
June 2002

Free
Speech
Online

Home
Theater
Perils

Agile
Methods
Fray
h

tt
p

:/
/c

o
m

p
u

te
r.

o
rg

Innovative Technology for Computer Professionals

0018-9162/02/$17.00 © 2002 IEEE56 Computer

Yima: A Second-
Generation Continuous
Media Server

A pplications such as news on demand, dis-
tance learning, e-commerce, and scientific
visualization all store, maintain, and
retrieve large volumes of real-time data
over a network. These data are denoted

collectively as continuous media, or CM. Video
and audio objects are popular examples; haptic and
avatar data are less familiar types. CM data require
a streaming architecture that can, first, manage
real-time delivery constraints. Failure to meet these
constraints on CM data disrupts the display with
“hiccups.” Second, the architecture must address
the large size of CM objects. A two-hour MPEG-2
video with a bandwidth requirement of 4 megabits
per second is 3.6 gigabytes in size.

The currently available commercial implementa-
tions of CM servers fall into two broad categories:

• low-cost, single-node, consumer-oriented sys-
tems serving a limited number of users; and

• multinode, carrier-class systems such as high-
end broadcasting and dedicated video-on-
demand systems.

RealNetworks, Apple Computer, and Microsoft
product offerings fit into the consumer-oriented cat-
egory, while SeaChange and nCube offer solutions
oriented toward carrier-class systems. While com-
mercial systems ordinarily use proprietary technol-
ogy and algorithms, making it difficult to compare
their products with research prototypes, we have
designed and developed a second-generation CM
server that demonstrates several advanced concepts.

We call our system Yima, a name denoting the
first man in ancient Iranian religion. While Yima
has not achieved the refinement of commercial solu-
tions, it is operational and incorporates lessons
learned from first-generation research prototypes.1,2

Yima distinguishes itself from other similar research
efforts in the following:

• complete distribution with all nodes running
identical software and no single points of fail-
ure;

• efficient online scalability allowing disks to be
added or removed without interrupting CM
streams;

• synchronization of several streams of audio,
video, or both within one frame (1/30 second);

• independence from media types;
• compliance with industry standards;
• selective retransmission protocol; and
• multithreshold buffering flow-control mecha-

nism to support variable bit-rate (VBR) media.

Yima is also a complete end-to-end system that
uses an IP network with several supportable client
types. This feature distinguishes it from previous
research that focused heavily on server design.

SYSTEM ARCHITECTURE
Figure 1 shows the overall Yima system archi-

tecture. In our prototype implementation, the server
consists of an eight-way cluster of rack-mountable
Dell PowerEdge 1550 Pentium III 866-MHz PCs
with 256 Mbytes of memory running Red Hat

Yima, a scalable real-time streaming architecture, incorporates
lessons learned from earlier research prototypes to enable advanced
continuous media services.

Cyrus
Shahabi
Roger
Zimmermann
Kun Fu
Shu-Yuen
Didi Yao
University of
Southern California

R E S E A R C H F E A T U R E

Linux. Sixteen 36-Gbyte Seagate Cheetah hard-disk
drives store the media data and connect to the
server nodes via Ultra160 small computer system
interface (SCSI) channels.

The nodes in the cluster communicate with each
other and send the media data via multiple 100-
Mbps Fast Ethernet connections. Each server is
attached to a local Cabletron 6000 switch with either
one or two Fast Ethernet lines. The local switch con-
nects to both a WAN backbone for serving distant
clients and a LAN environment for local clients. Our
testbed also includes server clusters at other remote
locations, for example, Metromedia Fiber Network
in El Segundo, California, and Information Sciences
Institute East in Arlington, Virginia.

Choosing an IP-based network keeps the per-port
equipment cost low and makes the system imme-
diately compatible with the public Internet.

The current prototype implements clients on stan-
dard Pentium III PC platforms, but we could also
port them to digital television set-top boxes. The
client software, Yima Presentation Player, runs on
either Red Hat Linux or Windows NT. Structured
into several components, the player lets various soft-
ware and hardware decoders be plugged in. Table 1

shows the different media types that Yima currently
recognizes. One unusual type is panoramic video
with 10.2-channel audio.

