Innovative Interstellar Explorer Ralph L. McNutt, Jr.

The Johns Hopkins University Applied Physics Laboratory Laurel, MD, U.S.A.

and the Innovative Interstellar Explorer Team

R. E. Gold, S. M. Krimigis, E. C. Roelof, J. C. Leary Johns Hopkins University Applied Physics Laboratory M. Gruntman University of Southern California

- G. Gloeckler, P. L. Koehn University of Michigan
- W. S. Kurth University of Iowa S. R. Oleson, D. Fiehler NASA Glenn Research Center

Noordwijk, The Netherlands 21 February 2006 Workshop on Innovative System Concepts

ADVANCED PROJECTS DESIGN TEAM INTERSTELLAR EXPLORER VISION MISSION CUSTOMER: RALPH MCNUTT REPORT ID #794 LEADER: CHARLES BUDNEY 5, 7, 8 APRIL 2005

The following representatives comprised the study team:

Subsystem	Name	Phone #	E-Mail
ACS	Bob Kinsey	310-336-1828	robert.j.kinsey@aero.org
CDS	Vincent Randolph	4-3148	Vincent.Randolph/@lol.nasa.cov
Deputy System Engineer	Michael Luna	3-2838	Michael.Luna/@iol.nasa.cov
Documentation	Cynthia Mcclure	3-2511	Cynthia.Mcciure@jpl.nasa.gov
Facilitator	Charles Budney	4-3961	Charles.Budnev@ipi.nasa.gov
Ground Systems"	Robert Gustavson	3-3289	Robert.Gustavson@jpl.nasa.gov
Instruments	Mike Henry	4-9614	Michael.Henry@ipl.nasa.gov
Logistics	Adrian Downs		Adrian.Downs@jpl.nasa.qov
Mission Design	Eugene Bonfiglio	4-9283	Eugene.Bonfiglio-112461@jpl.nasa.gov
Power*	Timmerman Paul	4-5388	Paul J. Timmerman@jpl.nasa.gov
Propulsion	Paul Woodmansee	4-6904	Paul.R.Woodmansee@jpl.nasa.gov
Science	Smythe William	4-3612	William.D.Smythe@jpl.nasa.gov
Structures	Gerhard Klose	4-8123	Gerhard. J. Klose@jpl.nasa.gov
Structures	Gerardo Flores	4-5308	Gerardo.Flores@pl.nasa.qov
Systems"	Tracy Leavens	4-1204	Tracy.Leavens@jpl.nasa.gov
Telecom	Arvydas Valsnys	4-6219	Arvydas.Valsnys@jpl.nasa.gov
Telecom - Hdw*	Farinaz Tehrani	3-6230	Farinaz.Tehranl@jpl.nasa.gov
Thermal"	Miyake Robert	4-5381	Robert.N.Miyake@jpl.nasa.gov

I²E is a NASA "Vision Mission"

Si requiritis futurum nostrum. spectate astra!

- The "all-seeing eye"; "Novus Ordo Seclorum": The new order of the ages
- The Pleiades or "Seven Sisters" Messier 45; 425 L.Y.; also "Subaru"

- "If you seek our future, look to the stars" (Latin - cf. C. Wren)
- The Montgolfier brothers, Paris Δ June 1783
- Robert Goddard, 16 March 1926
- The Wright Brothers, 17 Dec 1903
- Explorer I, 1 February 1958 Pickering, Van Allen, Von Braun
 - Pioneer 10 at Jupiter, 3 Dec 1973
- Voyager 1 and 2 launched 1977

Workshop on Innovative System Concepts PUBLIC DOMAIN INFORMATION. NO LICENSE REQUIRED IN ACCORDANCE WITH ITAR 120.11(8).

Si requiritis futurum nostrum, spectate astra!

For Any Mission There Are Four Key Elements

- Science
- Technology
- Strategy
- Programmatics

the case for going the means to go all agree to go money in place

A well-thought-out systems approach incorporating all key elements is required to promote and accomplish a successful exploration plan

The Goals of Space Exploration Are at the Boundaries of the Heliosphere and Beyond

Graphic from the Interstellar Probe Science and Technology Definition Team NASA/JPL

