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We develop a formulation of quantum damping theory in which the explicit nature of inputs from
a heat bath, and of outputs into it, is taken into account. Quantum Langevin equations are
developed, in which the Langevin forces are the field operators corresponding to the input modes.
Time-reversed equations exist in which the Langevin forces are the output modes, and the sign of
damping is reversed. Causality and boundary conditions relating inputs to system variables are
developed. The concept of "quantum white noise" is formulated, and the formal relationship be-

tween quantum Langevin equations and quantum stochastic differential equations (SDE s) is estab-
lished. In analogy to the classical formulation, there are two kinds of SDE's: the Ito and, the Strato-
novich forms. Rules are developed for converting from one to the other. These rules depend on the
nature of the quantum white noise, which may be squeezed. The SDE's developed are shown to be
exactly equivalent to quantum master equations, and rules are developed for computing multitime-
ordered correlation functions with use of the appropriate master equation. With use of the causality
and boundary conditions, the relationship between correlation functions of the output and those of
the system and the input is developed. It is possible to calculate what kind of output statistics result,
provided that one knows the input statistics and provided that one can compute the system correla-
tion functions.

I. INTRODUCTION

The treatment of inputs and outputs in quantum sys-
tems has a long history. In the context of quantum field
theory, the most explicit formulation has been that of
Lehman, Symanzik, and Zimmerman' (known as LSZj, in
which operators for "in" and "out" quantum fields are
formulated, and the S matrix derived as the unitary
transformation relating the in and out operators. The ma-
trix elements of this S matrix are then the scattering am-
plitudes, measurable by scattering experiments. The S-
matrix elements are related by a "reduction formula" to
the time-ordered products of vacuum expectation values
of field operators. There is a range of approximate
methods of tackling the computation of S-matrix ele-
ments, with differing degrees of simplicity and reliability.

In the theory of quantum amplification, we are most in-
terested in how a well-defined subsystem, the amplifier,
relates the output to the input. Caves took the S-matrix
point of view, and defined a theory of linear amplifiers, in
which the S matrix related the output fields linearly to
the input fields, and thus, without having to consider any
of the details of the amplifying system, was able to derive
fundamental limits on amplification for such linear am-
plifiers.

As far as quantum optics is concerned, these points of
view are rather far from that normally used. The ampli-
fying device itself can usually be described quite well, but
the computation of inputs and outputs is rather poorly
formulated. One normally thinks of the system as being
in contact with a heat bath, which most usually consists
of the vacuum modes of the electromagnetic field. By el-
iminating these modes, one obtains a damped equation of

motion for the system, to which are added quantum noise
terms. If required an additional classical deriving field is
usually added separately, though it is clearly the result of
one or more of the modes of the electromagnetic field be-
ing in a coherent state, rather than the vacuum. The for-
mal equivalence of a bath mode'being in a coherent state,
and the addition of a classical driving field, is both
rigorous and well known, and so in this case this pro-
cedure is merely aesthetically unsatisfactory in its separa-
tion of two different aspects of the electromagnetic field.
However, no procedure has been developed so far which
can cope adequately with the possibility of input fields
which are neither coherent nor thermal, for example,
squeezed fields, which are now of increasing interest.

The output modes are calculated usually by particular
methods; e.g. , in resonance fluorescence the radiated elec-
tromagnetic field is calculated from the solutions of
Maxwell's equations, ' while in the case of cavities linear
propagation equations can be used to relate in operators to
out operators. Yurke and Denker in their formulation
of quantum circuit theory have demonstrated the intimate
connection between the noise in conventional damped
Heisenberg equations of motion, and the input operators
for an infinite transmission line connected to a resonant
circuit. As well as this, they showed that the boundary
condition between the infinite transmission line and the
finite resonant circuit gives rise to a time-reversal
phenomenon, in which the damping changes sign, and the
system is driven by the output operators.

This paper is devoted to the formulation of an idealized
"quantum white-noise" method of looking at quantum
systems. In Sec. II we formulate our system in terms of a
somewhat idealized class of Hamiltonians, in which a fi-
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nite "system" is coupled to a "heat bath" of harmonic os-
cillators derived by the following three assumptions.

(i) A particular class of system-bath interactions, which
are linear in the bath operators.

(ii) The rotating-wave approximation is made.
(iii) The bath spectrum is assumed flat, and the cou-

pling constant independent of frequency.

These are assumptions which are almost universally made
in quantum optics, but have less validity at low frequen-
cies, which will be treated in the second paper of this
series.

Using these assumptions it is possible to derive in and
out operators, which are expressed in terms of the' bath
operators evaluated at the remote past and future, respec-
tively, and to derive quantum Langevin equations by a
rather standard method in which the noise term is ex-
pressed in terms of the in operators. The out operators
can be used in the same way to produce the "time-
reversed" quantum Lan gevin equation, in which the
damping is of opposite sign, and the out operator now ap-
pears as the noise term.

In Sec. III we formulate precisely the concept of quan-
tum white noise, which is an approximation to the usual
thermal state of an optical field. We then define quantum
stochastic integration in terms of "quantum Wiener pro-
cess" corresponding to quantum white noise. As in classi-
cal stochastics, the singular nature of quantum white
noise makes it mandatory to define the precise kind of in-
tegration chosen (i.e., either Ito or Stratonovich); corre-
sponding to these different kinds of integrations, one finds
different definitions of "quantum stochastic differential
equations" (QSDE's), either Ito or Stratonovich.

In the Ito form, the white-noise increment is both un-
correlated with and commutes with the system operators;
in the Stratonovich form this is not so, although both
commutators and correlations can be specified.

The quantum Langevin equations derived in Sec. II are
valid for any kind of statistics of the input field, however
in practice the kind of input most commonly found is
thermal (to which may be added a coherent part). A
thermal field has a Planck spectrum, and is therefore not
quantum white noise —any replacement of such an input
field by quantum white noise must involve some kind of
approximation.

We give two ways of replacing the input field by quan-
tum white noise whose justification is their correspon-
dence to the master equation, a correspondence which is
demonstrated in Sec. IV. In one, the input field is simply'
replaced by a quantum-white-noise source, in the other, a
separate noise source is chosen for each transition possible
in the system.

The QSDE's are written down as Ito equations, since
this is the only kind that can be defined precisely, and the
properties of Stratonovich QSDE's are only able to be
demonstrated by means of the Ito form.

In Sec. IV we show how to derive from QSDE's (in the
Ito form) the appropriate master equations. The
equivalence is exact: approximations usually necessary to
derive master equations have already been made either in

the derivation of the Langevin equation or in the replace-
ment of the input field by quantum white noise. The sim-
ple master equation and Lax's master equation both arise
out of the corresponding QSDE.

