

Inkjet Technology & Decorative Surfaces

Debbie Thorp, Business Development Director
Global Inkjet Systems Ltd

TCM Decorative Surfaces Conference
December 2016

GLOBAL INKJET SYSTEMS CONTROL | PERFORMANCE | INNOVATION

GIS - What We Do

- GIS products enable system builders to reduce development time and get products to market faster
- We provide powerful, flexible & adaptable integration tools to suit your system and application needs

Agenda

- Printheads, inks & software enable applications
 - Overview of latest industrial inkjet printheads
 - Trends in drop size, resolution & speed
 - Software innovations
- Inkjet adoption in decorative surface applications
 - Just a few system examples
 - Tile
 - Textile
 - Flooring
 - Laminate
 - Wallpaper/Wallcoverings

© Global Inkjet Systems Ltd

TFP

MicroTFP

Samha G3I

StarFire Series

Manufacturer

PrecisionCore

Epson

Fujifilm

Model

Type

25.4 mm piezo

33.8 mm piezo

64.96 mm piezo

43 mm scalable niezo

Native

Resolution (dpi)

720

600

400

1200

Drop size

1.5-32.5 pl

1.5-32.5 pl

12/30/65 pl

2 nl

	Samba G3L	43 mm scalable piezo	1200	2 pi	 Smaller drops 			
НР	TU	108 mm thermal	1200	Not known	 Higher firing frequencies 			
	HDNA	100 mm thermal	2400	Not known				
Kodak	Stream	108 mm continuous	600	2.5 pl & 9 pl	 Higher nozzle density 			
	Ultrastream	108 mm continuous	600 x 1800	3.75 pl	 Wider heads 			
Konica Minolta	KM1800i	75.5 mm piezo	600	3.5 pl	Scalable heads			
	ME130H	21.65 mm piezo	1200	3 pL				
Kyocera	KJ4A-RH	108 mm piezo	600	3 pl	Ink recirculationMEMs manufacturing devel			
	KJ4B-YH	108 mm piezo	600	5 pl				
	KJ4B-Z	112 mm piezo	1200	2 pl				
Memjet	Pagewide	221 mm piezo	1600	1 pl	 Higher quality output 			
Panasonic	UH-HA800	56.3 mm piezo	360	3-30 pl	 Higher speed output 			
Ricoh	MH5440	54.1 mm piezo	600	7-35 pl	 High data rates to manage 			
	MH5220	54.1 mm piezo	600	2.5 pl	Drop management strategies			
Seiko SII	Printek 508	72 mm piezo	360	12 pl	Small drops/high speed			
	RC1536	108 mm piezo	360	13-100 pl	Printhead linearization Nozzla out componsation			
Toshiba Tec	CF1ou	53.7 mm piezo	300	6-42 pl	 Nozzle out compensation Registration/ substrate hand 			
	CF3	53.7 mm piezo	600	(3.5 pl)?	Registration/ Substrate Harium			
Xaar	1003	70.5 mm piezo	360	6-42 pl	TFP = Thin Film Piezo			
	5601 3p0	115 mm piezo	1200	3 pl	HDNA = High Definition Nozzle Architecture Table: Courtesy of Sean Smyth (with additions from GIS)			

Table: NOT exhaustive - but representative summary

Printhead trends

• Cmallar dranc

elopments

- dling

Piezo Printhead Developments

Some high resolution/small drop printhead examples

	Kyocera KJ4A-RH	Kyocera KJ4B-YH	Ricoh MH5220	Konica KM1800i	Kyocera KJ4B-Z	Fujifilm Samba G3	Xaar 5601 3p0
Nozzles	2656	2656	1280	1776	5120	2048	5601
Width (mm)	108	108	54	75	112	43	115
Resolution dpi	600	600	600	600 (1200 module)	1200	1200	1200
Grey levels (non zero)	3	3	4	7	3	3	7
Drop size pl	6	6	2.5	3.5	<2	2.4	3
	£ -	6	A CHILDRE			//	

Many Challenges.....and Solutions

Nozzle Out Compensation

- Nozzle sizes are getting smaller
 - More easily blocked
- Large print bar arrays
 - Many more nozzles
 - Higher probability of issues
- Strategy 1 : Double Up Redundancy
 - Add second row of printheads per colour so when one nozzle fails another can be used
 - Expensive
- Strategy 2: Hide the problem
 - Identify where a nozzle is faulty and spread the jetting responsibility to neighbouring nozzles and/or colours
 - Nozzle check pattern before print job
 - Inline with vision system

Nozzle Out Compensation

- Many different strategies to share data between nozzles
 - Image processing technology
 - Error diffusion screening & contone/grey level data modification
 - GIS believes most effective in contone data
 - Hide error in same colour plane to neighbouring nozzles
 - Hide error in other inks in multi-ink backgrounds
 - If Cyan nozzle fails could add a little black to hide white space
- Works best in mid and light mid tones
- Helps disguise or make the missing nozzle less visible less white space
- Clusters of nozzles much more difficult to hide than individual or isolated nozzles
- Substrate plays a part
 - Technology works best where there is some dot gain
- Numerous patents exist

