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Abstract

Infrared thermography in nondestructive testing provides images (thermograms) in which zones of interest (defects)

appear sometimes as subtle signatures. In this context, raw images are not often appropriate since most will be missed.

In some other cases, what is needed is a quantitative analysis such as for defect detection and characterization. In this

paper, presentation is made of various methods of data analysis required either at preprocessing and/or processing

images. References from literature are provided for briefly discussed known methods while novelties are elaborated in

more details within the text which include also experimental results.
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1. Introduction

Infrared thermography in nondestructive test-

ing (IRNDT) provides images (thermograms) in

which zones of interest (defects) appear sometimes

as subtle signatures due to all factors that degrade
infrared (IR) images from self-emission of the IR

camera to the nonuniform properties of the sur-

face where data are collected. Moreover, with long

wavelengths in IR thermal bands (2–5 and 8–12

lm) with respect to visible bands, signals in the

thermal bands are intrinsically weak since liber-

ated photonic energy W due to the oscillatory

nature of particles inside matter is inversely pro-
portional to the wavelength. In this context, raw

images are not often appropriate since most will be

missed. In some other cases, what is needed is a
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quantitative analysis such as for defect detection

and characterization.

From years to years, various methods of data

analysis particularly suited in IRNDT have been

developed through the World. It is interesting to

notice that besides traditional techniques coming
from the field of ‘‘computer vision,’’ [1] several

specific methods have been developed for IRNDT.

These unique techniques are sometimes based on

the underlying heat-conduction physics. These

methods are required either at image preprocessing

and/or processing stages. In this paper, the dis-

cussion will be devoted to such a topic. We

encourage readers to consult the corresponding
rich literature [2–4].
2. Preprocessing

Practically speaking, it is observed that IR

images are mainly degraded by the following
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effects: � vignetting due to limited aperture, �
fixed pattern noise (FPN) in commonly used focal

plane arrays (FPA) due to the pixel reading pro-

cedure, � presence of dead pixels in FPA matrix

and � radial distortion due to the noncolinear

image points with respect optical center. Depend-
ing on a particular situation either or all of these

effects have to be taken into account. Moreover

nonuniform infrared and optical properties of the

observed surface contribute also to the overall

degradation.

Vignetting is probably the more complex effect

to address since it is related to the temperature of

the scene with respect to temperature of the lens
with no effect present when both are identical. A

correction procedure is available in [2, p. 133; 5].

FPN is cancelled out by subtracting an image of a

uniform scene from the image of interest. A map

of dead pixels is generally known from the FPA

manufacturer. In this case the value at dead pixel

locations is replaced by the average value of

neighbor pixels (either four or eight neighbors are
used for such purpose). A method was proposed in

the literature for radial distortion correction [6].

Once these effects have been taken into account,

the arbitrary thermal units g from the IR camera

need to be converted into temperature [5]. The

procedure consists to position the IR camera in

front of a reference temperature source (such as a

blackbody or a thick Copper plate) brought to
various known temperatures. As the reference

temperature source is varied, the IR images are

recorded. Average of the central pixels in the field

of view allows to get the calibration curve through

a polynomial fit (example: using Matlab poly-

fit(. . .) function), in the case of our IR camera

(Santa Barbara Infrared at 22.55 Hz with an

integration time of 1.255 ms):

T ð�CÞ ¼ �25:852þ 0:0140g � 1:317� 10�5g2

þ 7:006� 10�11g3 � 1:473� 10�15g4

ð1Þ

Preprocessing may include also some other pro-

cedures. Pixel enhancement is commonly used. It
consists to replace a given pixel value p to a value

p0 depending on a nonlinear relationship f ð. . .Þ:
p0 ¼ f ðpÞ ð2Þ
An obvious task consists to establish f ð. . .Þ [1].

Common effects of f ð. . .Þ includes binarization,

contrast stretching with either high or low values

emphasized. Since this method is pixel based, a

look-up table (LUT) can be programmed for a
quick processing.

Neighbor processing through a kernel is the

next step. Here a kernel (of nþ 1 by nþ 1 values)

is passed through the image and the central pixel

value p is replaced by p0 computed as follows:

p0 ¼ Bða1p1 þ a2p2 þ . . . anþ1pnþ1Þ ð3Þ

with B is a scaling factor, ai are kernel weights and
pi are the nþ 1 pixel values within the kernel

centered on p. Interesting effects include smooth-

ing operator (with all weights equal to 1), high-

pass filtering, Sobel operator (for edge extraction)

[1].

