
International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337 

 

 

Innovative Method of Software Testing 

Environment Using Cloud Computing 

Technology 
                      

S. Ravichandran,1 Dr. E.R. Naganathan,2 Dr. M. Umamaheswari,3 

 Research Scholar, Department of Computer Science, Bharathiyar University, India1 

Prof. & HOD, Department of CSE, Hindustan University, India2 

Prof. & Dean, Department of CSE, RRase College of Engineering, India3 

                                                                  

.   

ABSTRACT— various information systems are widely used in information society era, and the 

demand for highly dependable system is increasing year after year. However, software testing for 

such a system becomes more difficult due to the enlargement and the complexity of the system. In 

particular, it is too difficult to test parallel and distributed systems sufficiently although dependable 

systems such as high-availability servers usually form parallel and distributed systems. To solve 

these problems, to propose a software testing environment for dependable parallel and distributed 

system using the cloud computing technology, named D-Cloud. D-Cloud includes Eucalyptus as the 

cloud management software, and FaultVM based on QEMU as the virtualization software, and D-

Cloud frontend for interpreting test scenario. D-Cloud enables not only to automate the system 

configuration and the test procedure but also to perform a number of test cases simultaneously, and 

to emulate hardware faults flexibly. 

In this paper, present the concept and design of D-Cloud, and describe how to specify the system 

configuration and the test scenario. Furthermore, the preliminary test example as the software 

testing using D-Cloud was presented. Its result shows that D-Cloud allows to set up the environment 

easily, and to test the software testing for the distributed system. 

Keywords— D-Cloud, QEMU, Eucalyptus, FaultVM, FAUmachine, IaaS 

1, INTRODUCTION 

         According to shifting advanced information society, various information systems 

are used everywhere. Since such systems are closely related to daily life, they must 

employ highly dependable facilities to avoid undesirable behavior caused by the 

underlying bugs and the interference from the external environment. In order to 

certificate the depend-ability of such systems, these should be tested sufficiently. 

However, as recent information system becomes larger and more complicated, software 

testing for such a system be-comes more difficult. In order to check whether components 

work correctly, tremendous test cases are needed for various input patterns, and 

environment to execute a great number of tests immediately should be provided. 

Especially, although highly dependable systems such as high-availability servers likely to 

ISRJournals and Publications Page 270



International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337 

 

 

form parallel and distributed systems, the testing of large-scale parallel and distributed 

system is troublesome job in real world after deployment. When a failure occurs in 

parallel and distributed systems, the reproducibility of the actual system is so poor that 

the detection of the defective part has been serious problem. On the other hand, a highly 

dependable system should be equipped with the combination of multiple functions of fault 

tolerance against hardware faults. Even though testing of fault tolerant facilities should 

be done under hardware fault conditions or anomaly loads, it  is too difficult to destroy a 

specific part of actual hardware or to concentrate an unrealistic overload in a hardware 

device. To solve these problems, proposed a software testing environment for reliable 

distributed systems using cloud computing technology, named “D-Cloud” In this paper, 

to present the concept and design D-Cloud, discuss the description of the system 

configuration and the test scenario, and report the preliminary test example using D-

Cloud.  

2 ,  CO N C E P T  O F  D-CL O U D  

A large-scale software testing environment using cloud computing technology for 

dependable distributed systems, named “D-Cloud.” In  this section, describe the concept 

of D-Cloud including the background of this research. 

In present information society, as the system scale enlarges and it complicates the 

behavior of the system, sufficient software testing has become increasingly harder. Since 

each test consumes the actual execution time depending on the software size and 

complexity, and the only way for speedup of software testing process is that a lot of tests 

should be performed in massively parallel. In order to manage massive computing 

resources, introduce the cloud computing infrastructure to the software testing. 

Meanwhile, the demand for highly dependable system is increasing year after year. In a 

highly dependable system, fault tolerance is important capability so that the system can 

tolerate hardware failures and anomaly behaviors. To realize fault tolerance, the system 

must be formed by the redundant configuration.  