An Interstellar Probe Has Been Advocated for Almost 30 Years

NASA Studies	National Academy Studies
Outlook for Space, 1976	Physics through the 1990's - Panel on Gravitation, Cosmology, and Cosmic Rays (D. T. Wilkinson, chair), 1986 NRC report
An implementation plan for solar system space physics, S. M. Krimigis, chair, 1985	Solar and Space Physics Task Group Report (F. Scarf, chair),1988 NRC study Space Science in the 21st Century - Imperatives for the Decade 1995-2015
Space Physics Strategy- Implementation Study: The NASA Space Physics Program for 1995-2010	Astronomy and Astrophysics Task Group Report (B. Burke, chair), 1988 NRC study Space Science in the 21st Century - Imperatives for the Decade 1995-2015
Sun-Earth Connection Technology Roadmap, 1997	The Decade of Discovery in Astronomy and Astrophysics (John N. Bahcall, chair)
Space Science Strategic Plan, The Space Science Enterprise, 2000	The Committee on Cosmic Ray Physics of the NRC Board on Physics and Astronomy (T. K. Gaisser, chair), 1995 report Opportunities in Cosmic Ray Physics
Sun-Earth Connection Roadmaps, 1997, 2000, 2003	A Science Strategy for Space Physics, Space Studies Board, NRC, National Academy Press, 1995 (M. Negebauer, chair)
NASA 2003 Strategic Plan	The Sun to the Earth -and Beyond: A Decadal Research Strategy in Solar and Space Physics

Guiding Science Questions Were Posed by NASA's Interstellar Probe Science and Technology Definition Team in 1999

What is the nature of the nearby interstellar medium?

How do the Sun and galaxy affect the dynamics of the heliosphere?

What is the structure of the heliosphere?

How did matter in the solar system and interstellar medium originate and evolve?

Artist's Concept of Heliosphere and Trajectories of the Voyagers

21 February 2006

Workshop on Innovative System Concepts PUBLIC DOMAIN INFORMATION. NO LICENSE REQUIRED IN ACCORDANCE WITH ITAR 120.11(8). RLM - 8

Top Level Mission Requirements

- Launch spacecraft to have an asymptotic trajectory within a 20° cone of the "heliospheric nose" (+7°, 252° Earth ecliptic coordinates)
- Provide data from 10 AU to 200 AU
- Arrive at 200 AU "as fast as possible"
- Consider all possible missions that launch between 2010 and 2050
- Use existing launch hardware
- No "in-space" assembly
- Launch to escape velocity
- Keep new hardware and technology to a minimum
- Provide accepted "adequate" margins

