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ABSTRACT

NASA’s planned permanent return to the Moon by the year 2018 will demand advances in many technologies. Just as
those pioneers who built a homestead in North America from abroad, it will be necessary to use the resources and materials
available on the Moon, commonly referred to as in-situ resource utilization. This benefit would come in a number of ways.
Required payloads would be smaller as supplies would be available at the mission site. This would allow for much less
expensive missions as the launch fuel-to-payload weight ratio is greater than 9:1. In addition, this would free up valuable
payload space for other instruments and tools, allowing more effective and higher-return missions to be undertaken.

Preparation would nonetheless be required well in advance of manned missions. In this concept study we put forward a
role for robotic precursor missions that would prepare for the arrival of astronauts, serving to establish methods of collecting
oxygen, water and various other critical resources. It will also be of principal importance to perform site preparation to set
up a power generation center necessitating excavation of trenches, foundations, radiation shielding, landing and launch sites.
We explore the potential role for autonomous, multirobot excavation solutions for these infrastructure development tasks.
As part of this analysis, we compare various excavation platforms using an integrated real-time 3D dynamics simulator and
autonomous control techniques for lunar surface interactions.

Traditional human-designed controllers lack the ability to adapt in-situ (without human intervention), particularly when
faced with environmental uncertainties and changing mission priorities which were unaccounted for during design. By
contrast, use of Artificial Neural Tissues (a machine learning approach) to produce autonomous controllers requires much
less human supervision. These controllers only require a single global fitness function (akin to a system goal) and can
perform autonomous task decomposition through a Darwinian selection process.

This novel quantitative approach combining real-time 3D simulation with machine learning provides an alternative to the
often disputed and unreliable qualitative predictions of terrestrial excavation solutions applied to the lunar surface. Besides
an autonomous infrastructure robotics concept, we also consider traditional approaches including teleoperated single and
multirobotic systems. Some of the advantages of the autonomous multirobot approach to excavation over the traditional ones
are analyzed in terms of launch mass, power, efficiency, reliability, verifiability and overall mission cost.

I. INTRODUCTION

NASA’s planned permanent return to the Moon by the
year 2018 will demand advances in many technologies. Just
as those pioneers who built a homestead in North America
from abroad, it will be necessary to use the resources and
materials available on the Moon, commonly referred to as
in-situ resource utilization. An important facet of lunar base
construction will involve site preparation to set up a power
generation center, habitat locations and other facilities requir-
ing excavation of trenches, foundations, radiation shielding,
landing and launch sites.

One option to accomplish the necessary site excavation
tasks is to use a teleoperated or locally controlled con-
struction vehicle driven by a single astronaut. The extensive
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use of astronauts for excavation and site preparation tasks
poses human safety concerns. Furthermore, additional habitat
infrastructure needs to be in place before base construction
to support an astronaut construction crew. Other proposed
approaches such as teleoperation of multiple vehicles using
a single operator requires a scheduling system and commu-
nication infrastructure. However saturation limits the number
of tasks that can be handled by a human operator [1] making
it less efficient than a fully autonomous solution that operates
continuously. Building upon traditional human operated dig-
ging equipment like bulldozers, use of autonomous robotics
solutions to perform infrastructure development tasks are
the logical next step, and could yield significant benefits in
terms of system performance measures such as cost, launch
mass, overall system complexity, length of mission, safety
and other relevant mission objectives.

In this paper, lunar base construction will be analyzed from
a system wide stance and will include applying sets of exca-
vation and construction equipment representative of options
described in literature. Consensus among mission planners
has yet to be achieved regarding the major objectives in



a lunar base construction mission, with many competing
proposals put forward over the years. The mission selected in
Boles et al. [2], and the analysis technique used to evaluate
lunar base construction methods are chosen as a basis for
this paper.

One of the major hurdles with lunar base construction is
that lunar surface condition (apart from the previous Apollo
and Luna mission landing sites) are not well understood
and are subject to a high degree of uncertainty. In the
study performed by Boles et al. [2], excavation related
construction tasks were identified as one of the key areas
where improved ground site information and improvements
in control strategies are predicted to yield significant re-
ductions in total earth-launch mass (the most important
factor affecting overall mission cost). However one limitation
with the Boles et al. study is that a panel of experts was
used to determine construction efficiency rates (referred to
nominal rates of production). The use of experts, rather than
actual simulations or hardware testing, to derive efficiency
rates is subjective and amplifies the already high uncertainty
associated with lunar construction. In addition, the work
focused exclusively on astronaut-operated control approaches
(as opposed to autonomous robotic systems) for excavation
tasks. An objective of this paper is to obtain actual produc-
tivity data estimates using high fidelity dynamics simulations
combined with an autonomous control strategy for excava-
tion (generated using adaptive machine learning techniques).
The goal of this paper is to determine whether autonomous,
multirobot infrastructure robotics solutions have advantages
over teleoperated or manual approaches. Any advantages
shown over the techniques proposed by Boles et al. would
satisfy this objective.