    Parallel and distributed systems can provide the solution by the redundant resources 

because of multiprocessor and multiple nodes.  However, in this case, the software testing 

has several serious problems. First, since each process runs in parallel independently, the 

behavior of the software may become nondeterministic on the actual hardware. It  means 

that it is too difficult to reproduce the same failure after a failure occurred on such a 

system. Toward this problem, virtual machine technology helps the reproducibility by 

adding the management mechanism for the time synchronization. Second, in the case of a 

large-scale distributed system, to build the test environment becomes impossible. In  

order to test such a system, usually the preliminary test with restriction is done in the 

small-scale system, and then the comprehensive test under the full-scale environment is 

conducted. However, it may stretch the time and raise the cost for the system test unless 

the test system almost similar to the target environment is prepared. On this point, the 

cloud services based on IaaS (Infrastructure as a Service) also provide an answer, that is, 

ISRJournals and Publications Page 271



International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337 

 

 

they permit the use of huge number of computing nodes, and the emulation of entire 

system without the modification of the source codes using a virtual machine on each 

node. Furthermore, although testing of fault tolerant facilities is important in the highly 

dependable system, it is too difficult to make the specific hardware fault conditions or to 

generate anomaly loads in real world. The solution of this problem is to use virtual 

machine technology to provide the fault injection facility, and it can emulate hardware 

faults of several devices within the virtual machine according to the request from the 

tester. 

 

Based on above discussions, D-Cloud aims for the realization of the software testing 

environment as follows: 

1) By the use of computing resource provided by the cloud computing system, a number 

of test case can be performed simultaneously, thus software testing can be accelerated. 

2) By the description of the system configuration and test scenario, a series of complex 

test procedure can be automated. 

3) Hardware fault and anomaly state can be emulated flexibly as many times as needed. 

4) The target parallel and distributed system can be built onto the cloud computing 

system, and the execution of the system on the cloud helps the detection of the timing 

bug and the reproduction of the failure. 

In providing various properties of dependability, since an operating system plays a key 

role, to develop a dependable operating system, which is based on Linux with safe 

extension mechanism for adding dependable feature as kernel modules, and to provide 

several components as loadable kernel modules, daemons, and tools. D-Cloud is also 

useful for the testing of dependable systems using a dependable operating system. 

 

ISRJournals and Publications Page 272



International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337 

 

 

3,  D-CL O U D  S O F T W A R E  T E S T I N G  E N V I R O N M E N T  

                  To develop a D-Cloud for software testing environment, D-Cloud consists 

of multiple virtual machine nodes, which execute guest operating systems with fault 

injection, a controller node, which controls all of the guest operating systems, and a 

frontend, which manages the hardware and software configurations and the test scenarios. 

Figure 1 shows the structure of D-Cloud. 

3.1 Virtual machine with fault injection facility 

 

In D-Cloud, it has been implementing FaultVM based on QEMU as the virtualization 

software by adding the fault injection facility. The advantages of using QEMU are 

described below. 

 QEMU is open-source software. This allows the modification to the emulation codes 

of the device for adding the fault injection facility, and the improvement for the 

reproducibility by adding the management of time synchronization. 

 QEMU can support various processor architectures. Especially, emulators for 

several embedded processors such as ARM and SH are already available. 

 QEMU can emulate a number of hardware devices. Thus QEMU may treat several 

hardware faults in the guest OS. 

 

3.2 Management of computing resources using Eucalyptus 

In order to execute many tests simultaneously, a large amount of resources must 

be managed efficiently and flexibly. Therefore, introduce Eucalyptus as the cloud 

management software. Eucalyptus is a cloud computing infrastructure that manages 

machine resources flexibly using a virtual machine, and an open-source implementation 

having the same API as AmazonEC2. 

The roles of Eucalyptus in D-Cloud are shown as follows: 

 Management of various guest OS images on the controller node 

 Transfer of the specified guest OS images from the controller node to appropriate 

QEMU nodes 

 Beginning and completion of guest operating systems on QEMU nodes 

By these features, the tester does not need to be aware of the allocation for computing 

resources provided by D-Cloud. 

ISRJournals and Publications Page 273



International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337 

 

 

3.3 Automated system configuration and testing 

D-Cloud automates the system setup and the test process, including the fault injection, 

based on a scenario written by a tester. “D-Cloud frontend” manages guest operating 

systems, configures system test environments, transfers various data from the tester to 

guest operating systems for the execution of testing, and collects testing results from 

guest operating systems. 