Printhead Linearization

 Small amount of non-linearity in their drop volume across the length of head creates challenges

- Stitching printheads without visible joins
- Printing large areas of solids/flat colours
- Causes of drop volume inconsistency
 - Printhead manufacturing issue
 - Ejection of drops may not be constant along the piezo
 - Ink system
 - Temperature variation can affect ink viscosity and therefore drop volume
 - Piezo activity
 - Heavy use of some sections of printhead can result in areas of warming and changes in volume
 - Electronics
 - Damaged or degraded electronics may affect drop volume
 - Printhead position
 - System architecture may require heads to be angled creating slight pressure gradient which may affect drop volume

Printhead Linearization 5

Linearized printhead

Possible solutions:-

- Electrical per nozzle trimming
- ASIC trimming
- Bank trimming
- Screened (error diffusion) data modification
- Contone data modification

Inkjet Presses Today

- 4,000 20,000 nozzles
- Narrow width
- 300 600dpi native
- 10 100m pixels/sec

- 100,000 nozzles
- Medium width
- Up to 600dpi native
- 100m 1bn pixels/sec

- >500,000 nozzles
- Wide width >1.5m
- 1200dpi native
- ~18 bn pixels/sec

Ceramic Tiles

System Ceramics - Diversa

Launched Tecnargilla 2014

Fujifilm StarFire & Polaris heads

Up to 70m/min Up to 16 heads per bar Potentially 100's heads per system

- Glazes
- Decoration
- Gloss effects
- Matt effects
- Metallic effects

ALES'

Textiles

SPG Prints - Pike

Launched ITMA 2015

Fujifilm Samba G3L printheads

1200dpi x 1200dpi 1.85m wide Up to 40m/min 6-9 print stations 43 printheads per bar 2-10pl drop size

Barberan (E)

- Design & manufacture high precision machines for doors, boards, furniture, flooring, profiles, drawer sides, marble, stone, glass etc.
- Jetmaster 840 105 1260
 - 210mm to 1890mm
 - CMYK + LC + LM or O + V
 - KM printheads
 - UV inks

from roll to roll

for PVC panels

up to 630 mm

panels up to 1890 mm

Cefla Finishing (I)

- Acquired >60% Jet-Set(I)
 - Pixart Plot
 - Pixart Single Pass
 - Xaar 1003
 - UV inks

GLOBAL INKJET SYSTEMS CONTROL | PERFORMANCE | INNOVATION

Hymmen (D)

- Technology for large volume production of board materials surface finishing of board (MDF etc.) or roll materials
- Digital printing lines since 2008 series of Jupiter (JPT) systems
- JPT W 1400 for laminate
 - 25-50m/min
 - 2.17mm wide
 - CMYK
 - UV LED inks
 - Xaar 1003 printheads
 - 45gsm paper for dry pressing process

- JPT WS 230/550 for edge banding
 - 10-50m/min
 - Up to 540mm wide
 - CMYK (Light colours possible)
 - UV LED inks
 - Xaar 1003 printheads

Wemhöner Surface Technologies (D)

- Produces machines and systems for upgrading of wood based panels
 - Product range includes digital and direct printing systems, lacquering lines, lightweight panel systems, throughfeed press lines, special plants and special press lines
- MasterDigital part of MasterLine range
 - Surface finishing of MDF, particle board or other flat materials
 - Décor paper
 - Multipass XY roll to roll/flatbed
 - 600dpi
 - 24 heads per system typically
 - Up to 6 colours CMYK ++
 - Have own special red for furniture
 - Up to 790m2/hr

KBA & Interprint (D)

• KBA RotaJet168

- Printing décor paper
- Up to 150m/min
- 1.68m wide
- 600dpi
- CMYK
- Water based inks
- Processes 2.2 terabyte/sec

Palis & Schattdecor (D)

- Schattdecor has had inkjet strategy since 2009
- Collaboration 2013 between Schattdecor, Padaluma (Palis Digital) & Rotodecor
 - Joint development of Palis 2250 for décor paper printing
 - 2250mm width
 - 75-150m/min
 - Designed to print with pigments identical to those used in rotogravure printing

19

GLOBAL INKJET SYSTEMS

Zeescape (AUS)

Direct to wall printer using inkjet

- CMYK
- Portable system
- Residential, commercial, hotels etc
- Franchise business

Summary

- Inkjet entering more industrial/manufacturing/volume production applications
 - Typically not a direct replacement for analog technologies but enlarging the application space and creating new markets and new capabilities
 - Large (>1m wide) print bars becoming commonplace
 - Technologies now exist to overcome many application challenges driving the acceleration of inkjet adoption in production

Formica Envision

North American Plywood

Juicy Walls

Thank you

Debbie Thorp, Business Development Director debbie.thorp@globalinkjetsystems.com

Global Inkjet Systems Limited

The Jeffreys Building Cowley Road Cambridge CB4 0DS

Tel: +44 (0)1223 733 733

Web: www.globalinkjetsystems.com

Technical support offices in UK, Japan and China