To complete the master-equation description, we also
show how to compute time correlation functions by the
standard formulas, as given by several authors. These are
exact consequences of the QSDE. It strikes the authors as
somewhat curious, though, that not every correlation
function can be computed, but only those expressible as
the mean of a product of an anti-time-ordered product
followed by a time-ordered. These appear to be the only
measurable quantities, or at least, the only quantities ex-
pressible in terms of' repeated measurements on the sys-
tern, and indeed are the only quantities which can arise
from output measurements. But mathematically, the
QSDE seems to provide (in principle) a way of computing
correlation functions of arbitrary time ordering, which the
master equation does not.

Section V is devoted to the computation of the relation
between the input, output, and internal correlation func-
tions. We show that arbitrary correlation functions of the
output fields can be computed in terms of the time-
ordered correlation functions of the system, which can in
turn be computed using the methods of Sec. IV. These re-
sults are relatively new; they are implied in the work of
Kimble et al. on resonance fluorescence, but not in the
generality presented here.

We summarize in Sec. VI the relationship between this
work and previous work, and indicate the problems to be
solved in future papers.

II. QUANTUM LANCrEVIN EQUATIONS

A. Background

In this section we shall be considering the rather con-
ventional picture of a system interacting with a heat bath,
in the form

~ =I SyS +~a +~int

H~ =A' I dcocobt(co)b (co),

H;„t =le dCOK 6) b CO C —C 6 CO

(2.1)

where the b(co) are boson annihilation operators for the
bath, with

[b (co),b (co)]=5(co—co') (2.2)

and c is one of several possible system operators. We do
not specify either M,„, or the kind of system operators or
their commutation relations.

The Hamiltonian (2.1) is, of course an idealization. In
practice the range of co is (0, oo ), but a range of ( —0, co )

can arise when we go into a frame rotating with angular
frequency Q as is common in quantum optics, and it is
certainly the case that 0 is very large compared with the
typical bandwidths obtained. The coupling of the bath to
the system is through H;„„hiwch is linear in b(co) and
b (co) This is a comm. on assumption, but is not the most
general possibility. We have not investigated the conse-
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quences of a more general coupling, which we leave for a
later work. This linear coupling is, however, a very im-
portant factor in our development. For simplicity we
have considered only one bath —we can easily relax this
condition, however.

Historically, this model of quantum damping by cou-
pling to a bath is very well developed, and methods of
deriving damping equations have been developed by many
authors. Usual methods rely on deriving a master equa-
tion for the system density matrix, and bypass the concept
of a Langevin equation ' and the derivation of the mas-
ter equation. requires a perturbative limit. The rigorous
formulation of this kind of approach is that of quantum-
dynamical semigroups' ' and retains, in a rigorous
asymptotic form, this essentially perturbative character.
The Langevin method which we shall use was first intro-
duced by Haken' who has used it extensively in linear
problems.

B. Derivation of the Langevin equations

We follow the standard procedure. From (2.1) we
derive the Heisenberg equations of motion for b(co), and
an arbitrary system operator a. They are

f dcoe ' " ' )=2~5(t t'—) (2.8)

t

f, c(t')5(t t'-)dt'= ,' c(—t). (2.9)

The second result will always hold when (2.8) is achieved
as the limit of an integral over a function going smoothly
to zero at +co, which is essentially what we are doing
here.

We also define an in field by

b;„(t)= —f dcoe ' bp(co)v'2~

which satisfies the commutation relation

(2.10)

[b;„(t),b;„(t')]=5(t t') . — (2.11)

a = ——[a,H,„,]— [a,ct] —c+v yb;„(t)

2
ct+v yb;„(t) [a,c]

Using (2.8)—(2.10) we readily derive the quantum
I angevin equation

b(co) = icob (co—)+ic(co)c, (2.3)
(2.12)

ci = ——[a,H, y, ]+ f dcoic(co)Ib (co)[a,c]

[a,ct]—b (co) J (2.4)

and we solve (2.3) to obtain

a = — [a,H,„,]+—f dcoic(co) Ie bt(co)[a, c]
fi

0

—[a,c je ' bp(co)J

+ f dco[ic(co)]~ f dt'[e' " ')ct(t')[a, c]

[a c't]e ird(t t )c (ti) ]—'—

(2.6)

For notational convenience in (2.6) we omit the time argu-
ment on the system operators when it is t but write it ex-
plicitly otherwise. [Thus a =—a (t). ]

The equations are exact so far. We now introduce what
we shall call the first Markov approximation, that the
coupling constant is independent of frequency.

First Markov approximation:

ic(co) =Vy /2n. . (2.7)

This approximation can be used to put the Eq. (6) into the
form of a damping equation. We use the properties

b (co) =e ' bp(co)+ic(co) e '"" ' 'c(t')dt' .
o

(2.5)

Here bp(co) is the value of b (co) at t =tp, it is some kind
of initial value, and has the same commutation relations
as b (co). We substitute in (2.4) to obtain

Although this kind of equation and derivation has been
used for many years on linear systems, it has not, to our
knowledge, ever been taken seriously as a general equa-
tion. The equation in the nonlinear case is too intractable
to handle directly, but does contain a great deal of infor-
mation. Some points to notice are the following.

(i) Damping is included: the terms proportional to ,yc-
and —,

'
yc are in practice damping terms, and arise

without any particular specification of the thermal state
of the reservoir. The simple example of a,a being
harmonic-oscillator operators, with c =a, gives

a = icopa ———a V'yb;„(t), —
2

(2.13)

exhibiting this clearly.
We see that the damping is Markovian, i.e., the damp-

ing term depends only on the system operators evaluated
at time t, not at a previous time, and this arises from the
first Markov approximation

(ii) Noise terms: the terms depending on b;„(t),b;„(t)
are to be taken as noise terms. The definition of b;„(t) in
terms of the values bp(co) of b(co) at time t =tp ensures
that these operators may be freely specified on the same
basis as initial conditions. Similarly, we may freely speci-
fy the state of the system to be such that, at t =tp, the
system and both density operators factorize. It is not
necessary (nor indeed is it possible) to make any further
"independence" assumption. In fact, it is not necessary to
make any particular assumption about the initial state of
the system at all for the Langevin equation to be valid in
the form (2.12). However, the terms b;„(t),b;„(t) can only
be reasonably interpreted as noise when the state of the
system is initially factorized and the state of b;„(t) is in-
coherent (e.g., a thermal state). In the case that, for exam-
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pie, b;„(t) is in a coherent state, we would have a classical
driving field being applied to the system, and other inter-
mediate situations can easily be envisaged. As noted in (i),
the existence and form of the damping terms has nothing
to do with the state of the bath —damping will occur even
with a coherent input.

