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Abstract—This paper proposes a measurement-based approach 
to optimize the inputs of Auto-Regressive with eXogenous input 
(ARX) model identification in large power systems. Correlation 
Coefficient Index (CCI) is defined in this paper and Correlation 
Coefficient Map (CCM) is developed for the US Eastern 
Interconnection (EI) to show the correlation between any two 
power system output measurement signals visually. This 
approach is verified with EI system simulation data and applied 
to Frequency Disturbance Recorder (FDR) measurement data to 
estimate system dynamic response. The verification result shows 
that the number of ARX model inputs can be decreased and the 
estimation accuracy can be ensured by using the proposed 
approach. 

Index Terms—Correlation coefficient index, correlation 
coefficient map, measurement-based, system identification, ARX 
model, dynamic response estimation. 

I. INTRODUCTION  

     Assessing power system dynamics is essential for safe and 
reliable operation and control of a power system. 
Synchrophasors provide rich information of system dynamic 
behavior in real time. Such information can be used to build 
purely measurement-based system models for dynamic 
assessment and control. System identification is a good 
approach to model the behavior of a dynamic system based on 
measurement data [1]. A linear power system dynamic model 
in the ARX structure is proposed in [2] to estimate the system 
dynamic response only based on measurement data. The 
model in [2] is simple and effective to estimate the system 
dynamic response, but it ignores one important aspect, 

namely: how to choose the input signal from hundreds of               
measurements for the developed model. Input signal design is 
a critical aspect for system identification since it directly 
affects the model accuracy [3]. Electrical distance is 
considered as an observability index to select the input for the 
ARX model in [4], but this method is based on the detailed EI 
system model. It is hard to calculate the electrical distance 
only using measurement data. 

 In this paper, CCI is defined and a new algorithm is 
developed to design the optimal input for the ARX dynamic 
model only using measurement data. Further, CCM has been 
developed to show the correlation between all the possible 
model inputs and outputs in a visual way for the EI system. 
Both CCI and CCM can be updated in real time. The 
algorithm is verified with EI simulation data and applied to 
estimate dynamic response by using FDR measurement data. 

This paper is organized as follows. Section II gives a brief 
introduction of the ARX model. The ARX model input signal 
selection algorithm is developed in Section III. Section IV and 
V provide algorithm verification and application, respectively. 
Conclusion and future work are provided in Section VI. 

II. MODEL IDENTIFICATION 

A. ARX Model Structure 

     This ARX model provides a much simpler identification 
model of multi-variable system than the state-space model or 
other models [1]. The mathematical structure expression of the 
ARX model is given below: 
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Where t  is the sampled data index, ( )e t is the system noise, 

( )kA z and ( )jkB z are the ARX denominator and numerator 

polynomials, respectively. ju and ky are the model input and 

output, respectively. The model parameters of a multi-variable 
ARX model can be estimated by a linear least square 
technique. The least-squares estimation problem is solved by 
using QR factorization to optimize the ARX model 
parameters. The ARX structure and algorithm details are 
described in [1]. 

B. ARX Model Accuracy Index 

     To evaluate the identified ARX model, a fitness criterion 
can be performed [4]: 
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where iY , îY , iY are the measured response, estimated 

response, and the mean value of the measured response, 
respectively. This index is used to reflect the accuracy of the 
model in describing system’s dynamic characteristics. A 
fitness of 100 means a perfect fit between the estimated 
response and the measured response, while a fitness of zero 
means the estimated response is no better than the mean value 
of measured response.  

III. ARX MODEL INPUT SIGNAL SELECTION ALGORITHM 

Based on the synchrophasor-based power system, the 
coherency function is used to find the relationship among 
generators or bus measurement signals. Mode shape 
identification [5] and inter-area oscillation mode analysis [6] 
have already been performed using the frequency domain 
coherency function. In this paper we use the inverse fourier 
transform of coherency function to obtain the correlation 
coefficient function in time domain between any two power 
system output measurement signals. 

A. Coherency Function 

The measurement-based coherency function is defined [6]: 
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where ( )xyS f is the cross-spectral density (CSD) function 

between measured signals  ( )x t  and ( )y t , ( )yyS f is the power-

spectral density (PSD) of signal ( )y t .The coherence function 
gives the linear correlation between two power system output 
signals as a function of the frequency. 