SERVER DESIGN CHALLENGES
The servers for delivering isochronous multime-

dia over IP networks must store the data efficiently
and schedule the data retrieval and delivery precisely
before transmission. We studied both master-slave
and bipartite design approaches in the Yima-1 and
Yima-2 CM servers, respectively. These approaches
share many features that address design challenges
in this domain. They differ mainly in the logical
interconnection topology between cluster nodes.

Data placement and scheduling
There are two ways to assign data blocks to the

magnetic disk drives that form the storage system:
in a round-robin placement3 or randomly.4 Tra-
ditionally, round-robin placement uses a cycle-based
approach for resource scheduling to guarantee a
continuous display, while random placement uses
a deadline-driven approach.

In general, the round-robin cycle-based approach
provides high throughput with little wasted band-

June 2002 57

User interface

RTSP and RTP
controller

Playback

RTSP/TCP
RTP/UDP Command and Control

Media data

Client components

Playout
buffer

Amount
of

data

Playout
buffer

0

Overflow watermark (PAUSE issued)

Slowdown (for example, ∆p + 20%)

Slowdown (for example, ∆p + 10%)

Speedup (for example, ∆p − 10%)

Speedup (for example, ∆p − 20%)
Underflow watermark
WMU

WMO

1,000 Mbps

100 Mbps100 Mbps

Node 0 Node 1 Node 2 Node N

Ethernet
switch

Disks: high-performance, Ultra160 SCSI
(for example, Seagate Cheetah)

up to 160 Mbytes/s

Multiple 100-Mbps NICs

Ultra160 SCSI controller

Personal
computer

(for example,
866 MHz;

256 Mbytes)

PCI bus; 1,064 Mbps

Disk 0 Disk 1 Disk 2 Disk N

Ethernet

Fast Ethernet or Gigabit Ethernet

Ethernet

...

...

Internet backbone routers

RESUME issued (∆p set to default)

B

Video/audio
decoder

Server components

RTSP = Real-time streaming protocol
TCP = Transmission-control protocol

Figure 1. Yima sys-
tem architecture.
The prototype imple-
mentation uses off-
the-shelf commodity
hardware compo-
nents and industry
standards end to
end.

58 Computer

width for video objects that are retrieved sequen-
tially, such as a feature-length movie. The startup
latency for an object might be large under heavy
loads, but object replication can reduce it.5

The random deadline-driven approach supports
fewer optimizations, so it could lower throughput,
but several benefits outweigh this potential draw-
back.6 First, random data placement supports mul-
tiple delivery rates with a single server block size;
it also simplifies the scheduler design, supports
interactive applications, and automatically achieves
the average transfer rate with multizoned disks.
Finally, random placement reorganizes data more
efficiently when the system scales up or down.

Random placement can require a large amount
of metadata to store and manage each block’s loca-
tion in a centralized repository, for example, in
tuples of the form <nodex, disky>. Yima avoids this
overhead by using a pseudorandom block place-
ment. A seed value initiates a sequence of numbers
that can be reproduced by using the same seed
value. By placing blocks in a pseudorandom fash-
ion across the disks, the system can recompute the
block locations. Since Yima numbers disks glob-
ally across the server nodes, it will assign blocks to
random disks across different nodes.

Hence, Yima stores only the seed for each file
object instead of locations for every block.

Scalability, heterogeneity,
and fault resilience

Any CM server design must scale to support
growth in user demand or application requirements.
Several techniques address this requirement, includ-
ing the use of multidisk arrays. However, if the
design connected all the disks to a single large com-
puter, the I/O bandwidth constraints would limit
the overall achievable throughput—hence, Yima’s
architecture uses multiple computers, or multinodes.

As Figure 1 shows, the Yima server architecture
interconnects storage nodes via a high-speed net-
work fabric that can expand as demand increases.
This modular architecture makes it easy to upgrade
older PCs and add new nodes.

Applications that rely on large-scale CM servers,
such as video-on-demand, require continuous oper-
ation. To achieve high reliability and availability
for all data stored in the server, Yima uses disk
merging7 to implement a parity-based data-redun-
dancy scheme that, in addition to providing fault
tolerance, can also take advantage of a heteroge-
neous storage subsystem. Disk merging presents a
virtual view of logical disks on top of the actual
physical storage system, which might consist of
disks that provide different bandwidths and storage
space. This abstraction allows a system’s applica-
tion layers to assume a uniform characteristic for all
the logical disks, which in turn allows using con-
ventional scheduling and data placement algo-
rithms across the physical storage system.