(iii) There are aiternative forms: depending on the fact
that ,' y—c(t) +v y b;„(t) and ,' yc (—t)+v yb;„(t) commute
with all system operators. For, from (2.5), (2.7), and (2.8)

I de b (co) =b;„(t)+ c(t) .vy (2.14)

Since the b (co) are bath operators, and commute with all
system operators at the same time, this proves the result.

(iv) Consistency with calculus: the basic rule of ordi-
nary calculus for noncommuting operators is that of the
product —if a

&
and a2 are two operators

(ala2) ala2 +ala2
dt

(2.15)

This rule is also valid for any commutator, i.e., for any A:

[&,aia2]=[~,ai]a2+ai[~, a2] . (2.16)

Only the first term on the rhs of (2.12) is in the explicit
form of a commutator, but the parts involving y are of
the form of commutators multiplied by terms like (2.14),
which commute with all system operators. Thus the time
derivative of any product will be correctly given by (2.14)
and by the substitution a~a&aq in (2.12). We find that
there are no Ito-like terms, even if the input is noise. We
come back to this in Sec. III C.

(v) Out fields: If we consider ti ~t, we can write,
analogously to (2.5),

b(co)=e ' bi(cv) a(co) I e —' " ' 'c(t')

is derived similarly to (2.13). From this follows the iden-
tity that

b.„,(t) b;—„(t)=v yc(t) (2.22)

which also can be used to transform between the forward
Langevin equation (2.12) and the time-reversed Langevin
equation (2.19).

C. Inputs and outputs, and causality

[a(t),b;.(t')]=0, t') t (2.23)

and using similar reasoning, we deduce from Eq. (2.18)

[a (t),b,„,(t')] =0,
Defining the step function u (t) as

(2.24)

0, t&0
(2.25)

and using Eq. (2.22) we obtain the quite specific results

The quantities b;„(t) and b,„,(t) will be interpreted as
inputs and outputs to the system. The condition (2.22)
can be viewed as a boundary condition, relating input,
output, and internal modes, and is the analog of the boun-
dary conditions in propagation equations in the work of
Yurke and Denker.

If Eq. (2.12) is solved to give values of the system
operators in terms of their past values and those of b;„(t),
then it is clear that a (t) is independent of b;„(t') for t') t;
that is, the system variables do not depend on the values
of the input in the future. Hence we deduce

and similarly define
(2.17) [a (t), b;„(t')]= —u (t t') v y [a (t),c (t')—],

[a (t), b.„,(t')] =u (t' —t)v y[a (t),c(t')] .
(2.26)

(2.18)

Carrying out the same procedure, we arrive at the time-
reuersed Langevin equation

a = — [a,H,„,]— [a—,ct] ——c +v'yb, „,(t)

c+v yb, „,(t) —[a,c]

(2.19)

We now have, in principle, a complete specification of a
system with input and output. We specify the input b;„(t),
and solve (2.12) for a(t). We then compute the output
from the known a (t) and b;„(t) by use of the boundary
condition, Eq. (2.22).

The commutators (2.26) are an expression of quantum
causality —that only the future motion of the. system is af-
fected by the present input, and that only the future value
of the output is affected by the present values of the sys-
tem operators.

in which we see that

b;„(t) b...(t),
v'y~v y,
pc pc
2 2

and furthermore

f d oc(bee)= .b„,(t) — c(t)

(2.20)

(2.21)

D. Summary

The results of this section, while relevant to the study
of a system being driven by a noisy input from a heat
bath, are not genuinely stochastic results, since no as-
sumptions have been made concerning the density opera-
tor of the bath. In a certain sense, this formalism is a
kind of scattering theory, which enables the output fields
to be determined from the input fields via the indirect
route of their interaction with a system.
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N(co) = I /[exp(fico/kT) —1] . (3.3)

Thus, to an even larger extent than in classical stochastics,
quantum white noise is an idealization, not actually at-
tained in any real system.

To define quantum stochastic integration, we define the
quantum Wiener process by

B(t, tp)= f, b;„(t')dt' (3.4)

in which we find that

( 8 (t tp)8(t tp) ) =N(t —tp)

(B(t,tp)B (t, tp)) =(N+ 1)(t tp), —

[8 ( t tp ),8 ( t, tp ) ]= t —tp

(3.5a)

(3.5b)

(3.5c)

III. QUANTUM STOCHASTIC PROCESSES

A. The quantuxn Wiener process

The fields b;„(t) defined in Sec. II will provide the in-
put to the system described by Hs~s. The particular quan-
tum state or ensemble of quantum states of the in opera-
tors determines the nature of the input. There will always
be, as is well known, some quantum noise arising from the
zero-point fluctuations of the input, and depending on the
input ensemble, there may be additional noise, such as
thermal noise.

The input ensemble which corresponds most closely to
a classical-white-noise input is not a thermal ensemble,
but one in which the input density operator p;„ is such
that

Tr[p;„b;„(t)b;„(t')]= (b; (t—)b; (t') )

=N5(t t'), —
(3.1)

Tr[p;„b;„(t)b;„(t')]=—(b;„(t)b;„(t'))
=(N+ 1)5(t —t'),

which corresponds to

( b p(co)b p(co') ) =N5(ro ro'),—
(3.2)

~ bp(co)bo(co ) ) =(N+ l)5(to —~') .

This corresponds to an ensemble in which the number of
quanta per unit bandwidth is constant, and this is not the
case in a thermal ensemble, in which in (3.2) N would be
replaced by N(co), given by

The moments of order n with any ordering of
8(t, tp), 8 (t, tp) will, as a consequence of the commuta-
tion relation (3.5c), always be proportional to
(t —tp)" —a factor of importance in manipulating sto-
chastic differentials.

where to ~ t& & t2 & . . & t„=t, and the limit is a mean-
square limit in terms of the density matrix (3.6). A simi-
lar definition can be used for f g (t')dB (t')

fo
We assume the Ito increments dB(t) and dB (t) com-

mute with g (t), which follows from (2.23) and the defini-
tion (3.8), since

[g (t; ),8 (t;+ i, tp) B(t;,tp)]-
't. +l= —My f, dt' u (t; —t') [g (t; ),c (t')]=0 . (3.9)

Hence

I f g(t')dB(t')=I f dB(t')g(t')

and similarly for integrals with respect to dB (t).
If N is defined as in Eq. (3.5), we define an Ito QSDE

in the form

da = — [a,H,„,]dt+ ~—(%+1)(2ctac acmic —c ca —)dt

B. Quantum stochastic integration

In ordinary stochastic integration, there is a choice of
the Ito or the Stratonovich definition. The Ito form has
some mathematical advantages, which arise from the in-
crement being independent of the integration variable.
However, the rules of calculus are not those of ordinary
calculus: only in the Stratonovich form is this the case.

