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Kapitel 0

Introduction in electrodynamics

..
..

0.1 Electric charge

While the mass takes a central role in classical mechanics, the starting point of electrody-
namics is the charge. It displays a series of fundamental characteristics, which have been
confirmed by various experimental measurements:

1.) There are two kinds of charges: positive and negative ones. Charges with the same
sign repel each other while the ones with opposite sign attract each other.

2.) The total charge of a system of mass points is the algebraic sum of the separate
charges; The charge is a scalar.

3.) The total charge of a closed system is constant and its numerical value is independent
of the motion of the system.

4.) The charge only shows up as a multiple of an elementary charge e (charge of an
electron),

q = ne; n = 0,±1,±2,±3, ...

A classical evidence for the quantisation of the charge is the Millikan experiment. Though
one-third-valued charges occur in the elementary particles Quarks, e.g. q = ±(1

3
)e, or

q = ±(2
3
)e, these Quarks are not observable as free particles in the energy region of

interest.

0.2 Electrostatics

The most simple problem of electrodynamics is the case of charges at rest, which is called
electrostatics. If a test charge q is placed in the vicinity of one (or more) point charges, a
force K acts on this test charge, which is generally dependent on its location r:

K = K(r) .

If q is replaced by another test charge q′, then the force K ′ acting on q′ reads:
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K′/q′ = K/q .

Electric field
This observation suggests to introduce the concept of electric field:

E(r) =
1

q
K(r) (1) ..

..

This field, which is generated by the static point charges, assigns a triple of real numbers,
which transforms like a vector, to every point in space r.
The task of electrostatics is to find the general connection between charge distribution
ρ(r) and electric field E(r) and to calculate the field for a given charge distribution (e.g.
for a homogenous sphere).

0.3 Magnetostatics

Moving charges in the form of stationary currents produce magnetostatic fields, which
we introduce in analogy to the electrostatic fields. We have the following experimental
observation: If a test charge q is placed in the vicinity of a conductor in which a stationary
current flows, the force acting on q in the position r can be written as

K(r) = q
(
v ×B(r)

)
.

Here, v is the velocity of the test charge and B(r) a vector field (independent of v),
the magnetic induction, produced by the stationary current.
The task of magnetostatics is to find the general relation between a stationary current
distribution j(r) and the magnetic field B(r), i.e. to evaluate the field for a given current
distribution (e.g. for a stationary circular current).

0.4 Literature
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(Pearson, München 2011)

4. W. Nolting, Grundkurs Theoretische Physik 3 Elektrodynamik,
8. Auflage, (Springer, Berlin- Heidelberg 2007)

5. T. Fließbach, Elektrodynamik,
(BI-Wiss.-Verl., Wien u.a., 1994)
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(Freeman, San Francisco, 1962)
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trodynamik, Zeit, Raum, Kosmos,
(Bertelsmann, Düsseldorf, 1974)
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(Addison-Wesley, Reading, 1962)

11. R. Becker, F. Sauter, Theorie der Elektrizität 1,
(Teubner, Stuttgart, 1973)
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Electrostatics
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Kapitel 1

Coulomb’s law

..
..

1.1 Charge conservation and charge invariance

In the introduction we have briefly summarized the fundamental properties of electric
charge. For an experimental verification of these properties, we first need a measure pres-
cription for the charge. Such a prescription will be presented in the next subsection. First
we present some additional issues about charge conservation and charge invariance.

Pair production
Especially impressive evidences for charge conservation are pair production and pair an-
nihilation processes. For example, an electron (e−) and a positron (e+) annihilate into a
high-energy, massive photon (γ-quantum), which has no charge. On the other hand, in
pair production processes the same amount of positive and negative charge is generated
(e.g. π+, π− mesons). .

������
������
������
������
������

������
������
������
������
������

e+

e−

π+
γ

π−

+e+ (−e) = 0 q = 0 + e+ (−e) = 0

Charge invariance can be verified, for example, by the fact that atoms and molecules
are neutral, even though the state of motion of protons and electrons is very different.
This is especially clear in the case of the helium atom (4He) and the deutrium molecule
(D2). Both consist of 2 protons, 2 neutrons and 2 electrons, which makes them electrically
neutral, even though the state of motion of the protons in the nucleus of the helium atom
is very different from the one in the D2 molecule: The ratio between their kinetic energies
is about 106. The average distance between the protons in the D2 molecule is of the order
of 10−8 cm, while it is of the order of 10−13 in the He-nucleus.
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1.2 Coulomb force

..
..

As an experimentally established starting point for electrostatics we consider Coulomb’s
force law between two point charges:

K12 = Γe
q1q2
r312

r12 (1.1) ..
..

is the force acted upon charge q2 from charge q1. Here r12 = r2 − r1, r12 = |r12| and Γe a
not yet defined proportionality constant.

Properties:

1.) Attraction (repulsion) for charges with opposite (equal) sign.

2.) K12 = −K21: Actio = Reactio. As a consequence, the momentum of the two particles
is conserved.