Data reorganization
Computer clusters try to balance load distribu-

tion across all nodes. Over time, both round-robin
and random data-placement techniques distribute
data retrievals evenly across all disk drives. When
a system operator adds a node or disk, however,
the system must redistribute the data to avoid par-
titioning the server. Reorganizing the blocks
involves much less overhead when the system uses
random rather than round-robin placement. For
example, with round-robin striping, adding or
removing a disk requires the relocation of almost all
data blocks. Randomized placement requires mov-
ing only a fraction of the blocks from each disk to
the added disk—just enough to ensure that the
blocks are still randomly placed to preserve the load
balance.

Table 1. Yima client media support.

Video
Media Operating Minimum resolution Audio Delivery
type Decoder Channels system CPU speed (in pixels) encoding rate

DivX Software 1 video, Linux 500 MHz 720 × 480 MP3 <1 Mbps
MPEG-4 2 audio
MPEG-2 Creative 1 video, Linux 200 MHz 720 × 480 Dolby AC-3 6-8 Mbps
and Dolby Dxr2 DVD 5.1 audio
Digital
MPEG-2 Software 1 video Linux >2 × 1.5 1,920 × 1,080 19.4 Mbps
HD GHz
MPEG-2 Vela 1 video, Linux 500 MHz 1,920 × 1,080 Dolby AC-3 or 19.4-45 Mbps
HD Research 10.2 audio uncompressed and 11 Mbps

CineCast HD PCM
Panoramic Vela 5 video, Windows 2 × 400 (5 × 720) × Uncompressed 4 × 5 Mbps
MPEG-2 Research 10.2 audio NT MHz 480 each PCM and 11 Mbps

CineCast

Yima uses a pseudorandom number generator to
produce a random, yet reproducible, number
sequence to determine block locations. Because
some blocks must move to the added disks when
the system scales up, Yima cannot use the previous
pseudorandom number sequence to find the blocks;
therefore, Yima must derive a new random number
sequence. We use a composition of random func-
tions to determine this new sequence. Our
approach—termed Scaling Disks for Data Arranged
Randomly (Scaddar)—preserves the sequence’s
pseudorandom properties, resulting in minimal
block movements and little overhead in the com-
putation of new locations.8 The Scaddar algorithm
can support disk scaling while Yima is online.

Multinode server architecture
We built the Yima servers from clusters of server

PCs called nodes. A distributed file system provides
a complete view of all the data on every node with-
out requiring individual data blocks to be repli-
cated, except as required for fault tolerance.7 A
Yima cluster can run in either a master-slave or
bipartite mode.

Master-slave design (Yima-1). With this design, an
application running on a specific node operates on
all local and remote files. Operations on remote files
require network access to the corresponding node.
The Yima-1 software consists of two components:

• the Yima-1 high-performance distributed file
system, and

• the Yima-1 media streaming server.

As Figure 2a shows, the distributed file system
consists of multiple file I/O modules located on each
node. The media-streaming server itself is com-
posed of a scheduler, a real-time streaming proto-
col (RTSP) module, and a real-time protocol (RTP)
module. Each Yima-1 node runs the distributed file
system, while certain nodes also run the Yima-1
media-streaming server. A node running only the
file I/O module has only slave capabilities, while a
node that runs both components has master and
slave capabilities.

A master server node is a client’s point of con-
tact during a session. We define a session as a com-
plete RTSP transaction for a CM stream. When a
client wants to request a data stream using RTSP,
it connects to a master server node, which in turn
brokers the request to the slave nodes. If multiple
master nodes exist in the cluster, this assignment is
decided based on a round-robin domain name ser-
vice (RR-DNS) or a load-balancing switch. A
pseudorandom number generator manages the
locations of all data blocks.