In the quantum situation we have the added complica-
tion that variables do not commute, which has been treat-
ed in Sec. II B4. We can define both Ito and Stratonovich
quantum stochastic integration, and can show that only
the Stratonovich form preserves the rules of (noncommut-
ing) calculus. But this can only be proved via a route in-
volving the quantum Ito calculus, so it will be necessary
to define both kinds of integration even to use the ap-
parently simpler Stratonovich form.

We therefore define the quantum Ito integral by

I g (t')dB(t') = lim g g (t; )[8(t +i tp) —8(t tp)],
0 n~m

(3.8)

In addition, we specify that the distribution of
8(t, tp), 8 (t, tp) is "quantum Gaussian, " by which we
mean that the density operator is

r

+ N(2cac acc cc—a)dt— —
2

~y [a,c ]dB (t) +v y [a,c]dB (t) . (3.11)

p( t, tp)= (1—e ")exp

in which

KB (t, tp)B(t, tp)

t —to
(3.6) We will show this equation is equivalent to the quantum

Langevin equation (2.12); but first, show that the second
order calculus rule appropriate to Ito integration,

N= 1/(e"—1) . (3.7)
d(ab)=a db+adb+dadb, (3.12)

It is clear that any normal-ordered moment of order n in
8 (t, tp) and 8 (t, tp) will be a constant times ( t tp)"~—is true. To do this we need the identities
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[dB (t)]'= [dBt(t) j'=0,
dB(t)dBt(t) =(N+1)dt,
dB (t)dB(t) =N dt .

(3.13)

We notice that the Stratonovich increment does not com-
mute with g(t), and in fact, using (2.26), it is straightfor-
ward to show that we must take

S gt' Bt' —S Bt'gt'

df (z) =f'(z)dz+ —,
' f"(z)dz (3.14)

All other products, including dtdB(t), dtdB (t), and
higher orders are set equal to zero. These will now be de-
rived here, but are easy to derive in exactly the same way
as in the nonquantum case. '

The proof is then straightforward. We compute da and
db using Eq. (3.11), substitute these into into Eq. (3.12)
using (3.13), and the result is that (after some rearrange-
ment) d (ab) as derived from the substitution a~ab in
(3.11) is the same as that from (3.12). From Eq. (3.12) we
can derive the rules of calculus for any polynomial. In
the case that z is a variable which commutes with dz, we
obtain

f, dt'[g(t'), c(t')] . (3.16)

t
S f g(t')dB(t')= lim g g( t)[8(t, +, )—8(t, )]

0 n —+oo

+ gg(t;)[8(t;) —8(t;)]

We can show this more rigorously by deriving the connec-
tion between the two kinds of stochastic integral. Let us
assume that all operators obey the quantum Ito equation
(3.11). Let us define t;= ,'(t;—+t;+,), so that we can
rewrite (3.15) as

which leads to Ito rules. Where z does not commute with
dz, Eq. (3.14) can be interpreted in the sense that all prod-
ucts in a power-series expansion of f'(z) and f"(z) are
completely symmetrized in terms of z and dz.

C. The quantum Stratonovich integral

The quantum Stratonovich integral is defined by

S f, g(t')dB(t')
I

lim gg( 2 (t;+t;+&))[B(t;+&,to) —8(t;, to)] .
n~ao

We then write

g (t;)=g (t; )+dg(t; ),
where dg (t; ) is obtained from (3.11), with

dB(t;) =B(t; ) B(t; ), —

(3.17)

(3.18)

(3.19)

(3.15) which will be valid to lowest order. We then find that

S f g (t')dB (t') = lim
0 n~cc

gg(t;)[8(t;+~) —8(t;)]+gg(t;)[8(t;) —8(t;)]

+~y g [g(t;),c (t, )][8(t;)—8(t;)][8(t;)—8(t;)]

+ ~y g [g (t; ),c (t; )][8 (t;) 8 (t; )][8(t; )—8(t; )]— (3.20)

We now use (3.13) in the last part, and combine the first
two terms into the lto integral, to get

S f, g(t')dB(t')=I f, g(t')dB(t')

+, ~y N f, [g (t'), c (t')]dt'
0

(3.21a)

and similarly

S dBt'g t' =I g t'dBt'

+ —,
' v y(N+1) f [g(t'), c(t')]dt',

0

S f g (t')dBt(t') =I f g (t')dBt(t')

——,~y(N+ 1) f [g (t'), ct(t') jdt',
0

(3.21c)
t

S f dB (t')g(t')=I f g(t')dB (t')

——,~y N f [g (t'),c (t')]dt' .

(3.21d)

Substituting for the Ito integral implicit in (3.11), we find
the equivalent quantum Stratonovich equations

(S)da = — [a,H,„,]dt —([a,—c jc c[a,c—])dt—
(3.21b) V @[a,ct]dB (t)+ V'ydB (t)[a,c] (3.22)
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which is exactly of the same form as the quantum
Langevin equation, Eq. (2.12). We note also that the com-
mutation relation of Sec. IIB3 follows from Eqs. (3.21).
Finally, we can compute (S)d (ab) from the corresponding
Ito form, and readily verify that

(S)d(ab)=a db+da b (3.23)

so that ordinary (noncommuting) calculus is valid, a fact
that is very difficult to demonstrate directly from the
Stratonovich form.

D. Comparison of the two forms of QSDE

Stratonovrch

2. Ito

(i) Not a natural physical choice.
(ii) Increment commutes with and is statistically in-

dependent of system operators at the same time.
(iii) Ordinary calculus is not true, but the appropriate

Ito calculus is easy to derive.
(iv) Because N appears in the QSDE, it is not possible

to define the QSDE without knowledge of N and bath
statistics, and the Ito QSDE'(3. 11) is exact only from
quantum white noise.

(i) The Stratonovich form is the "natural" physical
choice, since it is what arises directly from the physical
considerations in Sec. II.

(ii) However, we note that the increment neither com-
mutes with system operators, nor is it stochastically in-
dependent of them.

(iii) A direct proof that ordinary calculus is true is diffi-
cult to present.

(iv) Because the commutator of the increment and a
system variable depends on the precise form of the QSDE,
it is not possible to define the quantum Stra-
tonovich integrals without a knowledge of the QSDE.

(v) The QSDE in Stratonovich form should also be
valid for nonwhite noise and is the same for any N if the
noise is white. The only assumption necessary to obtain
the Stratonovich QSDE is that of a constant ir(cv), Eq.
(2 7).

