStage, which are described in Appendix A, “Built-
In Transforms and Routines.”

If the built-in transforms are not suitable or you want a specific transform to act on
a specific data element, you can create custom transforms in the DataStage
Manager.

To create a custom transform:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

2. Select the Transforms branch in the project tree and do one of the following:

• Choose File ➤ New Transform… .
• Choose New Transform… from the shortcut menu.
• Click the New icon on the toolbar.

The Transform dialog box appears:

11-16 DataStage Developer’s Guide

This dialog box has two pages:

• General. Displayed by default. Contains general information about the
transform.

• Details. Allows you to specify source and target data elements, the func-
tion, and arguments to use.

3. Enter the name of the transform in the Transform name field. This name is
used to create a leaf under the category branch. The name entered here must
be unique; as no two transforms can have the same name. Also note that the
transform should not have the same name as an existing BASIC function; if it
does, the function will be called instead of the transform when you run the
job.

4. Enter a category name in the Category field. This name is used to create a
branch under the main Transforms branch. If you do not enter a name in this
field, the transform is created under the main Transforms branch.

You can create more than one branch level for the category by including \ in
the name. For example, if you enter Custom\User, the following branches are
created:

Transforms ➤ Custom ➤ User

In this example, the new transform is created as a leaf under the User branch.

5. Enter a brief description of the transform in the Short description field. This
is an optional field. The text entered here is displayed when you choose View
➤ Details from the DataStage Manager window.

6. Enter a detailed description of the transform in the Long description field.
This is also an optional field. Once this page is complete, you can specify how
the data is converted.

Transformer Stages 11-17

7. Click the Details tab. The Details page appears at the front of the Transform
dialog box:

8. Choose the data element you want as the target data element from the Target
data element drop-down list box.

9. Specify the source arguments for the transform in the Source Arguments
grid. Enter the name of the argument and choose the corresponding data
element from the drop-down list.

10. Use the Expression Editor in the Definition field to enter an expression which
defines how the transform behaves.

11. Click OK to save the transform and close the Transform dialog box. The new
transform appears in the project tree under the specified branch.

You can then use the new transform from within the Transformer Editor.

Note: If NLS is enabled, avoid using the built-in ICONV and OCONV functions
to map data unless you fully understand the consequences of your actions.

11-18 DataStage Developer’s Guide

Aggregator Stages 12-1

12
Aggregator Stages

Aggregator stages classify data rows from a single input link into groups and
compute totals or other aggregate functions for each group. The summed totals for
each group are output from the stage via an output link.

If you want to aggregate the input data in a number of different ways, you can have
several output links, each specifying a different set of properties to define how the
input data is grouped and summarized.

When you edit an Aggregator stage, the Aggregator Stage dialog box appears:

12-2 DataStage Developer’s Guide

This dialog box has three pages:

• Stage. Displays the name of the stage you are editing. This page has a
General page which contains an optional description of the stage and
names of before- and after-stage routines. For more details about these
routines, see “Before-Stage and After-Stage Subroutines” on page 12-2.

Note: You cannot change the name of the stage from this dialog box. For
details on how to change stage names, see “Renaming Stages” on
page 5-14.

• Inputs. Specifies the column definitions for the data input link.

• Outputs. Specifies the column definitions for the data output link.

Click OK to close this dialog box. Changes are saved when you save the job.

Before-Stage and After-Stage Subroutines
The General page on the Stage page contains optional fields that allow you to
define routines to use which are executed before or after the stage has processed
the data.

• Before-stage subroutine and Input Value. Contain the name (and value) of
a subroutine that is executed before the stage starts to process any data. For
example, you can specify a routine that prepares the data before processing
starts.

• After-stage subroutine and Input Value. Contain the name (and value) of
a subroutine that is executed after the stage has processed the data. For
example, you can specify a routine that sends an electronic message when
the stage has finished.

Choose a routine from the drop-down list box. This list box contains all the
routines defined as a Before/After Subroutine under the Routines branch in the
Repository. Enter an appropriate value for the routine’s input argument in the
Input Value field.

If you choose a routine that is defined in the Repository, but which was edited but
not compiled, a warning message reminds you to compile the routine when you
close the Aggregator Stage dialog box.

If you installed or imported a job, the Before-stage subroutine or After-stage
subroutine field may reference a routine that does not exist on your system. In this
case, a warning message appears when you close the Aggregator Stage dialog box.

Aggregator Stages 12-3

You must install or import the “missing” routine or choose an alternative one to
use.

If you edit a job created using Release 1 of DataStage, the Before-stage subroutine
or After-stage subroutine field may contain the name of a routine created at
Release 1. When DataStage is upgraded, these routines are identified and automat-
ically renamed. For example, if you used a before-stage subroutine called
BeforeSubr, this appears as BeforeSubr\<Rev1> in the Before-stage subroutine
field. You can continue to use these routines. However, because you could not
specify input values for routines at Release 1 of DataStage, the Input Value field
grays out when you use one of these “old” routines.

Defining Aggregator Input Data
Data to be aggregated is passed from a previous stage in the job design and into
the Aggregator stage via a single input link. The properties of this link and the
column definitions of the data are defined on the Inputs page in the Aggregator
Stage dialog box.

12-4 DataStage Developer’s Guide

The Inputs page has the following field and two pages:

• Input name. The name of the input link to the Aggregator stage.

• General. Displayed by default. Contains an optional description of the
link.

• Columns. Contains a grid displaying the column definitions for the data
being written to the stage, and an optional sort order.

– Column name. The name of the column.

– Sort. Displays the sort key position of the column, if sorting is enabled.
For more information, see “Defining the Input Column Sort Order” on
page 12-4.

– Sort Order. Specifies the sort order. This field is blank by default, that is,
there is no sort order. Choose Ascending for ascending order,
Descending for descending order, or Ignore if you do not want the order
to be checked.

– SQL type. The SQL data type.

– Length. The data precision. This is the length for CHAR data and the
maximum length for VARCHAR data.

– Scale. The data scale factor.

– Nullable. Specifies whether the column can contain null values.

– Display. The maximum number of characters required to display the
column data.

– Data element. The type of data in the column.

– Description. A text description of the column.

For a description of how to enter and edit column definitions, see “Speci-
fying Column Definitions” on page 5-18.

Defining the Input Column Sort Order
When the Aggregator stage collates input data for aggregating, it is stored in
memory. If one or more group columns in the input data are sorted, this can greatly
improve the way in which the Aggregator stage handles the data.

Sorted input data can be output from an ODBC or UniVerse stage (using an
ORDER BY clause in the SQL statement) or a Sequential File stage.

Aggregator Stages 12-5

To use sorted input data, you can use the additional column properties in the Input
Column dialog box.

Enter a number in the Sort column specifying the position that column has in the
sort key. For example, if the input data was sorted on a date then on a product code,
the sort key position for the date column would 1 and the sort key position for the
product code column would be 2. A value of 1 always indicates the most signifi-
cant key. If you do not specify a value in this field, the column is added to the end
of the sort key sequence. Once you click OK, all the columns are sorted in sequence
from the most significant column upward.

Choose the order in which the data is sorted from the Sort Order column:

• Ascending. This is the default setting. Choose this option if the input data
in the specified column is sorted in ascending order. If you choose this
option, the DataStage server checks the order at run time.

• Descending. Choose this option if the input data in the specified column is
sorted in descending order. If you choose this option, the DataStage server
checks the order at run time.

• Ignore. Do not check order. Choose this option if the sort order used by the
input data is not simply ascending or descending order, but uses a more
complex sort order. You must take care when choosing this option. At run
time the DataStage server does not check the sort order of the data, which
may cause erroneous errors. If you choose this option, a warning message
appears when you click OK. You must acknowledge this message before
you can edit other input columns.

Defining Aggregator Output Data
When you output data from an Aggregator stage, the properties of output links
and the column definitions of the data are defined on the Outputs page in the
Aggregator Stage dialog box.

12-6 DataStage Developer’s Guide

The Outputs page has the following field and two pages:

• Output name. The name of the output link. Choose the link to edit from the
Output name drop-down list box. This list box displays all the output links
from the stage.

• General. Displayed by default. Contains an optional description of the
link.

• Columns. Contains a grid displaying the column definitions for the data
being output from the stage. The grid has the following columns:

– Column name. The name of the column.

– Group. Specifies whether to group by the data in the column. Choose Yes
to group by the column.

– Derivation. Contains an expression specifying how the data is aggre-
gated. This is a complex cell, requiring more than one piece of
information. Double-clicking on the cell invokes the Derivation dialog
box. For more information, see “Aggregating Data” on page 12-7.

– Key. Indicates whether the column is part of the primary key.

Aggregator Stages 12-7

– SQL type. The SQL data type.

– Length. The data precision. This is the length for CHAR data and the
maximum length for VARCHAR data.

– Scale. The data scale factor.

– Nullable. Specifies whether the column can contain null values.

– Display. The maximum number of characters required to display the
column data.

– Data element. The type of data in the column.

– Description. A text description of the column.

For a description of how to enter and edit column definitions, see “Speci-
fying Column Definitions” on page 5-18.

Aggregating Data
The data sources you are extracting data from can contain many thousands of rows
of data. For example, the data in a sales database can contain information about
each transaction or sale. You could pass all this data into your data warehouse.
However, this would mean you would have to search through large volumes of
data in the data warehouse before you get the results you need.

If you only want summary information, for example, the total of product A sold
since 01/01/96, you can aggregate your data and only pass the summed total to
the data warehouse. This reduces the amount of data you store in the data ware-
house, speeds up the time taken to find the data you want, and ensures the data
warehouse stores data in a format you need.

The Aggregator stage allows you to group by or summarize any columns on any
of the output links.

Note: Every column output from an Aggregator stage must be either grouped by
or summarized.

A group of input data is a set of input rows that share the same values for all the
grouped by columns. For example, if your sales database contained information
about three different products A, B, and C, you could group by the Product
column. All the information about product A would be grouped together, as
would all the information for products B and C.

12-8 DataStage Developer’s Guide

By summarizing data, you can perform basic calculations on the values in a partic-
ular column. The actions you can perform depend on the SQL data type of the
selected column.

For numeric SQL data types you can perform the following actions:

• Minimum. Returns the lowest value in the column.

• Maximum. Returns the highest value in the column.

• Count. Counts the number of values in the column.

• Sum. Totals the values in the column.

• Average. Averages the values in the column.

• Standard deviation. Returns the standard deviation for the values in the
column.

For any other SQL data types you can perform the following actions:

• Minimum. Returns the lowest value in the column.
• Maximum. Returns the highest value in the column.
• Count. Counts the number of values in the column.

For example, if you want to know the total number of product A sold, you would
sum the values in the QtySold column.

To group by or summarize a column, you must edit the Derivation column in the
Output Column dialog box. Do this by double-clicking the cell to invoke the Deri-
vation dialog box.

The Derivation dialog box contains the following fields and option:

• Source column. Contains the name of the column you want to group by or
summarize, in the format linkname.columnname. You can choose any of the
input columns from the drop-down list box.

• Aggregate function. Contains the aggregation function to perform. Choose
the function you want from the drop-down list box. The default option is
Sum.

Aggregator Stages 12-9

• Group by this column. Specifies whether the column will be grouped. This
check box is cleared by default.

If you want to group by the column, select the Group by this column check box.
The aggregate function is automatically set to (grouped), and you cannot select an
aggregate function from the drop-down list box.

To use an aggregate function, clear the Group by this column check box and select
the function you want to use from the Aggregate function drop-down list box.

Click OK to save the settings for the column.

The AGGREGATOR Plug-In
At DataStage Release 1.0, aggregation was performed using the AGGREGATOR
plug-in. This plug-in is no longer available and is superseded by the built-in
Aggregator stage. During installation, any jobs that used the AGGREGATOR plug-
in are converted to use the built-in Aggregator stage instead. You do not need to
recompile your job to use the Aggregator stage.

12-10 DataStage Developer’s Guide

Plug-Ins and Plug-In Stages 13-1

13
Plug-Ins and

Plug-In Stages

This chapter describes how to use a plug-in stage in your job design.

You may find that the built-in stage types do not meet all your requirements for
data extraction and transformation. If this is the case, you need to obtain a plug-in,
which can then be used in a plug-in stage in your job design.

Plug-Ins
Plug-ins are written to perform specific tasks that the built-in stages do not
support, for example:

• Custom aggregations
• Control of external devices (for example, tape drives)
• Access to external programs

Two plug-ins are automatically installed with DataStage:

• BCPLoad. The BCPLoad plug-in bulk loads data into a single table in a
Microsoft SQL Server (Release 6 or 6.5) or Sybase (System 10 or 11) data-
base. For more information about this plug-in, see Chapter 14, “BCPLoad
Stages.”

• Orabulk. The Orabulk plug-in generates control and data files for bulk
loading into a single table on an Oracle target database. The files are suit-
able for loading into the target database using the Oracle command sqlldr.
For more information about this plug-in, see Chapter 15, “Orabulk Stages.”

Other plug-ins are supplied with DataStage, but must be explicitly installed. These
plug-ins are located on the DataStage installation CD and are installed using the

13-2 DataStage Developer’s Guide

Package Installer, which is described in DataStage Administrator’s Guide. Some
plug-ins have a custom GUI, which is also installed. The available plug-ins are
listed in the Read Me file in the plug-in directory on the CD (..\Packages). If the
plug-in you require is not listed, contact Ardent to see if one is likely to become
available. Alternatively, you can write your own plug-in.

A plug-in consists of a set of routines that access external databases and/or
perform complex programming. You must have a thorough knowledge of C to
design and develop a plug-in.

To write your own plug-in:

1. Assess the purpose of the plug-in. You need to determine what the plug-in
must do in terms of data extraction or data conversion. Check that Ardent
does not already have an available plug-in for this purpose.

2. Develop the routines using the DataStage C plug-in Stage Interface. These
routines are used to extract, aggregate, or transform data when the job is run.
If you need help writing the plug-in routines required to process your data,
contact your local Ardent Customer Support Center.

3. Register the plug-in with the DataStage Manager. It is recommended that
your plug-in dynamically registers itself. Alternatively, you can register the
plug-in manually.

DataStage has a generic Stage dialog box which can be used by plug-ins, but it is
also possible to define your own GUI for a plug-in and install that in DataStage.

Manually Registering a Plug-In Definition
To register a plug-in manually in the DataStage Manager:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

2. Choose Tools ➤ Register Plug-in… . The Register plug-in dialog box
appears:

Plug-Ins and Plug-In Stages 13-3

3. Enter the path and name of the plug-in DLL in the Path of plug-in field.

4. Specify where the plug-in will be stored in the Repository by entering the
category name in the Category field.

5. Click OK to register the plug-in definition and close the dialog box.

Viewing Plug-In Definition Details
Once a plug-in has been registered with the Manager, you can view its details in
the Stage Type dialog box. To do this, click the Plug-in icon in the Manager display
area and do one of the following:

• Choose File ➤ Properties… .
• Choose Properties… from the shortcut menu.
• Double-click the plug-in in the display area.
• Click the Properties icon on the toolbar.

The plug-in definition is read-only; you cannot change any of the details. The only
exception to this is a plug-in that you added under an earlier version of DataStage.

13-4 DataStage Developer’s Guide

This dialog box has up to six pages:

• General. Contains the name and type of the plug-in and optional short and
long descriptions. This page also contains the name and path of the plug-in
DLL, and specifies whether the plug-in supports meta data import and/or
data browsing.

• Links. Contains information about what type of links can connect to the
plug-in stage as inputs and the maximum and minimum number of links
allowed.

• Creator. Displays information about the creator and the version of the
plug-in.

• Properties. Specifies properties for the stage and the input and output
links.

• Dependencies. Specifies the dependent DLLs.

• NLS. Specifies how character set mapping is carried out by the plug-in. For
more information, see “Specifying Character Set Mapping.”

Specifying Character Set Mapping

If you want your plug-in to use data in character sets other than ASCII, you must
specify how the plug-in handles character set mapping from the NLS page.

Plug-Ins and Plug-In Stages 13-5

Click Works with external character set to specify that the data requires mapping:

• If the plug-in performs its own mapping, you must also select Handles its
own mapping.

• If the plug-in does not perform the character set mapping, you must
specify the map to be used from the plug-in stage dialog box when you use
the plug-in in a job design.

If the plug-in does not require any character set mapping, select Works with
internal character set.

Removing a Registered Plug-In
To remove a plug-in that you have previously registered:

1. Select the plug-in from the DataStage Manager display area.

2. Choose Tools ➤ Unregister Plug-in. The plug-in is removed.

Packaging a Plug-In
If you have written a plug-in that you want to distribute to users on other
DataStage systems, you need to package it. For details on how to package a plug-
in for deployment, see Chapter 19, “Importing, Exporting, and Packaging Jobs.”

Using a Plug-In
You can use a plug-in by inserting a plug-in stage in your job design. Plug-in stages
are used the same way as built-in stages. However, when you insert a plug-in
stage, you are prompted to choose the plug-in to use. For details of how to include
a plug-in stage in your job design, see “Adding Plug-In Stages” on page 5-13.

The plug-in you choose determines the function and properties of the plug-in
stage. When you have chosen a plug-in, you can edit the stage to define the data
flowing into, through, or from it.

13-6 DataStage Developer’s Guide

Plug-In Stages
A plug-in stage is the way in which you use plug-ins in a job. The plug-in chosen
when you insert a plug-in stage determines the behavior of the stage, how it
handles data, and the number of input or output links.