For the autonomous strategies considered in this paper, a
machine learning approach called the Artificial Neural Tissue
(ANT) framework [3], [4], [5] is used to perform excavation
tasks. This machine learning method is used to ‘breed’ for
robotic controllers in an artificial Darwinian manner. For the
excavation and site preparation tasks (a key components of
any infrastructure development activity), ANT can produce
controllers that interpret and follow excavation blueprints,
can successfully avoid obstacles, perform layered digging,
avoid burying or trapping other robots, perform coordi-
nated group actions and clear/maintain excavation routes,
all with minimal task-specific assumptions and supervision.
Furthermore, since little preprogrammed knowledge is given,
ANT may discover novel solutions that otherwise maybe
overlooked by a human designer. Performance comparison of
these autonomous multirobot excavation strategies relative to
manual approaches is performed in simulation, using Digital
Spaces, a real-time 3D dynamics simulator [6], [7].

In this paper, a cyclic decision theory approach is first
described that highlights areas where further research can
reduce the cost of lunar base construction. This is followed
by explanation of the simulation experiments, used to find
nominal rates of production with details on the ANT con-
troller used for autonomous multirobot excavation. In addi-
tion, a brief overview of the newly implemented deformable

terrain model used within the Digital Spaces 3D realtime
dynamic simulator for the ANT excavation experiments is
presented. A discussion section follows, outlining mission
level comparisons between complete teleoperated solutions
from literature and the proposed autonomous multirobot
excavation solutions. The paper ends with a summary out-
lining mission-level benefits of using autonomous multirobot
excavation solutions over traditional approaches and future
work.

II. BACKGROUND

Much of the literature discussing lunar base construction
focuses on the tasks and equipment required, with a tendency
to rely on ‘nominal data’ estimates under terrestrial condi-
tions. A paper by Shimizu Corp. looks at excavation tasks
from an energy standpoint, but uses terrestrial numbers to
determine total requirements [8]. Depending on equipment,
productivity rates can differ substantially between the earth
and the moon and that would play an important role in
calculating total energy. Also, the study does not account for
differing net production rates during the various phases of lu-
nar base construction. Specialized vehicles such as bulldozers
used for clearing type tasks maybe used extensively during
the early phases of the mission. However the production rates
of these vehicles are expected to differ from other vehicles
used predominantly in later phases such as a front loader
(used for short range hauling).

Other studies focus on detailed equipment design [9], and
relative comparison of concepts based on trade studies. Some
put emphasis on the prime movers and lifting equipment,
without analyzing excavation tasks in lunar terrain [10]. A
recent trade study by NASA compares excavation equipment
based on the expected ability for them to handle the dif-
ferent types of digging tasks faced on the moon [11]. This
includes qualitative assessment of criteria such as mining
and construction productivity, digging capability, reliability,
and maintainability. Although productivity details are highly
uncertain, this analysis is useful in that it narrows down
the options in a logical manner, paving the way for testing
a smaller list of concepts under expected lunar conditions.
Design configurations used in this paper are based on the
candidate solutions proposed in these trade studies.

Traditional excavation technologies tend to have similar
kinematic configurations to industrial robots, and excavation
activities tends to consist of repetitive tasks making them po-
tential candidates for automation. Motion control of a scoop
through soil has been demonstrated along a desired trajec-
tory using position accommodation and compliance control
[12]. Utilization of robotics technology and automation in
excavation applications would not only provide opportunities
to maximize machine utilization and throughput, it would
reduce the need for skilled operators and reduce the workload
on remaining operators to ensure quality excavation results.

Elaborating on the potential use of robotic technologies,
introducing a robot collective to accomplish the required
task may be beneficial. In nature, ants digging tunnels to
form a nest [13], has inspired researchers [14] to conduct



experiments using collective intelligence as a means of
resolving the excavation problem. Rather than commanding
one large and complex robot to perform the excavation, a
team of smaller robots performing the task may help lower
complexity and overall system cost. The ANT framework is
a practical multirobot implementation of this concept, and
applied in this paper to test the candidate equipment.

Since cost of prototyping and performing physical tests
on actual excavators is very high, approaches that make use
of simulation in an environment that accurately represents
the moon would be practical. Digital Space Corporation’s
realtime 3D dynamic simulator, complete with deformable
terrain modeling to simulate tool-regolith interactions and
wheel/track-regolith modeling for tractive forces developed
in the Space Robotics laboratory at the University of Toronto
Institute for Aerospace Studies, represents a leap in simula-
tion capability that makes such lunar tests possible.

The paper by Boles et al., although subjective in some
respects because of a reliance on experts rather than sim-
ulation or hardware testing to identify production rates for
all aspects of the lunar construction project, can be extended
because it specifically outlines a quantitative, robust model
upon which to judge lunar base construction, complete with
results for detailed teleoperated system options. The paper
also states that digging tasks and equipment have the highest
impact on total cost of a lunar base construction mission,
suggesting that improvements in this area could be very
beneficial for ‘big picture’ planning. Applying simulation
results for alternative solutions to the problem into the model,
and determining the impacts on mission design could lead
to significant enhancements to any proposed mission.

In the following section, we start by considering a de-
tailed mission manifest proposed in a case study by NASA
[15]. An approach to assess lunar base construction is next
described that 1) Identifies general tasks, and quantities of
work for lunar base construction 2) Defines the resources
required 3) Determines productivity 3) Uses deterministic
and probabilistic sensitivity analysis on-key variables that
affect mission cost and 4) Finds competitive alternatives.