E. The situation in which there are several
frequencies

Lax, in his development of quantum noise, showed
that in an atomic system characterized by several transi-
tion frequencies, it is necessary to consider a separate
noise source for every frequency. As we have so far con-
sidered it, we have only included one noise source, with X
corresponding to the rotating frame frequency Q.

The precise correspondence between quantum white
noise and the b;„(t),b;„(t) is a physical question, and
the physical formulation has been carried out by Lax, and
has been well tested. Lax's master equations and
Langevin equations correspond to the following pro-
cedure. (We prove the equivalence in Sec. IV.)

We first define eigenstates of the systematic Hamiltoni-
an Hsys by

H~y~
~

t ) =1K';
)

l ) (3.24)

(in which it is understood that co; & co~ if i &j) and opera-
tors AI~ by

A~(to)= ~i )(j
~

We then note that we may expand

c(t)= g ct AI (t) .
I, m

1&m

(3.25)

(3.26)

We restrict the summation to I & m, since in this case AI
is a lowering operator (co~ &co ), and in making the
rotating-wave approximation, we must multiply b;„(t)
only by lowering operators.

Lax's formulation corresponds to the ansatz

c(t)b;„(t)dt~ g c~~At~(t)dB"(t, tv~&), (3.27)
l, m

1(m

c (t)b;„(t)dt~ g c&' A &(t)dB(t, cv &),
l, m

1&m

(3.28)

where co t tv tvr ——and by dB—(t, co~ ) we mean a quan-
tum white noise whose X is given by

N =N(cvt ) (3.29)

and where dB(t, cot~),dB(t, cozq) are independent of each
other if col &cozq and are identical if coI =cozq.

In this case the quantum Ito equation is easily derived
to be

da = — [a,H,„,]dt ——([a,c —]c c[a,c])d—t ——, g N(~~~)
~
c~~

~
([[a,At ],A ~]+[[a,A~I], A~~])dt

1(m

+~)' 2 I I a Aim lcl~dB'(t, ~~I) [a,Ant]cfmdB—(t,~mi) I '
I, m

1(m

(3.30)

(Here, along with Lax, we have assumed that cot =cozq ~ l =p and m =q. This assumption can be relaxed if neces-
sary. ) The assumption that dB (t, co~~) and dB(t,

co~q ) are independent is not strictly correct, however, it is clear that any
correlation will be multiplied by a factor exp[i (~~I —

cozq )t], because the two noise sources are in fact centered at the fre-
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quencies coml and co&~, and have in reality a finite bandwidth. For consistency, such rotating terms should also be ignored
elsewhere in Eq. (3.30), and this can be done by making the substitution (3.26), and dropping rotating terms: the result is

da= — [a—,H,y, ]dt+ 2 y 2 l elm I'~(almt)(2Al aAml aA/ Aml A—l A la)dt
l, m

l(m

+ 2 y X ~
cl I'[&(~ l)+1](2A laA, a—A, A, A—,A, a)dt

I, m

I (m

+V 1 g [[a Alm]clmdB (t,cuml) [a,—A l]cl* dB(t, coml) j
I, m

l&m

(3.31)

IV. THE MASTER EQUATIQN

The QSDE'S, is either Ito or Stratonovich form, are
often equally intractable for practical consideration. We
will now show that the QSDE's are in fact exactly
equivalent to an appropriate quantum-mechanical master
equation.

«(t) =A I a(t) jdt+O'Ia(t) jdB(t)+GI a(t) jdB'(t)

(4.6)

[where a(t) is the set of all system operators]. Because of
the construction of dB(t),dB "(t) as Ito increments, which
means that dB(t) =B(t +dt) B(t), and —the fact that a(t)
depend only on the past values of B(t), we have

A. Description of the density matrix
( da(t) ) = (A Ia(t) j )dt

and from (4.4)

(4.7)

We consider uncogrelated initial conditions, that is, we
assume that the density matrix can be written as a direct
product

da(t)=Tr, [A Ia(to) jp(t)]dt . (4.8)

For simplicity and clarity, we now shall use the notation

p= p( t)o p(st)o. (4.1) a =a (to) (4 9)

Here, p, (to) specifies the initial state of the system vari-
ables, and pz(to) specifies the initial state of bo(co), and
hence of b;„(t) for all t in the future of to. We assume
pIl(to) is such that for any interval [t,t'] in the future of
to, B(t, t') has the density matrix (3.6).

for the operators, which are essentially the Schrodinger-
picture operators. Using the form of A Ia(t) j as given in
(3.22) and the cyclic property of the trace, we derive

]

d(a(t)) i=Tr, a [p,H,y,]-dt

8. Derivation of the master equation

The mean of any operator a (t) is given by

(4.2)(a(t)) =Tr, Trz[ ( a)pt(tp)p (tsp)]

=Tr, Trz[U(t, to)a(to)U (t, to)p, (to)pll(to)],

(g.+1)(2AAA) A$AA AAtA)
2

g(2wtww
2

(4 3) However from (44) we have
(4.10)

where U(t, to) is the time evolution operator
exp[ —iH(t —to)lk], with Hamiltonian H as in Eq. (2.1).
Using the cyclic property of the trace, we then find

d(a (t) ) T dP(t)
(4.11)

( a (t) ) =Tr, [a (to)p(t) j, (4.4) Both these equations are valid for any system operator:
hence we derive the master equation

where P(t) is the time-dependent reduced density matrix,
given by

p(t)=Trll[Ut(t, t, )p, (t, )g pIl(t, )U(t, t, )] . (4.5)

All these results are exact for any system. We now use
the QSDE in the Ito form (3.11) [equivalent to the quan-
tum Langevin equation (2.12) provided the input is quan-
tum white noise] to derive the master equation. We note
that we can write Eq. (3.11) in the form

g(2AtAA AA$A AAA t) L A

2
(4.12)

(This equation is considered to define L. ) Similarly, the
master equation corresponding to the QSDE (3.32) is

dt 5 ' "' 2fp, H, ,]+ (N+—1)(2cpc—c "cp pc —c)—
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4

[P H.ysl+ g I Clm I
[N(tpmt)+ llN2AtmPAmt —AmlAlmP PAmlAlm)

l &m

+—g I clm I
N(coml)(2AmlpAlm AlmAmlp pAlmAml) .

l, m

l &m

(4.13)

C. Range of validity of master equations

The two kinds of master equation (4.12) and (4.13) ob-
viously have different regions of validity, which depend
on the possibility of replacing the term c (t)b;„(t) and its
Hermitian conjugate by quantum white noise, according
to either

monic oscillator, or the two-level atom.
(ii) Because level spacings are equal to each other within

the linewidth induced by the damping. For an anharmon-
ic term added to a harmonic oscillator, this means the
anharmonicity is less than the damping.