Using a distributed file system obviates the need
for applications to be aware of the storage system’s
distributed nature. Even applications designed for
a single node can to some degree take advantage of
this cluster organization. The Yima-1 media stream-
ing server component, based on Apple’s Darwin
Streaming Server (DSS) project (http://www.open
source.apple.com/projects/streaming/), assumes that
all media data reside in a single local directory.
Enhanced with our distributed file system, multiple
copies of the DSS code—each copy running on its
own master node—can share the same media data.
This also simplifies our client design since it sends
all RTSP control commands to only one server
node.

Finally, Yima-1 uses a pause-resume flow-con-
trol technique to deliver VBR media. A stream is
sent at a rate of either RN or zero megabits per sec-
ond, where RN is an estimated peak transfer rate
for the movie. The client issues pause-and-resume
commands to the server depending on how full the
client buffer is. Although the pause-resume design
is simple and effective, its on-off nature can lead to
bursty traffic.

With the Yima-1 architecture, several major per-
formance problems offset the ease of using clus-
tered storage, such as a single point of failure at the
master node and heavy internode traffic. These
drawbacks motivated the design of Yima-2, which
provides a higher performing and more scalable
solution for managing internode traffic.

Bipartite design (Yima-2). We based Yima-2’s bipar-
tite model on two groups of nodes: a server group
and a client group.

June 2002 59

Client

Inactive modules

Data request

Data

Active modules

RTP server

Scheduler

File I/O

RTSP server

RTP server

Scheduler

File I/O

RTSP server

RTP server

Scheduler

File I/O

RTSP server

RTP server

Scheduler

File I/O

RTSP server

Client

RTSP server

RTP server

Scheduler

File I/OFile I/O File I/O File I/O

RTP server

Scheduler

RTP server

Scheduler

RTP server

Scheduler

RTSP server RTSP server RTSP server

(a) (b)

Figure 2. Client
session view of the
Yima server. (a) Data
is sent through the
master node in
Yima-1, and (b) data
is sent from all the
nodes in Yima-2.

60 Computer

With Yima-1, the scheduler, RTSP, and
RTP server modules are all centralized on a
single master node from the viewpoint of a
single client. Yima-2 expands on the decen-
tralization by keeping only the RTSP mod-
ule centralized—again from the viewpoint of
a single client—and parallelizing the sched-
uling and RTP functions, as Figure 2b shows.
In Yima-2, every node retrieves, schedules,
and sends its own local data blocks directly
to the requesting client, thereby eliminating
Yima-1’s master-node bottleneck. These
improvements significantly reduce internode
traffic.

Although the bipartite design offers clear advan-
tages, its realization imposes several new chal-
lenges. First, clients must handle receiving data
from multiple nodes. Second, we replaced the
original DSS code component with a distributed
scheduler and RTP server to achieve Yima-2’s
decentralized architecture. Last, Yima-2 requires
a flow-control mechanism to prevent client buffer
overflow or starvation.

With Yima-2, each client maintains contact with
one RTSP module throughout a session for control
information. For load-balancing purposes, each
server node can run an RTSP module, and the deci-
sion of which RTSP server to contact remains the
same as in Yima-1: RR-DNS or switch. However,
contrary to the Yima-1 design, a simple RR-DNS
cannot make the server cluster appear as one node
since clients must communicate with individual
nodes for retransmissions. Moreover, if an RTSP
server fails, sessions are not lost. Instead, the system
reassigns the sessions to another RTSP server, with
no disruption in data delivery.

We adapted the MPEG-4 file format as specified
in MPEG-4 Version 2 for the storage of media
blocks. This flexible-container format is based on
Apple’s QuickTime file format. In Yima-2, we
expanded on the MPEG-4 format by allowing
encapsulation of other compressed media data such
as MPEG-2. This offers the flexibility of delivering
any data type while still being compatible with the
MPEG-4 industry standard.

To avoid bursty traffic caused by Yima-1’s
pause/resume transmission scheme and still
accommodate VBR media, the client sends feed-
back to make minor adjustments to the data
transmission rate in Yima-2. By sending occa-
sional slowdown or speedup commands to the
Yima-2 server, the client can receive a smooth
data flow by monitoring the amount of data in
its buffer.

CLIENT SYSTEMS
We built the Yima Presentation Player as a client

application to demonstrate and experiment with
our Yima server. The player can display a variety
of media types on both Linux and Windows plat-
forms. Clients receive streams via standard RTSP
and RTP communications.