D-Cloud frontend performs the following acts: 

 Reception of a test scenario, a test program, input data, and a script including execution 

commands from a tester 

 Interpretation of the test scenario written in XML 

 Transfer of the test program, the input data, and the script to the guest operating system 

 Issue of the request for the startup of a guest operating system to the Eucalyptus 

controller node 

 Issue of the fault injection command for the target guest operating system to the 

appropriate virtual machine 

 Collection of the output data, logs, and snapshots from the guest operating system 

4, DESCRIPTION OF SYSTEM CONFIGURATION AND TEST SCENARIO 

As described above, D-Cloud performs preparation and test according to a scenario 

written in XML. By providing multiple scenario files, various systems can be tested 

simultaneously. Furthermore, since the cloud controller manages the computing resources 

appropriately, the tester can submit the test items one after another regardless of 

available computing resources. 

Testing scenario statement consists of four parts as follows. 

  m a c h i n e D e f i n i t i o n :  Descriptions for the  hard-ware configuration 

Element 

name 

Meaning 
machine Delimiter for definition of the hardware 

environment 
name Name definition of the hardware 

environment 
Cpu Number of CPUs 

Mem Size of memory 
N i c  Number of NICs 
I d  ID of the used OS image 

 

Table I machineDefinition  E LE ME NT  

ISRJournals and Publications Page 274



International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337 

 

 

Element name Meaning 

system Delimiter for definition of 

the software environment name Name of the software 

environment 
host Delimiter of the testing host 

hostname Name of the host 

machinename Name of the used machine 

element 
conf ig  Designation of the configuration 

file Table II systemDefinition  E LE ME NT  

 s ys t e m D e f i n i t i o n :  Descriptions for the software environment 

 i n j e c t i o n D e f i n i t i o n :  Definitions of faults for injection 

 t e s t D e f i n i t i o n :  Procedures of the entire test 

4.1 Configuration for the hardware environment 

The description of the hardware configuration is given by the “machineDefinition” 

element. Table I lists the contents of the “machineDefinition” element. All hardware 

components used in the test must be defined by each “machine” element. The “machine” 

element must include five elements, “name,” “cpu,” “mem,” “nic,” and “id.” The 

“name” is refered in the “systemDefinition” element described in the following sub -

section. The “cpu” and “nic” indicate the number of CPUs and NICs, respectively, and 

“mem” represents the allocation size of the main memory.  

4.2 Setting for the software environment 

The description of the software environment is given by the “systemDefinition” 

element containing elements shown in Table II.  The ent i re  software environment 

used in the test must be defined by each “system” element. The “system” element must 

include two elements, “name” and “host.” The “name” is referred in the 

“testDescription” element. Moreover, the “host” element contains three elements, “host-

name,” “machinename,” and “config.” The “hostname” determines the name of the 

host, the “machine name” is selected from the “name” of “machine” within the “ma -

chineDefinition” element. The “config” designates a file containing the various kinds of 

parameters. 

Element 

name 

Meaning 

i n j ec t i o n  Delimiter for definition of the fault 

injection name Name definition of the fault injection 

Fau l t  Delimiter for configuration of the 

injection locat ion  Designation of device type 

target  Designation of target device 

k ind  Type of fault 

t ime Duration of the fault event 

Table III I n j ec t i on De f in i t i on  ELEMENT 

ISRJournals and Publications Page 275



International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337 

 

 

Device Fault Value 

Hard disk Specified sector returns error 

Specified sector is read-only 

Error is detected by ECC 

Received data contains error 

Response of disk becomes slow 

badblock 

readonly 

ecc 

corrupt  

slow 

Network 1bit error of packet 

2bit error of packet 

Error is detected by CRC 

Packet loss 

NIC is not responding 

1b i t  

2b i t  

c rc  

loss  

n i c  

Memory Bit error 

Byte at specified address 

contains error 

B i t  

Byte Table IV Types of  Faul t  Inject ion  

4.3 Definition of fault injection 

The definition of fault injection items is given in the “injectionDefinition” element 

containing elements shown in Table III.  It  may have multiple “injection” elements, 

each of which has a “name” element and multiple “fault” elements. The “injection” 

element is assigned to each fault injection event. The “name” is referred in the 

“testDescription” element. The “fault” element must include four elements, “location,” 

“target,” “kind,” and “time.” The “location” and “target” specify the target device type 

and device name to inject a fault, respectively. The “kind” indicates the selection  of 

fault injection elements listed in Table IV.  The “time” represents the duration of fault 

injection. 