All plug-in stages that use the generic DataStage Stage dialog box are edited in the
same way. When you edit a plug-in stage, the Stage dialog box appears. The title
of the Stage dialog box includes the stage name.

The Stage dialog box can have up to three pages (depending on whether there are
inputs to and outputs from the stage):

• Stage. Displays the name of the stage and contains up to three pages:

– General. Displayed by default. Specifies the plug-in to use and contains
an optional description of the stage. Also contains the names of cataloged
routines, if you are editing an active stage. For more details about these
routines, see “Before-Stage and After-Stage Subroutines” on page 13-7.

– Properties. Displays the stage properties. See “Editing Properties” on
page 13-10 for information on how to edit property values.

Plug-Ins and Plug-In Stages 13-7

– NLS. If NLS is enabled, allows you to specify a character set map for the
stage. See “Defining Character Set Maps” on page 13-12.

Note: You cannot change the name of the stage from this dialog box. For
details on how to change stage names, see “Renaming Stages” on
page 5-14.

• Inputs. Contains information about the column definitions for each data
input link and specifies the input link properties. For more information, see
“Defining Plug-In Input Data” on page 13-8.

• Outputs. Contains information about the column definitions for each data
output link and specifies the output link properties. For more information,
see “Defining Plug-In Output Data” on page 13-9.

Before-Stage and After-Stage Subroutines
If you are editing an active type of plug-in stage, the General page on the Stage
page contains additional fields. These optional fields allow you to define routines
to use which are executed before or after the stage has processed the data:

• Before-stage subroutine and Input Value. Contain the name (and value) of
a subroutine that is executed before the stage starts to process any data. For
example, you can specify a routine that prepares the data before processing
starts.

• After-stage subroutine and Input Value. Contain the name (and value) of
a subroutine that is executed after the stage has processed the data. For
example, you can specify a routine that sends an electronic message when
the stage has finished.

Choose a routine from the drop-down list box. This list box contains all the built
routines defined as a Before/After Subroutine under the Routines branch in the
Repository. Enter an appropriate value for the routine’s input argument in the
Input Value field.

If you choose a routine that is defined in the Repository, but which was edited but
not compiled, a warning message reminds you to compile the routine when you
close the Stage dialog box.

If you installed or imported a job, the Before-stage subroutine or After-stage
subroutine field may reference a routine that does not exist on your system. In this
case, a warning message appears when you close the Stage dialog box. You must
install or import the “missing” routine or choose an alternative one to use.

13-8 DataStage Developer’s Guide

If you edit a job created using Release 1 of DataStage, the Before-stage subroutine
or After-stage subroutine field may contain the name of a routine created at
Release 1. When DataStage is upgraded, these routines are identified and automat-
ically renamed. For example, if you used a before-stage subroutine called
BeforeSubr, this appears as BeforeSubr\<Rev1> in the Before-stage subroutine
field. You can continue to use these routines. However, because you could not
specify input values for routines at Release 1 of DataStage, the Input Value field
grays out when you use one of these “old” routines.

Defining Plug-In Input Data
When a plug-in stage accepts data from another stage in the job design, the stage
has an input link. The properties of this link and the column definitions of the data
are defined on the Inputs page in the Stage dialog box.

The Inputs page contains the following field and up to three pages:

• Input name. The name of the input link. Choose the link you want to edit
from the Input name drop-down list box. This list box displays all the input
links to the plug-in stage.

Plug-Ins and Plug-In Stages 13-9

• General. Displayed by default. Contains an optional description of the
link.

• Properties. Displays the input link properties. This page is displayed only
if input properties have been defined for the chosen plug-in. See “Editing
Properties” on page 13-10 for information on how to change the property
values.

• Columns. Contains the column definitions for the data being written to the
stage. For a description of how to enter and edit column definitions, see
“Specifying Column Definitions”on page 5-18.

Defining Plug-In Output Data
If the plug-in stage represents a data source you are extracting data from, the stage
has an output link. The properties of the output link and the column definitions of
the data are defined on the Outputs page in the Stage dialog box.

13-10 DataStage Developer’s Guide

The Outputs page has the following field and up to three pages:

• Output name. The name of the output link. Choose the link to edit from the
Output name drop-down list box. This list box displays all the output links
from the stage.

• General. Displayed by default. Contains an optional description of the
link.

• Properties. Displays the output link properties. This page is displayed only
if output properties have been defined for the chosen plug-in. See “Editing
Properties” on page 13-10 for information on how to change the property
values.

• Columns. Contains the column definitions for the data being output from
the stage. For a description of how to enter and edit column definitions, see
“Specifying Column Definitions” on page 5-18.

Editing Properties
When a plug-in is created, properties are defined for the stage and the input and
output links. The name and meaning of each property is defined by the creator of
the plug-in. For details on how to define plug-ins, see “Manually Registering a
Plug-In Definition” on page 13-2.

Each property has a default value and optional help text. These properties and
default values are automatically assigned to a plug-in stage when you specify the
plug-in to use.

You can view the properties and enter more appropriate values using the Proper-
ties page on the Stage, Inputs, or Outputs page. The Properties page contains the
same fields and columns.

Plug-Ins and Plug-In Stages 13-11

The following screen shows the Properties page on the Stage page:

The properties are displayed in a grid which has the following columns:

• Name. Displays the caption text used to describe the property.

• Value. Displays the current setting for the property value. If the property
has not been edited, this is the default value for the property.

There are four buttons on this page:

• Insert Job Parameter… . Allows you to insert a job parameter as the value
for a chosen property. When you click this button, a list appears displaying
the currently defined job parameters. Choose one from the list. If you
cannot see the job parameter you want, click (New…) to define a new one.
The Job Parameters dialog box appears. For more information about this
dialog box and how to define a job parameter, see “Parameter Types” on
page 5-34. You can also insert a job parameter using the F9 key.

• Set to Default. Sets the value for the chosen property to the default value.
This button is only active when you choose a property to edit.

• All to Default. Sets the values for all properties to the default values.

13-12 DataStage Developer’s Guide

• Property Help. Displays the help text supplied by the creator of the plug-
in, if there is any. This button is only active when you choose a property to
edit.

You can edit the value for any properties listed in the grid. Click OK to save the
settings and to close the Stage dialog box.

Defining Character Set Maps
You can define a character set map for a plug-in stage using the NLS page of the
plug-in stage dialog box.

The default character set map (defined for the project or the job) can be changed by
selecting a map name from the list.

BCPLoad Stages 14-1

14
BCPLoad Stages

The BCPLoad stage is a passive plug-in stage provided with Informix DataStage.
It bulk loads data into a single table in a Microsoft SQL Server (Release 6.0 or 6.5)
or Sybase (System 10 or 11) database. The files are loaded into the target database
using the bulk copy API.

By default, the BCPLoad stage is configured to bulk load data into a Microsoft SQL
Server. You can configure the BCPLoad stage properties to bulk load data into a
Sybase SQL Server table using the Sybase DBLIB or CTLIB client libraries.

Note: The client libraries used by the BCPLoad stage are not supplied as part of
DataStage. You must obtain these libraries from your DBMS vendor and
ensure they are installed and configured on your system before attempting
to use the BCPLoad stage.

There is one input link to this stage which provides a sequence of rows to load into
the SQL Server or Sybase database table. The meta data for each input column
determines how it is loaded. There are no output links from this stage type.

Overview
Microsoft SQL Server and Sybase have a utility called BCP (Bulk Copy Program).
This command line utility copies SQL Server data to or from an operating system
file in a user-specified format. BCP uses the bulk copy API in the SQL Server client
libraries.

By using BCP, you can load large volumes of data into a table without recording
each insert in a log file. You can run BCP manually from a command line using
command line options (switches). A format (.fmt) file is created which is used to
load the data into the database.

14-2 DataStage Developer’s Guide

The BCPLoad stage uses the same API that BCP does, but loads data directly
without the need for a format file. The command line switches are set using stage
properties.

Because this version of the BCPLoad stage supports both Microsoft SQL Server
and Sybase, only BCP switches common to both servers have been included as
stage properties. The following command line switches are not supported for
Microsoft SQL Server:

• –T, trusted connection
• –q, quote identifiers

The following command line switches are not supported for Sybase:

• –I, interface file
• –J, the client character set
• –q, the data character set

For more information about the BCP switches that can be set, see “Stage Proper-
ties” on page 14-4.

The BCPLoad stage does not support the loading of native data files.

Before You Start
Before you can use the BCPLoad stage you must:

• Install and configure the SQL Server or Sybase client software. The
BCPLoad stage uses the BCP API in the DBLIB/CTLIB and NetLIB client
libraries. You must ensure that these components are installed on the
DataStage server which is acting as a client to the SQL Server DBMS. See
the documentation supplied with your DBMS for more details.

• Use one of the client tools (for example, ISQLW in the case of Microsoft
SQL Server or WISQL32 for Sybase) to ensure that the connectivity
between the DataStage server and the SQL Server host is operational.

• Create the table in the database on the SQL Server.

• Configure your database to use the fast copy (bulk load) option. By using
this option, the data is loaded without each insert being recorded in a log
file. If you do not specify this setting, all transactions are logged, slowing
down the rate at which data is loaded. The fast copy option can be
switched on by a stored procedure. For more information about using
stored procedures, see “Using Stored Procedures” on page 14-7.

BCPLoad Stages 14-3

Table Definitions
You can import the table definition from the table in your database on the SQL
Server by using the meta data import option in the DataStage Manager. The table
definition is imported via an ODBC connection to the Server. You can then load this
table definition into the stage connected to the BCPLoad stage.

For more information about importing meta data, see “Importing a Table Defini-
tion” on page 4-11.

SQL Data Types
The following SQL Server data types are supported by the BCPLoad stage:

• Bit
• Char
• DateTime
• Decimal
• Float
• Integer
• Money
• Numeric
• Real
• SmallDateTime
• SmallInt
• SmallMoney
• TinyInt
• VarChar

When you import meta data from your database table, these data types are
mapped to appropriate SQL data types by the ODBC driver. You can view the data
types used in the table definition with the DataStage Manager, or when you edit a
stage in your job design.

The following SQL Server data types are not supported by the BCPLoad stage:

• Binary
• VarBinary
• Image
• Text (large text which is a binary type)

14-4 DataStage Developer’s Guide

The BCPLoad Plug-In Definition
When the BCPLoad plug-in is installed, it is stored under Stage Types ➤ Ardent
in the Repository. You can view the definition of this plug-in using the DataStage
Manager, but you cannot edit it. When you choose to view the definition, the Stage
Type dialog box appears. This dialog box has up to six pages.

• General. Specifies where the BCPLoad plug-in is installed and contains a
description of the stage.

• Links. Specifies the type of input links which can connect to a BCPLoad
stage and gives the maximum and minimum links allowed.

• Creator. Contains information about the creator of this stage.

• Properties. Contains the stage properties for the BCPLoad stage with suit-
able default settings. For a list of the properties, see “Stage Properties” on
page 14-4.

• Dependencies. Contains the name of any DLLs used by the plug-in.

• NLS. Specifies how character set mapping is carried out for the stage.

Stage Properties
The following properties are defined for the BCPLoad stage. You can view them on
the Properties page in the Stage Type dialog box and change them when you edit
the stage instance.

• SQL-Server Name. The name of the SQL Server to connect to. This prop-
erty corresponds to the BCP –S switch. This property is optional and has no
default value. If you leave this property blank in the stage instance, the
stage assumes the SQL Server resides on the same machine as the
DataStage Server.

• User ID. The logon name of the SQL user. This property corresponds to the
BCP –U option. There is no default value for this property. You must enter
the name of the user when you edit the stage instance.

• Password. The password of the SQL user. This property corresponds to the
BCP –P option. There is no default value for this property. You must enter a
password when you edit the stage instance.

• Database Name. The name of the database to use on the SQL Server. This
property has no default value. You must enter the name of the database
when you edit the stage instance.

BCPLoad Stages 14-5

• Table Name. The name of the table to load data into. This property has no
default value. You must enter the name of the table to use when you edit
the stage instance.

• Before Load Stored Procedure. The name of a stored procedure that is
executed before the database table is loaded. This property is optional and
has no default value. For more information about using a before-load
stored procedure, see “Using Stored Procedures” on page 14-7.

• After Load Stored Procedure. The name of a stored procedure that is
executed after the database table is loaded. This property is optional and
has no default value. For more information about using an after-load stored
procedure, see “Using Stored Procedures” on page 14-7.

• Batch Size. The number of rows to include in the BCP batch. This property
corresponds to the BCP –b option. The default setting for this property is 0,
that is, all the data rows are treated in one batch. If an error occurs, all rows
are rolled back.

• Packet Size. The number of bytes per network packet sent to and from the
server. The default value is 4096. When you edit the stage instance, you can
enter any number from 512 through 65535.

• Use Source Identity Data. This property corresponds to the BCP /E
switch. Setting this property tells the SQL Server to use the identity values
that are passed to it by the BCPLoad stage, to populate the corresponding
identity column in the SQL Server table.

• Date Format. This property provides a workaround to the problem that
Microsoft SQL Server has with dates in YMD format. If your target table
has a date column and your data has dates in YMD format, a conversion is
required for the date to load successfully. By setting this property to ymd,
dates are automatically converted during loading to a format that
Microsoft SQL Server accepts.

• Client Library. The type of client library to use. The default setting is
MSDBLIB (the Microsoft DBLibrary). Other valid settings are SYBDBLIB
for the Sybase DBLibrary and SYBCTLIB for the Sybase CTLibrary.

Using the BCPLoad Stage
The BCPLoad plug-in is preinstalled and can be used immediately. To use this
plug-in, you must insert a plug-in stage in your job design:

1. Start the DataStage Designer and open your job design.

14-6 DataStage Developer’s Guide

2. Click the Plug-in Stage icon on the toolbar. The Plug-in Stage dialog box
appears listing all the plug-ins installed on the DataStage Server.

3. Choose BCPLoad from the list box and click OK.

4. Click in the Diagram window where you want to position the stage.

Link an output from a relevant stage in the job design to the input of the BCPLoad
stage.

Editing the BCPLoad Stage
The BCPLoad stage is edited in the same way as any other DataStage stage. When
you edit this stage, the BCPLoad Stage dialog box appears. This dialog box has two
pages:

• Stage. Contains the name of the stage you are editing. This page has up to
three pages:

– General. Contains an optional description of the stage and the stage type
(BCPLoad).

– Properties. Contains the stage properties and their current values. You
can edit the settings for the stage properties or specify job parameters. For
more information about using job parameters on this page, see “Using Job
Parameters” on page 14-6.

– NLS. If NLS is enabled and you do not want to use the project default
character set map, you can select an alternative character set map from
this page.

• Inputs. Contains the name of the input link. This page has two pages:

– General. Contains an optional description of the link.

– Columns. Contains the column definitions for the data you are loading
into your database table. The column definitions on this page are speci-
fied by the meta data defined on the output link of the connected stage.
For a description of how to enter and edit column definitions, see “Spec-
ifying Column Definitions” on page 5-18.

Using Job Parameters
You can use job parameters for any of the stage properties in the BCPLoad stage.
For a description of each of these properties, see “Stage Properties” on page 14-4.

BCPLoad Stages 14-7

When you validate or run the job, you are prompted to enter suitable values for the
properties.

To use a job parameter:

1. Define the job parameter. For more details about defining job parameters, see
“Parameter Types” on page 5-34.

2. Click the Properties tab on the Stage page in the BCPLoad Stage dialog box.
The Properties page appears at the front of the Stage page.

3. Click the Value cell for the property you want to edit.

4. Click Insert Job Parameter… or press F9. A list appears displaying the
currently defined job parameters. Choose one from the list, or choose New to
invoke the Job Properties dialog box to define a new parameter.

5. Click OK to close the BCPLoad Stage dialog box. Any changes are saved
when you save your job design.

Defining Character Set Maps
You can define a character set map for the stage instance using the NLS page of the
Stage Type dialog box. You can choose a specific character set map from the list or
accept the default setting for the whole project.

Note: The list contains all the character set maps that are loaded and ready for
use. You can view other maps that are supplied with DataStage by clicking
Show all maps, but these maps cannot be used unless they are loaded
using the DataStage Administrator. For more information, see DataStage
Administrator’s Guide.

Using Stored Procedures
You can enter the name of a stored procedure to execute before or after loading the
database. Before-load stored procedures can be used to perform tasks such as
dropping indexes and turning on the database bulk copy option. After-load stored
procedures can be used to turn off the bulk copy option and recreate any indexes.
For a detailed description of how to write a stored procedure, see the SQL Server
documentation.

The stored procedure name is entered as the value for the Before Load Stored
Procedure or After Load Stored Procedure stage property. As well as entering the
name of a stored procedure you can also include parameter values. To enter

14-8 DataStage Developer’s Guide

parameters for the stored procedure, use the following format in the Value field on
the Properties page on the Stage page:

procedurename P1, P2, P3, …, Pn

procedurename is the name of the stored procedure. P1…Pn are parameter values,
in the order expected by the stored procedure. Note that string values must be
quoted.

If you want to return messages from a stored procedure and write them to the job
log file, you can use the output parameters DSSeverity and DSMessage. These
parameters return messages to the job log file with an appropriate severity. The
type of message written to the job log file depends on the value returned by the
DSSeverity parameter:

• Return value of 0. Nothing is written.

• Return value of 1. An informational message is written.

• Return value of 2. A warning message is written.

• Return value of 3. A fatal message is written. The DataStage job aborts and
any return values from the stored procedure other than the DataStage
expected output parameters, are ignored.

