
CS142 Lecture Notes - Input

Input and Validation
Mendel Rosenblum

CS142 Lecture Notes - Input

Early web app input: HTTP tag

● - Encode form properties as query params

● - Encode form properties as query params in message body

CS142 Lecture Notes - Input

Rails input pattern using form POST
● GET Page containing form

○ Contains a method="post" form to a POST Page

● POST Page - Validate and perform operation (typically create or update)
○ If successful, redirect to a "done "page (possibly another GET Page) if successful
○ If failed validation, redirect page to the GET Page with incorrect fields highlighted
○ If error, redirect to some oops page

CS142 Lecture Notes - Input

Validation requirements in web applications
● Protect integrity of storage (required fields, organization, security, etc.)

○ Can let HTTP request either from web app or generated out the web app damage us
○ Need to enforce at web server API

● Provide a good user experience
○ Don't let users make mistakes or warn them as soon as possible
○ Pushing validation closer to the user is helpful

CS142 Lecture Notes - Input

Validation with AngularJS
● Rule #1: Still need server-side validation to protect storage system integrity
● Rule #2: Let user know about validity problems as early as possible

● Angular reuses the HTML form tag

● Generates a scope object property under form name ()
has validation information

CS142 Lecture Notes - Input

Angular validation information

Status:

Error:

● Also updates classes on input tag

● Can provide instant feedback on errors

CS142 Lecture Notes - Input

Angular Material: md-input-container pattern

 <md-input-container>
 <label>Last Name</label>
 <input name="lastName" ng-model="lastName" required md-maxlength="10" minlength="4">
 <div ng-messages="userForm.lastName.$error" ng-show="userForm.lastName.$dirty">
 <div ng-message="required">This is required!</div>
 <div ng-message="md-maxlength">That's too long!</div>
 <div ng-message="minlength">That's too short!</div>
 </div>
 </md-input-container>
</form>

CS142 Lecture Notes - Input

Asynchronous validation
● Can in background communicate with web server to validate input

○ Example: user name already taken

● Example: states search with md-autocomplete

● Trend towards using recommendation systems for input guidance

CS142 Lecture Notes - Input

Single Page App Input
● Rather than POST with redirect you can do a XMLHttpRequest POST/PUT

● Angular supports two interfaces to XMLHttpRequest ($http and $resource)

CS142 Lecture Notes - Promises

Minor Digression - Promises

CS142 Lecture Notes - Promises

Callbacks have haters
● Pyramid of Doom

 Called Pyramid of Doom

● An alternative to pyramid: Have each callback be an individual function
○ Sequential execution flow jumps from function to function - not ideal

CS142 Lecture Notes - Promises

Idea behind promises
● Rather than specifying a done callback

● Return a promise that will be filled in when done

will be filled in when operation completes

● Doesn't need to wait until you need the promise to be filled in

CS142 Lecture Notes - Promises

 - Waiting on a promise
● Get the value of a promise (waiting if need be) with

is the promised result when successful

Error case

CS142 Lecture Notes - Promises

Example of Promise usage
● $http.get() returns a promise

CS142 Lecture Notes - Promises

Promises

● Note no Pyramid of Doom
● Every variable is a promise

○ A standard usage: Every variable - If thenable call on it otherwise just use the
variable as is.

CS142 Lecture Notes - Promises

Chaining promises

● Add in ES6 JavaScript arrow functions:

CS142 Lecture Notes - Promises

From
● Mongoose returns promises so instead of

-- and --

CS142 Lecture Notes - Promises

Creating your own promise
● Create a promise with

calls to have promise return value
calls to have promise signal error

CS142 Lecture Notes - Promises

Converting callbacks to Promises

CS142 Lecture Notes - Promises

JavaScript and Promise
● Lots of slightly different JavaScript promise libraries

Q, Bluebird, RSVP

● Used in many software packages
○ jquery, Angular, Protractor, ...

● JavaScript ES6 specification defines a Promise API

CS142 Lecture Notes - Input

End Digression - Back to $http API

CS142 Lecture Notes - Input

Uploading models using $http.post

● App must wait for reply since errors may occur on server
○ Need some user interface way of communicating this to the user

CS142 Lecture Notes - Input

- RESTful server access
● In REST APIs you have resources named as URLs

● And operations on resources:

CS142 Lecture Notes - Input

$resource examples

CS142 Lecture Notes - Input

Server-side validation
● Regardless of validation in browser server needs to check everything

○ Easy to directly access server API bypassing all browser validation checks

● Mongoose allows validator functions

CS142 Lecture Notes - Input

Some integrity enforcement requires special code
● Maintaining relationship between objects

● Resource quotas

● Examples related to our Photo App
○ Only author and admin user can delete a photo comment.
○ A user can only upload 50 photos unless they have a premium account.