Probably the most common preprocessing
procedure is noise smoothing. Eq. (3) with all

weights to unity value is popular although edges

are left attenuated. Median filtering prevents this.

Here to, a kernel is passed through the image and

the central pixel p is replaced by the median value

of the sorted kernel values. For instance if kernel

has sorted values: ½21; 24; 42; 51; 83�, p0 will be set

to 42. Median filtering is good to remove spiky
noise. More complex noise removal techniques are

available, see for instance [2, p. 196] which pro-

poses a sliding Gaussian method. Simple subtrac-

tion techniques such as subtracting two images

acquired at the same moment from two different

experiments (spatial reference technique) or from

images recorded closely (temporal reference tech-

nique) allow to remove unwanted effects present in
both experiments such as nonuniform heating [2,

p. 193]).
3. Processing

3.1. Techniques

Pulsed thermography (PT) is a common ap-

proach in IRNDT. Besides PT, lockin thermog-

raphy (LT, also known as modulated

thermography), step heating (SH) or vibrother-

mography (VT) are available. All these approaches
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differ mainly by the way the specimen is thermally

stimulated [2, chap. 10]. For instance in PT, an

initial pulse of energy is brought to the specimen

and the subsequent temperature evolution (rise

and decay) is recorded while in step heating tem-

perature is monitored during steady low power
heating but for a long period of time. Although the

following discussed processing techniques were

originally developed for FT, they can (sometimes)

be adapted to other IRNDT approaches as well.

Enhancement of the subtle signatures involves

various techniques including: thermal contrast

computation [2, p. 198], normalization [7], pulsed

phase thermography (PPT) [2, p. 406; 8], principal
component thermography (PCT) [9], 1st and 2nd

derivatives [10]. Space being limited, it is not

possible to discuss in details all of these techniques,

interested readers are referred to cited references.

Others techniques [3,4] such as, thermal tomogra-

phy [2, p. 428, 11] are not discussed here.

Thermal contrast is the most common (and

simpler too!). Various thermal contrast definition
exist but they all share together the need to know a

sound area (SoA) location within the field of view.

Establishing this SoA is of course the main draw-

back of thermal contrast especially if automated

analysis is needed or if nothing is known about the

specimen. For instance absolute thermal contrast

CaðtÞ at location of pixel p at time t is defined as:

CaðtÞ ¼ DT ðtÞ ¼ T ðtÞ � TsðtÞ ð4Þ
with T ðtÞ is the temperature at time t at p and TsðtÞ
is the (average) temperature at time t for the SoA.

Problem of SoA location was recently solved

with the differential absolute contrast (DAC), [12].

DAC is based on Eq. (4), however instead of
finding a SoA somewhere in the image, the SoA

temperature at time t is computed locally at p
assuming that on the first few images (at time t0 in
particular) local point p behaves has a SoA [12].

The mathematical development is as follows.

Assuming a Dirac pulse applied to a semi-infinite

body, the one-dimensional Fourier equation is

solved as (z is the depth variable, z ¼ 0 corre-
sponds to the surface, Q is the injected energy at

the surface, e is the thermal effusivity of the sample

and DT is the temperature increase from t ¼ 0) [2,

p. 348, 13]:
DTsemi�infinite�bodyðz ¼ 0; tÞ ¼ Q

e
ffiffiffiffiffi
pt

p ð5Þ

As it is well known, the solution provided by Eq.

(5) diverges as time elapses and also as plate

thickness enlarges with respect to the nonsemi-

infinite case. Nevertheless, Eq. (5) is a good

approximation.
At time t0, the temperature of the sound area

Ts½i;j�ðt0Þ is then given by:

DTs½i;j�ðt0Þ ¼ DT½i;j�ðt0Þ ¼
Q½i;j�

e½i;j�
ffiffiffiffiffiffi
pt0

p ð6Þ

Assuming injected energy over the specimen is

changing relatively smoothly, Eq. (6) stands and

allows to extract Q=e locally:

Q½i;j�

e½i;j�
¼

ffiffiffiffiffiffi
pt0

p
� DT½i;j�ðt0Þ ð7Þ

From Eq. (7), the temperature of the sound area

can be defined locally as a function of t:

DTs½i;j�ðtÞ ¼
Q½i;j�

e½i;j�
ffiffiffiffiffi
pt

p ¼
ffiffiffiffiffiffi
pt0

p
ffiffiffiffiffi
pt

p � DT½i;j�ðt0Þ

¼
ffiffiffi
t0

t

r
� DTi;jðt0Þ � ð4Þ ð8Þ

Finally, combining Eqs. (4) and (8) yields to the

DAC formulation:

CdacðtÞ ¼ DT ðtÞ ¼ T ðtÞ � ½t0=t�1=2T ðt0Þ ð9Þ

Although Eq. (9) is based on a simple one-

dimensional model, DAC was found particularly

efficient to remove unwanted effects appearing in

specimen heating for instance. Interestingly, the

whole DAC procedure is now automated [14].
Normalization is a processing technique where

the sum (average) of the total images to be pro-

cessed is divided by the averaged set of images

where the zone of interest (example a subsurface

defect) is observed in the temperature data [7]. An

obvious difficulty is of course to find those relevant

images!

Pulsed phase thermography (PPT) goes from
the time domain to the frequency domain thanks

to the pixel by pixel one-dimensional discrete fast

Fourier transform (FFT) of the thermal sequence:
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Fn ¼
XN�1

k¼0

T ðkÞe2pikn=N ¼ Ren þ iImn ð10Þ

where i is the imaginary number, T ðkÞ designates

the temperature at location p in the kth image of

the sequence, Re and Im are respectively the real

and imaginary parts of the transform and sub-

script n designates the frequency increment.

Interestingly PPT can be seen as a link between PT

and LT with several advantages since phase images
/n that become available ð/n ¼ a tanðImn

Ren
ÞÞ bring

several advantages in terms of unwanted effects

(optical or infrared) that cancel out somehow in

the involved division. Although no SoA is in-

volved in PPT computations, the problem to de-

fine the exact t ¼ 0 was noted. Moreover, the FFT

involved in the process––Eq. (10)––suppressing the

direct time information makes quantitative inver-
sion procedures tricky. This is related to the fact

that Fourier transform decompose the signal of

interest into infinite circular functions. For this

reason, it is possible to update PPT with the

Wavelet transform (WT, [2, p. 424]):

Wf ðS; T Þ ¼
Z þ1

�1
f ðtÞh�ST ðtÞdt ¼ Reþ iImg ð11Þ

where f ðtÞ is the time depending signal whose WT

is computed, S is the shifting factor (associated to

the frequency as in FFT) and T is the translation

factor associated to the time, f ð. . .Þ is the temporal
function the Wavelet is to be computed on, t is the
time, Re is the real part of the transform, Img is the

imaginary part of the transform, i is the imaginary

number ð
ffiffiffiffiffiffiffi
�1

p
Þ, � means the complex conjugate.

Function hST ðtÞ is generated by translating and

scaling the Mother-wavelet hðtÞ:

hS;T ðtÞ ¼
1ffiffiffi
S

p h
t � T
S

� �
ð12Þ

where S is the scaling factor that is related to the

frequency and T the translation factor associated
to the time. In a reported application, the Morlet-

wavelet was selected as the Mother-wavelet [2, p.

424]. Since an univocal relationship exists between

the translation factor and depth of zone of interest,

calibration and inversion of this parameter are

possible.
Principal component thermography (PCT) ex-

ploits also the decomposition of the time-varying

temperature signal using ‘‘more appropriate’’

functions than oscillatory ones as in PPT because

of the monotonic nature of IRNDT signals. In

fact, PCT decomposes data into a set of orthogo-
nal statistical modes (known as empirical orthog-

onal functions or EOF) obtained through singular

value decomposition (SVD). Lets assume data are

represented as a M � N matrix A (M > N ). Then

the SVD allows to write:

A ¼ URVT ð13Þ

with R being a diagonal N � N matrix (with sin-

gular values of A present in the diagonal), U is a

M � N matrix, VT is the transpose of an N � N
matrix (characteristic time). If IRNDT data

(typically temperature are used) is arranged as

time along the columns and space along the rows,

then it is shown that the columns of U represent a

set of EOFs describing spatial variations of data,

the first being associated to the spatial field with

exponential decay and the second to the nonuni-

form field correlated with structural anomalies.
This second EOF is known as the PCT [9].