Answering the Science Questions is a "System of Systems" Problem

Science Traceability Matrix

Science Questions	Interstellar Probe Science Objectives	Objective Questions	Science Measurement Objectives	Required Instruments	Analysis Product	Science Result		
3rd Interstellar Probe Science and Technology Definition Team Mtg, 17- 19 May 1999, JPL	From NASA's Interstellar P	robe Science and Technology Definition Team Report	THIS WORK	THIS WORK	THIS	NORK		
What is the nature of the nearby interstellar		How does the composition of interstellar matter differ from that of the solar system? What constraints do the interstellar abundances of ² H and ³ He place on Big Bang and chemical evolution theories? Is there evidence for recent nucleosynthesis in the interstellar madium?	Elemental and isotopic abundances of significant species ² H, ³ He, and ⁴ He abundances in the interstellar medium Isotopic abundances of "light" elements	PLS, EPS, CRS CRS - LoZCR CRS	Interstellar medium composition	Composition differential between the solar system and current local interstellar medium		
	Explore the interstellar medium and determine directly the properties of the interstellar gas, the	What is the density, temperature, and ionization state of the interstellar gas, and the strength and direction of the interstellar magnetic field? What processes control the ionization state, heating,	Bulk plasma properties, composition, and ionization state and vector magnetic field in the interstellar medium Charge state, electron properties, Ly- α flux,	MAG, PLS	Thermodynamic and physical state of the very local interstellar medium (VLISM) Energy inputs in the VLISM			
medium?	low-energy cosmic rays, and interstellar dust	and dynamics of the interstellar medium? How much interstellar matter is in the form of dust and	neutral component properties Dust flux, composition, pickup ion composition	ENA CDS, (PWS),	Neutral matter assay for the VLISM			
		How much greater are cosmic ray nuclei and electron intensities outside the heliosphere, and what is their relation to galactic gamma ray and radio emission?	Cosmic ray ion and electron energy spectra; low frequency radio emissions	CRS, PWS	Low-energy galactic cosmic rays	Physical state of the VLISM		
		What spectrum of 10-100 micron galactic infrared and Cosmic Infrared Background Radiation is hidden by emission from the zodiacal dust?	Infrared spectral measurements from 10 to 100 microns	Not measured	IR absorption by solar system dust			
		What is the size and structure of the heliosphere?	Detect heliospheric boundaries from their plasma, field, and radio signatures	MAG, PWS, PLS, EPS, LAD, ENA	Heliospheric spatial scales	Structure and dynamics of the		
	Explore the influence of the interstellar medium on the Solar System, its dynamics, and its evolution	How do the termination shock and heliopause respond to solar variations and interstellar pressure?	In situ plasma and field measurements on the time scale of a fraction of a solar rotation (~days)	MAG, PLS	Heliospheric temporal variably	heliosphere in the upwind direction		
affect the dynamics of the heliosphere?		How does the interstellar medium affect the inner heliosphere and solar wind dynamics?	Pickup ions and anomalous cosmic rays, high energy electrons within the heliosphere	PLS, EPS, CRS	Spatial and temporal variability of the interstellar medium properties	Effects of the VLISM on the heliosphere		
and its evolution		What roles do thermal plasma, pickup ions, waves, and anomalous cosmic rays play in determining the structure of the termination shock?	Thermal plasma, pickup ions, wave, and anomalous cosmic rays properties on the scale of the scale of c/w pi	PLS, EPS, PWS, CRS - AGCR	Inputs from heliospheric interaction into the solar wind			
		What are the properties of interstellar gas and dust that penetrate into the heliosphere?	Thermodynamic properties and composition of neutral gas; dust flux and composition	NAI, ENA, CDS	Properties of interstellar gas and dust in the outer heliosphere			
		Does the heliosphere create a bow shock in the interstellar medium?	Plasma and magnetic field measurements at ion- inertial scale length from the heliosheath into the interstellar medium (telemeter changes)	MAG, PWS, PLS	Determination of whether the solar system produces an external shock			
	Explore the impact of the solar system on the interstellar medium as an example of the interaction of a stellar system with its environment	What is the relation of the hydrogen wall outside the heliopause to similar structures and winds observed in neighboring systems?	Neutral atom and plasma ion distribution functions from the heliopause through the heliosheath	NAI, ENA, PLS	Structure and properties of the predicted hydrogen wall			
What is the structure of the heliosphere?		solar system on the interstellar medium as an example of the interaction of a stellar system with its	How do the Sun and heliosphere influence the temperature, ionization state, and energetic particle environment of the local interstellar medium? How far does the influence extend?	Particle properties from thermal plasma to galactic cosmic rays from inside the heliosphere at regular intervals though the heliospheric structure and into the interstellar medium	NAI, ENA, PLS, EPS, CRS	Penetration of heliosheath properties into the VLISM	Impact of the solar system on the local composition and thermodynamic properties of the VLISM	
E		How does particle acceleration occur at the termination shock and at other astrophysical shocks?	Ion and electron measurements from thermal plasma to low-energy cosmic rays on scales small compared with the shock passage time by the spacecraft	PLS, EPS, CRS - Autonomous burst mode for instruments as appropriate	Characterization of particle acceleration at the termination shock			
		Is there structure in the Zodiacal cloud due to dynamical processes associated with solar activity, planets, asteroids, comets, and Kuiper Belt objects?	Plasma and dust measurements on time scales of the solar rotation period	PLS, CDS, (PWS)	Structure and dynamics of the Zodiacal dust cloud in the outer heliosphere			
How did matter in the solar system and interstellar	Explore the outer Solar System in search of clues to	What does the distribution of small Kuiper Belt objects and dust tell us about the formation of the solar system?	Dust and pickup ion spatial distribution and composition and composition variation with distance from the Sun	CDS, PLS, EPS, (PWS)		Properties and dynamics of bulk		
medium originate and evolve?	its origin, and to the nature of other planetary systems	How does the structure of the Zodiacal dust cloud impact infrared observations of the galaxy and searches for planets around other stars?	Intrared flux from near IR to at least ten's of microns	Not measured	Quantified extinction from Zodiacal dust	matter in the outer solar system and VLISM		
		What are the origin, nature, and distribution of organic matter in the outer solar system and the interstellar medium?		Dust composition, pickup ions from C, N, O	CDS, PLS, EPS, (PWS)	Identification of <i>in situ</i> organic materials or fragments in the heliospheric boundary regions and/or VLISM		

Notional Model Science Payload

Material Measured	Number of instruments	Notio 3rd Scier Defin 17-	nal insti Interstence and ition Tea 19 May	rument from ellar Probe Technology am meeting, 1999, JPL	ent from Probe nology neeting, , JPL Comparable performance of instrument at TRL of 9 (An example ideal payload)				
Instrument Resources		Mass (kg)	Power (W)	Data Rate (bps)	Mass (kg)	Power (W)	Data Rate (bps)		
Fields	ls 2		1.3	3.6	12.77	12.00	95,760		
Plasma; supratherma particles	3	8.5	6	12	12.17	10.75	1,503		
Energetic particles	3	6.4	4.6	7	103.1	63.0	3,224		
Neutral material	ral 3 erial		6.5	1.4	51.01	46.98	5,324		
Photons	Photons 2		0.9	0.6	40.65	105.1	1,900		
Totals	13	26.6	19.3	24.6	219.7	237.83	107,711		

