
Input Space Partitioning

Instructor : Ali Sharifara

CSE 5321/4321

Summer 2017

CSE 5321/4321, Ali Sharifara, UTA 1

Input Space Partitioning

• Introduction

• Equivalence Partitioning

• Boundary-Value Analysis

• Summary

CSE 5321/4321, Ali Sharifara, UTA 2

Agenda

• Quick Review

• Input Space Partitioning

3CSE 5321/4321, Ali Sharifara, UTA

Introduction

• Testing is about choosing elements from

input domain

• The input domain of a program consists of all

possible inputs that could be taken by the

program

– Easy to get started, based on description of the

inputs

4CSE 5321/4321, Ali Sharifara, UTA

Input Domain

• For even small programs, the input domain is so

large that it might be infinite. (e.g. gcd(int x, int y))

• Input parameters define the scope of the input

domain:

– Parameters to a method

– Data read from a file

– Global variable

– User level inputs

– etc

• Domain for each input parameter is partitioned into

regions

• At least one value is chosen from each region

CSE 5321/4321, Ali Sharifara, UTA 5

Quick Review

• What is the test selection problem ?

• What is the main idea of input space

partitioning ?

6CSE 5321/4321, Ali Sharifara, UTA

Test Selection Problem

• Ideally, the test selection problem is to select

a subset T of the input domain such that the

execution of T will reveal all errors.

• In practice, the test selection problem is to

select a subset of T within budget such that it

reveals as many error as possible.

CSE 5321/4321, Ali Sharifara, UTA 7

Partitioning

• Partition the input domain into a relatively

small number of groups, and then select one

representative from each group.

CSE 5321/4321, Ali Sharifara, UTA

1

2

3

4

I1

I2

V1

V2
V3

Valid

Invalid

8

Based on two

properties:

1. Completeness:

The partition must

cover the entire

domain.

2. Disjointness:

The blocks must

not overlap.

Partitioning Cont.

• Domain D

• Partition scheme q of D

• The partition q defines a set of blocks, Bq = b1, b2, … bq

• The Partition must satisfy two properties :

– The partition must cover the entire domain (completeness)

– The blocks must not overlap (disjointness)

CSE 5321/4321, Ali Sharifara, UTA 9

Partitioning of input domain D into three blocks

Using Partitions - Assumptions

• Choose a value from each partition

• Each value is assumed to be equally useful for testing

– Find characteristics in the input : parameters,

semantic, description, …

– Partition each characteristics

– Choose tests by combining values from

characteristics

• Some possible characteristic examples:

– Input X is null

– Order of the input file F (sorted, inverse sorted, arbitrary)

– Input device (DVD, CD, VCR, computer, …)

CSE 5321/4321, Ali Sharifara, UTA 10

Each characteristic C allows the tester to define a partition

Choosing Partitions

• Choosing (or defining) partitions seems easy, but is

easy to get wrong

• Consider the “order of file F”

CSE 5321/4321, Ali Sharifara, UTA 11

Properties of Partitions

• If the partitions are not complete or disjoint, that

means the partitions have NOT been considered

carefully enough

• They should be reviewed carefully, like any design

attempt

• Different alternatives should be considered

CSE 5321/4321, Ali Sharifara, UTA 12

Example

• Consider a program that is designed to sort a

sequence of integers into the ascending

order.

• What is the input domain of this program?

Input domain modeling

CSE 5321/4321, Ali Sharifara, UTA 13

1

2

3

4

I1

I2

V1

V2 V3

Valid

Invalid

Input Space Partitioning

• Introduction

• Equivalence Partitioning

• Boundary-Value Analysis

• Summary

CSE 5321/4321, Ali Sharifara, UTA 15

Partition (review!)

• A partition defines a set of equivalent classes, or

blocks

– All the members in an equivalence class

contribute to error detection in the same way

• A partition must satisfy two properties:

– Completeness: A partition must cover the entire

domain

– Disjoint: The blocks must not overlap

• A partition is usually based on certain characteristic

– e.g., whether a list of integer is sorted or not,

whether a list allows duplicates or not

CSE 5321/4321, Ali Sharifara, UTA 16

Input Domain Modeling

• Step 1: Identify testable components, which could be

a method, a use case, or the entire system

• Step 2: Identify all of the parameters that can affect

the behavior of a given testable component

– Input parameters, environment configurations, state

variables.

– For example, insert(obj) typically behaves differently

depending on whether the object is already in a list or not.

• Step 3: Identify characteristics, and create partitions

for each characteristic

• Step 4: Select values from each partition, and

combine them to create tests

CSE 5321/4321, Ali Sharifara, UTA 17

Exercise

A tester defined three characteristics based on the input

parameter car : Where Made, Energy Source, and Size.

The following partitionings for these characteristics have

at least two mistakes. Correct them.