3.) Central force: Since a point charge (described by the scalar quantities m, q) has no
distinguished direction in space. (→ conservation of angular momentum)

Note: (1.1) does not hold any more for fast charges. The electromagnetic field has to be
taken into account in the momentum- and angular-momentum-balance.
(1.1) has to be complemented with the superposition principle:

K1 = K21 + K31 (1.2) ..
..

for the force that two point charges q2 and q3 act upon q1.

Measure prescription for the charge
Two point charges q, q′ can be compared by looking at the force acted upon them by a
given charge Q. According to (1.1), we have:

q

q′
=

K

K ′
. (1.3) ..

..

In this way one can determine the ratio between charges by measuring forces. After a unit
charge (charge of the electron or positron) is chosen, one can measure charges relative to
this unit charge.

Units systems
There are two possibilities to choose the proportionality constant Γe:

11
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i) Gaussian cgs-system: Here Γe is chosen as a dimensionless constant, specifically

Γe = 1 , (1.4) ..
..

then the units for the charge is determined according to (1.1) as

[q] = [ Force]1/2[Length] = dyn1/2 × cm . (1.5) ..
..

The electrostatic unit charge is then that charge which acts upon another equal
charge with the force of 1 dyn at a distance of 1 cm. The Gaussian cgs-system is
preferred in fundamental physics.

ii) MKSA-System.

In addition to the mechanic units (meter, kilogramm, second) one has to introduce a
unit for the charge Coulomb = ampere× second. 1 ampere is defined as the electric
current that separates 1.118 mg silver per second out of a silver nitrate solution. If
we write

Γe =
1

4πε0
, (1.6) ..

..

then the constant ε0 takes the value

ε0 = 8.854 · 10−12
Coulomb2

Newton · Meter2
(1.7) ..

..

The MKSA-system has established itself in applied electrodynamics (e.g. electrical
engineering).

1.3 The electric field of a system of point charges

The force produced by N static point charges qi at positions ri acting on a test charge q
at position r is according to (1.1) and (1.2):

K =
q

4πε0

N∑
i=1

qi(r− ri)

|r− ri|3
= qE(r) , (1.8) ..

..

where we denote

E(r) =
N∑
i=1

qi
4πε0

(r− ri)

|r− ri|3
(1.9) ..

..

as the (static) electric field, produced by the point charges qi at position r. According
to (1.8) E is a vector field, since q is a scalar. For given charge q, (1) (or (1.8)) shows
how an electric field can be experimentally measured. In doing so, one must make sure
that the test charge is so small that its influence on the measured field can be neglected.
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Electrostatic potential
in analogy to the case of gravitational theory in mechanics, we can extract the vector-
function E(r) from the electostatic potential of a scalar function through differentiation:

φ(r) =
N∑
i=1

qi
4πε0

1

|r− ri|
, (1.10) ..

..

E = −∇φ . (1.11) ..
..

The (potential) energy of static mass points with charges qi is therefore

U =
1

2

N∑
i 6=j

qiqj
4πε0

1

|ri − rj|
=

1

2

N∑
i=1

qiφ(ri) , (1.12) ..
..

where φ(ri) is the potential in ri produced by the other charges The factor (1/2) on the
right hand side of (1.12) corrects the double counting of the contributions in the sum

∑
i 6=j

.

Note: In (1.12), strictly speaking, the (infinite) self-energy for i = j must be substracted
from the term on the right side.

Examples:

1.4 Continuous charge distributions

We replace ∑
i

qi .... →
∫
dV ρ(r) ... , (1.13) ..

..

where ρ(r) is the charge density in position r, with the normalisation

Q =
∑
i

qi =

∫
dV ρ(r) . (1.14) ..

..

Therefore, we have instead of (1.9), (1.10), (1.12):

E(r) =
1

4πε0

∫
dV ′ρ(r′)

(r− r′)

|r− r′|3 , (1.15) ..
..
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φ(r) =
1

4πε0

∫
dV ′ρ(r′)

1

|r− r′| (1.16) ..
..

and

U =
1

2

∫
dV ρ(r)φ(r) . (1.17) ..

..

Example: homogenously charged sphere

ρ(r) = ρ0 für |r| ≤ R; ρ(r) = 0 sonst. (1.18) ..
..

The integration in (1.16) reads (with r ≡ |r| and c = cos θ):

φ(r) =
1

4πε0
2 πρ0

∫ R

0

r′2 d r′
∫ 1

−1
d c (r2 + r′

2 − 2r r′ c)−1/2

and gives:

φ(r) =
Q

4πε0|r|
for r ≥ R; φ(r) =

ρ0
ε0

(
R2

2
− r2

6
) for r ≤ R (1.19) ..

..

wih

Q =

∫
dV ρ(r) =

4π

3
ρ0R

3 . (1.20) ..
..

From (1.11) it then follows for E:

E(r) =
Q

4πε0

r

|r|3 für r ≥ R; E(r) =
ρ0
3ε0

r für r ≤ R . (1.21) ..
..