Client buffer management
A circular buffer in the Yima Presentation Player

reassembles VBR media streams from RTP pack-
ets that are received from the server nodes.
Researchers have proposed numerous techniques
to smooth the variable consumption rate RC by
approximating it with a number of constant-rate
segments. Implementing such algorithms at the
server side, however, requires complete knowledge
of RC as a function of time.

We based our buffer management techniques on
a flow-control mechanism so they would work in
a dynamic environment. A circular buffer of size
B accumulates the media data and keeps track of
several watermarks including buffer overflow
WMO and buffer underflow WMU. The decoding
thread consumes data from the same buffer. Two
schemes, pause/resume and ∆p, control the data
flow.

Pause-resume. If the data in the buffer reaches
WMO, the client software pauses the data flow
from the server. The playback will continue to con-
sume media data from the buffer.

When the data in the buffer reaches the under-
flow watermark WMU, the stream from the server
resumes. However, the buffer must set WMO and
WMU with safety margins that account for net-
work delays. Consequently, if the data delivery rate
(RN) is set correctly, the buffer will not underflow
while the stream is resumed.

Although the pause/resume technique is a simple
and effective design, if pause and resume actions
coincide across multiple sessions, bursty traffic will
become a noticeable effect.

Client-controlled ∆p. ∆p is the interpacket delivery
time the schedulers use to transmit packets to the
client. Schedulers use the network time protocol
(NTP) to synchronize time across nodes. Using a
common time reference and each packet’s time
stamp, server nodes send packets in sequence at
timed intervals.

The client fine-tunes the delivery rate by updat-
ing the server with new ∆p values based on the
amount of data in its buffer. Fine-tuning is achieved
by using multiple watermarks in addition to WMO

and WMU, as Figure 1 shows.

Yima-2 offers the
flexibility of

delivering any data
type while still

being compatible
with the

MPEG-4 industry
standard.

When the level of data in the client buffer
reaches a watermark, the client sends a corre-
sponding ∆p speedup or slowdown command to
maintain the amount of data within the buffer. The
buffer smoothes out any fluctuations in network
traffic or server load imbalance that might delay
packets. Thus, the client can control the delivery
rate of received data to achieve smoother delivery,
prevent bursty traffic, and keep a constant level of
buffer data.

Player media types
We have experimented with a variety of media

types for our Yima player. Figure 1 shows the
player’s three-threaded structure. The playback
thread interfaces with the actual media decoder.
The decoder can be either software- or hardware-
based. Table 1 lists some decoders that we incor-
porated.

The CineCast hardware MPEG decoders from
Vela Research support both MPEG-1 and MPEG-
2 video and two-channel audio. For content that
includes 5.1 channels of Dolby Digital audio, as
used in DVD movies, we use the Dxr2 PCI card
from Creative Technology to decompress both
MPEG-1 and MPEG-2 video in hardware. The
card also decodes MPEG audio and provides a 5.1-

channel Sony-Philips Digital Interface (SP-DIF) dig-
ital audio output terminal.

With the emergence of MPEG-4, we began
experimenting with a DivX software decoder.9

MPEG-4 provides a higher compression ratio than
MPEG-2. A typical 6-Mbps MPEG-2 media file
may only require an 800-Kbps delivery rate when
encoded with MPEG-4. We delivered an MPEG-4
video stream at near NTSC quality to a residential
client site via an ADSL connection.10

HDTV client
The streaming of high-definition content pre-

sented several challenges. First, high-definition
media require a high-transmission bandwidth. For
example, a video resolution of 1,920 x 1,080 pix-
els encoded via MPEG-2 results in a data rate of
19.4 Mbps. This was less of a problem on the
server side because we designed Yima to handle
high data rates.