Interestingly, svdð. . .Þ function is available in

Matlab although the simultaneous manipulation

of three matrixes limits the size of involved ma-

trixes. Interestingly, a theorem exists saying that

every N �M matrix has a singular value decom-

position.

As stated in Section 1, noise is a disturbing
factor in IRNDT. Researchers thus proposed to fit

the temperature decay curve in PT since it varies

(in first approximation) as t1=2 [10]. Using loga-

rithms this yields to:

ln½T ðtÞ� ¼ C � 1

2
lnðptÞ ð14Þ

First term in Eq. (9) corresponds to an offset re-

lated to the absorbed energy and material property

and second to a straight line of slope )1/2. Next, a

n-degree polynomial is fitted for each pixel p
within the field of view:

ln½T ðtÞ� ¼ anfln½t�gn þ an�1fln½t�gn�1 þ � � �
þ a1 ln½t� þ a0 ð15Þ
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Typically, n is set to 4 or 5 to avoid ‘‘ringing’’ and

insure a good correspondence between data and

fitted values. Matlab provides a direct polynomial

fitting function (polyfit(. . .)). Such synthetic data

processing brings interesting advantages such as:
significative noise reduction, possibility for ana-

lytical computations (such as the PPT), significa-

tive less storage required since the whole data set is

reduced to n images (one per coefficient). This

technique of temperature ‘‘reconstruction’’ is
Cross Section 
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Fig. 1. Kevlar panel with nonplanar surface.

Fig. 2. Processed thermograms computations of thermal contrast, di

defects #3, #6, #7 identified in Fig. 1.
called thermographic signal reconstruction (TSR).

In addition to raw temperatures that can be

reconstructed in TSR, it was shown recently that

first and particularly second time derivative were

efficient at deciphering faint signals [10].
In order to illustrate (and compare) the dis-

cussed image processing techniques, a Kevlar

composite panel in which artificial defects were

embedded at manufacturing stage was tested. Fig.

1 shows the specimen layout while Fig. 2 illustrates
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Locations of 16 inclusions are shown.

fferential contrast, PPT, PCT, TSR 1st and 2nd derivatives for
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the computations of thermal contrast, differential

contrast, PPT, PCT, TSR 1st and 2nd derivatives

for three identified defects in Fig. 1. In summary,

for the 16 present inclusions, DAC was able to

resolve: 12 out of 16, TSR 2nd: 9/16, TSR 1st:

8/16, PPT: 6/16 (although better results could be
expected with higher sampling rate and longer

experiment duration), PCT: 6/16 and thermal

contrast: 6/16. It is also noted that TSR 1st

derivative and PPT generally provide images with

crisper edges. Of course such ‘‘study’’ based on the

visual perception of the viewer is quite subjective

but is in line with other similar studies [7]. More-

over, depending on the application a particular
technique could distinguish itself significatively so

it is advised better to be cautious in regards of this

observed ranking.

3.2. Quantitative processing: defect detection algo-

rithms

This is another important step. Several ap-
proaches are possible. Manual identification by an

experienced observer is the most common since the

combination eye-brain is astonishingly good at

quickly resolving tiny details (as in Fig. 2). On the

automated side sometimes required on the plant

floor in case of routine inspection, different algo-

rithms have been proposed. Thresholding (of

processed-contrast, PPT, PCT, TSR-images) is
common. For instance, threshold can proceed with

a fixed value (case of Eq. (2) above) or automati-

cally by analyzing the image histogram and finding

valleys where thresholding will be successful at

segmenting regions of interest. In fact segmenta-

tion is a whole research field in machine vision and

involves many different approaches [1].

In the particular context of IRNDT, neural
networks (NNs) and ad hoc algorithms have been

applied successfully [2, chap. 6]. In the particular

case of NNs, contrast images are first computed

and the analysis proceeds pixel by pixel with con-

trast values used as input to the network and with

a defect/nondefect output flag. Kohonen or multi-

layer perceptron (MLP) were applied in this con-

text. Interestingly, with more outputs to the net-
work, more complex decision such as depth

classification can take place.
3.3. Quantitative inversion methods

This is the ultimate data analysis step possible

since a map of thermal specimen properties such as

thermal diffusivity becomes available. Due to ad-
verse conditions in IRNDT (Section 1), reported

accuracies can vary greatly from a few percents to

over hundred percents [2, chap. 10]! One has thus

to be particularly cautious in applying these

methods in each context.