B. Correlation Coefficient Index 

Consider there are two power system output measurement 
signals:  ( )x t  and ( )y t τ+ , where τ is the time delay between 

these two signals. Their mathematical expectations are 

{ }( )xu E x t=  and { }( )yu E y t= , respectively. So the cross-

correlation function and cross-covariance function can be 
defined as follows: 
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For the special case where  ( ) ( )x t y t= , the auto-correlation 

function ( )xyR τ  and auto-covariance function ( )xyC τ  of  ( )x t  

become: 
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If 0, 0x yμ μ= = , we will obtain: 

( ) ( )xy xyC Rτ τ=                                                                   (10) 
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If we do the invers fourier transform to (5) and using (11) and 
(12), we can obtain the correlation function in time domain: 
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Using (6), (8), and (13), the correlation coefficient function 
can be obtained as follows:  

2 2

( )

(0) (0)

( )

(0) (0)

xy x y
xy

xx x yy y

xy

xx yy

R

R R

C

C C

τ μ μ
ρ

μ μ

τ

−
=

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

=

       1xyρ ≤         (14) 

where xyρ  ranges from-1 (complete linear inverse correlation) 

to +1 (complete linear direct correlation).  0xyρ =  means 

lack of linear interdependence. The sign of xyρ  indicates the 

direction of correlation: 0xyρ < implies inverse correlation, 

i.e., the two power signals are out of phase or oscillate with 



each other. 0xyρ > implies direct correlation, i.e. a tendency 

of both signals to have similar value with the same sign.  
      From the derivation of (6) to (14), we can see that if the 
mean value of the measurement is zero, (5) and (14) are 
equivalent. Therefore, the coefficient function is reasonable 
to indicate the relationship between any two measurements. 

CCI matrix is defined:       
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where ijr  is the correlation coefficient between any two 

arbitrary measurement signals: 
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C. Correlation Coefficient Map 

For a large power system, it is hard to read the correlation 
coefficient between any two measurement signals. CCM is 
developed with the Matlab mapping toolbox to show the 
correlation in a visual way. In CCM, we use different colors 
for the correlation coefficient values. The color bar on the 
right of the map shows the coefficient value, while the 
numerical value of the correlation coefficients can be found on 
the left part of the map. In the map, we choose one 
measurement bus as the reference bus and show the 
correlation coefficients between this reference bus and other 
measurement buses clearly at the same time. 

Figure 1 shows the CCM and CCI for the voltage 
magnitude, voltage phase angle, and frequency of EI system 
with the simulation data. We assume that there are 135 Phasor 
Measurement Unites (PMUs) well-distributed in the EI system 
and the simulation results from the 135 buses are considered 
as measurement signals. The event is 838 MW Generation trip 
in the east of Alabama. 

 
(a) Voltage magnitude 

 

(b) Voltage phase angle 

 
(c) Frequency 

Figure 1.  Correlation coefficient index and correlation coefficient map 

D. ARX Input Signal Selection Algorithm Flowchart 

In general terms, all the power system output signals 
measured by PMUs are selectable ARX model inputs. 
However, the key issue is how to identify a proper signal 
to obtain an ARX model that accurately represents 
dynamic system response. The algorithm developed to find 
the optimal inputs among hundreds of measurement 
signals for ARX model is described by the flowchart in 
Figure 2. 

 
Figure 2.  ARX model input signals selection flowchart 

IV. ALGORITHM VERIFICATION WITH EI SIMULATION 

DATA IN DYNAMIC RESPONSE ESTIMATION 

A. Concept of Dynamic Response Estimation 

The Energy Management System (EMS) plays an 
important role in monitoring and control of power system, and 
state estimation forms its backbone. However, power system 
state estimation, in its current application status, is not capable 



of capturing the system dynamic behaviors (except for some 
very slow system changes). It only provides monitoring 
information in the form of a sequence of steady states, or 
quasi-steady state [7], [8]. Dynamic state estimation is to 
predict the state vector one time step ahead and has the 
potential to foresee potential contingencies and security risks 
[9], [10]. Unlike the traditional state estimation and dynamic 
state estimation that focus on estimating relatively stationary 
state vectors, in this ARX dynamic response estimation, we 
detrend the DC component to identify the real-time dynamic 
model and use the obtained model to estimate the power 
system dynamic response [1]. 