The more intriguing problems arose on the client
side. We integrated an mpeg2dec open source
software decoder because it was cost-effective.
Although it decoded our content, achieving real-
time frame rates with high-definition video was
nontrivial because of the high resolution. On a
dual-processor 933-MHz Pentium III, we achieved

June 2002 61

Yima
audio

client PC

Yima
video

client PC

Trigger
unit

Genlock
Unit

CineCast
MPEG-2

quad
decoder

CineCast
MPEG-2

quad
decoder

Network
connection

to Yima server

Network
connection

to Yima server

Audio D/A
converter

NTSC
video

NTSC
video

12 channels of PCM audio (sampling rate: 48,000)

Ultra SCSI

Ultra SCSI

Panoramic real-time
video stitching equipment

(or separate displays)

Audio preamplifier

Audio power
amplifier

10.2 channels of audio

To additional
speakers and

subwoofers

Subwoofers

Head-mounted display

Multiscreen displayMultiscreen display

MPEG-2 video
(5 x 4 Mbps)

PCM audio
(11 Mbps)

2 optical TOSlink connections
(max. 8 digital audio channels each)

SCSI card

Sound card

Figure 3. Panoramic
video and 10.2-
channel audio play-
back system block
diagram. One Yima
client renders five
channels of syn-
chronized video in
a mosaic of 3,600 ×
480 pixels while
another Yima client
renders 10.2 chan-
nels of synchronized
audio (0.2 refers to
two low-frequency
channels, or
subwoofers).

62 Computer

approximately 20 frames per second using
unoptimized code with Red Hat Linux 6.2
and Xfree86 4.0.1 on an nVidia Quadro 2
graphics accelerator. In our most recent
implementation, we used a Vela Research
CineCast HD hardware decoder, which
achieved real-time frame rates at data rates
up to 45 Mbps.

Multistream synchronization
The flow-control techniques implemented

in the Yima client-server communications
protocol synchronize multiple, independently
stored media streams.

Figure 3 shows the client configuration for the
playback of panoramic, five-channel video and 10.2-
channel audio. The five video channels originate from
a 360-degree video camera system such as the
FullView model from Panoram Technologies. We
encode each video channel into a standard MPEG-2
program stream. The client receives the 10.2 chan-
nels of high-quality, uncompressed audio separately.

During playback, all streams must render in tight
synchronization so the five video frames corre-
sponding to one time instance combine accurately
into a panoramic mosaic of 3,600 x 480 pixels
every 1/30th of a second. The player can show the
resulting panoramic video on either a wide-screen
or head-mounted display. The experience is
enhanced with 10.2-channel surround audio, pre-
sented phase-accurately and in synchronization
with the video.

Yima achieves precise playback with three levels
of synchronization: block-level via retrieval sched-
uling, coarse-grained via the flow-control protocol,
and fine-grained through hardware support. The
flow-control protocol maintains approximately the
same amount of data in all client buffers. With this
prerequisite in place, we can use multiple CineCast
decoders and a genlock timing-signal-generator
device to lock-step the hardware MPEG decoders
to produce frame-accurate output. All streams must
start precisely at the same time.

The CineCast decoders provide an external trig-
ger that accurately initiates playback through soft-
ware. Using two PCs, one equipped with two
four-channel CineCast decoders and one with a
multichannel sound card, a Yima client can render
up to eight synchronous streams of MPEG-2 video
and 24 audio channels.

RTP/UDP AND SELECTIVE RETRANSMISSION
Yima supports the industry-standard RTP for the

delivery of time-sensitive data. Because RTP trans-

missions are based on the best-effort user datagram
protocol, a data packet could arrive out of order at
the client or be altogether dropped along the net-
work. To reduce the number of lost RTP data pack-
ets, we implemented a selective retransmission
protocol.11 We configured the protocol to attempt
at most one retransmission of each lost RTP packet,
but only if the retransmitted packet would arrive
in time for consumption.

When multiple servers deliver packets that are
part of a single stream, as with Yima-2, and a
packet does not arrive, how does the client know
which server node attempted to send it? In other
words, it is not obvious where the client should
send its retransmission request.

There are two solutions to this problem. The client
can broadcast the retransmission request to all server
nodes, or it can compute the server node to which it
issues the retransmission request. With the broad-
cast approach, all server nodes receive a packet
retransmission request, check whether they hold the
packet, and either ignore the request or perform a
retransmission. Consequently, broadcasting wastes
network bandwidth and increases server load.