CSE 5321/4321, Ali Sharifara, UTA 18

Where Made Energy Source Size

North America Gas 2-door

Europe Electric 4-door

Asia Hybrid Hatch-back

Different Approaches to Input Domain

Modeling (IDM)

• Interface-Based IDM

• Functionality-Based IDM

CSE 5321/4321, Ali Sharifara, UTA 19

Interface-Based Input Domain

Modeling (1)

• The main idea is to identify parameters and

values, typically in isolation, based on the

interface of the component under test.

• Advantage: Relatively easy to identify

characteristics

• Disadvantage:

– IDM may be incomplete and hence additional

characteristics are needed

– Not all information is reflected in the interface, and

testing some functionality may require parameters

in combination

CSE 5321/4321, Ali Sharifara, UTA 20

Interface-Based Input Domain

Modeling (2)

• Range: one class with values inside the

range, and two with values outside the range

– For example, let speed  [60 .. 90]. Then, we

generate three classes {{50}, {75}, {92}}.

• String: at least one containing all legal strings

and one containing all illegal strings.

– For example, let fname: string be a variable to

denote a first name. Then, we could generate the

following classes: {{}, {Sue}, {Sue2}, {Too long a

name}}.

CSE 5321/4321, Ali Sharifara, UTA 21

Interface-Based Input Domain

Modeling (3)

• Enumeration: Each value in a separate class

– For example, consider auto_color  {red, blue,

green}. The following classes are generated,

{{red}, {blue}, {green}}

• Array: One class containing all legal arrays,

one containing only the empty array, and one

containing arrays larger than the expected

size

– For example, consider int[] aName = new int [3].

The following classes are generated: {{[]}, {[-10,

20]}, {[-9, 0, 12, 15]}.

CSE 5321/4321, Ali Sharifara, UTA 22

Functionality-Based Input Domain

Modeling (1)

• The main idea is to identify characteristics

that correspond to the intended functionality

of the component under test

• Advantage: Includes more semantic

information, and does not have to wait for the

interface to be designed

• Disadvantage: Hard to identify characteristics,

parameter values, and tests

CSE 5321/4321, Ali Sharifara, UTA 23

Functionality-Based Input Domain

Modeling (2)

• Preconditions explicitly separate normal behavior from
exceptional behavior

– For example, a method requires a parameter to be non-null.

• Postconditions indicate what kind of outputs may be
produced

– For example, if a method produces two types of outputs,
then we want to select inputs so that both types of outputs
are tested.

• Relationship of variables with special values (zero, null,
blank,..)

• Relationships between different parameters can also be
used to identify characteristics

– For example, if a method takes two object parameters x and
y, we may want to check what happens if x and y point to the
same object or to logically equal objects

CSE 5321/4321, Ali Sharifara, UTA 24

Identify Characteristics

• The interface-based approach develops
characteristics directly from input parameters

• The functionality-based approach develops
characteristics from functional or behavioral
view

CSE 5321/4321, Ali Sharifara, UTA 25

Example.1

Public Boolean findElement(List list, Element element)
//If list or element is null throw NullPointerException else returns
true if element is in the list , false otherwise

CSE 5321/4321, Ali Sharifara, UTA 26

List Characteristics

Interface-based

Characteristics Blocks and Values

List is null b1= true

b2= false

List is empty b1 = true

b2= false

CSE 5321/4321, Ali Sharifara, UTA 27

Functionality-based

Characteristics Blocks and Values

Number of occurrences of

element in list

b1= 0

b2= 1

b3= more than 1

Element occurs first in list b1 = true

B2 = false

Example.2 (1)

• Consider a triangle classification program which inputs three

integers representing the lengths of the three sides of a

triangle, and outputs the type of the triangle.

• The possible types of a triangle include scalene, equilateral,

isosceles, and invalid.

CSE 5321/4321, Ali Sharifara, UTA

int classify (int side1, int side2, int side3)

// 0: scalene, 1: equilateral, 2: isosceles; -1: invalid

28

Example.2 (2)

• Interface-based IDM: Consider the relation of

the length of each side to some special value

such as zero

Partition b1 b2 b3

q1 = Relation

of Side 1 to 0

> 0 = 0 < 0

q2 = Relation

of Side 2 to 0

> 0 = 0 < 0

q3 = Relation

of Side 3 to 0

> 0 = 0 < 0

CSE 5321/4321, Ali Sharifara, UTA

Example.2 (3)

• Functionality-based IDM: Consider the traditional

geometric partitioning of triangles

Partition b1 b2 b3 b4

Geometric

classification

Scalene Isoceles Equilateral Invalid

CSE 5321/4321, Ali Sharifara, UTA

Oops … something’s fishy … equilateral is also isosceles !