All Approaches to an Interstellar Probe Mission Need Propulsion Development

- Ballistic
 - optimized launch
 20 Feb 2019
 - Jupiter flyby 19 June 2020
 - Perihelion maneuver 4 Nov 2021 at 4 RS
 - 1000 AU 17 Oct
 2071
 - 12.16 kg science
 - 1.1 MT

21 February 2006

Nuclear Electric

•

- 2015 departure 20 years to 200 AU
- 30 kg science package
- Bimodal nuclear propulsion

11.4 MT

- Solar Sail
 - 200 AU in 15 years
 - Perihelion at 0.25 AU
 - Jettison 400m dia sail at ~5 AU
 - 25 kg science

- 246 kg

Workshop on Innovative System Concepts PUBLIC DOMAIN INFORMATION. NO LICENSE REQUIRED IN ACCORDANCE WITH ITAR 120.11(8). RLM - 13

1. Transport of Empty Craft to LEO With an HLLV

2. Orbital Assembly of the Deep-Space Craft

NEP Craft and Interstellar Mission from Willey Ley and Chesley Bonestell - 1960s Issues are similar to those faced today with a "Prometheus" vehicle

3. Crossing Neptune's Orbit

21 February 2006

Previous Concepts Were BIG

- Thousand AU Mission (TAU)
- Nuclear Electric to 1000 AU
- 60 Metric Ton launch mass
 - 40 MT Xe
 - Apollo Moon missions were ~35 MT and required a Saturn V to launch

	Interstellar Probe Instrument Resources and Requirements									
THIS WORK						IIE Team Consensus Payload			THIS WORK	
Material Measured	Acronym	Instrument	Mass (kg)	Power (W)	Acquisition data rate (bps)	Capabilities	Implementation	THIS WORK		
Fields	MAG	Magnetometer	8.81	5.30	130.00	2- three-axis fluxgate magnetometers; do one sample per day from each magnetometer (onboard processing from multiple samples per spacecraft roll period which is	65 bits/sample x number of samples per day x number of sensors; inboard and outboard fluxgate magnetometers mounted on 5.1 m, self-deployed	Magnetically clean spacecraft	B-field vectors	
rields	PWS	Plasma wave sensor	10.00	1.60	65.00	Three 20-m self-supported antennas; measure E-field vectros up to 5 kHz; no search coils (no B-field components)	From Voyager: 115,000 kbps -> 12.5 kilosamples per second with a 14 bit A/D. Collect 2048 samples and do onboard FFT- frequency of processing limited by	Antenna at least ~20m length	E-field power spectra	
Plasma and suprathermal particles	PLS	Plasma	2.00	2.30	10.00	Plasma ions and electrons from the solar wind, interstellar wind, and interaction region; thermal, suprathermal, and pickup component properties and composition	sma ions and electrons from the solar wind, rstellar wind, and interaction region; thermal, rathermal, and pickup component properties and nposition E plus energy measurements give composition and Mount perpendicular to spacecraft spin axis; need clear FOV for a wedge 360° around by ~±30° di S S Mount perpendicular to spacecraft spin axis; clear FOV for a clear FOV for a di S S S S S S S S S S S S S		lon and electron distribution function; composition	
	EPS	Energetic particle spectrometer	1.50	2.50	10.00	plus energy measurements give composition and gy spectra; -20 keV/nuc to ~5 MeV total energy ins in 6 pixels; electrons ~25 keV to ~800 keV Model in 6 pixels; electrons ~25 keV to ~800 keV Model in 6 pixels; electrons ~25 keV to ~800 keV Model in 6 pixels; electrons ~25 keV to ~800 keV Model in 6 pixels; electrons ~25 keV to ~800 keV Model in 6 pixels; electrons ~25 keV to ~800 keV Model in 6 pixels; electrons ~25 keV to ~800 keV		Clear FOV	lon and electron pitch angledistribu tions functions; composition	
Solar energetic particles through galactic cosmic rays	CRS - ACR/GCR	Cosmic-ray spectrometer: anomalous and galactic cosmic rays	3.50 2.50 5.00 Energy Range on ACR er H, He: 1 to 15 MeV/nuc Oxygen: ~2 to 130 MeV/ Fe: ~2 to 260 MeV/nuc Energy Range on GCR er Electrons: ~0.5 to ~15 Me P, He: 10 to 100 MeV/nuc 100 - 500 MeV/nuc p Oxygen		Energy Range on ACR end (stopping particles) H, He: 1 to 15 MeV/nuc Oxygen: ~2 to 130 MeV/nuc Fe: ~2 to 260 MeV/nuc Energy Range on GCR end Electrons: ~0.5 to ~15 MeV P, He: 10 to 100 MeV/nuc stopping 100 - 500 MeV/nuc penetrating Oxygen	Measure ACRs and GCRs with 1 > Z > 30: double-ended telescope with one end optimized for ACRs and the other for GCRs. It would also measure penetrating particles as is done on Voyager so that both ends need to have clear FOVs. GCR end FOV = 35° ACR en	Clear FOV	Differential flux spectra by composition		
	CRS - LoZCR	Cosmic-ray spectrometer: electrons/positrons, protons, helium	2.30	2.00	3.00	Energy Range: positrons: 0.1 to 3 MeV electrons: 0.1 to 30 MeV gamma-rays: 0.1 to 5 MeV H: 4 to 130 MeV/nuc He: 4 to 260 MeV/nuc	FOV = 46° full cone Geometry Factor = 2.5 cm2sr Measurement technique DE X E (e-, H, He) annihilation (e+) Dröge, W., B. Neber, M. S. Potgieter, G. P. Zank, and R. A. Mewaldt, A cosmic ray dectector for an interstellr probe, np. 471-472, in "The Outer H	Clear FOV	Differential flux spectra	
	CDS	Cosmic dust sensor	1.75	5.00	0.05	Same capabilities as the student dust counter (SDC) on New Horizons	Mount within 5° of ram direction; sesnor area/FOV of 30 cm x 50 cm must not be obscurred	Clear FOV in ram direction	Dust particle mass and limited composition	
Neutral material	NAI	Neutral atom detectror	2.50	4.00	1.00	Measure neutral H and O at >10 eV/nucleon incoming from interstellar medium [10 eV/nuc ~44 km/s; incoming neutrals are at ~25 km/s with respect to the	Single pixel; mount looking into ram direction; conversion- plate technology	Clear FOV in anti- Sun (ram) direction	Neutral distribution functions	
	ENA	Energetic neutral atom imager	2.50	4.00	1.00	Views 0.2 to 10 keV neutral atoms, 1 pixel;	~6° x 6° FOV, mount with sensor looking perpendicular to spacecraft spin axis	1-axis scanner perpendicular to spin axis	Energetic neutral atom energy flux	
Photons	LAD	Lyman-alpha detector	0.30	0.20	1.00	Single-channel/single-pixel photometer (at 121.6 nm) similar to those on Pioneer 10/11 (but without the 58.4 nm channel)	Mount perpendicular to nominal spin axis; need clear field of view (~4° x 4°); average over azimuthal scan provided by spacecraft motion	1-axis scanner perpendicular to spin axis	Lyman alpha flux	
			35.16	29.40	226.05					