Yima-2 incorporates the unicast approach.
Instead of broadcasting a retransmission request to
all the server nodes, the client unicasts the request
to the specific server node possessing the requested
packet. The client determines the server node from
which a lost RTP packet was intended to be deliv-
ered by detecting gaps in node-specific packet
sequence numbers. Although this approach re-
quires packets to contain a node-specific sequence
number along with a global sequence number, the
clients require very little computation to identify
and locate missing packets.

TEST RESULTS
In extensive sets of experiments, Yima-2 exhibits

an almost perfectly linear increase in the number
of streams as the number of nodes increases. Yima-
2’s performance may become sublinear with larger
configurations, low-bit-rate streams, or both, but
it scales much better than Yima-1, which levels off
early. We attribute Yima-1’s nonlinearity to the
increase of internodal data traffic.

We sent MPEG-4 data from the Yima servers in
our lab to the public Internet via the University of
Southern California campus network. The geo-
graphical distance between the two end points mea-
sured approximately 40 kilometers. We set up the
client in a residential apartment and linked it to the
Internet via an ADSL connection. The ADSL
provider did not guarantee any minimum band-

A Yima client
can render
up to eight

synchronous
streams of

MPEG-2 video
and 24 audio

channels.

width but stated that it would not exceed 1.5
Mbps. The raw bandwidth achieved end-to-end
between the Yima client and servers was approxi-
mately 1 Mbps.

The visual and aural quality of an MPEG-4
encoded movie at less than 1 Mbps is surprisingly
good. Our test movie, encoded at almost full NTSC
resolution, displayed little degradation—a perfor-
mance attributable to the low packet loss rate of
0.365 percent without retransmissions and 0.098
percent with retransmissions. The results demon-
strated the superiority of Yima-2 in scale-up and
rate control. They also demonstrated the incorpo-
rated retransmission protocol’s effectiveness.

We colocated a Yima server at Metromedia Fiber
Network in El Segundo, California, to demonstrate
successful streaming of five synchronized video
channels. Also, as part of a remote media immer-
sion experiment (http://infolab.usc.edu/News/
NYT-RML.html). We successfully streamed HD
video at 45 Mbps from Arlington, Virginia, syn-
chronized with 10.2-channel audio at 11 Mbps
from Marina del Rey, California, to our lab at the
University of Southern California.

W e are exploring resource management
strategies across both distributed and peer-
to-peer architectures in which multiple

Yima clusters would exist across geographically
dispersed areas.12 This distribution would allow a
wider range of serviceable clients. We also plan to
extend the support of data types to include haptic
and avatar data as part of the overall research in
immersive media at USC’s Integrated Media
Systems Center. �

Acknowledgments
This research has been funded by the US National

Science Foundation grants EEC-9529152 (IMSC
ERC) and IIS-0082826. We thank our IMSC
collaborators Chrysostomos L. Nikias, Ulrich
Neumann, Alexander Sawchuk, Chris Kyriakakis,
Christos Papadopoulos, and Albert Rizzo. We also
thank the following students for helping with the
implementation of certain Yima components:
Mehrdad Jahangiri, Nitin Nahata, Sahitya Gupta,
Farnoush Banaei-Kashani, and Hong Zhu.

References
1. D.J. Gemmell et al., “Multimedia Storage Servers:

A Tutorial,” Computer, May 1995, pp. 40-49.

2. A. Bonhomme, “Survey of Video Servers,” hyper-
linked resource page, including bibliography,
http://www.ens-lyon.fr/~abonhomm/video/survey.
html (current May 2002; last update June 2001).

3. S. Berson et al., “Staggered Striping in Multimedia
Information Systems,” Proc. 1994 ACM Sigmod Int’l
Conf. Management of Data, ACM Press, New York,
1994, pp. 79-90.

4. J.R. Santos and R.R. Muntz, “Performance Analy-
sis of the RIO Multimedia Storage System with Het-
erogeneous Disk Configurations,” Proc. 6th ACM
Int’l Multimedia Conference (ACM MM 98), ACM
Press, New York, 1998, pp. 303-308.

5. S. Ghandeharizadeh et al., “On Minimizing Startup
Latency in Scalable Continuous Media Servers,”
Proc. Multimedia Computing and Networking
(MMCN 97), SPIE-Int’l Society Optical Engineering,
Bellingham, Wash., 1997, pp. 144-155.