III. ANALYSIS

A research approach that uses decision tools to test com-
petitiveness of alternative construction methods and equip-
ment is described. The analysis technique uses decision
theory that highlights areas where lowering uncertainty has
benefits in terms of lunar base mission cost. The process
begins by identifying some measure by which to assess sets
of alternatives for equipment and methods required to build a
lunar base. Next, data requirements for the decision approach
are divided into 1) work to be completed; 2) resources
available to do work, and 3) productivity and support needs
for those resources.

The process, as described by Boles et al., then follows
cyclical steps, with three main phases: 1) deterministic:
2) probabilistic and 3) informational. Only the first two
phases are used to assess competitiveness of alternatives,
and are presented in this paper. The informational phase

helps determine whether further reduction in uncertainty of
key variables would be worthwhile. At the present time,
additional reduction of uncertainty would require precursor
exploratory missions to the moon to obtain detailed lunar site
data. Thus, the informational phase is not pursued here. In
Boles’ et al. study however, digging tasks were identified in
the informational phase as a potential area where accurate
information would benefit lunar mission cost analysis. In
this paper, the introduction of simulations to test automated
solutions allows for a second iteration of the decision cycle
to proceed, allowing for more accurate data extraction of
excavation productivity rates. For the next iteration, funda-
mental improvements in reliability of basic data like regolith
properties would be needed. A diagrammatic representation
of the decision cycle is shown:
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Fig. 1. Decision Analysis Cycle

A. Alternative Selection

This section explains various mission options considered
in this paper. Based on a NASA case study[15] investigating
a lunar base construction mission, generic sets of tasks
and quantities of work are defined. In addition, alternatives
representing lunar construction equipment cited in literature
are produced. Design requirements taken into consideration
include: 1) Ability to excavate the type of lunar regolith
expected at the mission site; 2) Critical systems operating
long term and reliably 3) Noesis to survive and operate
in dusty environments; 4) Efficient power transmission and



utilization; 5) Maneuverability in majority of lunar terrain;
6) Packageability and landability of the rover system.

The mission design process outlined by Boles et al. also
takes into account cost and maintenance factors pertaining
to the excavation equipment. However, these factors were
obtained through qualitative expert opinions. In this paper
we develop simulations experiments for the various robotic
excavation robots and come up with more accurate quan-
titative data used to arrive at key cost variables such as
total earth-launch mass. Parameters used to define each piece
of equipment are shown in Table I. Hardware reliability
is incorporated into Maintenance Intra-Vehicular Activity
(IVA), Maintenance Extra-Vehicular Activity (EVA), Rebuild
IVA, Rebuild EVA, and maintenance resupply mass.

TABLE I
EQUIPMENT VARIABLES

Variable Units
Power Kilowatts
Mass Metric Tons
Life Hours of Operation
Maintenance Resupply Metric Tons Over Life
Maintenance IVA Crew Hours
Maintenance EVA Crew Hours
Salvage Mass Metric Tons
Rebuild IVA Percent of Maintenance IVA
Rebuild EVA Percent of Maintenance EVA

A total of 12 general cases have been assembled and ana-
lyzed, all with basic lifting, digging and hauling capabilities.
Alternatives 1 to 9 are described in detail in [14] and shown
in Figure 2-4. Options 1 to 5 represent manually operated,
terrestrial-based construction systems, and are extended to
incorporate multirobot, autonomous excavation capability
(Figure 2). The Legged platforms and super crane concepts
are manually operated and are considered for options 6 to
9 (Figure 3). Furthermore, these options are extended to
include autonomous, multirobot approaches (alternative 1 is
used as a template) with excavation equipment substituted as
shown in Figure 4. System variations are shown in Figure 5,
with the legend provided in Figure 6. An autonomous version
of the single 8 ton excavator in alternative 1 was also tested in
Digital Spaces, and comparisons made against the multirobot
bulldozer, front loader and bucket wheel options.

Images of the simulated tracked front loader and 6 wheel
bulldozer configurations are shown in Figures 7 and 8. The
track vehicle platform design is based on pre-phase A de-
sign work for NASA’s proposed Robotic Lunar Exploration
Program surface mission [16]. The 6 wheel vehicle dozer is
based on a vehicle designed and constructed by the Northern
Centre for Advanced Technology Inc. (NORCAT), Electric
Vehicle Controllers Ltd. (EVC), and the space robotics group
at the University of Toronto.

These alternatives are tested in simulation using an Arti-
ficial Neural Tissue control architecture, which is discussed
in Section IV.

Fig. 2. Alternatives 1-5

Fig. 3. Alternatives 6-9



Fig. 4. Alternatives 10-12

Fig. 5. Variations Applied to Alternatives 10-12

Fig. 6. Legend of Variations

Fig. 7. Tracked Bucket Loader

Fig. 8. 6-wheel Bulldozer

B. Total Earth-Launch Mass and Key Resource Variables

Total earth-launch mass, the most logical performance
variable to assess competitiveness of lunar base construction
methods, is used as the figure of merit in this paper. It
should also be noted that the total earth-launch mass is found
to be the most biggest cost component in the process of
lunar base construction [2]. The calculation consists of crew
and equipment allocations, and is the most effective way of
determining transportation costs, and in turn the total cost of
constructing a lunar base.