B. Algorithm verification 

The test system of EI used in this paper has about 3000 
generators and 16000 buses. The frequency and voltage phase 
angle signals sampled at 0.001s for 20s are used as the 
measurement signals. We assume that there are 135 buses 
measured with PMUs and two events happened at different 
times and different locations: event 1 is 814MW generation 
trip in Southeast of Florida, as shown in figure 3; event 2 is 
838MW generation trip in East of Alabama. Event 1 is used to 
train the ARX model and event 2 is used to perform the 
verification of the proposed algorithm. With the training 
frequency data we can obtain the CCI and CCM as shown in 
figure 3. Figure 4 shows the frequency dynamic response 
estimation results with this algorithm. 

 
Figure 3. Frequency CCI and CCM 

 
     (a) Top 4 and lowest 4 coefficient           (b) Top 4 coefficient signals as  
          signals as ARX model inputs                    ARX model inputs 

 
     (c) Top 1 coefficient signal as               (d) Lowest 1 coefficient signal as  
                ARX model inputs                                    ARX model inputs 

Figure 4.  ARX input signals design algorithm verification for frequency 
dynamic response estimation 

CCI and CCM are obtained with the training frequency 
and voltage phase angle data, which are shown in figure 5. 
Figure 6 shows the phase angle dynamic response estimation 
result with the proposed algorithm to select the ARX model 
inputs. 

 
Figure 5. Voltage phase angle CCI and CCM 

 
     (a) Top 4 and lowest 4 coefficient           (b) Top 4 coefficient signals as  
           signals as ARX model inputs                         ARX model inputs 
 

 
       (c) Top 1 coefficient signal as           (d) Lowest 1 coefficient signal as  
                  ARX model inputs                               ARX model inputs 
Figure 6.  ARX input signals design algorithm verification for voltage phase 

angle dynamic response estimation 

For the model identification, the more input signals are 
selected, the better to reflect the system dynamics of the 
identified model. Therefore, in Fig 4-a) and Fig 6-a), top 4 and 
lowest 4 correlation signals are roughly stand for all the 
selectable input signals, the estimation results are shown in 
Fig 4-a) and Fig 6-a).  In Fig 4-b) and Fig 6-b), only top 4 
correlation signals are selected as the input signals, the 
estimation results shows that although only top 4 correlation 
signals are selected as the input signals, the estimation result is 
as good as top 4 and lowest 4 correlation signals. Furthermore, 
the results also prove that only the strong correlation signals 
are the most important signals for the model identification and 
contain most of the system dynamic information. From the 
above comparisons between actual and model-estimated 
dynamic responses of the ARX output, it is obvious that when 
the input signals with high correlation coefficients are 
selected, the model-estimated responses fit the actual ones 
very well. However, if the input signals with very low 
correlation coefficients are selected, the model-estimated 
response does not fit the actual response. Therefore, only the 



higher correlation coefficients are needed as the ARX input 
signals. If top 1 correlation coefficient of the input signals are 
found, only one input signal can obtain a very good 
estimation, which can decrease the complexity of ARX model. 

V. ALGORITHM  APPLICATION IN REAL DYNAMIC 

RESPONSE ESTIMATION 

The north of American power Frequency Monitoring 
Network (FNET) is a wide-area measurement system that 
takes high accuracy, GPS synchronized measurements at 
standard end-user distribution voltages [11]. As a member of 
the PMU family, the FDRs used in the FNET system measure 
frequency, voltage phase angle at standard 120V outlets and 
transmit these measurement data through the Internet [12]. 
About the FDR measurement data, the frequency and phase 
angle signals sampled at 0.1s for 60s are used to calculate the 
CCI. There are two events monitored by FDR shown in figure 
7 with 1500MW generation trip. We use event 1 to calculate 
the CCI and train the ARX model, then CCI is applied to the 
dynamic response estimation with event 2. The application 
results of the proposed approach are shown in figure 8 and 
figure 9. 

 
                          (a) Event 1                                   (b) Event 2 

Figure 7. Event location 

 
         (a) Top 4 coefficient signals as             (b) Top 1 coefficient signal as  
                 ARX model inputs                                 ARX model inputs 

Figure 8. Voltage Phase Angle  

 
       (a) Top 4 coefficient signals as             (b) Top 1 coefficient signals as  
               ARX model inputs                                  ARX model inputs 

Figure 9. Frequency  

The accuracy indices are 45 and 30 for figure 8 (a) and 
figure 8 (b), respectively. While the accuracy indices are 80 
and 78 for figure 9 (a) and figure 9 (b), respectively. Which 

means, for frequency, only one input signal is enough to get 
good estimation, however, for voltage phase angle, we need at 
least 4 input signals. 