6. J.R. Santos, R. Muntz, and B. Ribeiro-Neto, “Com-
paring Random Data Allocation and Data Striping
in Multimedia Servers,” Int’l Conf. Measurement
and Modeling of Computer Systems (Sigmetrics
2000), ACM Press, New York, 2000, pp. 44-55.

7. R. Zimmermann and S. Ghandeharizadeh, “Contin-
uous Display Using Heterogeneous Disk-Subsys-
tems,” Proc. 5th ACM Int’l Multimedia Conf. (ACM
MM 97), ACM Press, New York, 1997, pp. 227-236.

8. A. Goel et al., “Scaddar: An Efficient Randomized
Technique to Reorganize Continuous Media Blocks,”
Proc. 18th Int’l Conf. Data Eng. (ICDE 02), IEEE
CS Press, Los Alamitos, Calif., 2002, pp. 473-482.

9. J. Hibbard, “What the $%@# is DivX;-)?” Red Her-
ring Magazine, Jan. 2001, pp. 60-64.

10. R. Zimmermann et al., “Yima: Design and Evalua-
tion of a Streaming Media System for Residential
Broadband Services,” Proc. VLDB 2001 Workshop
Databases in Telecommunications (DBTel 01),
Springer-Verlag, Berlin, 2001, pp. 116-125.

11. C. Papadopoulos and G.M. Parulkar, “Retransmis-
sion-Based Error Control for Continuous Media
Applications,” Proc. 6th Int’l Workshop Network
and Operating Systems Support for Digital Audio
and Video (NOSSDAV 96), Springer-Verlag, Heidel-
berg, 1996, pp. 5-12.

12. C. Shahabi and F. Banaei-Kashani, “Decentralized
Resource Management for a Distributed Continuous
Media Server,” to be published in IEEE Trans. Par-
allel and Distributed Systems, vol. 13, no. 6, June
2002.

Cyrus Shahabi is an assistant professor and direc-
tor of the Information Laboratory (http://infolab.
usc.edu) in the Computer Science Department at

June 2002 63

64 Computer

the University of Southern California. He is also
director of the Information Management Research
Area at the Integrated Media Systems Center, an
NSF Engineering Research Center at USC. His
research interests include multidimensional data-
bases, multimedia servers, and data mining. Sha-
habi received a PhD in computer science from USC.
He is a member of the IEEE and the ACM. Contact
him at shahabi@usc.edu.

Roger Zimmermann is a research assistant profes-
sor in the Computer Science Department at the
University of Southern California and director of
the Media Immersion Environment Research Area
at the Integrated Media Systems Center. His inter-
ests include novel database architectures for immer-
sive environments, video-streaming technology,
cluster and distributed computing, and fault-
resilient storage architectures. Zimmermann re-

ceived a PhD in computer science from USC. He is
a member of the IEEE and the ACM. Contact him
at rzimmerm@usc.edu.

Kun Fu is a doctoral candidate in computer science
at the University of Southern California. His re-
search interests include multimedia servers, real-
time data distribution, and parallel computing. Fu
received an MS in engineering science from the Uni-
versity of Toledo. Contact him at kunfu@cs.
usc.edu.

Shu-Yuen Didi Yao is a doctoral candidate in com-
puter science at the University of Southern Califor-
nia. His research interests include scalable storage
architectures, multimedia servers, video streaming,
and fault-tolerant systems. Yao received an MS in
computer science from USC. He is a member of the
ACM. Contact him at didiyao@cs.usc.edu.

Choose from 100 courses at the IEEE Computer Society’s Distance Learning Campus.
Subjects covered include…

* Java * Project management * HTML
* PowerPoint * Visual C++ * Visual Basic
* Cisco * TCP/IP protocols * CompTIA
* Windows Network Security * Unix

With this benefit, offered exclusively to members, you get…
* Access from anywhere at any time * Vendor-certified courseware
* A multimedia environment for optimal learning * A personalized “campus”
* Courses powered by KnowledgeNet®—a leader

in online training

Sign up and start learning now!
http://computer.org/DistanceLearning

Get thousands of dollars
worth of online training—
FREE for members New 2002MembershipBenefit