A mathematical model for total earth-launch mass,
the performance measure used to compare alternatives,
is developed with the aid of an influence diagram [14].
The initial launch mass of basic equipment, maintenance
resupply launch mass, and replacement launch mass make
up total equipment launch mass. Life sustenance needs such
as water, food, clothing etc. make up crew-consumables



launch mass. The construction-related earth-launch mass,
from [14] is as follows:∑
(all machines)

Mi ·#i + Ci ·Ri + INT (Ci −#i)(Mi − Si)

+


7MD

[
EV A+

∑
(all machines)

Ci·MEVAi+INT (Ci−#i)(REV Ai)

]
HEVA·D


+


7MD

[
IV A+

∑
(all machines)

Ci·MIV Ai+INT (Ci−#i)(RIV Ai)

]
HIV A·D


(1)

Where

Ci =
∑

(all tasks)

Qj
Pj

(Nij)(A%ij)/Lifei (2)

EV A =
∑

(all tasks)

Qj
Pj

(NEV Aj)(A%EV Aj) (3)

IV A =
∑

(all tasks)

Qj
Pj

(NIV Aj)(A%IV Aj) (4)

The first summation represents hardware launch mass, and
the final two summations are the crew consumables. Variable
definitions for the launch mass formula are provided in the
appendix.

C. Deterministic Model Phase

The deterministic model phase involves performing sen-
sitivity analysis to highlight the most influential variables
impacting the mission. Using productivity rates established
from simulation results for each design scenario, a sum-
mation over all tasks of the estimated quantities of work
divided by production rates of the necessary resource pro-
duces the total number of hours required for each generic
task. Minimum and maximum values for each rate are used
to determine model sensitivity. The five most influential
variables impacting mission costs for all possible system
alternatives are shown in Table II. Leveling tasks, such as
road clearing and creating landing/launch pads, involve flat-
tening out uneven terrain. Excavating tasks on the other hand
involve digging out deep holes used for habitat foundations
or burying nuclear reactors. For crew-only construction tasks
which cannot be simulated, estimates on the productivity data
are obtained from literature. After adjusting the variables
using deterministic maximums and minimums, no particular
alternative was observed to be entirely dominant. Use of
additional probabilistic analysis on these sensitive variables,
through the mathematical encoding of risk and uncertainty,
can identify these alternatives with the available information.

TABLE II
SENSITIVE VARIABLES

Alternatives
1-5, 10-12

Alternative
6

Alternative 7 Alternative
8

Alternative
9

Level Level Level Level Level
Excavator
Life

Excavate Excavate Excavate Excavate

Excavate Mobile
Work
Platform
Life

Elevate
Regolith

Elevate
Regolith

Elevate
Regolith

Elevate
Regolith

Elevate
Regolith

Mobile Work
Platform Life

Back-fill Back-fill

Excavator
Resupply

Blade
Life

Boles Lunar
Excavator
Life

Super
Crane
Mass

Super
Crane
Mass

D. Probabilistic Sensitivity Analysis Phase

Probabilistic sensitivity analysis is a good tool to test
competitiveness of alternatives. This process first involves
encoding the probability distributions for the key variables
highlighted in the deterministic analysis. True shapes of the
probability distributions for the uncertain variables cannot be
known with limited understanding of lunar site conditions.
However, in many cases, a beta distribution is assumed [17]:

K(x− a)α(b− x)β , a ≤ x ≥ b; a, b ≥ −1 (5)

Boles et al. relies on a minimum three data points required
for PERT (Program Review and Evaluation Technique) anal-
ysis where durations of tasks are estimated as minimum,
most likely, and maximum. Additional details on how dis-
persion of the distribution is obtained can be found in [18].
A cumulative probability curve is produced for each distri-
bution, and discretized at 25%, 50%, and 25% intervals. The
expected values from these ranges are fed into a decision tree,
with five levels of the tree corresponding to the five sensitive
variables for each alternative. An abbreviated tree is shown
in Figure 9. The leveling time sensitive variable is shown as
an example showing typical values and probabilities used in
generating the decision tree.

Fig. 9. Abbreviated Decision Tree

Next, the analysis involves adjusting the probabilities
of each key variable (between 0% to 100% of the upper
discretized expected value) in the decision tree. Consider
the behaviour of alternative 5 as an example (over most of
its range of possible values), where the total earth-launch
mass is higher than all other cases. So based on leveling task



productivity, one can conclude that alternative 5 is uncom-
petitive, because of the high mission cost (see Figure 10).
Furthermore, the best lunar base construction solution is
identified by systematic analysis of all the sensitive variables
using this procedure.

Fig. 10. Probabilistic Sensitivity of Alternative 5, Leveling Productivity

E. Digital Spaces Simulation Environment

The Digital Spaces simulation is divided into three major
parts: 1) the Agent and Poser File; and 2) the deformable
terrain model, which are all explained in the following
subsections.

1) The Agent and Poser File: Each vehicle within the
ANT simulation in Digital Spaces is defined as an agent. The
agent is composed of all of the pieces that make up the rover,
and the agent file contains configuration information of for all
of the pieces. A poser script file is necessary to control each
vehicle agent in the space. The defined behaviour functions
can either manipulate the entire agent or individual joints

2) Deformable Terrain Model: The simulated lunar ter-
rain is divided up into rectangular boxes, representing re-
golith containers, which rise and fall to reflect appropriate
interaction with the excavation tool. When the bucket shape
in the simulator comes into contact with one of these
boxes, a volumetric friction file that computes the Balovnev
forces acting on the blade is executed. The variables that
change dynamically during excavation, affecting the force
on the blade, are tool depth, d and blade rake angle, β (see
Figure 24).