 

4.4 Description for the automatic test procedures 

The execution of the test is described in the “testDefinition” element using the 

contents shown in Table V. The “run” element is used for the independent test 

definitions, and multiple “run” elements may exist in a “testDefinition” element. The 

“name” element defines the name of the system test to be performed. The output file 

containing test result is created with the file name based on the content of “name” 

element. The “systemname” indicates the name in the “systemDefinition” element. 

The “halt” element with “when” attribute decides the finish time of the entire system  

test. The “script” element includes four elements, “on,” “putFile,” “exec,” and 

“inject” for each needed host. The “on” specifies the host name defined in the 

“systemDefinition” element. The “putFile” and “exec” specify the file name for the 

transfer to the host and the execute command, 

 

 

ISRJournals and Publications Page 276



International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337 

 

 

Element 

name 

Meaning 
Run Delimiter for definition of the test 

scenario 
Name Name of the test scenario 
systemname Name of the used system element 
H a l t  Ending time of the test 
Sc r ip t  Delimiter for definition of the 

execution script 
On Execution host 
pu tF i l e  File transmitted to the guest OS 
Exec Designation of the script file 

including the execution commands In j e c t  Execution of the fault injection 
Table V TestDef ini t ion  ELEMENT 

Respectively, the “inject” is selected from the name defined in the “injectionDefinition” 

element. The “inject” element also has “when” attribute, which specifies the duration of 

the fault incidence. 

In addition to the description by XML, consider the support for building the system 

environment and for the execution of the system testing by introducing the dynamic 

scripting language. This supplement helps the tester perform the desired test easily and 

flexibly. Moreover, by the use of the scripting language, the stylized description may 

improve the portability of the test process. 

5, PRELIMINARY TEST EXAMPLE USING D-CLOUD 

 Preliminarily evaluate D-Cloud by testing the actual dependable system. It have 

proposed and developed a fault tolerant and high-performance interconnection network 

based on the multi-link of Gigabit Ethernet (GbE) named RI2N (Redundant 

Interconnection with Inexpensive Network) Here, to assume simplified system using 

RI2N. Client1 is connected with server1 by two Ethernet links, network0 and network1. 

In this case, network0 and network1 form the RI2N logical link. Network2 is also 

available for issuing the command from D-Cloud frontend to each node and the 

collection of measurement results to D-Cloud frontend. Moreover, to assume the test 

scenario as follows; 

1) Client 1 performs burst data transfer to server 1 using RI2N continuously. In this 

case, throughput is expected to be twice as high as single link. 

2) After 200 seconds from the power-on, the network interface “eth0” of client1 is 

down during 60 seconds. RI2N link will be down immediately, however, 

throughput should recover to the level of the single link after a few seconds.  

3) After that, “eth0” interface on client1 is alive again. RI2N will  detect the link 

recovery, and throughput should recover to the same level as in the beginning 

condition. 

4) Finally, the system is halted 300 seconds after the power-on. 

ISRJournals and Publications Page 277



International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337 

 

 

                            

Figure 2 Simplified system example using RI2N 

Based on this scenario, the description by XML can be denoted.  It is notable that step 2 

can be expressed as the fault injection of the packet loss against eth0 of client1. 

To demonstrate the part of the web interface for the management of test scenarios in D-

Cloud, and it shows that three test scenarios (nic0.xml, nic1.xml, and nic2.xml) are 

running simultaneously on D-Cloud. 

To indicate the results obtained by the above scenario. Red arrow indicates the duration 

of the fault injection (60 sec.). In this result, when the fault is injected to eth0 of client1, 

throughput falls transiently, and soon throughput recovers to lower level than before. 

After eth0 is alive again, with a few seconds of delay, the throughput recovers to the 

same level as in the original condition. The absolute values of the throughput are 

incorrect in current D-Cloud. It  is because each packet transfer is performed via real 

network while the behaviors of client1 and server1 are emulated within each virtual 

machine. Even though, confirm that the fault tolerant and recovery detection capability of 

RI2N work correctly by relative tendency of the results. 