For more information about the job log file, see DataStage Operator’s Guide.

The following example of a before-load stored procedure is supplied as part of the
BCPLoad demo SQL script, BCPDemo.sql. For more information about the
BCPLoad demo, see “The BCPLoad Demo” on page 14-11.

This stored procedure demonstrates the use of the output parameters DSSeverity
and DSMessage:

create proc DemoBeforeSP
@lReplace bit,
@DSSeverity int output,
@DSMessage varchar(255) = "" output

as
/* Remove the following three lines if running on Sybase */
declare @sSetDBOption varchar(255)
select @sSetDBOption = ’sp_dboption’ + DB_NAME() + ", ’select
➥ into/bulkcopy’, TRUE"

exec (@sSetDBOption)

if @lReplace = 1
begin
truncate table BCPLoadSample

end

BCPLoad Stages 14-9

if @@ERROR = 0
begin

select @DSMessage = "Before SP completed: "
if @lReplace = 1

begin
select @DSMessage = @DSMessage + "replacing existing data"
end

else
begin
select @DSMessage = @DSMessage + "appending data"

end

select @DSSeverity = 1 /* INFO */
end

else
begin

select @DSMessage = "Before SP failed"
select @DSSeverity = 2 /* WARNING */

end

GO

To use this stored procedure, enter DemoBeforeSP 1,DSSeverity,DSMessage
as the value for the Before Load Stored Procedure property when you edit the
stage instance:

14-10 DataStage Developer’s Guide

To use existing stored procedures, enter the name of the stored procedure and
appropriate parameter values as the value for the Before Load Stored Procedure
or After Load Stored Procedure property.

For example, say your stored procedure includes the following:

create proc sp_TrustyDebuggedProcedure
@strTableName char(30),
@strSurname char(30),
@iRowCount int = 0 output

as

...

...

If you want to use this procedure as a before-load procedure, you would enter
sp_TrustyDebuggedProcedure "Table1","Smith" in the Value field for the
Before Load Stored Procedure property. “Table1” and “Smith” are passed in as
strTableName and strSurname respectively.

If you want to modify an existing stored procedure to return a severity warning
and an error message, the create procedure needs to be modified to include the two
output parameters DSSeverity and DSMessage. In the earlier example, the create
procedure would become:

create proc sp_TrustyDebuggedProcedure
@strTableName char(30),
@strSurname char(30),
@iRowCount int = 0 output,
@DSSeverity int output,
@DSMessage varchar(255) = "" output

as

...

.../* Somewhere in the procedure set appropriate values for DSSeverity
and DSMessage*/

In this case, you would enter the following in the Value field for the Before Load
Stored Procedure:

sp_TrustyDebuggedProcedure "Table1","Smith",0,DSSeverity,DSMessage

You can include job parameters to represent the value of a stored procedure param-
eter. To use job parameters in the earlier example, you would enter the following
in the Value field for the Before Load Stored Procedure:

sp_TrustyDebuggedProcedure #Table#,#Name#,0,DSSeverity,DSMessage

Table and Name are the names of two defined job parameters.

BCPLoad Stages 14-11

The BCPLoad Demo
As well as the BCPLoad plug-in itself and example stored procedures, a BCPLoad
demo is also supplied. The demo is designed to show how the BCPLoad stage
works, using a simple three-stage job design.

The demo comprises three files which are found in the \BCPDEMO directory on
the DataStage CD:

• BCPDemo.txt. An exported job with associated table definitions.

• BCPDemo.sql. An SQL script that creates a demo target table in a chosen
database on your SQL Server.

• BCPDemo.csv. A sequential file containing 5000 rows of sample data.

The BCPLoad demo job has three stages: a Sequential File stage (for the sample
data), a Transformer stage for mapping column names from the source data to the
column names in the target table, and a BCPLoad stage for bulk loading the data
into the target table.

You can work through the demo step by step, by following these instructions:

1. Using the client configuration tools supplied by your SQL Server vendor,
ensure that you have connectivity from your DataStage Server machine to
your target SQL Server via DBLIB.

2. Using an appropriate SQL Server tool (for example, ISQL, ISQLW, WISQL32,
or Enterprise Manager), load the BCPDemo.sql script.

Note: For Sybase users. If you are loading the sample into a Sybase database,
you must comment out the marked section in the DemoBeforeSP and
DemoAfterSP stored procedures. You must be logged into the Master
database in order to set the select into/bulkcopy database option. Once
you have run the supplied script, manually set the bulk copy option for
the selected database, otherwise the BCPLoad stage will use the BCP
slow copy mode.

The script creates a table called BCPLoadSample as follows:

CREATE TABLE BCPLoadSample(
CompanyID numeric(18,0) IDENTITY NOT NULL,
CompanyName char (30) NULL,
Address varchar (255) NULL,
State char (30) NULL,
StillTrading bit NOT NULL,
SummaryDate smalldatetime NULL,
Time Updated datetime NULL,

14-12 DataStage Developer’s Guide

AnnualProfit money, NULL,
CompanyFees smallmoney NULL,
NumberOfStaff smallint NULL,
NumberOfVPs tinyint NULL,
TaxRate numeric (18, 4) NULL,
BestSellerUnitsSold real NULL,
TotalUnitsSold float NULL

)

This table includes all the data types supported by the BCPLoad stage.

3. Import the BCPDemo.txt file using Tools ➤ Import ➤ DataStage Components
in the DataStage Manager. For more details about importing job components,
see Chapter 19, “Importing, Exporting, and Packaging Jobs.”

During the import, the job is imported into your chosen project and two new
table definitions are created:

• BCPLoad. Defines the column definitions for the output link of the Trans-
former stage, which is the input to the target table.

• Sequential. Defines the column definitions for the source data in the
Sequential File stage.

These are stored under Table Definitions ➤ BCPDemo in the Repository.

4. Copy the BCPDemo.csv sample data file to the project directory containing the
imported job. For example, if you were in the project dstage when you
imported the job, copy the sample data file to the directory
\Ardent\DataStage\dstage.

5. Start the DataStage Designer and open the BCPDemo job. The following job
design appears in the Job window:

BCPLoad Stages 14-13

6. Edit the BCPLoad stage. The BCPLoad Stage dialog box appears:

7. Click the Properties tab. The Properties page appears at the front:

14-14 DataStage Developer’s Guide

8. Edit the following properties to set appropriate values:

• SQL-Server Name
• User ID
• Password (if required)
• Database Name
• Table Name

9. Click OK to close the BCPLoad Stage dialog box.

10. Recompile the job to use the new settings.

11. Start the DataStage Director and run the job. You can use a Monitor window
to monitor the rows being written. For more information, see DataStage Oper-
ator’s Guide.

Orabulk Stages 15-1

15
Orabulk Stages

The Orabulk stage is a plug-in stage provided with Informix DataStage. It gener-
ates control and data files for bulk loading into a single table on an Oracle target
database. The files are suitable for loading into the target database using the Oracle
command sqlldr.

One input link provides a sequence of rows to load into an Oracle table. The meta
data for each input column determines how it is loaded. One optional output link
provides a copy of all input rows to allow easy combination of this stage with other
stages.

Using the Orabulk Stage
The Orabulk plug-in is preinstalled and can be used immediately. To use this plug-
in, you must insert a plug-in stage in your job design:

1. Start the DataStage Designer and open your job design.

2. Click the Plug-in Stage icon on the toolbar. The Plug-in Stage dialog box
appears with a list of the plug-ins installed on the DataStage server.

3. Choose Orabulk from the list box and click OK.

4. Click in the Diagram window where you want to position the stage.

Link an output from the relevant stage to the input of the Orabulk stage. The
output should deliver a sequence of rows. To store these rows or to process them
further, link the output of this stage to an input of another stage. Otherwise, leave
the output of this stage unconnected.

15-2 DataStage Developer’s Guide

Renaming Columns and Converting Values
You cannot rename columns or convert values during an Orabulk stage. You must
do this in an earlier stage. The column names of the input rows must match the
column names in the target Oracle table. See the description of the NAMEMAP
stage property in “Specifying the Stage Properties” on page 15-3 for a way to map
characters in a column name. The data types of the columns should also
correspond.

Integrity Constraints
Values for columns should satisfy any integrity constraints that will be active in the
Oracle database when the data is loaded, for example, values that must be nonnull,
or unique, or must already exist in other tables. Otherwise, some rows may be
rejected when the sqlldr command is run.

Cleaning and Validating Data
The Orabulk stage does not validate data values, but it does clean up some data
values to match the length, precision, or scale of the data type. For example, CHAR
and VARCHAR values are truncated on the right. DECIMAL and NUMERIC
values are rounded to their specified scale. If you want to clean data to ensure that
it matches the integrity constraints of the target table, you must do so in an earlier
stage.

Orabulk Stages 15-3

Specifying the Stage Properties
You can specify the following properties in addition to the standard stage
properties:

Property Description

Control file name A local pathname for the Oracle sqlldr control file.

• If no value is specified, the control information is output
at the start of the data file. If there is more than one data
file, each data file gets a copy of the same control
information.

• If a pathname is specified, a single control file is gener-
ated which can be used with any of the data files
generated. If the pathname has no suffix, sqlldr adds the
suffix .ctl to the pathname.

If a control file already exists, it is truncated before
processing; if a control file does not exist, it is created.

Data file name A local pathname for the Oracle sqlldr data file. If the
pathname has no suffix, sqlldr adds the suffix .dat to the
pathname. If there is more than one data file, the files are
sequentially numbered, for example, datafile1, datafile2, and
so on. You can specify a position for the numbering by
including a % character in the file name. For example, the
value data%file produces files named data1file, data2file,
and so on. If a data file already exists, it is truncated before
processing; if a data file does not exist, it is created.

Oracle table
name

The name of the target table that the files are loaded into on
the Oracle database. This value must be identical to the
target table name.

Loading mode One of the following values:

INSERT Inserts the rows into the table. It can be used
only if the target table is empty.

APPEND Appends new rows to the table if they do not
conflict with existing tables.

REPLACE Deletes existing rows in the table, using an
SQL DELETE statement, before inserting the
new rows.

15-4 DataStage Developer’s Guide

Any property value can contain a reference to a job parameter as #param#. This
causes the current value of job parameter param to be substituted. This lets you
specify different control and data file names for different runs of a DataStage job.

The BEFORE and AFTER subroutines can be used for a variety of purposes, such
as notifying an operator that the files are available, or copying the files to the
Oracle database and running sqlldr.

Defining Character Set Maps
You can define a character set map for a particular Orabulk stage using the NLS
page of the Stage dialog box. You can select a specific character set map from the
list or accept the default setting for the whole project.

Note: The list contains all character set maps that are loaded and ready for use.
You can view other maps that are supplied with DataStage by clicking
Show all maps, but these maps cannot be used unless they are loaded
using the DataStage Administrator. For more information, see DataStage
Administrator’s Guide.

TRUNCATE Deletes all existing rows in the table with an
SQL TRUNCATE TABLE statement (Oracle
Release 7.1 or later only).

Number of files
to generate

The number of data, or combined control and data files to be
generated. A value greater than 1 generates multiple distinct
files that must be loaded using sqlldr with the DIRECT and
PARALLEL keywords only. The default value is 1.

Size of row
chunks in each
data file

If the value of NUMFILES is greater than 1, this value deter-
mines how many rows are output to each of the distinct data
files in turn. The default value is 1000.

Column name
characters to map

A string of character pairs to map column names from their
internal DataStage names to the column names used by the
Oracle bulk loader. The format of this string is as follows:
character 1 is mapped to character 2, character 3 is mapped
to character 4, and so on. For example, the string ._ (period
underscore), causes all periods in column names to be
mapped to underscores. The string aAbBcCdDeE and so on
maps lowercase characters to uppercase characters.

Property Description

Orabulk Stages 15-5

Loading the Files into Oracle
Once the control and data files have been completed, you can transfer them to the
target Oracle database using the Oracle sqlldr command.

Before you run sqlldr, check that the following environment variables are set
correctly:

Running sqlldr
This section includes examples of syntax used for the sqlldr command running
under UNIX. For more information see the Oracle manual Oracle Server Utilities.
Every command line includes these syntax elements:

To load a single combined control and data file, use this command:

sqlldr userid=username/password control=datafile log=logfile bad=badfile

To load separate single control and data files, use this command:

sqlldr userid=username/password control=ctlfile data=datafile log=logfile
bad=badfile

ORACLE_HOME This must be set to the Oracle installation directory.

ORACLE_SID This must be set to the name of your Oracle database
instance.

PATH This must include the Oracle bin subdirectory.

username/password The Oracle user name and password, separated by a slash (/),
to be used to log on to the database. username must have
appropriate privileges for the database and the table to be
loaded. Use UNIX shell quoting or escaping conventions to
include white space or shell characters in the password.

datafile Pathname of the sqlldr data file, or the combined control and
data file.

ctlfile Pathname of the sqlldr control file.

logfile Pathname of a file for the sqlldr log.

badfile Pathname into which sqlldr writes rows that could not be
loaded. The rows are written in sqlldr format suitable for
loading again when any problem has been resolved.

15-6 DataStage Developer’s Guide

To load a single combined control and data file in Oracle DIRECT mode, add the
DIRECT keyword as follows:

sqlldr userid=username/password control=datafile log=logfile bad=badfile
direct=true

Note: DIRECT loading may require some administrator actions before and after
loading to preserve database integrity. For more information, see Oracle
Server Utilities.

To load multiple data files in parallel, run several sqlldr commands, each in its own
UNIX process; for example, to load two data files in parallel, run the following two
commands:

sqlldr userid=username/password control=ctlfile data=datafile1 log=logfile1
bad=badfile1 direct=true parallel=true &

sqlldr userid=username/password control=ctlfile data=datafile2 log=logfile2
bad=badfile2 direct=true parallel=true &

These could be generated with a shell script. Each command uses the same control
file, but separate data files, log files, and bad files.

Errors and Bad Rows
Any errors that occur during processing are reported in the DataStage log files.
Possible errors include running out of disk space to write a control or data file, or
insufficient operating system permissions to create and write these files. Errors
that occur as the files are loaded into Oracle are recorded in the sqlldr log file.

Rejected rows are written to the bad file. The main reason for rejected rows is an
integrity constraint in the target table; for example, null values in NOT NULL
columns, nonunique values in UNIQUE columns, and so on. The bad file is in the
same format as the input data file.

You can edit the file to correct errors and then resubmit it using the same control
file. If the MODE property was not APPEND, you should edit the control file to
change the REPLACE, TRUNCATE, or INSERT keyword to APPEND. This
ensures that a subsequent sqlldr run does not delete rows you have already loaded.
Each run of sqlldr appends new rejected rows to the bad file. You should manually
truncate or delete the bad file after processing it so that rejected records from
previous runs do not show up again.

Orabulk Stages 15-7

Empty and Null Values
Both empty and null values in input columns are loaded into Oracle as null values.
If you examine the data file produced, you may find that some rows of values have
fewer comma-delimited fields. These indicate trailing null values for columns not
shown. If a target column is fixed-width, Oracle pads nonempty values on the
right with blanks.

15-8 DataStage Developer’s Guide

Programming in DataStage 16-1

16
Programming
in DataStage

This chapter describes the programming tasks that you can perform in DataStage.
At the heart of all programming in DataStage is the BASIC language. For more
information about BASIC syntax, see “Syntax Help for Functions and Statements”
in DataStage Developer’s Help.

There are several areas within DataStage where you may need to enter some code:

• Defining custom transforms. The function specified in a transform defini-
tion converts the data in a chosen column. See “Transforms” on page 11-15
for details.

• Defining custom routines to use as building blocks within other program-
ming tasks. For example, you may define a routine which will then be
reused by several custom transforms. This chapter tells you how to view,
edit, and create your own BASIC routines using the DataStage Manager.

• Defining derivations, key expressions, and constraints while editing a
Transformer stage. See “The DataStage Expression Editor” on page 11-12
for details.

• Defining before-stage and after-stage subroutines. These subroutines
perform an action before or after a stage has processed data. These subrou-
tines can be specified for Aggregator, Transformer, and some plug-in
stages. See Chapter 11, Chapter 12, and Chapter 13 for details.

• Defining before-job and after-job subroutines. These subroutines perform
an action before or after a job is run and are set as job properties. For more
information, see “Job Properties” on page 5-30.

16-2 DataStage Developer’s Guide

• Defining job control routines. These subroutines can be used to control
other jobs from within the current job. For more information, see “Job Prop-
erties” on page 5-30.

Programming Components
There are different types of programming components within DataStage. They fall
within three broad categories:

• Built-in. DataStage comes with several built-in programming components
that you can reuse within your jobs as required. Some of the built-in
components are accessible using the DataStage Manager, and you can copy
code from these. Others are only accessible from the Expression Editor, and
the underlying code is not visible.

• Custom. You can also define your own programming components using
the DataStage Manager, specifically routines and custom transforms. These
are stored in the DataStage Repository and can be reused for other jobs and
by other DataStage users.

• External. You can use certain types of external component from within
DataStage. If you have a large investment in custom UniVerse functions or
ActiveX (OLE) functions, then it is possible to call these from within
DataStage. This is done by defining a wrapper routine which in turn calls
the external functions. Note that the mechanism for including custom
UniVerse functions is different from including ActiveX (OLE) functions.
The former is described in this chapter, the latter under “Importing
External ActiveX (OLE) Functions” on page 4-49.

The following sections discuss programming terms you will come across in
DataStage.