Initial Concept Based Upon NIAC Probe -Change to Radioisotope Electric Propulsion (REP)

Launch Vehicle Constraints: Initial Mission Designs Used 519 kg Dry Mass

- Delta IV Heavy used with Star 48 + Star 37 to provide best performance
- Maximized performance for direct, single gravity assists at Jupiter, Saturn, Uranus, and Neptune as well as Jupiter+Saturn gravity assist
- Required 20-day launch window

Hardware Constraints

- Missions are mass-constrained
- Requires innovative approaches to spacecraft design
 - Efficient, lightweight electric propulsion
 - Lightweight power system
 - Small science payload (~50 kg)
 - Lightweight structures, communications, attitude control
 - Total dry mass of approximately 500 kg

Direct

Launch 3 February any year

 $C_3 = 103.8 \text{ km}^2/\text{s}^2$

Wet mass 1885 kg

For launch in 2010, window is 7 Dec 2009 -22 March 2010

Burnout 17 Apr 2036 at 66 AU and 6.6 AU/yr

200 AU reached 18 July 2056 after 46.5 years of flight time

Jupiter Gravity Assist

4 opportunities

 $C_3 = 152.6 \text{ km}^2/\text{s}^2$

Wet mass 913 kg

For launch in 2014, window is 15 Oct - 3 Nov; next window in ~12 years

Burnout 2 Nov 2029 at 103 AU and 9.5 AU/yr

200 AU reached 13 Jan 2040 after 25.2 years of flight time

21 February 2006

Jupiter-Saturn Gravity Assist

1 opportunity

 $C_3 = 152.6 \text{ km}^2/\text{s}^2$

Wet mass 894 kg

Optimal launch 3 October 2037; next window in ~60 years

Burnout 21 Dec 2051 at 103 AU and 10.1 AU/yr

200 AU reached 4 Jul 2061 after 23.8 years of flight time

21 February 2006

Saturn Gravity Assist Uranus Gravity Assist

Neptune Gravity Assist

Did not explicitly examine Saturn-

Uranus, Saturn-

combinations

Neptune

advantage

Neptune, or Uranus-

Planetary placement

appears to offer no

Jupiter-Uranus Gravity Assist 21 February 2006

Jupiter-Neptune Gravity Assist

Workshop on Innovative System Concepts PUBLIC DOMAIN INFORMATION. NO LICENSE REQUIRED IN ACCORDANCE WITH ITAR 120.11(8). RLM - 23