(iii) Although there is a range of frequencies, N(to) may
not change significantly over this range.

c(t)b;„(t)dt~c(t)dB (t) (4.14)

which gives the master equation (4.12) or

c(t)b;„(t)dt~ g cl Al (t)dBt(t, co l)
l, m

l &m

(4.15)

which gives the master equation (4.13).
The justification of these replacements is a mathemati-

cal question; namely, appropriate limits on parameters
need to be specified, in which the exact equations corre-
sponding to the original Hamiltonian (2.1) have solutions
which approach those of (4.12) or (4.13).

Effectively, the work of Lax has shown in what limits
the replacement (4.15) is appropriate, namely, the follow-
ing.

(i) The energy levels hcp; of the system must be nonde-
generate, and we must have

(co l =cp~q ) —== (m =p and l =q) or (m = l and p =q) .

(4.16)

(ii) The quantities tpml must be widely different from
each other. Physically, the broadened atomic lines must
not overlap, otherwise they will couple to baths which are
not entirely independent.

(iii) The coupling of the bath to the system must be
weak.

The replacement (4.14) is therefore valid when there is
essentially only one frequency in the system. This can
arise because of the following.

(i) All levels are equally spaced, and transitions are pos-
sibly only from one level to an adjacent level as in the har-

l

D. Time correlation functions

=Tr, Trll [a„(t„)an 1(t„1) a p(tp)p,

Xpllcp(sp)c1(s1) c (s )]

=G(tn«tn —1««Sm«sm —1« ~ SO) «

where

(4.17)

'' )tp,

Sm )Sm —1) )$0 ~

(4.18)

and p, and ps are evaluated the the earliest of tp, sp Let.
us assume t0 is the earliest time and t„ the latest time.
Now, in the same way as in Sec. IV 8, we can show that

A complete theory must allow us to compute multitime
correlation functions directly from the master equation:
how to do this is well known, and is usually presented as
an approximation to an exact result, and derived by simi-
lar approximations to those involved in the master equa-
tion. In this section, we will show how the usual formulas
are simple to derive directly and without further approxi-
mation from the QSDE (3.11).

The only correlation functions which can be computed
from the master equation have the structure of a time-
ordered product followed by a time-antiordered product,
which we shaH caH multitime-ordered correlation func-
tions, thus

~ cp(sp)cl(sl ) c (s )a (t )a —1(t —1) ap(tp) ~

G( t 1, . . . )=Tl Ia (tp)L Tls[U (t tp)an 1(tn 1) ' ' ' p Spscp(sp) ' ' ' c (sm)U(t tp)jI (4.19)

and since this is true for any a„(tp), we have shown that

L — Trll[U (t„,tp)a„1(t„1) . p, p~cp(sp) . c (s )U(t„,tp))=0 . (4.20)

Thus we can now express this quantity in terms of its value when t„ is set equal to the next-latest time in either of the t
or $ sequences. This must be either t„~ or Sm. If it is s, we can write
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Trs[U (t„,to) a„~(t„~).. . p, 131p~co(so) . c~(s ) U(t„, to)]

=exp[L(t„—s )]ITS[ U (s~, to)a„~(t„~) . p, pzco(so) . . c~ ~(s~ ~) U(s~, to)]c (to) I . (4 21)

Similarly, if the next time is t„~, we can then write (4.2 ) as equal to

exp[L(t„t„|)—]I a„,(tp) Tlg[U (t ] to)a 2(t 2) ' p SpB ' ' ' c (s )U(t —1 to)]I (4.22)

We can similarly show that if the latest time is s, then

Tr~[U (s, to)a„(t„) . p, pz c ~( ~)]
r

exp[L(s t„)]—Ia„(to)Trz[U (t„,to)a„&(t„&). p, p~ . . c ~(s ~)U( „,to)]I if t„)s
exp[L(s~ —s~ &)]ITr~[U (s ~, to)a„(t„) . . p, g pz . c~ 2(s~ 2) U(s ~, to)]c~ &(to) I if s ~ )t„.

(4.23)

(4.24)

1. Rule for computation of multi time ordered-
correlation functions

Proceeding this way, we eventually derive the following
rule for the multitime ordered correlation functions.

(1) Order the times in sequence from earliest to latest,
and rename them ~, :

0( T1( (7r —1(7r
(2) Define f„ to be the operator corresponding to the

time w„, but evaluated at time to (i.e., in the Schrodinger
picture).

(3) Define a product between any of the f„and any oth-
er expression Yby

f„eY=f„Y
if f, is one of the a s (i.e., occurs in the time-ordered
part),

f„eY=Yf„
if f„ is one of the c s (i.e., occurs in the time-antiordered
part).

(4) Then

\

(co(so)c&(s& ) c (s )a„(t„)a„&(t„&). ao(so) )

=Tr, [f„eexp[L(r„—r„&)]

X(f.-i+ exp[«r. -i —r. -2)]

X If„qe . . e exp[L(&& —ro)](fo*p. ) I )] .

(4.25)

2. Comments

(1) There are correlation functions which cannot be
computed by this formula, namely, those which involve
time orderings other than a time-ordered product followed
by a time-antiordered product. In practice these do not
turn up, for two reasons.

(i) We measure correlation functions of the output,
which we will shortly show depend on internal correlation
functions of this kind only.

(ii) The quantum theory of measurement seems to gen-
erate only this kind of correlation function, i.e., the result
of repeated measurements on the same system generates
quantities of this kind only. ' '

(2) The formula derived here is exactly that derived
directly by perturbation methods. ' '

( b;„(t)b;„(t')) =M5(t t'), —

( b;„(t)b;„(t')) =M*5(t t')—(4.26)

which corresponds to replacing the first of Eq. (3.13) by

[dB(t)]2=M dt, fdBt(t)]~=M*dt, (4.27)

Using these assumptions, we find that the Ito QSDE
should be taken in the form

E. Squeezed white noise as the input signal

An exact theory of quantum stochastic integration can
also be developed for the case that the input white noise is
squeezed, i.e., in which

da = ——[a,M, ,]+—(N+1)(2c ac —ac c —c ca)dt+ N(2cac acc —cc a)d—t —M(2c ac ——ac c —c c a)dtt V
— t t t ~ t i'

2 2 2

——M*(2cac —acc cca)dt v'y [a,c—t]dB ( t) +v y [a,c]dBt—(t) (4.28)
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arising from the relationship between the Ito and Stra-
tonovich integrals now being of the form

t
S f g(r')dB(r')=I f g(r')dB(r')

+ —,
' v y X f [g (r'), c(t'))dt'

,
' v y—Mf [ g(t'), c(t')]dt',

0

(4.29a)

S f, dB (r')g(r') =I f g (r')dB (t')

——,'vy% f [g(t'), c (t')]dr'
0

+ —,
' ~yM* f [g (r'), c(t')]dr' .