Routines
Routines are stored in the Routines branch of the DataStage Repository, where you
can create, view or edit them using the Routine dialog box. The following program
components are classified as routines:

• Transform functions. These are functions that you can use when defining
custom transforms. DataStage has a number of built-in transform functions
which are located in the Routines ➤ Examples ➤ Functions branch of the
Repository. You can also define your own transform functions in the
Routine dialog box.

Programming in DataStage 16-3

• Before/After subroutines. When designing a job, you can specify a subrou-
tine to run before or after the job, or before or after an active stage.
DataStage has a number of built-in before/after subroutines, which are
located in the Routines ➤ Built-in ➤ Before/After branch in the Reposi-
tory. You can also define your own before/after subroutines using the
Routine dialog box.

• Custom UniVerse functions. These are specialized BASIC functions that
have been defined outside DataStage. Using the Routine dialog box, you
can get DataStage to create a wrapper that enables you to call these func-
tions from within DataStage. These functions are stored under the
Routines branch in the Repository. You specify the category when you
create the routine. If NLS is enabled, you should be aware of any mapping
requirements when using custom UniVerse functions. If a function uses
data in a particular character set, it is your responsibility to map the data to
and from UNICODE.

• ActiveX (OLE) functions. You can use ActiveX (OLE) functions as
programming components within DataStage. Such functions are made
accessible to DataStage by importing them. This creates a wrapper that
enables you to call the functions. After import, you can view and edit the
BASIC wrapper using the Routine dialog box. By default, such functions
are located in the Routines ➤ Class name branch in the Repository, but you
can specify your own category when importing the functions.

When using the Expression Editor, all of these components appear under the DS
Routines… command on the Suggest Operand menu.

A special case of routine is the job control routine. Such a routine is used to set up
a DataStage job that controls other DataStage jobs. Job control routines are speci-
fied in the Job control page on the Job Properties dialog box. Job control routines
are not stored under the Routines branch in the Repository.

Functions
Functions take arguments and return a value. The word “function” is applied to
many components in DataStage:

• BASIC functions. These are one of the fundamental building blocks of the
BASIC language. When using the Expression Editor, you can access the
BASIC functions via the Function… command on the Suggest Operand
menu.

• DataStage BASIC functions. These are special BASIC functions that are
specific to DataStage. These are mostly used in job control routines.

16-4 DataStage Developer’s Guide

DataStage functions begin with DS to distinguish them from general
BASIC functions. When using the Expression Editor, you can access the
DataStage BASIC functions via the DS Functions… command on the
Suggest Operand menu.

The following items, although called “functions,” are classified as routines and are
described under “Routines” on page 16-2. When using the Expression Editor, they
all appear under the DS Routines… command on the Suggest Operand menu.

• Transform functions
• Custom UniVerse functions
• ActiveX (OLE) functions

Expressions
An expression is an element of code that defines a value. The word “expression” is
used both as a specific part of BASIC syntax, and to describe portions of code that
you can enter when defining a job. Areas of DataStage where you can use such
expressions are:

• Defining breakpoints in the debugger

• Defining column derivations, key expressions and constraints in Trans-
former stages

• Defining a custom transform

In each of these cases the DataStage Expression Editor guides you as to what
programming elements you can insert into the expression.

Subroutines
A subroutine is a set of instructions that perform a specific task. Subroutines do not
return a value. The word “subroutine” is used both as a specific part of BASIC
syntax, but also to refer particularly to before/after subroutines which carry out
tasks either before or after a job or an active stage. DataStage has many built-in
before/after subroutines, or you can define your own.

Before/after subroutines are included under the general routine classification as
they are accessible under the Routines branch in the Repository.

Programming in DataStage 16-5

Macros
DataStage has a number of built-in macros. These can be used in expressions, job
control routines, and before/after subroutines. The available macros are concerned
with ascertaining job status.

When using the Expression Editor, they all appear under the DS Macro…
command on the Suggest Operand menu.

The Routine Dialog Box
When you create, view, or edit a routine under the Routines branch in the
DataStage Manager, the Routine dialog box appears:

This dialog box has four pages:

• General. Displayed by default. Contains general information about the
routine, including:

– Routine name. The name of the function or subroutine.

16-6 DataStage Developer’s Guide

– Type. The type of routine. There are three types of routine: Transform
Function, Before/After Subroutine, or Custom UniVerse Function.

– Category. The branch the routine is stored under in the Repository.

– Number of arguments. The maximum allowed is 10, the minimum is 1.

– External Catalog Name. This is only available if you have chosen Custom
UniVerse Function from the Type box. Enter the cataloged name of the
external routine.

– Short description. An optional brief description of the routine. The text
entered in this field is displayed when you choose View ➤ Details from
the DataStage Manager window or print a report.

– Long description. An optional detailed description of the routine.

• Creator. Contains information about the creator and version number of the
routine, including:

– Vendor. The company who created the routine.

Programming in DataStage 16-7

– Author. The creator of the routine.

– Version. The version number of the routine, which is used when the
routine is imported. The Version field contains a three-part version
number, for example, 3.1.1. The first part of this number is an internal
number used to check compatibility between the routine and the
DataStage system. The second part of this number represents the release
number. This number should be incremented when major changes are
made to the routine definition or the underlying code. The new release of
the routine supersedes any previous release. Any jobs using the routine
use the new release. The last part of this number marks intermediate
releases when a minor change or fix has taken place.

If you are creating a routine definition, the first part of the version
number is set according to the version of DataStage you are using. You
can edit the rest of the number to specify the release level. Click the part
of the number you want to change and enter a number directly, or use
the arrow button to increase the value.

– Copyright. Copyright information.

16-8 DataStage Developer’s Guide

• Code. This page is used to view or write the code for the routine. The
toolbar contains buttons for cutting, copying, pasting, and formatting code,
and for activating Find (and Replace). The main part of this page consists of
a multiline text box with scroll bars. For more information on how to use
this page, see “Entering Code” on page 16-11.

Note: This page is not available if you selected Custom UniVerse Function
on the General page.

• Dependencies. This page allows you to enter any locally or globally cata-
loged functions or routines that are used in the routine you are defining.
This is to ensure that, when you package any jobs using this routine for
deployment on another system, all the dependencies will be included in
the package. The information required is as follows:

– Type. The type of item upon which the routine depends. Choose from the
following:

Local Locally cataloged UniVerse BASIC functions and subroutines.

Programming in DataStage 16-9

Global Globally cataloged UniVerse BASIC functions and subroutines.

File A standard file.

ActiveX An ActiveX (OLE) object (not available on UNIX-based
systems).

– Name. The name of the function or routine. The name required varies
according to the type of dependency:

Local The catalog name.

Global The catalog name.

File The file name.

ActiveX The Name entry is actually irrelevant for ActiveX objects. Enter
something meaningful to you (ActiveX objects are identified by
the Location field).

– Location. The location of the dependency. A browse dialog is available to
help with this. This location can be an absolute path, but it is recom-
mended you specify a relative path using the following environment
variables:

%SERVERENGINE% – UniVerse UV account directory (normally
C:\Ardent\DataStage\ServerEngine).

%PROJECT% – Current project directory.

%SYSTEM% – System directory on Windows NT or /usr/lib on UNIX.

The Browse Files dialog box is shown below. You cannot navigate to the parent
directory of an environment variable.

16-10 DataStage Developer’s Guide

When browsing for the location of a file on a UNIX server, there is an entry called
Root in the Base Locations drop-down list.

There are five buttons in the Routine dialog box. Their availability depends on the
action you are performing and the type of routine you are editing.

• Close. Closes the Routine dialog box. If you have any unsaved changes,
you are prompted to save them.

• Save. Saves the routine.

• Compile… . Compiles a saved routine. This button is available only when
there are no outstanding (unsaved) changes.

• Test… . Tests a routine. This button is available only for routines of type
Transform Function and Custom UniVerse Function. This is because you
cannot test before-subroutines and after-subroutines in isolation. This
button is active only when the routine has compiled or referenced
successfully.

• Help. Invokes the Help system.

Creating a Routine
To create a new routine, select the Routines branch in the DataStage Manager
window and do one of the following:

• Choose File ➤ New Routine… .
• Choose New Routine… from the shortcut menu.
• Click the New icon on the toolbar.

The Routine dialog box appears. On the General page:

1. Enter the name of the function or subroutine in the Routine name field. This
should not be the same as any BASIC function name.

2. Choose the type of routine you want to create from the Type drop-down list
box. There are three options:

• Transform Function. Choose this if you want to create a routine for a
Transform definition.

• Before/After Subroutine. Choose this if you want to create a routine for a
before-stage or after-stage subroutine or a before-job or after-job
subroutine.

Programming in DataStage 16-11

• Custom UniVerse Function. Choose this if you want to refer to an external
routine, rather than define one in this dialog. If you choose this, the Code
page will not be available.

3. Enter a category name in the Category field. This name is used to create a
branch under the main Routines branch. If you do not enter a name in this
field, the routine is created under the main Routines branch.

4. Specify the number of arguments in the Number of arguments box. The
number of arguments is set to 2 (and cannot be edited) for a routine type of
Before/After Subroutine. The number of arguments is set to 1 by default for a
routine type of Transform Function or External Function, but you can
increase this number using the arrow buttons.

5. Optionally enter a brief description of the routine in the Short description
field. The text entered here is displayed when you choose View ➤ Details
from the DataStage Manager window.

6. Optionally enter a more detailed description of the routine in the Long
description field.

Once this page is complete, you can enter creator information on the Creator page,
but this is optional. You must then enter your code on the Code page.

Entering Code
You can enter or edit code for a routine on the Code page in the Routine dialog box.

The first field on this page displays the routine name and the number of argu-
ments. If you want to change these properties, you must edit the fields on the
General page.

The main part of this page contains a multiline text entry box, in which you must
enter your code. To enter code, click in the box and start typing. You can use the
following standard Windows edit functions in this text box:

• Delete using the Del key
• Cut using Ctrl-X
• Copy using Ctrl-C
• Paste using Ctrl-V
• Go to the end of the line using the End key
• Go to the beginning of the line using the Home key
• Select text by clicking and dragging or double-clicking

16-12 DataStage Developer’s Guide

Some of these edit functions are included in a shortcut menu which you can
display by clicking the right mouse button. You can also cut, copy, and paste code
using the icons in the toolbar.

Your code must only contain BASIC functions and statements supported by
DataStage. If you are unsure of the supported functions and statements, or the
correct syntax to use, see DataStage Developer’s Help for a complete list of
supported DataStage BASIC functions.

If NLS is enabled, you can use non-English characters in the following
circumstances:

• In comments
• In string data (that is, strings contained in quotation marks)

The use of non-English characters elsewhere causes compilation errors.

If you want to format your code, click the Format icon on the toolbar.

The last field on this page displays the return statement for the function or subrou-
tine. You cannot edit this field.

Saving Code
When you have finished entering or editing your code, the routine must be saved.
A routine cannot be compiled or tested if it has not been saved. To save a routine,
click Save in the Routine dialog box. The routine properties (its name, description,
number of arguments, and creator information) and the associated code are saved
in the Repository.

Compiling Code
When you have saved your routine, you must compile it. To compile a routine,
click Compile… in the Routine dialog box. If the routine compiles successfully, a
message box appears. Click OK to acknowledge the message. The routine is
marked as “built” in the Repository and is available for use. If the routine is a
Transform Function, it is displayed in the list of available functions when you edit
a transform. If the routine is a Before/After Subroutine, it is displayed in the drop-
down list box of available subroutines when you edit an Aggregator, Transformer,
or plug-in stage, or define job properties.

Programming in DataStage 16-13

If the routine failed to compile, the Compilation Output window appears
displaying the errors generated:

Before you start to investigate the source of the error, you may find it useful to
move the Compilation Output window alongside or below the Routine dialog box,
as you need to see both windows to troubleshoot the error.

To troubleshoot the error, double-click the error in the Compilation Output
window. DataStage attempts to find the corresponding line of code that caused the
error and highlights it in the Routine dialog box. You must edit the code to remove
any incorrect statements or to correct any syntax errors.

If NLS is enabled, watch for multiple question marks in the Compilation Output
window. This generally indicates that a character set mapping error has occurred.

When you have modified your code, click Save then Compile… . If necessary,
continue to troubleshoot any errors, until the routine compiles successfully.

Once the routine is compiled, you can use it in other areas of DataStage or test it.
For more information, see “Testing a Routine” on page 16-13.

Testing a Routine
Before using a compiled routine, you can test it using the Test… button in the
Routine dialog box. The Test… button is activated when the routine has been
successfully compiled.

16-14 DataStage Developer’s Guide

Note: The Test… button is not available for a Before/After Subroutine. Routines
of this type cannot be tested in isolation and must be executed as part of a
running job.

When you click Test…, the Test Routine dialog box appears:

This dialog box contains a grid and buttons. The grid has a column for each argu-
ment (called Arg1, Arg2, … Argn) and one for the test result.

You can add and edit rows in the grid to specify the values for different test cases.
For more information about using and editing a grid, see Appendix B, “Editing
Grids.”

To run a test with a chosen set of values, click anywhere in the row you want to use
and click Run. If you want to run tests using all the test values, click Run All. The
Result… column is populated as each test is completed.

Programming in DataStage 16-15

To see more details for a particular test, double-click the Result… cell for the test
you are interested in. The Test Output window appears, displaying the full test
results:

Click Close to close this window.

If you want to delete a set of test values, click anywhere in the row you want to
remove and press the Delete key or choose Delete row from the shortcut menu.

When you have finished testing the routine, click Close to close the Test Routine
dialog box. Any test values you entered are saved when you close the dialog box.

Using Find and Replace
If you want to search the code for specific text, or replace text, you can use Find
and Replace. To start Find, click the Find icon on the Code page toolbar. The Find
dialog box appears:

16-16 DataStage Developer’s Guide

This dialog box has the following fields, options, and buttons:

• Find what. Contains the text to search for. Enter appropriate text in this
field. If text was highlighted in the code before you chose Find, this field
displays the highlighted text.

• Match case. Specifies whether to do a case-sensitive search. By default this
check box is cleared. Select this check box to do a case-sensitive search.

• Up and Down. Specifies the direction of search. The default setting is
Down. Click Up to search in the opposite direction.

• Find Next. Starts the search. This button is unavailable until you specify
text to search for. Continue to click Find Next until all occurrences of the
text have been found.

• Cancel. Closes the Find dialog box.

• Replace… . Displays the Replace dialog box. For more information, see
“Replacing Text” on page 16-16.

• Help. Invokes the Help system.

Replacing Text

If you want to replace text in your code with an alternative text string, click the
Replace… button in the Find dialog box. When you click this button, the Find
dialog box changes to the Replace dialog box:

This dialog box has the following fields, options, and buttons:

• Find what. Contains the text to search for and replace.

Programming in DataStage 16-17

• Replace with. Contains the text you want to use in place of the search text.

• Match case. Specifies whether to do a case-sensitive search. By default this
check box is cleared. Select this check box to do a case-sensitive search.

• Up and Down. Specifies the direction of search and replace. The default
setting is Down. Click Up to search in the opposite direction.

• Find Next. Starts the search and replace. This button is unavailable until
you specify text to search for. Continue to click Find Next until all occur-
rences of the text have been found.

• Cancel. Closes the Replace dialog box.

• Replace. Replaces the search text with the alternative text.

• Replace All. Performs a global replace of all instances of the search text.

• Help. Invokes the Help system.

Viewing and Editing a Routine
You can view and edit any user-written functions and subroutines in your project.
To view or modify a function or subroutine, select the function or subroutine in the
display area and do one of the following:

• Choose File ➤ Properties… .
• Choose Properties… from the shortcut menu.
• Click the Properties icon on the toolbar.
• Double-click the function or subroutine in the display area.

The Routine dialog box appears. You can edit any of the fields and options on any
of the pages. If you make any changes, you must save, compile, and test the code
before closing the Routine dialog box. See earlier in this chapter for more
information.

Copying a Routine
You can copy an existing routine using the DataStage Manager. To copy a routine,
select it in the display area and do one of the following:

• Choose File ➤ Copy.
• Choose Copy from the shortcut menu.
• Click the Copy icon on the toolbar.

16-18 DataStage Developer’s Guide

The routine is copied and a new routine is created under the same branch in the
project tree. By default, the name of the copy is called CopyOfXXX, where XXX is
the name of the chosen routine. An edit box appears allowing you to rename the
copy immediately. The new routine must be compiled before it can be used.

Renaming a Routine
You can rename any of the existing routines using the DataStage Manager. To
rename an item, select it in the display area and do one of the following:

• Click the routine again. An edit box appears and you can enter a different
name or edit the existing one. Save the new name by pressing Enter or by
clicking outside the edit box.

• Choose File ➤ Rename. An edit box appears and you can enter a different
name or edit the existing one. Save the new name by pressing Enter or by
clicking outside the edit box.

• Choose Rename from the shortcut menu. An edit box appears and you can
enter a different name or edit the existing one. Save the new name by
pressing Enter or by clicking outside the edit box.

• Double-click the routine. The Routine dialog box appears and you can edit
the Routine name field. Click Save, then Close.

Debugging, Compiling, and Releasing a Job 17-1

17
Debugging, Compiling,

and Releasing a Job

This chapter describes how to create and release an executable job. When you have
edited all the stages in a job design, you can create an executable job by compiling
your job design. The debugger helps you to iron out any problems in your design.
The job can then be validated and run using the DataStage Director.

If you want to ship the executable job to another DataStage system, you must
release the job before packaging it for deployment. For more information about
packaging a job, see Chapter 19, “Importing, Exporting, and Packaging Jobs.”