Mission Design Trades

Trajectory	1st Launch Possible	Trip Time (years)	Arrival at 200 AU	Comments		
Direct	3 Feb 2010	46.5	18 July 2056	Maximum flexibility		
JGA	26 Oct 201	BASEI		Short flight time; radiation hazard; backup in 2026		
SGA	26 Aug 2032	33.5	4 Nov 2053	Late launch		
JSGA	3 Oct 2037	23.8	4 Jul 2061	Short flight time; late arrival		
UGA	15 Aug 2035	42.1	9 Sep 2077	Late arrival		
NGA	20 May 2035	69.0	11 May 2104			
JUGA	15 Dec 2013	55.8	5 Oct 2069	Late arrival, long flight time		
JNGA	13 Oct 2013	64.6	25 Apr 2078			

Workshop on Innovative System Concepts

PUBLIC DOMAIN INFORMATION. NO LICENSE REQUIRED IN ACCORDANCE WITH ITAR 120.11(8).

Flyout Time Scales with Dry Mass for Fixed Power

Lower system dry masses decrease flyout time

21 February 2006

Four Options Studied

- 1 5.8 kbps (200 AU) = 500 bps accumulation 24/7
 - 586.1 kg dry/761.9 kg with contingency/1283.3 kg wet
 - Three 1000 W ion engines, 2.1-m HGA, 4 CDS strings
- 2 same as 1 with aggressive technology
 - 518.5 kg dry/674.0 kg with contingency/1191.4 kg wet
 - Two 1000 W ion engines, 3-m HGA, 2 CDS strings
- 3 500 bps (200 AU); baseline with reduced data rate
 - 571.4 kg dry/742.8 kg with contingency/1262.8 kg wet
 - Three 1000 W ion engines, 2.1-m HGA, 4 CDS strings
- 4 Aggressive technology; 500 bps rate; low power
 - 465.3 kg dry/604.9 kg with contingency/1066.2 kg wet
 - Two 750 W ion engines, 2.1-m HGA, 2 CDS strings

Enabling Infrastructure and Technologies

Technology

- Advanced high mass-to-power radioactive power sources (RPS)
 - 2nd gen EMI-quiet Stirling Radioisotope Generator
 - Advanced high-temperature RTG, e.g. skutterudite converters
- Low-power (~1 kW), low-mass, 3800s I_{sp}, Xe-ion thrusters
- DSN Ka-band "antenna farm" of massively phased array (180 12-m antennas)
- Space-flight parts and subsystems qualified for 30 to 50 year missions

Infrastructure

- Cost-efficient, high-performance EELVs
- Affordable DSN aperture time for the "antenna farm"

PUBLIC DOMAIN INFORMATION. NO LICENSE REQUIRED IN ACCORDANCE WITH ITAR 120.11(8).

Si requiritis futurum nostrum. spectate astra!

Mission Design **Options**

 Upper stage options for **Delta IV H** are still under study

21 February 2006

PUBLIC DOMAIN INFORMATION. NO LICENSE REQUIRED IN ACCORDANCE WITH ITAR 120.11(8).

