

Inline Coating and Metallizing as a Way to Improve Barrier and Reduce Carbon Footprint

Presented by Veronica Ataya

TAPPI PLACE May 2012

OUTLINE

- Inline Coating and Metallizing Process
 - One step vs. two step process
- Barrier Properties of Top-coated Metallized Films
 - WVTR and OTR
- Reducing Carbon Footprint
 - Opportunities for Layer Elimination
- Summary
- Conclusions

Inline Coating and Metallizing Process

One Step vs. Two Steps

	Two Step Coating and Metallizing	One Step Coating and Metallizing
Capital Investment	Two units and two production areasHigher fixed costs	One unit and one production areaLower fixed costs
Operating costs	 Requires two sets of operators Yield losses > 10% Higher operating costs 	 Requires one set of operators Yield losses ~ 5%, Lower operating costs
Film Properties	Pinholes and scratchesGood barrier properties	Few pinholes and scratchesExcellent barrier properties

BARRIER PROPERTIES OF TOP-COATED METALLIZED FILMS

Pinhole Theory

Gas transmission rate through a metallized film is controlled by the number of defects in the metal layer

Pinhole Theory

Pinhole Theory

- The coating protects the metal layer
 - Impurities are trapped

Barrier Properties

- Water Vapour Transmission Rate (WVTR)
 - ◆37.8°C and 90% RH (ASTM E-398)
- Oxygen Transmission Rate (OTR)
 - ◆ 23°C and 50% RH (ASTM D-3985)

WVTR Values

Material	Uncoated	Coated	OD	% Improvement
70G OPP	0.09	0.03	3.50	70.0
80G PLA	4.37	1.66	1.40	62.1
80G PLA	3.72	1.33	2.05	64.2
80G PLA	1.75	0.50	2.60	71.7
150G PE	0.48	0.29	2.30	38.7
36G PET	1.26	0.42	2.40	66.7
48G PET	1.09	0.11	1.25	90.0
48G PET	0.93	0.11	1.80	88.3
48G PET	0.78	0.14	2.10	82.0
48G PET	0.62	0.09	2.20	85.0
48G PET	0.62	0.08	2.30	87.5
48G PET	0.17	0.05	3.20	72.7

Values in g/m²/24h at 37.8°C and 90%RH

OTR Values

Material	Uncoated	Coated	OD	% Improvement
70G OPP	31.62	4.81	3.50	84.8
80G PLA	7.91	2.99	1.60	62.2
80G PLA	3.55	0.57	2.60	83.8
150G PE	149.50	11.55	2.30	92.3
36G PET*	0.71	0.25	2.40	65.2
48G PET	0.93	0.16	2.00	83.3
48G PET	1.09	0.17	2.10	84.4
48G PET	0.93	0.14	2.20	85.0
48G PET	0.93	0.16	2.30	83.3
48G PET	0.78	0.14	2.50	82.0

Values in cc/m²/24h at 23°C and 50%RH

^{*}Value measured at 0% RH

Barrier Properties of Several Metallized and Coated Films

WVTR vs. Optical Density

It is possible to significantly improve the barrier properties of the films by metallizing and coating in a single step and without having to work at optical densities greater than 2.0-2.3

REDUCING CARBON FOOTPRINT

Converting Operations

	Processing Energy Usage (MJ/Ream)	Processing CO ₂ Equivalent ¹ (Kg/Ream)	Material CO ₂ Equivalent ² (Kg/Ream)
Solvent Based Print or Coat	203*	40.5	11.0
8.5lbs/ream LDPE (15um)	162 [*]	32.3	45.5
Metallizing	27**	5.4	1.2
Metallize & top coat, one pass	43**	8.6	4.5

^{*}Life Cycle Inventories for Flexible Packaging Lamination, Rick DiMenna, Rohm & Haas.

^{**}Celplast calculations based on equipment manufacturer specifications and internal M & V studies.

¹Ontario power carbon footprint of 0.5447 kg CO2 eq./MJ, *How it Works: Electricity Generation*, OPG, 2009.

²CRADLE-TO-GATE LIFE CYCLE INVENTORY OF NINE PLASTIC RESINS, Franklin Associates, 2008. Also Eco-profiles of the European Plastics Industry, Plastics Europe (2005), I. Boustead, ed. Includes yield losses.