The DataStage Debugger
The DataStage debugger provides basic facilities for testing and debugging your
job designs. The debugger is run from the DataStage Designer. It can be used from
a number of places within the Designer:

• Debug menu (File ➤ Debug)
• Debugger toolbar
• Shortcut menu (some items)

The debugger enables you to set breakpoints on the links in your job. When you
run the job in debug mode, the job will stop when it reaches a breakpoint. You can
then step to the next action (reading or writing) on that link, or step to the
processing of the next row of data (which may be on the same link or another link).

Any breakpoints you have set remain if the job is closed and reopened. Breakpoints
are validated when the job is compiled, and remain valid if the link to which it
belongs is moved, or has either end moved, or is renamed. If, however, a link is
deleted and another of the same name created, the new link does not inherit the
breakpoint. Breakpoints are not inherited when a job is saved under a different
name, exported, or upgraded.

17-2 DataStage Developer’s Guide

To add a breakpoint:

1. Select the required link.

2. Select Toggle Breakpoint from the Debugger menu or the Debugger toolbar.
The breakpoint can subsequently be removed by selecting Toggle Breakpoint
again.

A circle appears on the link to indicate that a breakpoint has been added.

Note: You cannot place a breakpoint on a link which has a container as its source
stage. Instead, you should place the breakpoint on that same link as repre-
sented in the container view. The link will only be shown as having a
breakpoint in the container view.

The Debug Window allows you to view variables in the watch list and any in-
context variables when you stop at a breakpoint.

The Debug Window is visible whenever View ➤ Debug Window or File ➤ Debug
➤ Debug Window is selected. It always appears on the top of the DataStage
Designer window. Right-clicking in the Debug Window invokes a shortcut menu
containing the same items as the Debug menu. The Debug Window has two

Debugging, Compiling, and Releasing a Job 17-3

display panes. You can drag the splitter bar between the two panes to resize them
relative to one another. The window also gives information about the status of the
job and debugger.

The upper pane shows local variables. Before debugging starts, all the columns on
all the links in the job are displayed, and all are marked “Out of context”. During
debugging, the pane shows only the variables that are in context when the job is
stopped at a breakpoint. It displays the names and values of any variables
currently in context and you can add any of these variables to the watch list, which
maintains a record of selected variables for as long as required.

The lower pane displays variables in the watch list. When variables are in context,
their values are displayed and updated at every breakpoint. When variables are
out of context, they are marked “Out of context”. The watch list is saved between
sessions.

To add a variable to the watch list:

1. Select the variable name in the upper pane of the Debug Window.

2. Click Add Watch. The variable will be added to the watch list and will appear
in the lower pane.

17-4 DataStage Developer’s Guide

To delete variables from the watch list, select the variables and click Remove
Watch.

The following commands are available from the Debug menu or Debug toolbar:

• Go. Runs the current job in debug mode, compiling it first if necessary. In
debug mode the job will run until a breakpoint is encountered. It then stops
in break mode, allowing you to interact with the job. The first time that Go
is used after a job is compiled or loaded, the Job Run Options dialog box
appears and collects any required parameter values or run-time limits (see
“The Job Run Options Dialog Box” on page 5-26).

• Stop Job. Only available in break mode. Stops the job and exits break
mode.

• Job Parameters… . Allows you to specify job parameters for when the job
is run in debug mode. Selecting this invokes the Job Run Options dialog
box, allowing you to specify any required parameters or run-time limits for
the job. See “The Job Run Options Dialog Box” on page 5-26. The item is
disabled once the job is started in debug mode.

• Edit Breakpoints… . Allows you to edit existing breakpoints or add new
ones.

• Toggle Breakpoint. Allows you to set or clear a breakpoint from the
selected link. If a link has a breakpoint set (indicated by a dark circle at the
link source), then Toggle Breakpoint clears that breakpoint. If the link has
no breakpoint, then one is added, specifying a stop at every row processed.

• Clear All Breakpoints. Deletes all breakpoints defined for all links.

• Step to Next Link. This causes the job to run until the next action occurs on
any link (reading or writing), when it stops in break mode.

• Step to Next Row. This causes the job to run until the next row is processed
or until another link with a breakpoint is encountered, whichever comes
first. The job then stops in break mode. If the job is not currently stopped at
a breakpoint on a link (for example, if it hasn’t started debugging yet, or is
stopped at a warning), then this will perform as Step to Next Link.

Debugging, Compiling, and Releasing a Job 17-5

• Debug Window. Select this to display the Debug Window. Deselect it to
hide the Debug Window.

Compiling a Job
Jobs are compiled using the DataStage Designer. To compile a job, open the job in
the Designer and do one of the following:

• Choose File ➤ Compile.
• Click the Compile icon on the toolbar.

If the job has unsaved changes, you are prompted to save the job by clicking OK.
The Compile Job window appears. This window contains a display area for compi-
lation messages and has the following buttons:

• Re-Compile. Recompiles the job if you have made any changes.

• Show Error. Highlights the stage that generated a compilation error. This
button is only active if an error is generated during compilation.

• More. Displays the output that does not fit in the display area. Some errors
produced by the compiler include detailed BASIC output.

• Close. Closes the Compile Job window.

• Help. Invokes the Help system.

Go Stop Job

Job

Edit

Toggle
Parameters Breakpoint

Breakpoints
Clear All
Breakpoints

Step to
Next Link

Step to
Next Row

Debug

Window

17-6 DataStage Developer’s Guide

The job is compiled as soon as this window appears. You must check the display
area for any compilation messages or errors that are generated.

If there have been breakpoints set for links that no longer exist, a message appears
during compilation warning you of this. The breakpoints are then automatically
removed.

Compilation Checks
During compilation, the following criteria in the job design are checked:

• Primary Input. If you have more than one input link to a Transformer
stage, the compiler checks that one is defined as the primary input link.

• Reference Input. If you have reference inputs defined in a Transformer
stage, the compiler checks that these are not from sequential files.

• Key Expressions. If you have key fields specified in your column defini-
tions, the compiler checks that there are key expressions joining the data
tables.

• Transforms. If you have specified a transform, the compiler checks that this
is a suitable transform for the data type.

Successful Compilation
If the Compile Job window displays the message Job successfully compiled
with no errors. you can:

• Validate the job
• Run or schedule the job
• Release the job
• Package the job for deployment on other DataStage systems

Debugging, Compiling, and Releasing a Job 17-7

Jobs are validated and run using the DataStage Director. See DataStage Operator’s
Guide for more information.

Troubleshooting
If the Compile Job window displays an error, you can use the Show Error button
to troubleshoot your job design. When you click the Show Error button, the stage
that contains the first error in the design is highlighted. You must edit the stage to
change any incorrect settings and recompile.

The process of troubleshooting compilation errors is an iterative process. You must
refine each “problem” stage until the job compiles successfully.

Releasing a Job
If you are developing a job for users on another DataStage system, you must label
the job as ready for deployment before you can package it. For more information
about packaging a job, see Chapter 19, “Importing, Exporting, and Packaging
Jobs.”

To label a job for deployment, you must release it. A job can be released when it has
been compiled and validated successfully at least once in its life.

Jobs are released using the DataStage Manager. To release a job:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box.

2. Double-click the Jobs branch in the project tree.

3. Select the job you want to release in the display area.

4. Choose Tools ➤ Release Job. The Job Release dialog box appears, which
shows a tree-type hierarchy of the job and any associated dependent jobs.

5. Select the job that you want to release.

6. Click Release Job to release the selected job, or Release All to release all the
jobs in the tree.

A physical copy of the chosen job is made (along with all the routines and code
required to run the job) and it is recompiled. The Releasing Job dialog box appears
and shows the progress of the releasing process.

17-8 DataStage Developer’s Guide

The released job is automatically assigned a name and version number using the
format jobname%reln.n.n. jobname is the name of the job you chose to release and
n.n.n is the version number. When you refer to a job by its released name, this is
known as a “fixed job release,” which always equates to that particular version of
the job.

You can use the Designer to view the design of a released job. However, if you edit
the job design you cannot save the changes. The meta data and settings displayed
in the job design are stored as part of the released job and these may not match the
information currently held in the Repository. This is especially true if you devel-
oped the table definitions, transforms, routines, or job design after the job was
released.

If you want to develop and enhance a job design, you must edit the original job. To
use the changes you have made, you must release the job again.

Note: Released jobs cannot be copied or renamed using the Manager.

The Job Release dialog box is shown below:

This dialog box contains a tree-type hierarchy showing the job dependencies of the
job you are releasing. It displays the status of the selected job as follows:

• Not Compiled. The job exists, but has not yet been compiled (this means
you will not be able to release it).

• Not Released. The job has been compiled, but not yet released.

• Job Not Found. The job cannot be found.

Debugging, Compiling, and Releasing a Job 17-9

• Released. The job has previously been released.

• Release Exists. The selected job is a fixed version (i.e., has a particular
release number) and that version of the job exists.

The dialog box also displays the highest released version of the selected job. When
the selected job is a fixed version job (i.e., has a particular release number), then it
displays Fixed Job Release.

If a dependent job appears in more than one branch of the hierarchy, then only the
one at the highest level is displayed.

17-10 DataStage Developer’s Guide

Reporting and Printing 18-1

18
Reporting and Printing

This chapter describes how to generate reports from the DataStage Manager. It also
describes how to print from the Designer.

Reporting
The DataStage Reporting Tool is flexible and allows you to generate reports at
various levels within a project, for example, entire job, single stage, set of stages,
etc.

Information generated for reporting purposes is stored in a relational database on
the DataStage client. This information can then be used to print a report, write a
report to a file, or be interrogated by a third-party tool.

A Microsoft Access database is provided on the DataStage client for this purpose.
It offers a number of predefined report formats for you to choose from. You can
extend or customize this database, or use some other SQL database for these
purposes. It is possible to target any SQL database which is supported by a Level
2-compliant ODBC driver on the client machine. Create database scripts for most
popular databases are provided in the main client directory on the DataStage client
(by default, C:\ardent\datastage\clients).

The database used for reporting purposes must use the same language as the
DataStage clients.

The Reporting Tool
The DataStage Reporting Tool is invoked by choosing Tools ➤ Reporting Assis-
tant… from the DataStage Manager. The Reporting Assistant dialog box appears.
This dialog box has two pages: Schema Update and Update Options.

18-2 DataStage Developer’s Guide

Note: If you want to use the Reporting Tool you should ensure that the names of
your DataStage components (jobs, stages, links, etc.) do not exceed 64
characters.

The Schema Update page allows you to specify what details in the reporting data-
base should be updated and when. This page contains the following fields and
buttons:

• Whole Project. Click this button if you want all project details to be
updated in the reporting database. If you select Whole Project, other fields
in the dialog box are disabled. This is selected by default.

• Selection. Click this button to specify that you want to update selected
objects. The Select Project Objects area is then enabled.

• Select Project Objects. Select the check boxes of all objects that you want to
be updated in the reporting database. The corresponding sub-tab is then
enabled. For example, if you select the Jobs check box, you can go on to
specify which jobs to report on in the Jobs page.

Reporting and Printing 18-3

The Update Options page allows you to make adjustments to any requested
updates to the reporting database.

This page contains the following fields and buttons:

• Target Schema DSN. Select the required database from the drop-down list
box. All current DSNs available on the client machine are listed. The MS
Access database supplied with DataStage is selected by default.

• Line Fold Length. Select a value to determine where carriage returns will
be inserted in potentially long properties. For example, the Description
property may well run to hundreds of characters, so selecting 80 would
specify that carriage returns are inserted every 80 characters. If there are
already carriage returns in the text, these will be used in preference.

• Include Built-ins. Specifies that built-in objects should be included in the
update.

18-4 DataStage Developer’s Guide

• List Project Objects. Determines how objects are displayed in the lists on
the Schema Update page:

– Individually. This is the default. Lists individual objects of that type,
allowing you to choose one or more objects. For example, every data
element would be listed by name: Number, String, Time, DATA.TAG,
MONTH.TAG, etc.

– By Category. Lists objects by category, allowing you to choose a particular
category of objects for which to update the details. For example, in the
case of data elements, you might choose among All, Built-in, Built-
in/Base, Built-in/Dates, and Conversion.

The following buttons are on both pages of the Reporting Assistant dialog box:

• Update Now. Updates the selected details in the reporting database. Note
that this button is disabled if no details are selected in the Schema Update
page.

• Doc. Tool… . Invokes the Documentation Tool dialog box in order to
request a report.

The Documentation Tool
The Documentation Tool dialog box is invoked from the Doc. Tool… button on the
Reporting Assistant dialog box. It allows you to print predefined reports from the
Microsoft Access database. The dialog box remains in view until you click Exit.

Each page has an Include in Report area which allows you to choose options for
various types of report. Click the Preview icon in the toolbar to see what a finished
report will look like.

Reporting and Printing 18-5

The toolbar has the following functions:

• Print. Prints a report of the format specified in the Report Configuration
form.

• Print Preview. Gets a preview of the form before you actually print it. To
print from the preview, click the Print button.

• Custom Reports. Gets a list of available reports. Use this to access reports
added to the MS Access Documentation Tool besides those supplied with
DataStage.

• Exit. Exits the Documentation Tool when you have printed all required
reports.

The Documentation Tool dialog box has a Report Configuration form which in
turn has a page for every type of object. Each page has a list box that lists all objects
of that type currently in the reporting database. Objects can be listed individually
or by category (note that jobs can only be listed individually).

18-6 DataStage Developer’s Guide

The Report Configuration form has the following fields and buttons:

• Include in Report. This area lists the optional fields that can be excluded or
included in the report. Check the box to include an item in the report, clear
it to exclude it. All items are checked by default.

• Select All. Selects all items in the list window.

• Project. Lists all the available projects. Choose the project that you want to
report on.

• List Objects. This area determines how objects are displayed in the lists on
the Schema Update page:

– Individually. This is the default. Lists individual objects of that type,
allowing you to choose one or more objects. For example, every data
element would be listed by name: Number, String, Time, DATA.TAG,
MONTH.TAG, etc.

– By Category. Lists objects by category, allowing you to choose a particular
category of objects for which to update the details. For example, in the
case of data elements, you might choose among All, Built-in, Built-
in/Base, Built-in/Dates, and Conversion.

Reporting and Printing 18-7

Examples of some of the reports are given below:

18-8 DataStage Developer’s Guide

Reporting and Printing 18-9

Printing from the Designer
You can print the contents of the current Diagram window from the Designer. The
printing format and the printer used are determined by:

• The printer setup. The printer and paper source are determined by your
default Windows printer.

• The default print options. The print orientation is determined by the
settings in the Designer Options dialog box.

The print lines display the area to be printed. If necessary, use the Zoom out icon
on the toolbar to reduce the display until you see the print lines.

18-10 DataStage Developer’s Guide

Producing a Printout
To print the contents of the Diagram window, do one of the following:

• Choose File ➤ Print… .
• Click the Print icon on the toolbar.

The Print Diagram dialog box appears:

You can change the print settings using the Select Printer… button. To accept the
printer settings and to produce the printout, click Print.

Changing the Printer Setup
You can change the printer and the paper supply by clicking the Select Printer…
button in the Print Diagram dialog box. The Print Setup dialog box appears. This
dialog box contains all the settings for your default Windows printer. You can
change any of the settings.

Click OK to save any changes and to close the Print Setup dialog box.

Reporting and Printing 18-11

Note: The print orientation is set by the Designer options. If you change the print
orientation in the Print Setup dialog box, this setting is used for this
printout only. Subsequent printouts revert to the default set in Designer
options. For a description of how to set Designer options, see “Specifying
Job Dependencies” on page 5-43.

18-12 DataStage Developer’s Guide

Importing, Exporting, and Packaging Jobs 19-1

19
Importing, Exporting,
and Packaging Jobs

There are two situations where you may need to move or deploy DataStage
components to another DataStage system:

• To continue the development of a job. In this case, you must ensure that all
the components used by the job are copied to the new system. This is done
by using Export. The components are installed into the new Repository
using Import.

• To distribute an executable job or a plug-in. In this case, you must package
the components you want to deploy using the Packager Wizard. End users
install the packaged job or component using the installation program
described in DataStage Administrator’s Guide.

This chapter describes how to use the DataStage Manager to perform these tasks.

Using Import
You can import complete projects, jobs, or job components that have been exported
from another DataStage development environment. The exported components are
contained in a text file. You must copy this text file to a directory you can access
from your local machine.

To use the Import option:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

19-2 DataStage Developer’s Guide

2. Choose Tools ➤ Import ➤ DataStage Components… . The DataStage Repos-
itory Import dialog box appears:

3. Type in the path or browse for the file to import from.

4. To import objects from the file into the Repository, click the Import all option
button and click OK. During import, you will be warned if objects of the same
name already exist in the Repository and asked if you want to overwrite
them. If you select the Overwrite without query check box before importing
you will not be warned, and any existing objects will automatically be
overwritten.

If you import job components, they are imported into the current project in the
DataStage Manager. If you import a whole project, a new project branch is
created in the Repository.

5. To check the file without actually importing anything into the Repository,
click the Check only option button, then click OK. Any errors encountered
are displayed in a dialog box.

Importing, Exporting, and Packaging Jobs 19-3

Using Export
If you want to move a project or job components to another development environ-
ment, you must use the Export option in the DataStage Manager. Exported projects
or components are stored in text files. You must choose what to export and the file
to use.