We need to refine the example to make characteristics valid

Example.2 (4)

CSE 5321/4321, Ali Sharifara, UTA

Partition b1 b2 b3 b4

q1= Geometric

classification

Scalene Isoceles, not

equilateral

Equilateral Invalid

Param b1 b2 b3 b4

Triangle (4, 5, 6) (3, 3, 4) (3, 3, 3) (3, 4, 8)

31

Perimeter of triangle P = a+b+c, if a + b > c, otherwise is invalid

Side (a), base (b), Side (c)

Functionality-Based IDM—

triangle()

• A different approach would be to break the geometric

characterization into four separate characteristics

CSE 5321/4321, Ali Sharifara, UTA 32

Characteristic b1 b2

q1 = “Scalene” True False

q2 = “Isosceles” True False

q3 = “Equilateral” True False

q4 = “Valid” True False

•Use constraints to ensure that

– Equilateral = True implies Isosceles = True

– Valid = False implies Scalene = Isosceles = Equilateral = False

GUI Design (1)

• Suppose that an application has a constraint

on an input variable X such that it can only

assume integer values in the range 0 .. 4.

• Without GUI, the application must check for

out-of-range values.

• With GUI, the user may be able to select a

valid value from a list, or may be able to enter

a value in a text field.

CSE 5321/4321, Ali Sharifara, UTA 33

GUI Design (2)

CSE 5321/4321, Ali Sharifara, UTA

Application

1

2

Correct

values

Incorrect

values

GUI-A

Core Application

Correct

values

GUI-B

Core Application

Correct

values

2

34

Input Space Partitioning

• Introduction

• Equivalence Partitioning

• Boundary-Value Analysis

• Summary

CSE 5321/4321, Ali Sharifara, UTA 35

Motivation

• Programmers often make mistakes in

processing values at and near the boundaries

of equivalence classes.

• For example, a method M is supposed to

compute a function f1 when condition x <= 0

and function f2 otherwise. However, M has a

fault such that it computes f1 for x < 0 and f2

otherwise.

• Can you find an example that shows why a

value near a boundary needs to be tested?

CSE 5321, Ali Sharifara, UTA 36

Boundary-Value Analysis

• A test selection technique that targets faults

in applications at the boundaries of

equivalence classes.

– Partition the input domain

– Identify the boundaries for each partition

– Select test data such that each boundary value

occurs in at least one test input

CSE 5321, Ali Sharifara, UTA 37

Example

• Consider a method findPrices that takes two

inputs, item code (99 .. 999) and quantity (1 ..

100).

• The method accesses a database to find and

display the unit price, the description, and the

total price, if the code and quantity are valid.

• Otherwise, the method displays an error

message and return.

CSE 5321, Ali Sharifara, UTA 38

Example (2)

• Equivalence classes for code:

– E1: Values less than 99

– E2: Values in the range

– E3: Values greater than 999

• Equivalence classes for quantity:

– E4: Values less than 1

– E5: Values in the range

– E6: Values greater than 100

CSE 5321, Ali Sharifara, UTA 39

Example (3)

CSE 5321, Ali Sharifara, UTA

99 999

98 100 998 1000

E1

E2

E2

1 100

0 2 99 101

E4

E5

E6

40

Example (4)

• Tests are selected to include, for each

variable, values at and around the boundary

• An example test set is T = {

t1: (code = 98, qty = 0),

t2: (code = 99, qty = 1),

t3: (code = 100, qty = 2),

t4: (code = 998, qty = 99),

t5: (code = 999, qty = 100),

t6: (code = 1000, qty = 101) }

CSE 5321/4321, Ali Sharifara, UTA 41

Example (5)

public void findPrice (int code, int qty)

{

if (code < 99 or code > 999) {

display_error (“Invalid code”); return;

}

// begin processing

}

CSE 5321/4321, Ali Sharifara, UTA 42

Example (6)

• One way to fix the problem is to replace t1 and t6

with the following four tests:

t7 = (code = 98, qty = 45),

t8 = (code = 1000, qty = 45),

t9 = (code = 250, qty = 0),

t10 = (code = 250, qty = 101).

CSE 5321, Ali Sharifara, UTA 43

Input Space Partitioning

• Introduction

• Equivalence Partitioning

• Boundary-Value Analysis

• Summary

CSE 5321/4321, Ali Sharifara, UTA 44

Summary

• Test selection is about Partitioning the input

space in a cost-effective manner.

• The notions of equivalence partitioning and

boundary analysis are so common that

sometimes we apply them without realizing it.

• Interface-based IDM is easier to perform, but

may miss some important semantic information;

functionality-based IDM is more challenging, but

can be very effective in many cases.

• Boundary analysis considers values both at and

near boundaries.

CSE 5321/4321, Ali Sharifara, UTA 45