The horizontal, vertical and total forces acting on the
bucket are provided in the Appendix. Figure 12 shows
Balovnev draw bar force variation with tool depth.

Volume conservation is also applied on the terrain to pro-
duce realistic deformation. When the blade passes through
a terrain box, that box gets lowered to reflect the blade’s
average depth. The total volume removed is correspondingly
added to the terrain boxes directly ahead, representing proper
accumulation of regolith in front of the blade.

Wheel/Track interaction with the terrain is also modeled,
with analytical calculations performed to established all
appropriate components of traction. The calculated traction

Fig. 11. Cutting Operation Variables

Fig. 12. Balovnev Drawbar Force Variation with Tool Depth

forces are converted into force vectors in the simulator,
and are applied to the wheels to achieve correct vehicle
response. The effects of slippage, sinkage, bulldozing resis-
tance, resistances to obstacles, and lunar gravity effects are
all determined and matched to results from Figure 13.

IV. SIMULATION EXPERIMENTS

Two types of experimental simulation are used in this
study. The first simulator is modeled as a low-fidelity grid
world environment in two-dimensions, and is used to evolve
(train) the controller for the digging task. Training is ac-
complished by a providing an objective (fitness) function
used for selection of candidates solution in a Darwinian
manner. The intention is for the training algorithm to finding
candidate solutions that maximize this objective function
under different scenarios. The objective (fitness) function f
for the excavation task is:

f =

∑J
j=1

∑I
i=1

(
pi,j · e−2|gi,j−hi,j |

)∑J
j=1

∑I
i=1 pi,j

(6)

Workspace dimensions are I and J , with∑J
j=1

∑I
i=1 pi,j > 0 and pi,j = 1 if the terrain box

i,j requires excavation, and 0 otherwise; target depth is gi,j
and current regolith depth is hi,j . A description of each



Fig. 13. Drawbar Pull as a Function of Sinkage

simulated robot in the grid world environment is shown in
Appendix. Each robot is given access to set of sensory inputs
(Table VII, Figure 21) and trigger a set of basis behaviours
(Table VIII). The ANT controllers are expected to interpret
excavation blueprints and accomplish subtasks including
performing layered digging and leveling excavation routes.
The excavation blueprints are provided in the form of a goal
map to each robot controller and it specifies the target depth
of the excavation area and identifies dumping areas [5]. In
addition to previously published excavation capabilities, the
ANT controllers considered for this study can also perform
group actions while in alignment, such as excavation of an
area in a line configuration (Figure 16- 19).

Once the controllers have acquired the necessary traits
for accomplishing the excavation tasks from the evolution-
ary training procedure, they are ported into the higher-
fidelity Digital Spaces simulation environment for further
validation. Robotic hardware can be represented with in-
creased fidelity, complete with sensor interfacing, and with
integrated deformable terrain modeling. Deformable terrain
modeling allows for realistic regolith-tool and wheel/track-
terrain interactions. Steps in this virtual approach facilitate
prototyping and testing of alternative digging concepts and
can potentially reduce hardware experiment costs. With the
iterative approach described in this paper, a single best
approach developed in simulation can then be constructed
in hardware for further validation.

To ensure consistency between the training simulation
and the Digital Spaces virtual world, fitness is monitored
for 1, 2, 3, and 4 bulldozer simulations with the alignment
capable ANT controller. The results are shown in Figures 14
and 15. The main work area goal map dimensions used for
all simulation experiments in this study is 8 × 8 × 1.5 m
deep.

Evaluation of ANT controller fitness shows that both
simulators correlate very well to one another over the time
it takes to complete a task. After reaching peak fitness at
about 100 minutes for all except the single rover solution,
the fitness drops gradually in the Digital Spaces results. The

Fig. 14. Fitness vs. Time: Training Simulator

Fig. 15. Fitness vs. Time: Digital Spaces Simulation

training simulator results level off after about 200 timesteps.
The reason for the drop is that after the final goal depth
is achieved, the vehicles continue to move around the work
area with blade height set to level. Theoretically, this means
the rovers do not dig any regolith, but in reality, they skim
small amounts of material off, going slightly below the goal
depth over time.

V. RESULTS AND DISCUSSION

TABLE IV
DETERMINISTIC AND PROBABILISTIC LAUNCH MASS FOR

EARTHMOVING SPECIFIC TASKS (METRIC TONS)

Alternative Deterministic Probabilistic
1 (ANT Controlled) 16.46 28.66

10 (1 rover) 6.52 11.08
10 (2 rovers) 5.26 7.39
10 (3 rovers) 3.56 5.91
10 (4 rovers) 4.12 6.88
11 (3 rovers) 3.66 5.99
12 (3 rovers) 3.63 5.94

Deterministic launch mass for the alternatives is presented
in Table III. Alternatives 1 to 9, are listed along with
the three-rover ANT controlled variations of the bulldozer,
bucket loader and bucket wheel configurations. The three



TABLE III
EARTH-LAUNCH MASS BREAKDOWN DETERMINISTIC RESULTS (METRIC TONS)