Opportunities For Layer Elimination

- Potential layer elimination for 3 different structures:
 - Fractional coffee pouch: Metallized PET
 - Dry powder pouch : Aluminum foil
 - Bag-in-box pouch: Metallized OPP
- It also allows us to look at eliminating additional plies of material, that are there primarily to protect the metallized layer

Material Reduction:

Dry Powder Or Stick Pack

3-ply laminated st	tructure	2-ply laminated structure		
<u>Layer Description</u>	Material Weight (g/msi)	Layer Description	Material Weight (g/msi)	
SB reverse print PET	11.7			
SB adhesive lamination	0.8	SB reverse print PET	11.7	
27.5 g Al foil	12.2	SB adhesive lamination	0.8	
SB adhesive lamination	0.8	Metallizing & EB coating	0.8	
1.5 mil sealant web	22.8	1.5 mil sealant web	22.8	
Total Material Weight (g/msi) 48		Total Material Weight (g/msi)	36	
Material reduction:		25.3%		

Material Reduction:

Frac Pack Coffee

2-ply laminated s	tructure	Single ply structure		
Layer Description	Material Weight (g/msi)	Layer Description	Material Weight (g/msi)	
SB surface print	0.8			
48 g metallized PET	10.9	SB surface print	0.8	
SB adhesive lamination	0.8	Metallizing & EB coating	0.8	
1.5 mil sealant web	22.8	1.5 mil sealant web	22.8	
Total Material Weight (g/msi) 35		Total Material Weight (g/msi)	24	
Mate	rial reduction:	30.9%		

Material Reduction:

Bag-in-box Snack Food

2-ply unprinted lamina	ted structure	Single ply unlaminated structure		
<u>Layer Description</u>	Material Weight (g/msi)	Layer Description	Material Weight (g/msi)	
Unprinted 60 g OPP	8.8			
8.5 lbs LDPE adhesive	8.9	Metallizing & EB coating	0.8	
Metallized layer	0.0			
Heat sealable 60 g OPP	8.8	Heat sealable 140 g OPP	20.5	
Total Material Weight (g/msi) 27		Total Material Weight (g/msi)	21	
Mate	rial reduction:	19.5%		

Carbon Footprint Reduction:

Dry Powder or Stick Pack

3-ply laminated s Solvent-Bas		3-ply laminated structure Solventless 2-ply laminated s		structure	
Layer Description	CO2 Equiv. (kg/ream)	Layer Description	CO2 Equiv. (kg/ream)	Layer Description	CO2 Equiv. (kg/ream)
SB rev. print PET	72.4	SB rev. print PET	72.4		
SB lam adhesive	51.5	SL lam adhesive	9.5	SB rev. print PET	72.4
27.5 g Al foil	62.6	27.5 g Al foil	62.6	SB lam adhesive	51.5
SB lam adhesive	51.5	SL lam adhesive	9.5	Metallizing & EB ctg	13.0
1.5 mil sealant web	17.5	1.5 mil sealant web	17.5	1.5 mil sealant web	17.5
CO2 Equiv.(kg/rm)	256	CO2 Equiv.(kg/rm)	172	CO2 Equiv.(kg/rm)	154
Carbon footprint reduction: 39.6% vs. Solvent-Based 10.0% vs. Solventless					

Carbon Footprint Reduction:

Frac Pack Coffee

2-ply laminated structure Solvent-Based		2-ply laminated structure Solventless		Single ply structure	
Layer Description	CO2 Equiv. (kg/ream)	Layer Description	CO2 Equiv. (kg/ream)	Layer Description	CO2 Equiv. (kg/ream)
SB surface print	51.5	SB surface print	51.5		
48 g metallized PET	23.6	48 g metallized PET	23.6	SB surface print	51.5
SB lam adhesive	52.8	SL lam adhesive	9.5	Metallizing & EB ctg	13.0
1.5 mil sealant web	17.5	1.5 mil sealant web	17.5	1.5 mil sealant web	17.5
CO2 Equiv.(kg/rm)	145	CO2 Equiv.(kg/rm)	102	CO2 Equiv.(kg/rm)	82
Carbon footprint reduction: 43.6% vs. Solvent-Based 19.7% vs. Solventless					

Carbon Footprint Reduction:

Bag-in-box Snack Food

2-ply unprinted lamina	ited structure	Single ply unlaminate	ed structure
<u>Layer Description</u>	CO2 Equivalent (kg/ream)	Layer Description	CO2 Equivalent (kg/ream)
Unprinted 60 g OPP	12.9		
8.5 lbs LDPE adhesive	77.8	Metallizing & EB coating	13.0
Metallizing	6.6		
Heat sealable 60 g OPP	12.9	Heat sealable 140 g OPP	30.1
Total CO2 Equiv. (kg/ream)	110	Total CO2 Equiv. (kg/ream)	43
Carbon footp	rint reduction:	60.9%	

Summary: Material, Energy and Carbon Footprint Reduction

		% Reduction			
Traditional Structure	New Structure	Material Weight	Energy Usage	CO ₂ Footprint	
Surface Print Met PET / LLDPE	Top-coat met LLDPE	30.9	43.2	43.6	
Rev. Print PET / Al Foil / LLDPE	Rev. Print PET / Top-coat met LLDPE	25.3	26.3	39.6	
Clear OPP / Met OPP	Top-coat met OPP	19.5	77.2	60.9	

Conclusions

- One Step Process:
 - Provides excellent barrier properties
 - Reduces:
 - Material and energy consumption
 - Carbon footprint
- It opens the possibilities for new laminated and unlaminated structures to be introduced into the marketplace

Contact information:

Veronica Ataya

Office: 416-644-3512

Mobile: 416-333-6792

E-mail: veronica@celplast.com

Website: http://cmp.celplast.com