Option Mission Designs

	Option 1	Option 2	Option 3	Option 4	
Launch Date	October 22, 2014	October 23, 2014	October 22, 2014	October 24, 2014	
Gravity Assist Body	Jupiter	Jupiter	Jupiter	Jupiter	
Gravity Assist Date	February 5, 2016	January 21, 2016	February 2, 2016	January 8, 2016	
Gravity Assist Altitude	75150 km	67658 km	73695 km	61904 km	
Gravity Assist Radius	2.05 Rj	1.95 Rj	2.03 Rj	1.87 Rj	
Gravity Assist ² v	23.8 km/s	24.8 km/s	24.0 km/s	25.5 km/s	
Burnout Date	October 13, 2032	December 4, 2031	August 9, 2032	April 10, 2032	
Burnout Distance	104 AU	104 AU	104 AU	106 AU	
Burnout Speed	7.9 AU/year	8.3 AU/year	7.9 AU/year	8.1 AU/year	
Date 200 AU Reached	December 31, 2044	July 24, 2043	September 12, 2044	October 31, 2043	
Minimum Trip Time to 200 AU	30.2 years	28.8 years	29.9 years	29.0 years	
Speed at 200 AU	7.8 AU/year	8.3 AU/year	7.9 AU/year	8.1 AU/year	
Right Ascension at 200 AU	263.8Þ	261.5Þ	263.4Þ	259.9Þ	
Declination at 200 AU	0.0Þ	0.0Þ	0.0Þ	0.0Þ	
Launch Mass	1230 kg	1135 kg	1210 kg	1013 kg	
Propellant Mass	440 kg	433 kg	439 kg	380 kg	
Final Mass	790 kg	702 kg	771 kg	633 kg	
Power	1.0 kW	1.0 kW	1.0 kW	0.75 kW	
Isp	3800 s	3734 s	3784 s	3479 s	
EP System Efficiency	53.8%	53.8%	53.8%	53.5%	
Total Stack C3	123.3 km2/s2	129.0 km2/s2	124.3 km2/s2	136.0 km2/s2	
Delta IV H C3	16.8 km2/s2	17.6 km2/s2	16.9 km2/s2	18.5 km2/s2	
Delta IV H Launch Mass	6851 kg	6743 kg	6832 kg	6622 kg	
EP ² V	16.5 km/s	17.6 km/s	16.7 km/s	16.1 km/s	
Thrust Time	18.0 years	17.1 years	17.8 years	17.5 years	

Mission Backups

- Xe propellant ~430 kg to 450 kg across options
- October 2014 launch prime with 20+ day window
- Backups at ~13-month intervals (Nov 2015, December 2016, January 2018) with same spacecraft
- Cycle repeats ~every 12 years (2014, 2026, 2038, 2050)

Team X Exercise

- Provided input:
 - Instrument list: 9 at 35.16 kg and 29.40 W
 - Trades, studies, and risks: 12 studies with 19 issues and potential resolutions
 - Master Equipment List (preliminary):by subsystem
 - Initial Mission Designs: down select to Jupiter flyby
- Three 3-hour sessions at JPL to work tradespace interactively and realtime