6,  RELATED WORKS 

Recently, Large-scale software testing has been studied. GridUnit executes software 

tests automatically on the grid by distributing the execution of JUnit test suites with 

minimum user intervention. GridUnit is naturally limited to the execution of JUnit test 

code by Java. When test nodes are crashed and stopped in GridUnit, they cannot execute 

remaining program tests. ETICS also provides automated test environments for grid and 

distributed software on a grid computing platform using Condor as a workload 

management system. Unlike D-Cloud concept, uses a cloud computing environment, and 

enables to create and execute VM instances for program tests through a web portal. 

Cloud is proposed as a cloud computing facility for software testing, and performs 

parallel symbolic execution based on the source code. 

1 <jobDescription> 

2 <machineDefinition> 

3 <machine> 

ISRJournals and Publications Page 278



International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337 

 

 

4 <name>server</name> 

5 <cpu>1</cpu> <mem>512</mem> <nic>3</nic> 

6 <id>emi-1D8C0CAA</id> 

7 </machine> 

8 <machine> 

9 <name>client</name> 

10 <cpu>1</cpu> <mem>512</mem> <nic>3</nic> 

11 <id>emi-0ACC0C2D</id> 

12 </machine> 

13 </machineDefinition> 

14 <systemDefinition> 

15 <system> 

16 <name>systemA</name> 

17 <host> 

18 <hostname>server1</hostname> 

19 <machinename>server</machinename> 

20 <config>serv.  conf</config> 

21 </host> 

22 <host> 

23 <hostname>client1</hostname> 

24 <machinename>client</machinename> 

25 <config>client.conf</config>  

26 </host> 

27 </system> 

28 </systemDefinition> 

29 <inject ionDefini t ion>  

30 <injection> 

31 <name>in jectionA</name> 

32 <fault> 

33 <location>network</location> 

34 <target>eth0</target> 

35 <kind>loss</kind> 

36 <time>60</time> 

37 < / f  ault> 

38 </ inject ion>  

39 </ injec t ionDefin i t ion>  

40 <testDescription> 

41 <run> 

42 <name>testA</name> 

43 <systemname>systemA</systemname> 

44 <halt when="300">down</halt> 

45 <script> 

46 <on>client1</on> 

47 <putFile>test .sh</putFile> 

48 <exec>test.  sh</exec> 

49 <inject  when="200">injectionA</inject> 

50 </script>  

51 </run> 

ISRJournals and Publications Page 279



International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337 

 

 

52 </testDescription> 

53 </jobDescription> 

Figure 3 Example test scenario for RI2N by XML 

 

On the other hand, fault injection techniques in program tests have been proposed. 

DOCTOR is a software fault injector, which supports memory faults, CPU faults, and 

communication faults. Although software fault injection needs modification of the source 

codes to be tested, this approach need not modify the source codes at all for fault 

injection. FAUmachine performs a software test using virtual machines for fault injection 

mechanism. However, since FAUmachine does not provide an automated test 

environment, the tester must configure the test environment manually. 

 

Figure 4.Current management screen of D-Cloud 

 

Figure 5 Test results obtained by D-Cloud 

7,  CONCLUSION AND FUTURE WORK 

To present the concept and design of the software testing environment using the cloud 

computing technology, named D-Cloud. D-Cloud permits the automatic configuration, 

testing with fault injection along the description of the testing scenario. It have been 

developing D - Cloud using Eucalyptus as a cloud management software and QEMU as 

a virtualization software. As the software testing using D-Cloud, the preliminary test 

example was denoted, and the result demonstrated that D-Cloud allows to set up the 

environment easily, and to test the software testing for the distributed system. At 

ISRJournals and Publications Page 280



International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337 

 

 

present, D-Cloud can obtain the testing results including the virtual console logs and 

the syslog outputs by the running processes and operating system in FaultVM/QEMU 

on each node. In general use, it should consider more sophisticated way to gather the 

results and detect the fault from large amount of logs. 