To use the Export option:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

2. Choose Tools ➤ Export… . The Export dialog box appears:

19-4 DataStage Developer’s Guide

3. Choose the file to export to by doing one of the following:

• Enter the directory path and file name in the Export to file field.
• Click … (browse) to search the system for an appropriate directory and file.

4. Select the Append to existing file check box if you want to add the exported
items to the specified file. The check box is cleared by default, i.e., the
exported items will overwrite any existing items in the file.

5. Choose what to export by clicking the appropriate option button:

• Whole project. All the jobs, data elements, stage types, table definitions,
and transforms are exported.

• Selection. An individual item or a selection of items in the current project
is exported.

6. If you clicked Selection, choose the items to export by selecting the appro-
priate check boxes:

• Job designs. The chosen job designs are exported.

Importing, Exporting, and Packaging Jobs 19-5

• Data elements. The chosen data elements are exported.

• Stage types. The chosen plug-in definitions are exported.

Note: The Export option does not handle the associated plug-in DLLs. To
deploy a plug-in, you must use the Packager Wizard instead. For
more information, see “Using the Packager Wizard” on page 19-6.

• Table definitions. The chosen table definitions are exported.

• Transforms. The chosen transforms are exported.

• Job executables. The chosen job executables are exported. If you choose
this option, you can also select the Program sources check box to export the
associated source.

• Routines. The chosen routines are exported. Choosing this option allows
you to select Source Code to export the associated source code.

A selection is already made based on the highlighted branch in the DataStage
Manager when you chose Tools ➤ Export… .

By default, for objects other than job designs and job executables, you can
select all objects of a particular type to be exported or select a category of object
to export from the drop-down list. For example, in the case of data elements,
you might choose among All, Built-In, Built-In/Base, Built-In/Dates, and
Conversion.

It is possible to choose an individual object, but you must first click By indi-
vidual component on the Options page.

7. Click the Options tab, then select any required options as follows:

• Selection - By category. This is the default. The drop-down list boxes on
the Components page allows you to choose between all and the different
categories of each object in the Repository.

• Selection - By individual component. This allows you to choose a single
object per object type, so the drop-down list boxes on the Components
page list all the individual objects of that type.

• Include in export - Defaulted properties. Select this check box to export
the properties of the items being exported. By default, properties and
default values are not included in the export file.

• Include in export - Read-only objects. Select this check box to export any
read-only items selected in the Components page. By default, read-only
items are not exported.

19-6 DataStage Developer’s Guide

• Use 7-bit format encoding. Select this check box if you are likely to e-mail
the exported file. The check box is cleared by default.

8. Click OK. The chosen items are exported to the specified text file. This file can
be imported into another DataStage development environment.

Using the Packager Wizard
If you have developed a job or plug-in, you can distribute it to other DataStage
systems using the Packager Wizard. This utility is run from the Manager.

When you use the Packager Wizard, you must specify the type of package to
create:

• Job Deployment. Contains executable job definitions (for each job in the
package). The package contains information about the job itself and other
dependencies such as transforms, data elements, and plug-ins.

Importing, Exporting, and Packaging Jobs 19-7

Note: You can only package released jobs. For more information about
releasing a job, see Chapter 17, “Debugging, Compiling, and
Releasing a Job.”

• Design Component. Contains plug-in definitions and associated DLLs.

To package a job or plug-in:

1. Start the DataStage Manager and enter your logon details in the Attach to
Project dialog box. The DataStage Manager window appears.

2. Choose Tools ➤ Packager Wizard… . The DataStage Packager Wizard dialog
box appears:

3. Specify the type of package you want to create by clicking Job Deployment
or Design Component.

4. Click Next>. The updated dialog box displays the next set of prompts.

5. Enter the name of the package, a description, and a target directory on the
server in the appropriate fields.

Note: You can use Browse… to search the system for a suitable directory.

6. Click Next>.

19-8 DataStage Developer’s Guide

7. Select the jobs or plug-ins to be included in the package from the list box. The
content of this list box depends on the type of package you are creating. For a
Job Deployment package, this list box displays all the released jobs. For a
Design Component package, this list box displays all the plug-ins under the
Stage Types branch in the Repository (except the built-in ones supplied with
DataStage).

8. If you are creating a Job Deployment package, and want to include any other
jobs that the main job is dependent on in the package, select the Automati-
cally Include Dependent Jobs check box. The wizard checks the dependency
tree to make sure all the required jobs exist and informs you of any errors.

9. Click Next>. The updated dialog box confirms the package name, destination,
and chosen jobs or plug-ins. If you are packaging jobs and have included
dependent jobs, these are shown indented in the list.

10. Click Finish to create the package. The package is created in the chosen direc-
tory using the specified name.

You can now distribute the package for use on other DataStage systems.

Using MetaBrokers 20-1

20
Using MetaBrokers

MetaBrokers allow you to exchange enterprise meta data between DataStage and
other data warehousing tools. For example, you can use MetaBrokers to import
into DataStage table definitions that you have set up using a data modelling tool.
Similarly you can export meta data from a DataStage job to a business intelligence
tool to help it analyze your data warehouse.

To use MetaBrokers, you need to install MetaBrokers for any tools with which you
want to exchange meta data. MetaBrokers are provided on the DataStage installa-
tion CD (although note that you require separate licenses for them).

A list of currently available MetaBrokers is in the Read Me file in the MetaBrkr direc-
tory on the CD. Instructions for installing MetaBrokers are in DataStage
Administrator’s Guide.

This chapter tells you how to use MetaBrokers from the DataStage Manager. The
instructions given are generic. Instructions for using particular MeteBrokers are in
technical bulletins included on the installation CD in the relevant MetaBroker
directory.

The MetaBrokers allow you to either import meta data into DataStage, or to export
it from DataStage.

Importing Meta Data
Importing meta data into DataStage has two main phases. After you have specified
the tool from which you are importing and the source for the import meta data, the
MetaBroker for that tool extracts the meta data from the source. This is phase one.
The MetaBroker then displays a list of extracted meta data from which you can
select what you actually want to import into DataStage. Once you have done this,
the DataStage MetaBroker imports the meta data into the DataStage Repository.
This is phase two.

20-2 DataStage Developer’s Guide

To use MetaBrokers to import data into DataStage:

1. Start the DataStage Manager.

2. Choose Tools ➤ MetaBrokers ➤ Import. The MetaBroker Selection dialog
box appears:

3. Select the MetaBroker for the tool from which you want to import the meta
data and click OK. The Parameters Selection dialog box appears:

4. Specify the required parameters for the import (these vary according to
MetaBroker, but typically specify data source and log file). Click OK. The
Status dialog box appears.

Using MetaBrokers 20-3

5. Click Start Conversion to start extracting meta data from the import source to
the MetaBroker. The status of the extraction is displayed in a text window:

6. When the extraction is completed, the Select All and Filter buttons are
enabled. If you want to import all the meta data, click Select All and continue
from step 12. If you want to import selected meta data, click Filter. The Meta
Data Selection dialog box appears. This shows the meta data that the
MetaBroker has extracted from the source, and allows you to specify what
you actually want to import into DataStage.

20-4 DataStage Developer’s Guide

7. By default all the meta data are selected. Click Clear All to clear it so you can
specify exactly what you want to import. (If you change your mind, click
Select All to select all meta data again.)

8. Select the class of meta data you want to import from the Classes drop-down
list. The instances of that class that the MetaBroker has extracted appear in the
Instances list.

9. If you want to import all instances of that class, click >>. All the instances
appear in the Instances Selected list. Click << to deselect them and clear the
list.

10. If you want to import a particular instance, select it in the Instances list and
click > to copy it to the Instances Selected list. Click < if you change your
mind.

11. When you are satisfied that you have selected all the meta data you want to
import, click OK. The Parameters Selection dialog box appears:

12. Specify the required parameters for the import into DataStage. These allow
you to specify whether you should be prompted to confirm overwrites to the
DataStage Repository, and whether verbose output is enabled. Click OK. The
Status dialog box appears.

13. Click Start Conversion to start importing data into DataStage. The DataStage
MetaBroker copies the selected data into the DataStage Repository. The status

Using MetaBrokers 20-5

of the import is displayed in a text window. Click Finish when it has
completed the import.

When the import is complete, you can see the meta data that you have imported
under the relevant branch in the DataStage Manager. For example, data elements
imported from ER/Studio appear under the Data Elements ➤ ERStudio25
branch.

You may import more items than you have explicitly selected. This is because the
MetaBroker ensures that data integrity is maintained. For example, if you import
a single column, the table definition for the table containing that column is also
imported.

Exporting Meta Data
Exporting meta data from DataStage to another data warehousing tool has two
main phases. After you have specified the tool you want to export to, the DataStage
MetaBroker extracts the meta data from the DataStage Repository. This is phase
one. The MetaBroker then displays a list of extracted meta data from which you
can select what you actually want to export. Once you have done this, the
MetaBroker for the selected tool exports the meta data to the tool. This is phase
two.

To use MetaBrokers to export data from DataStage:

1. Start the DataStage Manager.

20-6 DataStage Developer’s Guide

2. Choose Tools ➤ MetaBrokers ➤ Export. The MetaBroker Selection dialog
box appears:

3. Select the MetaBroker for the tool to which you want to export the meta data
and click OK. The Parameters Selection dialog box appears:

4. Specify the required parameters for the export from DataStage. These allow
you to specify the name of a log file and whether verbose output is enabled.
Click OK. The Status dialog box appears.

Using MetaBrokers 20-7

5. Click Start Conversion to start extracting meta data from DataStage to the
MetaBroker. The status of the extraction is displayed in a text window:

6. When the extraction is completed, the Select All and Filter buttons are
enabled. If you want to export all the meta data, click Select All and continue
from step 12. If you want to export selected meta data, click Filter. The Meta
Data Selection dialog box appears. This shows the meta data that the
MetaBroker has extracted from the DataStage Repository, and allows you to
specify what you actually want to export.

20-8 DataStage Developer’s Guide

7. By default all the meta data are selected. Click Clear All to clear it so you can
specify exactly what you want to export. (If you change your mind, click
Select All to select all meta data again.)

8. Select the class of meta data you want to export from the Classes drop-down
list. The instances of that class that the MetaBroker has extracted appear in the
Instances list.

9. If you want to export all instances of that class, click >>. All the instances
appear in the Instances Selected list. Click << to deselect them and clear the
list.

10. If you want to export a particular instance, select it in the Instances list and
click > to copy it to the Instances Selected list. Click < if you change your
mind.

11. When you are satisfied that you have selected all the meta data you want to
export, click OK. The Parameters Selection dialog box appears:

12. Specify the required parameters for the export into the data warehousing tool.
These vary according to the tool you are exporting to, but typically include
the destination for the exported data and a log file name.

Using MetaBrokers 20-9

13. Click Start Conversion to start exporting data to the tool. The status of the
export is displayed in a text window. Depending on what tool you are
exporting to, another application may be started to receive the exported data.

14. When the export has completed, click Finish.

20-10 DataStage Developer’s Guide

Built-In Transforms and Routines A-1

A
Built-In Transforms

and Routines

This appendix describes the built-in transforms and routines supplied with
DataStage.

When you edit a Transformer stage, you can convert your data using one of the
built-in transforms supplied with DataStage. Alternatively, you can convert your
data using your own custom transforms. Custom transforms can convert data
using functions or routines.

For more information about editing a Transformer stage or creating custom trans-
forms, see Chapter 11, “Transformer Stages.” For a complete list of the supported
BASIC functions, see DataStage Developer’s Help. For details on how to write a
user-written routine, see Chapter 16, “Programming in DataStage.”

Built-In Transforms
You can view the definitions of the built-in transforms using the DataStage
Manager. For ease of reference, the transforms are listed according to their result
(output) data element.

A-2 DataStage Developer’s Guide

Transforms Resulting in String

Transforms Resulting in Date

Transform Input Type Description

CAPITALS String Each word in the argument has its first
character replaced with its uppercase
equivalent if appropriate. Any sequence
of characters between space characters is
taken as a word, for example:

CAPITALS("monday feb 14th") =>
"Monday Feb 14th"

DIGITS String Returns a string from which all characters
other than the digits 0 through 9 have
been removed, for example:

DIGITS("123abc456") => "123456"

LETTERS String Returns a string from which all characters
except letters have been removed, for
example:

LETTERS("123abc456") => "abc"

Transform Input Type Description

MONTH.FIRST MONTH.TAG Returns a numeric internal date corre-
sponding to the first day of a month
given in MONTH.TAG format (YYYY-
MM), for example:

MONTH.FIRST("1993-02") => 9164

where 9164 is the internal representation
of February 1, 1993.

MONTH.LAST MONTH.TAG Returns a numeric internal date corre-
sponding to the last day of a month
given in MONTH.TAG format (YYYY-
MM), for example:

MONTH.LAST("1993-02") => 9191

where 9191 is the internal representation
of February 28, 1993.

Built-In Transforms and Routines A-3

QUARTER.FIRST QUARTER.TAG Returns a numeric internal date corre-
sponding to the first day of a quarter
given in QUARTER.TAG format
(YYYYQn), for example:

QUARTER.FIRST("1993Q2") =>
9133

where 9133 is the internal representation
of January 1, 1993.

QUARTER.LAST QUARTER.TAG Returns a numeric internal date corre-
sponding to the last day of a quarter
given in QUARTER.TAG format (YYYY-
MM), for example:

QUARTER.LAST("1993-02") =>
9222

where 9222 is the internal representation
of March 31, 1993.

TIMESTAMP.
TO.DATE

Timestamp Converts Timestamp format (YYYY-MM-
DD HH:MM:SS) to Internal Date format,
for example:

TIMESTAMP.TO.DATE("1996-12-05
13:46:21") => "10567"

TAG.TO.DATE DATE.TAG Converts a string in format YYYY-MM-
DD to a numeric internal date, for
example:

TAG.TO.DATE("1993-02-14") =>
9177

WEEK.FIRST WEEK.TAG Returns a numeric internal date corre-
sponding to the first day (Monday) of a
week given in WEEK.TAG format
(YYYYWnn), for example:

WEEK.FIRST("1993W06") => 9171

where 9171 is the internal representation
of February 8, 1993.

Transform Input Type Description

A-4 DataStage Developer’s Guide

Transform Resulting in Time

WEEK.LAST WEEK.TAG Returns a numeric internal date corre-
sponding to the last day (Sunday) of a
week given in WEEK.TAG format
(YYYYWnn), for example:

WEEK.LAST("1993W06") => 9177

where 9177 is the internal representation
of February 14, 1993.

YEAR.FIRST YEAR.TAG Returns a numeric internal date corre-
sponding to the first day of a year given
in YEAR.TAG format (YYYY), for
example:

YEAR.FIRST("1993") => 9133

where 9133 is the internal representation
of January 1, 1993.

YEAR.LAST YEAR.TAG Returns a numeric internal date corre-
sponding to the last day of a year given
in YEAR.TAG format (YYYY), for
example:

YEAR.LAST("1993") => 9497

where 9497 is the internal representation
of December 31, 1993.

Transform Input Type Description

TIMESTAMP.
TO.TIME

Timestamp Converts TIMESTAMP format (YYYY-
MM-DD) to internal time format. For
example:

TIMESTAMP.TO.TIME("1996-12-05
13:46:21") => "49581"

where 49581 is the internal representation
of December 5 1996, 1.46 p.m. and 21
seconds.

Transform Input Type Description

Built-In Transforms and Routines A-5

Transform Resulting in TIMESTAMP

Transform Resulting in DATE.TAG

Transforms Resulting in WEEK.TAG

Transform Input Type Description

TIMESTAMP Date Converts internal date format to TIME-
STAMP format (YYYY-MM-DD
HH:MM:SS). For example:

TIMESTAMP("10567") => "1996-12-05
00:00:00"

where 10567 is the internal representation
of December 5 1996.

Transform Input Type Description

DATE.TAG Date Converts a numeric internal date to a
string in DATE.TAG format (YYYY-MM-
DD), for example:

DATE.TAG(9177) => "1993-02-14"

Transform Input Type Description

TAG.TO.WEEK DATE.TAG Converts a string in DATE.TAG format
(YYYY-MM-DD) to WEEK.TAG format
(YYYYWnn), for example:

TAG.TO.WEEK("1993-02-14") =>
"1993W06"

WEEK.TAG Date Converts a date in internal date format to a
WEEK.TAG string (YYYYWnn), for example:

WEEK.TAG(9177) => "1993W06"

A-6 DataStage Developer’s Guide

Transforms Resulting in MONTH.TAG

Transforms Resulting in QUARTER.TAG

Transform Input Type Description

MONTH.TAG Date Converts a numeric internal date to a string
in MONTH.TAG format (YYYY-MM), for
example:

MONTH.TAG(9177) => "1993-02"

TAG.TO.MONTH DATE.TAG Converts a string in DATE.TAG format
(YYYY-MM-DD) to MONTH.TAG format
(YYYY-MM), for example:

TAG.TO.MONTH("1993-02014") =>
"1993-02"

Transform Input Type Description

QUARTER.TAG Date Converts a numeric internal date to a
string in QUARTER.TAG format
(YYYYQn), for example:

QUARTER.TAG(9177) => "1993Q2"

TAG.TO.QUARTER DATE.TAG Converts a string in DATE.TAG format
(YYYY-MM-DD) to QUARTER.TAG
format (YYYYQn), for example:

TAG.TO.QUARTER("1993-02-14")
=> "1993Q2"

MONTH.TO.
QUARTER

MONTH.TAG Converts a string in MONTH.TAG
format (YYYY-MM) to QUARTER.TAG
format (YYYYQn), for example:

MONTH.TO.QUARTER("1993-02")
=> "1993Q1"

Built-In Transforms and Routines A-7

Transforms Resulting in YEAR.TAG

Built-In Routines
There are two types of routines supplied with DataStage:

• Built-in before/after subroutines. These routines are stored under the
Routines ➤ Built-In ➤ Before/After branch in the Repository. They are
compiled and ready for use as a before-stage or after-stage subroutine or as
a before-job or after-job routine.