Mission Configurations: 4 options, 6 power modes, 30% mass contingency

Stabilization - science Spin Stabilization - science Spin Pointing Control 180 Pointing Knowledge 90 Pointing Stability 10 Determined by: Telecom	arcsec arcsec arcsec/sec Mass Fraction	Legend Input Master Equipment List (MEL) (kg) Customer	Inputs from Subsy Inputs from Syster Calculated Team X Mass (kg) Option 1 Beseline	Team X Mass (kg) Option 2 Aggressive Technology	Team X Mass (kg) Option 3 Reduced	Pointing [Pointing Di Radiation ⁻ Te <u>Team X</u> <u>Mass</u> (kg) Option 4 Aggressive Technology and	Direction - cruise rection - science Total Dose, krad Science FER Redundancy echnology Cutoff Subsys <u>Contingency</u> <u>%</u>	Earth Space 65 1.00E-04 Selected 2010 CBE+ <u>Contingency</u> (kg)	Mode 1 <u>Power</u> (W) Safing	Max pro Instru- Total Misss Maximu Return Data F Mode 2 Power (W) Telecom beyond 103 AU (2 bhr passes per week at 200AU – no thrusting, continuous science)	Mission Duration obe Sun distance urment Data Rate Data Storage ion Data Volume urm Link Distance Rate for Baseline Mode 3 Power (W) Engine-off Cruise 103-2004U (Continuous Science)	25.2 200 0.5 8.0 6.6E+12 201 5.8 Mode 4 Power (W) Engline-on Cruise 10 to 103 AU (Continuous Science)	years AU kb/s Gb Mbits AU kb/s < from 2t Mode 5 <u>Power</u> <u>(W)</u> Launch	00 AU with 2 pas Mode 6 Power (W) Telecom to 103 AU (1 8hr pass per week - continuous science, no thrusting during telecom)	ses per week
Payload Instruments	6.0%	35.2	35.2	35.2	35.2	35.2	30%	45.7	9.1	29.4	29.4	29.4	0.0	29.4	
Payload Total Bus	6.0%	35.2	35.2	35.2	35.2	35.2	30%	45.7	9.1	29.4	29.4	29.4	0.0	29.4	
Attitude Control Command & Data Power Propulsion1 Propulsion2 Structures & Mechanisms S/C-side Adapter Cabling Telecomm Thermal Bus Total Spacecraft Total (Dry)	2.5% 4.4% 31.2% 13.8% 1.8% 21.6% 0.0% 6.5% 3.9% 8.2%	16.7 12.2 231.2 74.9 32.1 134.6 0.0 40.0 19.1 22.3 583.2 618.3	14.9 25.8 182.3 80.9 10.4 126.5 0.0 37.9 23.1 47.7 549.5 584.6	6.8 13.9 182.3 61.7 10.4 109.6 0.0 30.4 24.2 41.7 481.0 516.2	14.9 25.8 182.3 80.9 10.4 124.0 0.0 37.2 21.1 38.5 534.9 570.1	6.8 13.9 154.6 59.0 10.3 99.0 0.0 28.2 21.1 34.7 427.7 462.8	21% 30% 20% 18% 30% 30% 20% 20% 28%	18.0 33.5 237.0 97.1 12.3 164.4 0.0 49.3 27.7 61.9 701.1 746.9	9.0 43.0 10.1 0.7 41.0 0.0 17.0 34.5 155.2 164.3	36.0 43.0 0.7 41.0 0.0 522.6 34.5 723.8 753.2	36.0 43.0 10.4 0.7 1.0 0.0 17.0 32.0 140.0 169.4	36.0 43.0 11.4 0.7 1.0 0.0 17.0 47.5 156.5 185.9	40.0 43.0 8.2 0.7 1.0 0.0 17.0 23.8 133.6 133.6	36.0 43.0 46.5 0.7 41.0 0.0 517.0 47.5 731.6 761.0	5 4 2 4 6 6 7 6
Subsystem Heritage Contingency System Contingency		33.8% 209.2	162.2 13.2	144.6 10.3	158.1 13.0	128.9 10.0	28% 2%	28% 2%	49.3	225.9	50.8	55.8	40.1	228.3	
Spacecraft with Contingency Propellant & Pressurant1 Propellant & Pressurant2 Spacecraft Total (Wet)	36.8% 2.4%	827.5 400.0 80.6 1308.1	760.0 459.4 30.5 1249.9	671.1 449.6 30.5 1151.2	741.1 460.8 30.5 1232.5	601.7 393.8 30.5 1026.0	of total	w/o addl pld For S/C mass = For S/C mass =	213.6 1250 1250	979.1	220.3 Delta-V, Sys 1 Delta-V, Sys 2	241.7 15900 0	173.6 m/s m/s	989.4	
2 Star 48A Motors with 2% contingenc Adapter from top Star 48 to s/c w/ 30% Adapter form LV to bottom Star 48 W/ Launch Mass Launch Vehicle Capability	cy % cont 15% 15%	0.0 1308.1 1124.0	5265.2 45.8 209.3 104.7 6874.9 6906.0	5265.2 32.1 209.3 104.7 6762.4 6803.0	5265.2 45.3 209.3 104.7 6856.9 6887.0	5265.2 28.9 209.3 104.7 6634.1 6678.0	Delta IV 4050H			Electric P Ac Spa Mi	Instruments ropulsion Engine dditional Payload acecraft Bus, dry ssion Unique LV	Contingencia Mass 30% 0% 0% 30% Launch C3 Contingency Fairing type	25 Power 30% 10% 0% 30% 16.3 0% standard		
Launch Vehicle Margin		-184.1	31.1	40.6	30.1	43.9									
SpaceCraft Mass Margin SpaceCraft Mass Margin (%)		-184.1	31.1	40.6	30.1	43.9 1%		_	_			_			

21 February 2006

Optimized Mission Set (Across All Options)

- Xe 430 kg to 490 kg across options
- October 2014 launch/20 day window/backups though 2018 (one per year)
- Jupiter flyby early 2016 at ~2 RJ
- "Burnout" in ~2031-2032 at ~105 AU
- Burnout speed ~8 AU /yr (38 km/s)
- 200 AU reached ~2043-45 (~30 year flyout)

Schedule for Baseline Probe (Option 1 - minimum new technology)

✓ 2004-2005 Update of NASA strategic plan with ISP Vision Mission included

2006-2007 Focused technology development for small probe technologies

- 2007-2010 Focused technology development for an Interstellar Probe
- 2010 Start RPS fuel procurement and NEPA approvals

2010-2014 Design and launch I²E probe

2016 Begin routine data acquisition following Jupiter gravity assist

- 2020 Voyagers cease transmission V1 at ~150 AU, V2 at ~125 AU
- 2044 Data return from 200 AU [Mission Success]; Launch + 30 yrs
- 2057 Data returned from 300 AU (at 7.8 AU/yr burnout speed); L + 43 yrs
- 2147 Probe at 1000 AU "Undisturbed" VLISM reached by now; 1.5 half-lives since original Pu-238 procurement; L + 133 yrs

Exploration of near interstellar space in the near term IS possible ...but we need to be serious NOW to launch by 2014

REP at Jupiter gravity assist in 2016, spacecraft *en route* to the heliopause ~150 AU away