 

VI. CONCLUSION AND FUTURE WORK 

    A measurement-based approach is proposed to select 
optimal input signals for ARX model. This approach works 
well with the real measurement data from FDRs in the EI 
system. With this approach, the strong correlated input signals 
for dynamic response estimation can be quickly identified. As 
a consequence, and the complexity of the ARX model can be 
decreased. A Correlation Coefficient Map has been developed 
for the Eastern Interconnection system to visually display the 
Correlation Coefficient Index. Next step of this work, includes 
comprehensive robustness test of the proposed approach with 
additional measurement data, and implementation in actural 
power system.  
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Dear Editors and Reviewers: 
        Thank you concerning our paper entitled “Input Signals Selection for Measurement-based Power 
System ARX Dynamic Model Response Estimation” (ID:14TD0513). The comments are all valuable and 
very helpful for revising and improving our paper. We have studied comments carefully and made 
corrections that we hope could meet with approval. Revised portion are marked in red in the paper. The 
main correlations in the paper and the responds to the reviewers’ comments are as following:  

 

Responds to the reviewer’s comments:  

Reviewer1: 
Comments:        
In general, this paper proposes a good tool (based on the index CCI and CCM) to select 
the inputs signals of ARX structure to estimate a linear power system dynamic model. 
In large power systems, this index can help to determine between different sampled signals obtained by 
PMUs, those that will result in accurate models. However, the paper presents some errors that must be 
corrected. Such mistakes are listed below: 
1. In all the text, there are several typos in the spacing of words. Such mistakes should be carefully 
reviewed. 
 
We are very sorry for our negligence of the typos in the spacing of words, the mistakes have been 
corrected in the revised version. 
 
2. On Section IV-B: 
In Fig 4-a), the correct legend is "Top 4 coefficient signals as ARX model inputs" since in the figure it is 
possible to see just the comparison between the estimated and the actual model. In Fig 6-a) First, the 
legend of Fig 6 is also wrong, I think the correct is just "Top 4 coefficient signals as ARX model inputs". 
Besides this, in this case, I would like to know if the same figure was used incorrectly in cases a) and b) 
or if the accurate model is the same with the use of Top 4 coefficient signal or Lowest 4 coefficient 
signals as ARX model inputs. 
 
We are very sorry for our negligence of explaining the results in these Figures. The legends of Fig 4-a) and 
Fig 6-a) in the paper are correct.  For the model identification, the more input signals are selected, the 
better to reflect the system dynamics of the identified model.  Therefore, in Fig 4-a) and Fig 6-a), top 4 and 
lowest 4 correlation signals are roughly stand for all the selectable input signals, the estimation results are 
shown in Fig 4-a) and Fig 6-a).  In Fig 4-b) and Fig 6-b), only top 4 correlation signals are selected as the 
input signals, the estimation results shows that even only top 4 correlation signals are selected as the input 
signals, the estimation result is as good as top 4 and lowest 4 correlation signals. Furthermore, the results 
also prove that only the strong correlation signals are the most important signals for the model 
identification and contain most of the system dynamic information. 
We have added the explanation in Section IV-B with red words. 
 
 
3. On Section V 
 
The Fig. 8 and 9 were not referenced in the text. 
The Figs. 8 and 9 are referenced in the last paragraph of Section V now. 
 



Furthermore, in Fig 9, it is not possible to verify any difference in the precision of the model estimated in 
the case a) and case b). Are these figures correct? I believe that in these cases the ARX Model Accuracy 
Index should also be presented in the results. 
 
We are very sorry for the incorrect description of the time on the x-axis and it has been corrected. 
And the accuracy indices are added in the last paragraph of Section V according to the reviewer’s 
suggestion. 
 
4. The figures in the text should be bigger to facilitate the interpretation. 
 
Thanks for your suggestion, but the pages of the paper are limited to 5, so I have to make the figures 
smaller.  
Thanks for your good comments.  
 
Reviewer 2: 
 
Comments:  The authors propose an approach to select optimal input signals for the identification of an 
ARX model. 
 
The paper presents some contribution to the problem and the results seem to confirm the potential of the 
proposed approach. 
It seems that in equations (6), (7) and (12) it should be Rxy(tau) and Cxy(tau). 
 
We are really sorry for the mistakes in equations (6), (7) and (12).  We have made correction according 
the reviewer’s suggestion.  
Thanks for your good comment and approval of the work in the paper. 
 

Above all, according to reviewers’ comments, the paper has been revised point-by-point. Thank you 
and the reviewers again! 
 

 