In future work, it should append the management mechanism to D-Cloud for keeping 

reproducibility by time synchronization in coarse grain among related virtual machines 

without sacrificing the performance. Further, to intro-duce the model simulator written 

by the system description language to D-Cloud in order to test various systems includ-

ing embedded systems with proprietary hardware’s. 

In proposed DS-Bench as a dependability benchmarking framework for a dependable 

operating system. D-Cloud is so useful as the virtual platform for DS-Bench since 

anomaly loads can be generated automatically from the request given by the scenario 

file using D-Cloud. 

REFERENCES 

[1] Large-Scale Software Testing Environment using Cloud Computing Technology for 

Dependable Parallel and Distributed Systems.  Toshihiro Hanawa, Takayuki Banzai, 

Hitoshi Koizumi, Ryo Kanbayashi, Takayuki Imada, and Mitsuhisa Sato Department of 

Computer Science Center for Computational Sciences University of Tsukuba 

[2] T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, H. Kimura, T. Hanawa, and M. 

Sato, “D-Cloud: Design of a software testing environment for reliable distributed 

systems using cloud computing technology,” in Proc. 2nd International Symposium on 

Cloud Computing (Cloud 2010) in conjunction with CCGrid2010, May 2010, (To be 

appeared). 

[3] Y. Ishikawa et al., “Towards an open dependable operating system,” in Proc. 12th 

International Symposium on Object/Component/Service-Oriented Real-Time 

Distributed Computing, Mar. 2009, pp. 20–27. 

[4] Nurmi et al., “The eucalyptus open-source cloud-computing system,” in Proc. 9th 

IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid ’09), 

2009, pp. 124–131. 

[5] Amazon elastic compute cloud (Amazon EC2). [Online]. Available: 

http://aws.amazon.com/ec2/ 

[6] S. Miura, T. Hanawa, T. Yonemoto, T. Boku, and M. Sato, “RI2N/DRV: Multi -link 

Ethernet for high-bandwidth and fault-tolerant network on PC clusters,” in Proc. The 

9th Workshop on Communication Architecture for Clusters (CAC) in IPDPS, May 2009, 

pp. 1–8. 

ISRJournals and Publications Page 281



International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337 

 

 

[7] Duarte, W. Cirne, F. Brasileiro, and P. Machado, “GridUnit: software testing on the 

grid,” in Proc. 28th international conference on Software engineering (ICSE ’06), 

2006, pp. 779–782. 

[8] M.-E. Begin et al., “Build, configuration, integration and testing tools for large 

software projects: ETICS,” in Proc. Rapid Integration of Software Engineering 

Techniques, ser. Lecture Notes in Computer Science, vol. 4401, Sep. 2007, pp. 81–97. 

[9] Open Solaris test farm. [Online]. Available: http://opensolaris. 

org/os/community/testing/testfarm 

BIOGRAPHY 
 

 

 

 

Mr. S. Ravichandran, M.C.A., M.Phil., M.Tech., ME., works as an 

Associate Professor in Department of Information Technology at Sri Krishna Engineering 

College. He is perusing Doctorate of Philosophy in Computer Science at Bharathiar 

University. He has 18 years of teaching experiences in various Engineering Colleges. He 

has published 4 papers in International journals, he has presented in 15 International 

Conferences & presented in 19 National Conferences in various Engineering Colleges. His 

areas of specialization are Cloud Computing, Artificial Intelligence, Networks and 

Compilers. 

 

Prof. Dr. E.R.Naganathan is the Head of the Department of Computer Science and 

Engineering at Hindustan University, Chennai, India since 2012. He was a faculty at 

various levels in the Department of Computer Science and Engineering, Alagappa 

University, Karaikudi, Tamilnadu, India during 1986-2008. He has received M.Sc. 

[Applied Mathematics] from Madurai Kamaraj University, India; M.Tech.(Computer and 

Information Technology) from Manonmanium Sundaranar University, India and Ph.D. in 

Computer Applications from Alagappa University. His research interests centre on 

Algorithm Design, Information Security and Data Management. He has worked as one of 

the co-investigator in “Collaborative Directed Basic Research in Smart and Secure 

Environment “for information exchange over distributed environment. He has 69 research 

publications in his credit. 

 

Powered by TCPDF (www.tcpdf.org)

ISRJournals and Publications Page 282

http://www.tcpdf.org