Several methods have been proposed [2, chap.

10]. All rely on a sort of calibration either with a

thermal model or with various specimens repre-
sentative of unknown ones. For instance, one can

compute defect depth z by extracting a few

parameters on the thermal contrast curve such as

the maximum contrast Cc max and its time of

occurrence tc max [13]:

z ¼ At1=2c maxC
h
c max ð16Þ

with parameters A and h obtained from the cali-

bration process. Other empirical relationships

have been proposed for thermal resistance R. We

already discussed in previous sections the capa-
bilities of neural networks in term of depth sorting.

Statistical behavior of regions of interest such

as background and defects have also being

exploited for depth classification. The principle is

that temperature, phase and amplitude can be

modelled under some circumstances (such as in

case of ‘‘white’’ noise sources) by a Gaussian

random process [2, p. 417]. This statistical tech-
nique involves two phases. First a calibration or

‘‘learning phase’’ in which data images with defects

of known depths and background location are

made available so that local means m and standard

deviation s are computed at each time increment

and for each zone of interest (background and

known defects). In the subsequent analysis step,

unknown pixels are analyzed and individual
probabilities are computed with m and s for a gi-

ven pixel to be part of a given class. Assuming

statistically independent events, individual proba-

bilities (at different time increment) can be multi-

plied together to form a global probability. The

winning rule is then simple: the largest wins. This

statistical method was tested with raw tempera-

ture, phase and amplitude (from PPT) and re-
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vealed quite efficient, at least on relatively simple

geometries in isotropic material. This method is
now adapted to more complex specimens and

materials (such as anisotropic composites).
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Blind frequency based on phase is a newcomer

in quantitative inversion [15]. Lets remember that

for a thermal wave, phase / defines as / ¼ z
l where

l is the thermal diffusion length expressed by

l ¼
ffiffiffiffiffiffiffiffiffiffiffi
2a=x

p
with modulation frequency x and,

thermal diffusivity a, so that:

z / 1ffiffiffiffi
x

p ð17Þ

As noted, with the thermal diffusion length defi-

nition, there will be modulation frequencies for

which defects will not be visible. In fact (as in

ultrasonics) high frequency thermal waves prop-

agate close to the surface and inversely, low fre-
quency thermal waves propagate deeper. By

identifying the thresholding frequency called the

blind frequency xb [15] and defined as the fre-

quency for which a defect at a given depth be-

comes visible, an inversion procedure can be

devised. Now lets introduced the phase contrast

defined similarly to the thermal contrast in

Eq. (4):

D/ ¼ /� /s ð18Þ

where /s is the phase value in a reference sound

area (SoA). Interestingly, on D/ðxÞ curves, xb

corresponds to the point where phase reaches zero

(Fig. 3). In experimental situations where noise is

present, it is necessary to introduce a certain
threshold (example of 0.03 rad on Fig. 4) to esti-

mate xb. Next depth is extracted from the cali-

brated line of z versus ½1=x�1=2. Preliminary

investigations of this approach are encouraging (as

shown on Fig. 5).

Defect sizing is generally achieved by extract-

ing the contour of the detected anomaly either at

peak contrast slope, at peak maximum thermal
contrast or as early as possible once the anomaly

comes out of the noise to avoid the lateral ther-

mal diffusion (that tends to enlarge the size at

peak contrast or slope). An iterative technique

was also proposed and consists to extract the

contour in each (contrast) image at half maximum

amplitude. A plot of the size as function of the

square root of the time is then established and the
extrapolated line at time zero yield to a good

estimation of defect size [16].
4. Conclusion

In this paper, various data analysis methods
were presented at preprocessing and processing

levels and also for defect detection and quantita-

tive characterization in IRNDT. These methods

increase IRNDT capabilities since subtle defects

signature become apparent. More sensitive and

fast IR cameras coupled with always more pow-

erful computers capable to handle efficiently

complex algorithms and large data set should push
these limits even further. In fact, one can say that

more is to come.
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