Alternative Description Crew
Consumables

Equipment Total

1a Manually Operated 8 Ton Bulldozer 103.69 154.91 258.60
1b ANT Controlled 8 Ton Bulldozer 43.95 53.32 97.27
2 Manually Operated Crane-Bulldozer 114.50 154.39 268.89
3 Manually Operated Truck-Bulldozer 112.37 167.21 279.58
4 Manually Operated Crane-Truck 99.63 154.44 254.07
5 Manually Operated Crane-Dozer-

Truck
110.04 118.51 228.55

6 Manually Operated Mobile Digger 125.61 39.86 165.47
7 Manually Operated Mobile + Boles

Excavator
100.88 48.65 149.53

8 Manually Operated Super Crane
Digger

96.32 46.78 143.10

9 Manually Operated Super Crane +
Boles Excavator

85.16 37.82 122.98

10 ANT Controlled Bulldozer 30.93 53.45 84.38
11 ANT Controlled Front Loader 30.99 53.49 84.48
12 ANT Controlled Bucketwheel 30.97 53.47 84.44

rover cases have the lowest total earth-launch masses out of
all other multirobot scenarios, and are listed in Table III. The
bulldozer option 10, relative to all other cases, has the lowest
launch mass. This alternative utilizes: 1) continuous blade
adjustment for constant level digging; 2) 4 way blade control;
3) 4 wheel configuration; and 4) boom and bucket similar
to the front loader configuration to perform bulldozing.
Four way blade control, combined with continuous blade
adjustment, gives this dozer configuration the ability to sculpt
the work area to any arbitrary goal map, and adjust angle
quickly, resulting in negligible drop in digging productivity.
A human operator on the other hand, as discussed in Boles
et al. [2], takes time to angle the tool correctly, and slows
the process. In addition the four-wheel configuration is also
found the lightest of all options.

The front loader and bucket wheel using autonomous
ANT controller have slightly lower total earth-launch mass
in comparison to the bulldozer because of slightly lower
digging productivity. The bucket loader configuration spends
non-productive time moving to and from dump sites with
it’s full bucket elevated, and does not dig during these
times, and so has overall lower digging productivity than the
bulldozing and bucket wheel approaches. The bucket wheel
has constraints on bucket size due to high excavation forces
that can form on the tool blades, and corresponding limits on
motor power available to turn the bucket wheel itself. The
limits on bucket size, lower nominal digging rates, and hence
overall launch mass is higher than bulldozing, but not lower
than the front loader option.

It should also be noted that the autonomous ANT con-
troller configurations are only used for mobile excavation
activity while lifting, drilling, and transportation capability
is assumed to be teleoperated (similar to alternatives 1 to 9).
Because the vehicle sizes used for bulldozer, front loader and
bucket wheel are generally similar, and all have high nominal
digging productivities (above 25 m3/hour- see Table V), the
end observed effect is that there is no substantial difference in

TABLE V
DETERMINISTIC SIMULATED EXCAVATION AND LEVELING TASK

PRODUCTIVITY DATA (M3 /HOUR)

Task Maximum Expected Minimum
ANT Controlled Bulldozer (3
rover solution)
Excavate 78.3 47.49 1.67
Level 78.3 63.32 1.67
ANT Controlled Bucket
Loader (3 rover solution)
Excavate 42.28 26.62 1.67
Level 42.28 35.50 1.67
ANT Controlled Bucketwheel
(3 rover solution)
Excavate 49.91 31.43 1.67
Level 49.92 41.91 1.67

total earth-launch mass between the alternatives that use the
autonomous controllers. However, significant improvement is
observed for the autonomous solutions over the teleoperated
approaches. By looking at earth-launch mass of the exca-
vation resources alone, the differences between autonomous
solutions become more apparent. Table IV shows determin-
istic and probabilistic launch mass of the digging resources
alone for the autonomous alternatives.

A significant reduction in mass occurs when the number
of robots is increased from one to three, but then the mass
rises with further increase in the number of robots. With
too many robots in a limited area, digging productivity
drops due to factors such as antagonism, where one robot
undoes the actions of another. The end effect is reduced
productivity and thus high launch mass because of higher
maintenance and rebuilding costs. The best solution for the
bucket loader and bucketwheel configurations is to use three
robots for a 8×8 meter excavation site. Figure 16 to 19 shows
snapshots of three front loaders performing autonomous
excavation using the ANT controller. The vehicles learn to
arrange themselves (and move) in a line as shown to increase



excavation efficiency.

Fig. 16. Three rover aligned bulldozing simulation: after 5 minutes

Fig. 17. Three rover aligned bulldozing simulation: After 45 minutes

In general, equipment costs for automated solutions are
lower compared with the manual approaches suggested in
[14], contributing to the launch mass reduction. In addi-
tion, many factors contributing to productivity reduction of
manually operated approaches on the moon are not factors
for ANT controlled systems. The obvious one would be
that a driver is not needed for the autonomous vehicle, so
constraints put on productivity due to work day duration and
crew productivity limits do not play a role here. Additional
time spent by human operators to readjust blade or bucket
height in order to contour the terrain to the desired shape
is not needed, because the blade or bucket is continuously
adjusted by the autonomous controllers. The elimination of
these factors for the autonomous solution results in increased
productivity.