0

(4.29b)

[The Stratonovich integrals with g(t') and increment per-
muted differ from these by the replacement %~X+ 1,
corresponding to the commutation relation (2.25) still be-
ing true. ] The Stratonovich QSDE corresponding to
(4.29) is exactly Eq. (3.22) as is expected. The Stratono-
vich QSDE is independent of the statistics of the incom-
ing field, and in this sense is more general than the Ito
QSDE.

The master equation can be derived as in Sec. IVB: it
1s

Bt A' ' '"' 2
p = [p,H, ,]+——(%+1)(2cpc ccp —pctc)—

+ N(2c pc —cc p —pcc )
2

——M(2c pc —c c p —pc c )
2

M*(2cpc —ccp —pcc) .
2

This equation can be expected to give the correct descrip-
tion of a system driven by a squeezed noise (which arises
from a squeezed vacuum) provided the squeezing is
reasonably constant over a bandwidth significantly larger
than that expected from the system.

Denker in their work on quantum network theory. It
does not matter for linear systems what kind of statistics
the input has, a direct solution for internal modes and
output is possible.

In nonlinear situations we can get a master equation ex-
actly equivalent to the internal QSDE, provided the input
field consists of ordinary white quantum noise, or
squeezed white noise. In practice this is not the case, ei-
ther because the noise is not white, but has a nonflat spec-
trum, or because the particular model we have formulated
is not exactly valid. However, there are many cases where
the white-noise approximation is reasonably valid, arid the
internal modes of these can be treated using the master
equation and the numerous techniques available for that.
Thus the correlation functions of the. internal modes can
be calculated in very many cases.

The second consideration is how to compute the corre-
lation functions of the output. %'e will show that these
can be related directly to those of the internal modes, but
are not identical in all cases.

(b„](r])b,„(r2) b, ](r, )b, (r, +]) . b, ](r ))
(5.1)

It does not matter what time ordering is chosen in (5.1)
since all the b,„„(t„)commute with each other, and all the
b „,(r„) commute with each other. Non-normally-ordered
products can be related to normally ordered products by
use of the commutation relations for the output field,
which we have shown are the same as those for the input
field.

Thus we may consider with complete generality that
the correlation function is of the form (5.1) and that the
b,„,(t„) are time antiordered (i.e., t] &t2 « . . t„) and
the b,„,(t„) are time ordered (i.e., t„+]& t„+z » . t~ ).

We may now substitute for b,„,(t„) by the relation
(1.21):

b,„,(r„)=v yc(r, )+b;„(r„). (5.2)

A. Output correlation functions

The output correlation functions of most interest are
the normally ordered correlation functions of the form

V. RELATIONSHIPS BET%PEEN INPUT, OUTPUT,
AND INTERNAL CORRELATION FUNCTIONS

We will normally specify the correlation functions of
the input, and will wish to compute those of the system
and those of the output. From this will arise two princi-
pal problems.

First, given the correlation functions of the input, how
do we compute those of the system? In certain situations
we know the answer. If the QSDE for the system is
linear, it can be explicitly solved, and correlations directly
calculated. We have already carried out this procedure in
a previous paper, ' and it is also employed by Yurke and

We note that from (2.26) c (r„) will commute with all
b;„(t, ) which occur to the right of ct(t„), since we have
shown t„&t, . Similarly, c(t„) will commute with all
b;„(r;) which occur to the left of c(t„), since we have
chosen t„&t, . Thus we may write the correlation func-
tion in a form in which we make the substitution (5.2) in
(5.1), and reorder the terms so that

(i) the c (r„) are time antiordered, and are to the left of
all c(t„);

(ii) the c (tr ) are time ordered;
(iii) the bt„(t, ) all stand to the left of all other opera-

tors; and
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(iv) the b;„(t, ) all stand to the right of all other opera-
tors.

We now consider various cases.
a. Input in the vacuum state. In this case,

b;„(t)p;„=p;„b;„(t)=0, and we derive

( bo t(tl )bo t(t2) bo t(tn )bo t(4+1) bo t(tm ) )

=(T[c (t&)c (t2) . c (t„)]T[c(t„+&) . c(t )]),
(5.3)

where T is the time-antiordered product and T the time-
ordered product.

b. Inputisin a coherentstate. In this case

b; (t)pg =P(t)pg,

pub; (t) =P*(t)pg,
(5.4)

where /3(t) is the coherent field amplitude; a c-number. In
this case we may replace b, b by P,P*, respectively, and
since P and P* are mere numbers, reorder them so that

(b,„,(t))b,„,(t2) b,„,(t„)bo„„(t„+q). . b,„,(t ))

=(Tj[v yc (t, )+p'(t, )] . . jT[[v yc(t„+, )+P(t„+,)] [~yc(t )+P(t )]j) . (5.5)

da =A(a(t))dt+G (a(t))dB(t)+G(a(t))dB (t) . (5.6)

[We shall only treat the case where the simple master
equation (4.12) is relevant. The more general situation of
Lax's master equation (4.13) is essentially a many-input
version of the same procedure; one input and one output
being available for. each frequency band around the co ~.)
For simplicity, let us consider first the evaluation of
(a(t')dB (t) ). If t & t', then dB (t) is independent of
a (t'), and so we deduce

(a(t')dB(t)) =0, t & t'. (5.7)

For t &t', we argue as follows. We discretize time and
define

ao ——a (t), a„=a (t„),
(5.8)

A„=A (a„), G„=G(a„),
so that (because we use the Ito form of the QSDE)

a„=a„)+a„gb.t„+G„)bB„+G„)58„. (5.9)

To solve the QSDE, we repeatedly use (5.9) starting with
the initial condition ao, and we can eventually write

a„= g a„"'jbB,j "[48,j', (5.10)
r, s

c. The input is quantum white noise. By carrying out
the procedure in Sec. VA we are left with the problem of
evaluating times like (c (t& )c"(t2)b;„(s~ )b;„(s2)) when the
density matrix is not coherent or vacuum, but represents a
more general state. The solution of this problem for arbi-
trary statistics of the input is rather difficult, but we can
give a way of doing this calculation in the case that the
input is quantum white noise (clearly, this will also allow
us to carry out the computation when the input also has
an additional coherent part). This requires us, more gen-
erally, to calculate terms like (a&(t)a2(t')dB(s)dB(s'))
where a&(t) and a2(t) obey a single QSDE of the form
(Ito) (3.11) which we can write in an abbreviated form

(a„bB& ) =(a„' )(68& AB~ ) =N bt& (a„' ) . (5.11)

We now need an expression for (a„' ). Suppose we modi-
fy the QSDE (5.6) by the substitution

dB (t)~dB (t)+e(t)dt,

dB (t) dBt(t)+e" (t)dt,
(5.12)

where e(t) is a classical c-number driving field. Then
discretizing again, it is clear that

(5.13)

and in a continuum notation this becomes

( a (t')dB (t) ) = . N (a'(t') )
6

5E*(t)
(5.14)

(a'(t')) =(ap'(t'))

= aT exp I. 's ds p t (5.15)

and, discretizing, this can be written

&&(1+L'„,bt„,) . . (1+L;At, )p(t)) .