• Examples of transform functions. These routines are stored under the
Routines ➤ Examples ➤ Functions branch in the Repository and are used
by the built-in transforms supplied with DataStage. You can copy these
routines and use them as a basis for your own user-written transform
functions.

You can view the definitions of these routines using the DataStage Manager, but
you cannot edit them.

Transform Input Value Description

YEAR.TAG Date Converts a date in internal Date
format to YEAR.TAG format
(YYYY), for example:

YEAR.TAG(9177) => "1993"

TAG.TO.YEAR DATE.TAG Converts a string in DATE.TAG
format (YYYY-MM-DD) to
YEAR.TAG format (YYYY), for
example:

TAG.TO.YEAR("1993-02-14")
=> "1993"

MONTH.TO.YEAR MONTH.TAG Converts a string in MONTH.TAG
format (YYYY-MM) to YEAR.TAG
format (YYYY), for example:

MONTH.TO.YEAR("1993-02") =>
"1993"

QUARTER.TO.YEAR QUARTER.TAG Converts a string in QUARTER.TAG
format (YYYYQn) to YEAR.TAG
format (YYYY), for example:

QUARTER.TO.YEAR("1993Q2")
=> "1993"

A-8 DataStage Developer’s Guide

Built-In Before/After Subroutines
There are three built-in before/after subroutines supplied with DataStage:

• ExecDOS. This routine executes a command via an MS-DOS shell. The
command executed is specified in the routine’s input argument.

• ExecTCL. This routine executes a command via a UniVerse shell. The
command executed is specified in the routine’s input argument.

• ExecSH. This routine executes a command via a UNIX Korn shell.

These routines appear in the drop-down list box of available built-in routines when
you edit the Before-stage subroutine or After-stage subroutine fields in an Aggre-
gator, Transformer, or active plug-in stage, or the Before-job subroutine or After-
job subroutine fields in the Job Properties dialog box.

You can also copy these routines and use the code as a basis for your own
before/after subroutines.

If NLS is enabled, you should be aware of any mapping requirements when using
ExecDOS and ExecSH routines. If these routines use data in particular character
sets, then it is your responsibility to map the data to or from UNICODE.

Example Transform Functions
These are the example transform functions supplied with DataStage:

• ConvertMonth. Transforms a MONTH.TAG input. The result depends on
the value for the second argument:

– F (the first day of the month) produces a DATE.TAG.
– L (the last day of the month) produces a DATE.TAG.
– Q (the quarter containing the month) produces a QUARTER.TAG.
– Y (the year containing the month) produces a YEAR.TAG.

• ConvertQuarter. Transforms a QUARTER.TAG input. The result depends
on the value for the second argument:

– F (the first day of the month) produces a DATE.TAG.
– L (the last day of the month) produces a DATE.TAG.
– Y (the year containing the month) produces a YEAR.TAG.

• ConvertTag. Transforms a DATE.TAG input. The result depends on the
value for the second argument:

– I (internal day number) produces a Date.
– W (the week containing the date) produces a WEEK.TAG.

Built-In Transforms and Routines A-9

– M (the month containing the date) produces a MONTH.TAG.
– Q (the quarter containing the date) produces a QUARTER.TAG.
– Y (the year containing the date) produces a YEAR.TAG.

• ConvertWeek. Transforms a WEEK.TAG input to an internal date corre-
sponding to a specific day of the week. The result depends on the value of
the second argument:

– 0 produces a Monday.
– 1 produces a Tuesday.
– 2 produces a Wednesday.
– 3 produces a Thursday.
– 4 produces a Friday.
– 5 produces a Saturday.
– 6 produces a Sunday.

If the input does not appear to be a valid WEEK.TAG, an error is logged
and 0 is returned.

• ConvertYear. Transforms a YEAR.TAG input. The result depends on the
value of the second argument:

– F (the first day of the year) produces a DATE.TAG.
– L (the last day of year) produces a DATE.TAG.

• QuarterTag. Transforms a Date input into a QUARTER.TAG string
(YYYYQn).

• Timestamp. Transforms a timestamp (a string in the format YYYY-MM-DD
HH:MM:SS) or Date input. The result depends on the value for the second
argument:

– TIMESTAMP produces a timestamp with time equal to 00:00:00 from a
date.

– DATE produces an internal date from a timestamp (time part ignored).

– TIME produces an internal time from a timestamp (date part ignored).

• WeekTag. Transforms a Date input into a WEEK.TAG string (YYYYWnn).

A-10 DataStage Developer’s Guide

Editing Grids B-1

B
Editing Grids

DataStage uses grids in many dialog boxes for displaying data. This system
provides an easy way to view and edit tables. This appendix describes how to navi-
gate around grids and edit the values they contain.

Grids
The following screen shows a typical grid used in a DataStage dialog box:

On the left side of the grid is a row selector column. The black triangle shows the
current row. The star indicates an empty row ready for data input. The current cell
is highlighted by a dotted border. The current cell is not visible if you have scrolled
it out of sight.

B-2 DataStage Developer’s Guide

Navigating in the Grid
You can move around the grid by using the mouse and scroll bars, or the keyboard.
Table B-1 shows the keys that are used for navigation in the grid.

Table B-1. Keys Used in Grid Navigation

Key Action

Right Arrow Move to the next cell on the right.

Left Arrow Move to the next cell on the left.

Up Arrow Move to the cell immediately above.

Down Arrow Move to the cell immediately below.

Tab Move to the next cell on the right. If the current cell is in the
rightmost column, move forward to the next control on the
form.

Shift-Tab Move to the next cell on the left. If the current cell is in the
leftmost column, move back to the previous control on the
form.

Page Up Scroll the page down.

Page Down Scroll the page up.

Home Move to the first cell in the current row.

End Move to the last cell in the current row.

Alt-Down Arrow In a drop-down list box, enter edit mode and move down
the list.

Editing Grids B-3

Editing in the Grid
You can edit the contents of the current cell in three ways:

• Start typing in the cell.
• Press the F2 key to put the cell into edit mode.
• Choose the Edit cell… option from the shortcut menu.

When you start editing, the current cell highlight changes to an insertion point or
a drop-down list box appears, as appropriate. Table B-2 shows the keys that are
used for editing in the grid.

Table B-2. Keys Used in Grid Editing

Key Action

Esc Cancel the current edit. The grid leaves edit mode, and the cell
reverts to its previous value. The focus does not move.

Enter Accept the current edit. The grid leaves edit mode, and the cell
shows the new value. A pencil symbol appears in the row
selector column to indicate that the row has been modified.
When the focus moves away from a modified row, the row is
validated. If the data passes validation, the pencil icon is
removed; otherwise, a message box is displayed, and the focus
returns to the modified row.

Up Arrow Move the selection up a drop-down list or to the cell immedi-
ately above.

Down Arrow Move the selection down a drop-down list or to the cell imme-
diately below.

Left Arrow Move the insertion point to the left in the current value. When
the extreme left of the value is reached, exit edit mode and
move to the next cell on the left.

Right Arrow Move the insertion point to the right in the current value. When
the extreme right of the value is reached, exit edit mode and
move to the next cell on the right.

Ctrl-Enter Enter a line break in a value.

B-4 DataStage Developer’s Guide

Adding Rows
You can add a new row by entering data in the empty row indicated by the star.
When you move the focus away from the row, the new data is validated. If it passes
validation, it is added to the table, and a new empty row appears. Alternatively,
press the Insert key or choose Insert row… from the shortcut menu, and a row is
inserted with the default column name Newn, ready for you to edit (where n is an
integer providing a unique Newn column name).

Deleting Rows
To delete a row, click anywhere in the row you want to delete. The triangle moves
to show that this is now the current row. Press the Delete key or choose Delete row
from the shortcut menu. To delete multiple rows, hold down the Ctrl key and click
in the row selector column for the rows you want to delete and press the Delete
key or choose Delete row from the shortcut menu.

Troubleshooting C-1

C
Troubleshooting

This appendix describes problems you may encounter with DataStage and gives
solutions.

Cannot Start DataStage Clients
Check that UniVerse is actually running on the server.

On Windows NT servers, ensure that the UniVerse Resource service, UniVerse RPC
service, and UniVerse Telnet service are all started.

On UNIX servers, ensure that the RPC daemon (unirpcd) is started.

Problems While Working with UniData
For more information about connecting to UniData sources, see the technical
bulletin Accessing UniVerse and UniData Databases from DataStage (74-0121). This is
supplied with the DataStage online documentation.

Connecting to UniData Databases
When the DataStage server is installed, a copy of the UniData API configuration
file UNIAPI.INI is installed in the Windows directory. If, when you first attempt to
connect to your UniData server, you get an error message similar to:

UniData Client error: call to UniOpenPos returned 45 - Client
version (11) and server version (12) are incompatible

then you must edit the UNIAPI.INI file and change the value of the PROTOCOL
variable. In this case, change it from 11 to 12:

PROTOCOL = 12

C-2 DataStage Developer’s Guide

Importing UniData Meta Data
When importing UniData meta data, note that the server name required in the
DataStage Manager dialog box is the UniData server node name, not the Object-
Call (UNIAPI.INI) file entry name.

If the UniData server is on the same node as the DataStage server, then the name
localhost can be used.

Using the UniData Stage
The UniData stage uses the UniData Basic ITYPE function to evaluate virtual
attributes and this requires that the virtual attributes are compiled. If they are not,
when the link is opened an error occurs which indicates the first uncompiled
I-type/virtual attribute it finds. In this instance, the solution is to compile all of the
I-types/virtual attributes, not just the first one reported in the error message.

There are certain verbs that need to be available for use on the UniData database
when the job containing the UniData stage is first run, or when the Data Browser
is first used in the stage. These are:

• BASIC
• CATALOG
• NEWPCODE

The BP directory file must also be available.

After the initial job run or first use of the Data Browser, these can be removed or
disabled if required for security reasons.

Problems with the Documentation Tool

Installing the Documentation Tool
You should avoid trying to install the Documentation Tool in a directory with
insufficient disk space. If the install runs out of space, an error can occur which
removes the Tahoma font from the system, and that can subsequently cause prob-
lems with Microsoft Word. If this situation arises, the Tahoma font can be found in
the Documentation Tool install directory, from where you can reinstall it.

You should avoid running the setup program from within the Documentation Tool
directory to remove or reinstall the tool. The operation will fail. Always use the
main setup program on the DataStage CD.

Troubleshooting C-3

Using Plug-In Reports
The report for a plug-in stage type does not include information as to whether the
stage supports reference links.

Problems Running Jobs

Job Compiles Successfully but Will Not Run
Check that your job design does not have cyclic dependencies within a sequence
of active stages. This may cause your job to fail as one stage waits for another,
which is in turn waiting for it.

Job from Previous DataStage Release Will Not Run
If you run a job created using an earlier DataStage release, you may get the
message:

Job has not been compiled with compatible compiler

The solution is to recompile, rerelease, and, if necessary, repackage jobs under the
later release of DataStage.

Miscellaneous Problems

Turning Grid Lines On and Off
You can turn Designer grid lines on and off from the Options dialog box, but,
unlike the other options, this one does not take effect until the next time you start
the Designer.

Landscape Printing
You cannot print in landscape mode from the DataStage Manager or Director
clients.

Browsing for Directories
When browsing directories within DataStage, you may find that only local drive
letters are shown. If you want to use a remote drive letter, you should type it in
rather than relying on the browse feature.

C-4 DataStage Developer’s Guide

Index-1

A

account name
Hashed File stage 9-2
UniData stage 8-2
UniVerse stage 7-3

ActiveX (OLE) functions 4-48
importing 4-49
programming functions 16-3, 16-9

adding
Container stages 5-28
plug-in stages 5-13
stages 3-9, 5-13

after-job subroutines 2-5, 5-32
after-load stored procedures 14-5, 14-7
after-stage subroutines 2-5

for Aggregator stages 12-2
for plug-in stages 13-7
for Transformer stages 11-5, 11-11

aggregating data 1-3
using a UniVerse stage 7-13
using an Aggregator stage 12-7
using an ODBC stage 6-16
using COUNT function 6-17, 7-14
using SUM function 6-17, 7-14

AGGREGATOR plug-in 12-9
Aggregator stages 2-5, 5-11

editing 12-1
input data to 12-3
Inputs page 12-3
output data from 12-5
Outputs page 12-5
sorting input data 12-4
specifying after-stage

subroutines 12-2

specifying before-stage
subroutines 12-2

Stage page 12-2
alternative projects 4-8
assessing your data 4-1
assigning data elements 3-6, 4-46
associations 4-30
Attach to Project dialog box 3-2, 4-2,

5-2

B

bad rows 15-6
BASIC routines

before/after subroutines 16-10
copying 16-17
creating 16-10
editing 16-17
entering code 16-11
name 16-5
renaming 16-18
saving code 16-12
testing 16-13
transform functions 16-10
type 16-6
version number 16-7
viewing 16-17
writing 16-1

BCP utility 14-1
running from command line 14-1
switches 14-1
unsupported switches 14-2

BCPLoad plug-in
definition 14-4
stage properties 14-4

BCPLoad plug-in definitions 14-4

Index

Index-2 DataStage Developer’s Guide

BCPLoad stages 2-5, 14-1
defining maps 14-7
demo 14-11
editing 14-6
overview 14-1
specifying job parameters 14-6
stored procedures 14-7
supported SQL data types 14-3
table definitions 14-3
using 14-5

before/after-subroutines
built-in A-7
creating 16-10

before-job subroutines 2-5, 5-32
before-load stored procedures 14-5,

14-7
before-stage subroutines 2-5

for Aggregator stages 12-2
for plug-in stages 13-7
for Transformer stages 11-5, 11-11

breakpoints 17-1
browsing server directories 5-23, C-3
built-in

before/after-subroutines A-7
data elements 2-5, 4-47
routines A-7
stages 5-11
transforms 2-5

bulk copy API 14-1
bulk copy program 14-1

C

changing the printer setup 18-10
character set maps

and ODBC stages 6-2, 6-4
and plug-in stages 13-4, 13-12
and Sequential File stages 10-3
and UniData stages 8-3
defining 6-4, 8-3, 10-3, 13-4, 14-7,

15-4
specifying 5-41

cleaning data values 15-2
column definitions 2-6, 4-25

column name 4-25, 5-18, 12-4, 12-6
data element 4-25, 5-19, 12-4, 12-7
defining for a stage 5-18
deleting 4-32, 4-42, 5-20
editing 4-32, 4-42, 5-20

using the Columns grid 5-20
using the Edit button 5-20

entering 4-29
inserting 5-20
key fields 4-25, 5-18, 12-6
length 4-25, 5-18, 12-4, 12-7
loading 4-31, 5-22
scale factor 4-25, 5-18, 12-4, 12-7

columns
renaming by mapping 15-4
renaming during Orabulk

stage 15-2
Columns grid 4-25, 5-18
commands, sqlldr 15-1, 15-5
compiling

code in BASIC routines 16-12
jobs 3-21, 17-1

connection type 6-2, 7-2
UniVerse 7-2

Container Input stage 5-12, 5-29
Container Output stage 5-12, 5-29
Container stages 2-6, 5-12, 5-28
containers 2-6, 5-11, 5-27

creating 5-28
editing 5-28
viewing 5-28

converting values 15-2
copying

BASIC routine definitions 16-17
items in the Repository 4-8

creating
BASIC routines 16-10
containers 5-28
data elements 4-44
data warehouses 1-2, 4-2

Index-3

executable jobs 17-1
items in the Repository 4-7
jobs 3-7, 5-8
stored procedure definitions 4-39
table definitions 4-29

CTLIB client library, installing 14-2
currency formats 5-42
current cell in grids B-1
custom transforms 2-6

creating 11-15
customizing the Tools menu 4-9

D

data
aggregating 1-3
extracting 1-3
sources 2-7
transforming 1-3

Data Browser 3-14, 4-33, 6-7, 7-6, 8-5,
9-4, 10-7

definition 2-6
using 5-24

data elements
assigning 3-6, 4-46
built-in 4-47
creating 4-44
defining 4-44
editing 4-47
viewing 4-47

data types, SQL Server 14-3
data values

cleaning 15-2
validating 15-2

data warehouses
advantages of 1-4
creating 4-2
example 3-1

DataStage
client components 2-1
concepts 2-5
jobs 2-2

overview 2-1
programming in 16-1
projects 2-2
server components 2-2
terms 2-5

DataStage Administrator 2-2, 2-6
DataStage Designer 2-1, 2-6, 5-1

exiting 5-11
main window 5-3
options 5-41
starting 5-1

DataStage Designer window 5-3
menu bar 5-3
shortcut menus 5-7
status bar 5-6
tool palette 5-5
toolbar 5-5

DataStage Director 2-2, 2-6
DataStage Manager 2-2, 2-6, 4-2

exiting 4-10
starting 3-2, 4-2
using 4-2, 4-7

DataStage Manager window 3-3, 4-4
display area 4-6
menu bar 4-4
project tree 4-5
shortcut menus 4-6
title bar 4-4
toolbar 4-5