The Boles et al. model also contains a quantitative de-
terministic approach for measuring model robustness. This
involves varying some basic parameters in the model and
determining whether the rankings of the alternatives remain
consistent [14]. Extensive analysis was conducted by adjust-
ing quantities of work, EVA and IVA hours per day and crew

Fig. 18. Three rover aligned bulldozing simulation: After 130 minutes

Fig. 19. Three rover aligned bulldozing simulation: After 300 minutes

consumption rates and results is shown in Figure 20. Per-
forming this sensitivity analysis (from 0% to 100% chance
of experiencing its uppermost expected value, for each of
the key variables affecting total earth-launch mass) on all
alternatives further confirms that the bulldozing alternative
is the most competitive of all.

The cost of delivering resources to the moon is substantial,
and a significant reduction in launch mass as shown for
the autonomous solutions will lead to sizable cost savings.
We also compare the alternatives presented in this paper in
terms of number of rocket launches (assuming an Ares V
launch vehicle) in Table VI. The Ares V launch vehicle
has a payload capacity of 71 metric tons to the moon
[19] and furthermore we budget a 20% mass margin to
the deterministic launch masses presented earlier. For the
autonomous solutions (alternatives 10 to 12), the number of
rocket launches stands at 2, that is 2 lower than the manually
controlled alternatives 1 to 5, and 1 fewer than options 6 to
9.

VI. CONCLUSIONS

Higher fidelity simulation experiments of lunar excavation
tasks using autonomous controllers show much higher pro-



Fig. 20. Probabilistic Sensitivity Graph- Alternative 10 Launch Mass
Competitiveness is shown with Respect to Leveling Productivity

TABLE VI
NUMBER OF ROCKET LAUNCHES REQUIRED FOR ALTERNATIVES

Alternative Description Launches
1a Manually Operated 8 Ton Bulldozer 4
1b ANT Controlled 8 Ton Bulldozer 2
2 Manually Operated Crane-Bulldozer 4
3 Manually Operated Truck-Bulldozer 4
4 Manually Operated Crane-Truck 4
5 Manually Operated Crane-Dozer-

Truck
4

6 Manually Operated Mobile Digger 3
7 Manually Operated Mobile + Boles

Excavator
3

8 Manually Operated Super Crane Dig-
ger

3

9 Manually Operated Super Crane +
Boles Excavator

3

10 ANT Controlled Bulldozer 2
11 ANT Controlled Bucket Loader 2
12 ANT Controlled Bucketwheel 2

ductivity rates than comparable astronaut driven or teleop-
erated solutions for lunar base construction. This translates
into significantly lower total earth-launch mass numbers than
astronaut driven or teleoperated approaches. Reduced launch
mass was also shown for different vehicle configurations,
including a fleet of smaller bulldozer, front loader, and bucket
wheel concepts because these solutions achieve higher dig-
ging productivity rates with smaller sized vehicles compared
with an astronaut-driven configuration. Overall, out of all the
alternatives compared, autonomous bulldozing is found to be
the most competitive. In terms of number of rocket launches,
the multirobot autonomous solutions require up to 50%
fewer rocket launches (assuming an Ares V vehicle) than
an equivalent astronaut-operated single vehicle excavation
solution.
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VIII. APPENDIX

A. Excavation Robot Model

This section includes details outlining the robot model
used for ANT controller training and validation using higher
fidelity simulations. The the inputs to the ANT controller are
shown in Table VII and Figure 21. The robots have access
to current (X, Y) from localization scans performed in the
simulation. Z (upwards) is computed through integration of
changes in depth values. The discretized X and Y coordinates
are use to lookup the goal depth gx,y of each grid square
region in front of the robot.

Fig. 21. Robot Input Sensor Mapping for the Simulation Model.

The sensory input and output behaviours mapping for the
excavation controller is an extension of the work presented
in [4]. This controller can perform coordinated/aligned group
actions in addition to the capabilities demonstrated with
the previous version of the ANT excavation controller. All
raw input data are discretized and fed to the controller.
D1..D4 and FZ1..FZ2 are obtained using simulated ground
scans. In addition a set of simulated IR sensors are used
to detect obstacles at the front and back (S1, S2). Current
X and Y positions of each robot are used to determine the
relative position of the nearest robot and are used for wireless
communication. Each robot wirelessly communicates by
exchanging 1 bit of data between with its nearest neigh-
bouring robot. Alignment sensors (A1...A4) on the robot are
used to determine if neighbouring robots are in alignment
position. The Balovnev force feedback for the blade is used
to determine BL1 and orientation data is used to determine
TL1. The robots also have access to one memory bit, which
can be manipulated using some of the basis behaviors.

Once two robots are in alignment position and behaviour
2 is triggered (Table VIII), while behaviour 3 is not trig-
gered then the AS1 value for both robots is set to 1. This
group of robots are in aligned state (AS1 = 1) and motor
behaviours such as ‘move forward’, ‘turn left’ and ‘turn
right’ are performed through consensus (Figure 22). Thus



TABLE VII
ANT CONTROLLER SENSOR INPUTS

Variable Function States
A1...A4 Robot Alignment Position Alignment Position, Not in Alignment Position
D1...D4 Depth Sensing Relative to Goal Depth Level, Above, Below, Don’t Care
FZ1, FZ2 Depth Sensing Relative to Ground Above, Below, Level
B1 Blade Position Above, Level, Below Ground, Home
S1 Front Obstacle Detection Obstacle, No Obstacle
S2 Front Obstacle Detection Obstacle, No Obstacle
TL1 Robot Tilted Downwards True, False
ST1 Robot Stuck True, False
M1 Memory bit 0, 1
WC1 Status of message bit from wireless

comm
0, 1

AS1 Robot Alignment Status Not Aligned, Aligned
P1, P2 Pheromone Concentration relative to