(5.16)

But only the term involving L,
&

depends on e~, and, in
fact, the coefficient of E& in L

&
is V y[c,p], so that

„(a„')= (a(1+L„'b,t„) . (1+L,'b, t, )

%'e now evaluate this expression. We note that from the
master equation (4.12)

where the coefficients depend on ao and EB~,bB~, for
1&m, m'&n. The discretized form of (a(t')dB(t)) is (to
lowest order in ht) and we then find

X [ —~y[c,p(t)] j ) (5.17)
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5 ("(t ))
5e*(t) e=o

=V y(a exp[L(t' —t)][c,p(t)] )
The procedure can also be applied to the situation of
squeezed white noise for the input.

=y( [a (t'), c (t)] ) .
Thus, we find the general expression

(a(t')dB(t)) =&yNdt u(t' —t)([a(t')c, (t)]) .

We therefore derive that

( a(t')b;„(t) ) =v'y Nu (t' —t) ( [a (t'), c (t) ] )

(5.18)

(5.19)

8 High-order correlation functions

We consider a term of the form

(a(t)dB(s)dB(s')) . (5.22)

and similarly

( b;„(t)a (t')) =v y Nu (t' —t)([c (t),a (t')]),
(a(t')b;„(t)) =v y(N+1)u(t' —t)([c (t),a(t')]),
( b;„(t)a(t') ) =V y(N+ 1)u (t' —t) ( [a (t'), c (t) ] )

If either s or s' is greater then t, then this is clearly zero.
If s and s' are different, it is not difficult to retrace the
argument above to show that

(5.20) ( a (t)dB (s)dB(s') )

( bo„,(t)bo„,(t') )

=y(N+ 1)(T [c(t)c(t')] ) —yN( T[c (t)c (t')] ),
( b.'„,(t)b.„,(t') )

=y(N+1)(c (t)c(t'))
—yN (c (t')c (t) ) +yN5(t t'), —

( b.'.,(t)b.'„,(t ) )

=y(N+1)(T[c (t)c (t')]) yN(T[c (t—)c (t')]) .

(5.21)

and we note that these are consistent with the commuta-
tion relations (2.26). We can now use the results of Sec.
II C to derive

Q2
(a'(t) ) N ds ds' (523)

6e*(s)5e'(s')

so that

$2
( a (t)b;„(s)b;„(s')) =N', (a'(t) )5e*(s)5e'(s') e=o

(S.24)

and carrying out the same process as was used previously
to evaluate the first-order functional derivative, we find

Hence

(ae " '[&yc, e ' ''[V'yc, p(s')]]) if s &s' and t &s
0 ifs ors'&t. (S.2S)

yN ([[a(t),c(s)],c(s')]), t &s &s'
(s )) = 'yN ([[a(t),c(s')],c(s)]), t &s'&s

0, s&t ors'&t .
(5.26)

C. Even-higher-order correlation functions

%'e now consider a term of the form

( a ~ (t)az(t')b;„(s)b;„(s') )

and in this case a similar procedure gives a variety of answers depending on the time ordering:

(5.27)

yN ([[a~(t)az(t'), c(s)]c(s')]),
yN ( [[a~(t)az(t'), c (s')],c (s)]),
yN ( [[a~(t), c (s) jaz(t), c (s')] ),

)b~~(s )) = 'yN'([[a/(t), c(s')jaz(t), c(s)]),
yN'( [[a,(t),c (s)],c (s')]az(t') ),
yN ( [[a,(t),c (s)],c (s')]az(t') ),
0, s &t ors'&t .

t &t'&s &s

t&t &s &s

t &s & t'&s'

t &s'& t'&s

t &s &s'& t'

t &s'&s &t'

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)
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VI. SUMMARY AND CONCLUSIONS

We have drawn together in this paper a number of
points of view which have until now been somewhat de-
tached from each other. The literature on quantum
Langevin equations has until now been rather sparse and
unsystematic, and the master equation, as an alternative
treatment of quantum stochastic processes, has not to our
knowledge been brought into a direct equivalence with the
Langevin approach. The work on quantum stochastic
processes, most notably presented in the both by Davies'
and summarized in Spohn's review, ' has proceeded essen-
tially from the master-equation point of view, as has the
theory of measurement developed with it. These theories
are rigorously formulated, though of course are neverthe-
less no more valid than the hypotheses assumed as far as
physics is concerned. We hope that the work in this paper
does not give a false sense of absolute correctness. For the
systems chosen, and if the input state is quantum white
noise, our results are exact, and presumably can be
rigorously proved if necessary. But the model Hamiltoni-
ans are themselves only approximations to the real world,
and depend largely on the rotating-wave approximation;
and quantum white noise itself can only be an approxima-
tion to the real state of some optical input. As is well
known, this will also depend on the system being of nar-
row bandwidth and operating at a high frequency, so that
the variation of the quantum-noise spectral density over
the region of interest is small.

However, it was not our aim in this paper to investigate
the relationships between real systems and our approxi-
mate systems. Rather, the principal aims have been the
following.

(i) To codify clearly the relation between input, internal
motion, and output in a class of well-defined systems.

(ii) To codify precisely the relation between QSDE,
master-equation, and multitime-ordered correlation func-
tions, and present these as a complete mathematical enti-
ty.

(iii) To show how to deal with at least some kinds of
nonwhite and noncoherent inputs, i.e., squeezed white
noise.

This is the first in a planned series of papers. In fact
the problem of squeezing in the output of a parametric
amplifier system has already been treated by this formal-
ism' but the derivations given there are heuristic only, so
that this paper provides a solid foundation for those cal-
culations. The results of Sec. V, in particular, have also
been applied to the calculation of output squeezing for
other nonlinear optical systems, ' including dispersive op-
tical bistability and second-harmonic generation.

The next paper in the series will deal with a field theory
of input and output, taking realistic Hamiltonians, and
explicitly identifying the in and out operators with specif-
ic quantum fields. That paper will also deal more precise-
ly with the approximations necessary to obtain the kind of
theory presented here from a real, and hence more intri-
cate system.
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