DataStage Package Installer 2-2, 2-6
DataStage Repository 2-2, 2-7
DataStage Server 2-2
date formats 5-42
DBLIB client library, installing 14-2
Debug Window 17-2
debugger 17-1

toolbar 5-7, 17-5
Define Sequential Metadata dialog

box 4-21
defining

character set maps 6-4, 8-3, 10-3,
13-4, 14-7, 15-4

Index-4 DataStage Developer’s Guide

data elements 4-44
data warehouses 1-3
job parameters 5-34
locales 5-41
maps 5-41
table definitions 3-4

deleting
column definitions 4-32, 4-42, 5-20
items in the Repository 4-8
job parameters 5-36
links 5-17
stages 5-15

demo, BCPLoad stage 14-11
developing jobs 3-9, 5-1, 5-12
Diagram window 5-4
directory path

Hashed File stage 9-2
Sequential File stage 10-2

display area in DataStage Manager
window 4-6

documentation conventions xv
Documentation Tool 18-4

dialog box 18-5
toolbar 18-5
troubleshooting C-2

Documentation Tool dialog box 18-4
Documentation Tool toolbar 18-5

E

edit mode in grids B-3
editing

Aggregator stages 12-1
BASIC routine definitions 16-17
BCPLoad stage 14-6
column definitions 4-32, 4-42, 5-20

using the Columns grid 5-20
using the Edit button 5-20

containers 5-28
data elements 4-47
grids B-1, B-3
job parameters 5-36

job properties 5-30
ODBC stages 6-1
plug-in stage properties 13-10
Repository items 4-7
stages 3-12, 5-18
stored procedure definitions 4-42
table definitions 4-32
Transformer stages 11-6
UniVerse stages 7-1

empty values 15-7
entering

code in BASIC routines 16-11
column definitions 4-29
SQL statements 6-7, 6-12, 7-6, 7-10

environment variables 15-5
equijoins 11-4
error handling 19-6, 19-7
errors

and BCPLoad stage 14-8
and Orabulk stage 15-6
and UniData stage C-1
compilation 17-7

examples
of projects 3-1
of reports 18-7
of routines A-7
of transform functions A-7

exiting
DataStage Designer 5-11
DataStage Manager 4-10

Export option, using 19-3
exporting

from the Manager 19-3
job components 19-3
jobs 19-3
meta data using MetaBrokers 20-5

Expression Editor 2-6, 5-37, 5-47, 11-12
configuring 5-47

external ActiveX (OLE) functions 4-48
extracting data 1-3

Index-5

F

file formats for Sequential File
stages 10-5, 10-8

file names
in Hashed File stage 9-3, 9-5
in Sequential File stage 10-5, 10-8
in UniData stage 8-5, 8-6

files
BCPLoad demo 14-11
job log 14-8
loading into Oracle 15-5
log 15-5

Find dialog box 4-33, 16-15
FROM clause 6-13, 7-11

G

generated queries
for ODBC input data 6-8
for ODBC output data 6-13
for UniVerse input data 7-6
for UniVerse output data 7-10

grids B-1, C-3
adding rows in B-4
current cell B-1
deleting rows in B-4
editing B-1, B-3, C-3
keys used for navigating in B-2
keys used in editing B-3
navigating in B-2
row selector column B-1

GROUP BY clause 6-13, 7-11
using 6-16, 7-14

H

Hashed File stages 2-6, 5-11
account name for 9-2
input data to 9-3
Inputs page 9-3
output data from 9-4

Outputs page 9-4
specifying a file name for 9-3, 9-5
specifying the directory path 9-2
Stage page 9-2
update action 9-4

hashed files, importing meta data
from 4-17

HAVING clause 6-13, 7-11
using 6-15, 7-13

I

Import option, using 19-1
importing

external ActiveX (OLE)
functions 4-49

into the Manager 19-1
job components 19-1
jobs 19-1
meta data

from a Sybase database
table 14-3

from an SQL Server database
table 14-3

using MetaBrokers 20-1
stored procedure definitions 4-35
table definitions 3-4, 4-11

from a hashed file 4-17
from a sequential file 4-20
from a UniData file 4-18
from a UniVerse table 4-15
from an ODBC data source 4-11

input data
to Aggregator stages 12-3
to Hashed File stages 9-3
to ODBC stages 6-5
to plug-in stages 13-8
to Sequential File stages 10-4
to UniData stages 8-4
to UniVerse stages 7-4

input links 11-4
input parameters, specifying 4-40

Index-6 DataStage Developer’s Guide

inserting column definitions 5-20
installing

CTLIB client library 14-2
DBLIB client library 14-2
NetLIB client library 14-2
SQL Server client software 14-2

integrity constraints 15-2

J

job 2-6
job control routines 2-6, 5-38
Job Details window 5-6
job parameters 5-33

BCPLoad stages 14-6
defining 5-34
deleting 5-36
editing 5-36
using 5-36

job properties 5-30
editing 5-30
saving 5-32
viewing 5-30

jobs
compiling 3-21, 17-1
creating 3-7, 5-8
defining locales 5-41
defining maps 5-41
dependencies, specifying 5-43
developing 3-9, 5-1, 5-12
opening 5-9
overview 2-2
packaging 19-7
properties of 5-30
running 3-22
saving 5-8
version number 5-31

K

key field 4-25, 4-39, 5-18, 6-12, 7-10,
12-6

L

line terminators 10-2
linking stages 3-10, 5-15, 5-16
links

deleting 5-17
input 11-4
moving 5-16
multiple 5-17
output 11-4
reject 11-4
renaming 5-17

loading
column definitions 4-31, 5-22
files into Oracle 15-5

locales
and jobs 5-42
specifying 5-41

log file 15-5

M

manually entering
stored procedure definitions 4-39
table definitions 4-28

menu bar
in DataStage Designer window 5-3
in DataStage Manager window 4-4

meta data
definition 2-7
importing for a BCPLoad

stage 14-3
importing from a Sybase database

table 14-3
importing from a UniData

database C-2
importing from an SQL Server

database table 14-3
MetaBrokers

definition 2-7
exporting meta data 20-5
importing meta data 20-1

Index-7

Microsoft SQL Server 14-1
monetary formats 5-42
moving

links 5-16
stages 5-14

multiple links 5-17
multivalued data 4-24, 5-19

N

Name Editor 5-4
named pipes 10-2
navigation in grids B-2
NetLIB client library

configuring 14-2
installing 14-2

NLS (National Language Support)
definition 2-7
overview 2-4

NLS page
of the ODBC stage dialog box 6-2
of the Sequential File stage dialog

box 3-20
of the Stage Type dialog box 13-4
of the Table Definition dialog

box 3-6, 4-28
normalization 5-25

definition 2-7
null values 4-25, 4-39, 5-18, 12-4, 12-7,

15-7
number formats 5-42

O

ODBC stages 2-7, 5-12
connection type for 6-2
defining maps 6-4
editing 6-1
entering SQL statements in 6-7
input data to 6-5

using a generated query 6-8
using a stored procedure 6-9

using a user-defined SQL
statement 6-8

Inputs page 6-5
output data from 6-10

using a generated query 6-13
using a stored procedure 6-19
using a user-defined SQL

statement 6-17
Outputs page 6-10
procedure name for 6-6
Stage page 6-2
stored procedure parameters 6-12
table name for 6-5, 6-11
update action for 6-6
viewing SQL statements in 6-7,

6-12
opening a job 5-9
Orabulk stages 2-7

defining maps 15-4
environment variables 15-5
errors 15-6
properties 15-3

Oracle
bin subdirectory 15-5
loading files into 15-5
sqlldr command 15-1

ORDER BY clause 6-13, 7-11
using 6-15, 7-13

output data
from Aggregator stages 12-5
from Hashed File stages 9-4
from ODBC stages 6-10
from plug-in stages 13-9
from Sequential File stages 10-7
from UniData stages 8-5

output links 11-4
overview

of BCPLoad stage 14-1
of DataStage 2-1
of jobs 2-2
of NLS 2-4
of projects 2-2

Index-8 DataStage Developer’s Guide

of Transformer stage 11-1

P

Packager Wizard, using 19-6
packaging

jobs 19-7
plug-ins 13-5, 19-7

parameter definitions
data element 4-39
key fields 4-39
length 4-39
scale factor 4-39

Parameters grid 4-38
Parameters page, ODBC stages 6-12
plug-in stages 2-7, 5-12

adding 5-13
BCPLoad 14-1
defining maps 13-12
editing properties 13-10
Inputs page 13-8
Orabulk 15-1
output data 13-9
output link properties for 13-10
Outputs page 13-9
properties for 13-6
specifying after-stage

subroutines 13-7
specifying before-stage

subroutines 13-7
specifying input data 13-8
specifying input properties for 13-9
Stage page 13-6

plug-ins 2-7, 13-1
BCPLoad 13-1
defining maps 13-4
installing 13-1
Orabulk 13-1
packaging 13-5, 19-7
registering 13-2
using 13-5

printer setup 18-10

printing
Documentation Tool dialog

box 18-4
example of reports 18-7
from the Designer 18-1, 18-10
landscape C-3

procedure name 6-6
programming in DataStage 16-1
project tree 4-5
projects

choosing alternative 4-8
example 3-1
overview 2-2
setting up 3-2, 4-1

properties
editing in plug-in stages 13-10
plug-in 13-6
plug-in stages 13-9, 13-10

R

reference links 5-15
registering plug-in definitions 13-2
reject links 11-4
releasing a job 17-7
renaming

BASIC routines 16-18
columns 15-2, 15-4
items in the Repository 4-7
links 5-17
stages 5-14

replacing text in routine code 16-16
reporting

generating reports 18-3
Reporting Assistant dialog

box 18-1
Reporting Tool 18-1

Reporting Assistant dialog box 18-1
Reporting Tool 18-1
Repository 2-2, 2-7
Repository items

copying 4-8

Index-9

creating 4-7
deleting 4-8
editing 4-7
renaming 4-7
viewing 4-7

Routine dialog box 16-5
Code page 16-8
Creator page 16-6
Dependencies page 16-8
General page 16-5
using Find 16-15
using Replace 16-15

routine name 16-5
routines

built-in before/after-
subroutines A-7

examples A-7
writing 16-1

row selector column B-1
rows, bad 15-6
running a job 3-22

S

saving
code in BASIC routines 16-12
job properties 5-32
jobs 5-8

SELECT clause 6-13, 7-11
Sequential File stages 2-7, 5-12

defining maps 10-3
file formats for 10-5, 10-8
input data 10-4
Inputs page 10-4
output data 10-7
Outputs page 10-7
specifying a file name for 10-5, 10-8
specifying line terminators 10-2
specifying the directory path

for 10-2
Stage page 10-2

sequential files, importing meta data
from 4-20

Server 2-2
server directories, browsing 5-23
setting file formats 10-5, 10-8
setting up a project 3-2, 4-1
shortcut menus

in DataStage Designer window 5-7
in DataStage Manager window 4-6
in Transformer Editor 11-3

sort order 5-42
source, definition 2-7
specifying

Designer options 5-45
input parameters for stored

procedures 4-40
job dependencies 5-43

SQL
data precision 4-25, 4-39, 5-18, 12-4,

12-7
data scale factor 4-25, 4-39, 5-18,

12-4, 12-7
data type 4-25, 4-39, 5-18, 12-4, 12-7
display characters 4-25, 4-39, 5-18,

12-4, 12-7
SQL Server

supported data types 14-3
unsupported BCP switches 14-2
unsupported data types 14-3

SQL statements
entering 6-7, 7-6
syntax 6-13, 7-10
viewing 6-7, 6-12, 7-6, 7-9

sqlldr command
log file 15-5
running under UNIX 15-5
specifying the control file 15-3
specifying the data file 15-3

sqlldr command 15-5
stage properties

BCPLoad 14-4
Orabulk 15-3

Index-10 DataStage Developer’s Guide

Stage Type dialog box
and BCPLoad plug-ins 14-4
and plug-ins 13-6

stages 2-7, 5-11
adding 3-9, 5-13
Aggregator 2-5, 5-11
BCPLoad 2-5
built-in 5-11
column definitions for 5-18
Container 2-6, 5-12
Container Input 5-12
Container Output 5-12
deleting 5-15
editing 3-12, 5-18

Aggregator 12-1
BCPLoad 14-6
Hashed File 9-1
ODBC 6-1
Orabulk 15-1
plug-in 13-6
Sequential File 10-1
Transformer 11-1
UniData 8-1
UniVerse 7-1

Hashed File 2-6, 5-11
linking 3-10

links 5-15
moving 5-14
ODBC 2-7, 5-12
Orabulk 2-7, 15-1
plug-in 2-7, 5-12
renaming 5-14
Sequential File 2-7, 5-12
specifying 5-12
Transformer 2-5, 2-8, 5-12
UniData 2-8, 5-12
UniVerse 2-8

starting
DataStage Designer 5-1
DataStage Manager 3-2, 4-2

status bar in DataStage Designer
window 5-6

stored procedure definitions 4-34, 5-25
creating 4-39
editing 4-42
importing 4-35
manually defining 4-39
result set 4-40
viewing 4-42

stored procedures 4-35
for ODBC input data 6-9
for ODBC output data 6-19
input parameters 6-12
using in a BCPLoad stage 14-7

stream link 5-15
supported BCP switches 14-4
supported data types

SQL Server 14-3
Sybase Server 14-3

Sybase Server 14-1
supported data types 14-3
unsupported BCP switches 14-2
unsupported data types 14-3

T

Table Definition dialog box 4-23
Columns page 4-25
for stored procedures 4-38
Format page 4-26
General page 4-24
NLS page 4-28
Parameters page 4-38

table definitions 2-8, 4-11
column definitions 4-25
creating 4-29
defining 3-4
editing 4-32
from a BCPLoad stage 14-3
importing 3-4, 4-11
manually entering 4-28
viewing 4-32

table name 6-5, 7-4
terms and concepts 2-5

Index-11

testing BASIC routines 16-13
time formats 5-42
title bar in DataStage Manager

window 4-4
tool palette 5-5
toolbars

debugger 5-7, 17-5
Designer 5-5
Documentation Tool 18-5
Manager 4-5
Transformer Editor 11-2

transform functions
creating 16-10
examples A-7

Transformer Editor 2-8, 11-1
link area 11-2
meta data area 11-2
shortcut menus 11-3
toolbar 11-2

Transformer stages 2-5, 2-8, 5-12, 11-1
basic concepts 11-4
editing 11-6
Expression Editor 11-12
specifying after-stage

subroutines 11-11
specifying before-stage

subroutines 11-11
transforms 11-15

transforming data 1-3
transforms 2-8

custom 2-6
in Transformer stage 11-15

troubleshooting C-1
compilation errors 17-7
Documentation Tool C-2

U

UNICODE 2-4
UniData stages 2-8, 5-12

account name for 8-2
defining maps 8-3

Inputs page 8-4
output data from 8-5
Outputs page 8-5
specifying a file name for 8-5, 8-6
Stage page 8-2
troubleshooting C-1
update action 8-5

UniVerse stages 2-8, 5-12, 7-1
account name for 7-3
and UniVerse connection 7-2
connection type for 7-2
editing 7-1
entering SQL statements in 7-6
input data to 7-4

using a generated query 7-6
using a user-defined SQL

statement 7-7
output data from

using a generated query 7-10
using a user-defined SQL

statement 7-15
Stage page 7-2
table name for 7-4, 7-9
update action for 7-5
viewing SQL statements in 7-6, 7-9

UNIX line terminators 10-2
unsupported BCP switches

SQL Server 14-2
Sybase Server 14-2

unsupported data types
SQL Server 14-3
Sybase Server 14-3

update action
in Hashed File stages 9-4
in ODBC stages 6-6
in UniData stages 8-5
in UniVerse stages 7-5

user-defined SQL queries 6-12, 7-10
user-defined SQL statements

for ODBC input data 6-8
for ODBC output data 6-17
for UniVerse input data 7-7

Index-12 DataStage Developer’s Guide

for UniVerse output data 7-15
using

BCPLoad stage 14-5
Container Input stage 5-29
Container Output stage 5-29
COUNT function 6-17, 7-14
Data Browser 5-24
DataStage Manager 4-2, 4-7
Export option 19-3
generated queries

for ODBC input data 6-8
for ODBC output data 6-13
for UniVerse input data 7-6
for UniVerse output data 7-10

GROUP BY clauses 6-16, 7-14
HAVING clauses 6-15, 7-13
Import option 19-1
job parameters 5-36
Packager Wizard 19-6
plug-ins 13-5
Print from the Designer 18-10
stored procedures

for ODBC input data 6-9
for ODBC output data 6-19
in BCPLoad stages 14-7

SUM function 6-17, 7-14
user-defined SQL statements

for ODBC input data 6-8
for ODBC output data 6-17
for UniVerse input data 7-7
for UniVerse output data 7-15

WHERE clauses 6-14, 7-12

V

validating data values 15-2
values

converting 15-2
empty 15-7
null 15-7

version number
for a BASIC routine 16-7

for a job 5-31
viewing

BASIC routine definitions 16-17
BCPLoad plug-in definitions 14-4
containers 5-28
data elements 4-47
job properties 5-30
plug-in definitions 13-3
Repository items 4-7
SQL statements 6-7, 6-12, 7-6, 7-9
stored procedure definitions 4-42
table definitions 4-32

W

WHERE clause 6-13, 7-11
using 6-14, 7-12

Windows NT line terminators 10-2
writing BASIC routines 16-1