Pnominal

Level, Above, Below

TABLE VIII
ANT CONTROLLER BASIS BEHAVIOURS

BehaviourFunction States
1 Set Throttle Set rover throttle to high otherwise remain nominal
2 Want to Align Intention of rover to go into align state
3 Not Want to Align Intention of rover to exit out of align state
4 Move Forward Move one grid square forward
5 Move Backward Move one grid square backward
6 Random Turn Randomly Turn 90◦ right or Turn 90◦ left
7 Turn Right Turn 90◦ right
8 Turn Left Turn 90◦ left
9 Blade position: Above Set blade above ground d cm
10 Blade position: Below Set blade below ground d cm
11 Blade position: Level Set blade level to ground
12 Blade position: Home Retract blade to home position (makes no contact with regolith)
13 Blade Pivot: Nominal Pivot blade to nominal angle
14 Blade Pivot: Left Pivot blade 30◦ (left) from nominal
15 Blade Pivot: Right Pivot blade -30 ◦ (right) from nominal
16 Bit Set Set memory bit 1 to 1
17 Bit Clear Set memory bit 1 to 0
18 Increment Pheromone Increment pheromone concentration
19 Decrement Pheromone Decrement pheromone concentration
20 Wireless Comm.: Send 1 Set message bit 1 to 1 and wirelessly broadcast to nearest rover
21 Wireless Comm.: Send 0 Set message bit 1 to 0 and wirelessly broadcast to nearest rover

Fig. 22. Robots in aligned state performing various motor behaviors. Note
that the ‘move forward behavior can be performed in two configurations
(side by side and one behind another).

each member of the group has to trigger the ‘move forward’
behaviour for the group of robots to move forward otherwise
the ‘move forward’ triggered by some members of group are
vetoed. Random turns among groups of robots in aligned
state implies a synchronized random turn, where all the
members ‘turn right’ or ‘turn left’ with equal probability.
A group of robots detach from aligned state (AS1 = 1) once
all members of group trigger behaviour 3 and behaviour 2
is not triggered.

Table VIII lists the basis behaviors the robot can perform
(in order) within a single timestep. Darwinian selection is
performed based on the fitness value of each controller
averaged over 50 different initial conditions, within an 8 X
8 excavation area. The Evolutionary Algorithm population
size for the experiments is P = 100, crossover probability pc
= 0.7, mutation probability pm = 0.025 and tournament size
of 0.06 P.



Fig. 23. Cutting Forces of a Flat Blade

Fig. 24. Forces Exerted by Bucket on Regolith

B. Balovnev Soil Interaction Model

Based on Bolovnev’s literature [20], f1, f2, f5 and f6,
shown in Figure 23 are small forces relative to the others.
f3 and f4 can be broken down into further components.

f4x = P1 + P2 + P3 (7)

and
f3x = P4 (8)

P1 is both the cutting and surface resistance of sharp edged
flat trenching blade, P2 is resistance posed by bluntness
of the edge, P3 is resistance created from the two bucket
sides, P4 is frictional resistance on those sides. Additional
parameters are shown in Figure 24. Horizontal force is now
found to be:

H = (P1 + P2 + P3) + P4

= wd(1 + cotβ cot δ)A1

·
(
dgγ

2
+ c cotφ+ gq +BURIED ? (d− l sinβ)

·
(
gγ

1− sinφ
1 + sinφ

))
+ web(1 + tan δ cotαb)A2

·
(
ebgγ

2
+ c cotφ+ gq + dgγ

(
1− sinφ
1 + sinφ

))
+

2sdA3

(
dgγ

2
+ c cotφ+ gq +BURIED

?(d− ls sinβ)
(
gγ

1− sinφ
1 + sinφ

))
+ 4 tan δA4lsd

TABLE IX
LIST OF BALOVNEV PARAMETERS

Tool Width w
Tool Length l
Tool Depth d
Side Length ls

Side Thickness s
Blunt Edge Angle αb

Blunt Edge Thickness eb

MOON gravity gM

Regolith Specific Mass γ
Surcharge Mass q

Rake Angle β
Cohesion c

Internal Friction Angle φ
External Friction Angle δ

·
(
dgγ

2
+ c cotφ+ gq +BURIED

?(d− ls sinβ)
(
gγ

1− sinφ
1 + sinφ

))
(9)

with BURIED = TRUE or FALSE being 1 or 0 based
on whether or not the entire bucket is submerged into the
regolith. Geometric factors that consider the srace angle
relative to the plane of reference areA1 = A(β), A2 =
A(αb), A3 = A4 = A

(
π
2

)
. For Ai, β and αb the following

equation can be used:

A(β) =



1−sinφ cos 2β
1−sinφ

if β < 0.5
[
sin−1

(
sin δ
sinφ

)
− δ
]

cos δ(cos δ+
√

sin2 φ−sin2 δ)

1−sinφ e[2β−π+δ+sin−1( sin δ
sinφ )] tanφ

if β ≥ 0.5
[
sin−1

(
sin δ
sinφ

)
− δ
]

Total and Vertical force is now:

T = H csc(β + δ) (10)

V = H cot(β + δ) (11)
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