For the energy U we find with (1.17) and (1.19):

U =
ρ0
2

∫
dV φ(r) =

4πρ20
2ε0

∫ R

0

r2dr (
R2

2
− r2

6
) = 2π

ρ20
ε0

2R5

15
=

3

5

Q2

4πε0

1

R
. (1.22) ..

..

Application: Determination of the classic electron radius
According to (1.22) the self energy of a point particle (R → 0) becomes infinite. Now,
according to the theory of relativity, the energy of a particle at rest, e.g. of an electron,
is connected with its rest mass m0 via

E0 = m0c
2 . (1.23) ..

..

A strictly point-like (charged) particle would then have an infinite large rest mass, accor-
ding to (1.22)! If we on the other hand associate the total (finite) rest mass of an electron
to its electrostatic energy, we must assign to the electron a finite radius R0, the classical
electron radius,

R0 =
3

5

e2

4πε0m0c2
≈ 10−13 cm = 1 fm = 10−5 Å . (1.24) ..

..

For sizes < 10−13 cm we should expect in the case of electrons deviation from Coulomb’s
law.
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1.5 Electric dipole

..
..

Let’s assume a charge distribution limited to a volume V (discreet or continuous) and
analyze the potential φ in a point P far from the volume V .

o

V

ri

r
ρ

The point of origin 0 lies within V ; we can for example assume that 0 is the center of
mass of all charge carriers, defined by

rq =

∑
i |qi|ri∑
i |qi|

. (1.25) ..
..

As long as ri � r, we can represent (1.10) as a Taylor-expansion,

φ = φ0 + φ1 + φ2 + φ3 + ... , (1.26) ..
..

if we use

1

|r− ri|
=

1√
r2 − 2 r · ri + r2i

=
1

r

1√
1− (2 r · ri − r2i ) /r2

(1.27) ..
..

and expand in (2 r · ri − r2i ) /r2. With (1− x)−1/2 = 1 + x/2 +O(x2) the result is correct
until order O(ri/r)

2:
1

|r− ri|
=

1

r
+

r · ri
r3

+ . . . . (1.28) ..
..

For the electrostatic potential φ(r) we therefore find

φ(r) =
1

4πε0

∑
i

qi
|r− ri|

=
1

4πε0

Q

r
+

1

4πε0

d · r
r3

+ . . . . (1.29) ..
..

The terms mean:

1.) Monopole contribution

φ0(r) =
∑
i

qi
4πε0r

=
Q

4πε0r
. (1.30) ..

..

The total charge (or monopole moment) Q =
∑

i qi created in 0. As an approxima-

tion a field, which behaves like the field of a point charge located in 0 for sufficiently large
distances.
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2.) Dipole contribution

φ1(r) =
d · r

4πε0r3
=

d cosθ

4πε0r2
. (1.31) ..

..

The dipole moment d is d =
∑

i qiri . The angle θ is the angle between r and d:

Construction instruction: Determine the center of mass of the positive and negative
charge carriers. If those share the same center of mass, then is d =

∑
i qiri = 0. Otherwise

their connecting line sets the direction of d; their distance is furthermore a measure for
the absolute value of d.

Example: molecules.

The next term, neglected in (1.29), is the quadrupole moment.
E-field of a dipole

The E-field of a dipole can be calculated using (1.31) and

E1(r) = −∇φ1(r) = −∇ d · r
4πε0 r3

. (1.32)

Using the product rule we obtain

− 1

4πε0

(
d · r∇r−3 + r−3 ∇d · r

)
(1.33)

=
1

4πε0

(
d · r 3 r−4

r

r
− r−3 d

)
=

1

4πε0 r5
(
3(d · r) r− r2 d

)
.
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Kapitel 2

Fundaments of electrostatics

..
..

2.1 Flux of a vector field

..
..

We now want to look for an equivalent formulation of Coulomb’s law . To achieve that
we introduce the concept of the flux of a vector-field.

A vector-field A(r) is defined on a surface F . F is measurable and two-sides, that
means F must have a finite area and top- and down side of F are well-defined via the
vector normal to the surface n. Counterexample: Möbiu’s strip.

Then we define the flux ΦF of a vector-field A through the area F via the surface
integral

ΦF =

∫
F

A · df =

∫
F

Andf , (2.1) ..
..

where An = A · n is the component of A in the direction of the surface normal n. This
directional surface element df is parallel to n, df ≡ |df |.

For the interpretation of (2.1), we consider a fluid flowing with the velocity v(r) and
the density ρ(r). If we choose

A(r) = ρ(r)v(r) , (2.2) ..
..

then ∫
F

A · df =

∫
F

ρ(r)v(r) · df (2.3) ..
..

corresponds to the amount of fluid flowing through F per unit time. (2.3) shows that only
the surface perpendicular to the current contributes.

2.2 Gauss’ law: Application to electrostatics

We now take for A in (2.3) the electrostatic field E and take a closed area F enclosing
the volume VF with the above characteristics. Then the flux of the electric field is

ΦF =

∮
F

E · df (2.4) ..
..
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Gauss’s theorem states that ΦF is equal to the volume integral of the divergence of E in
VF :

ΦF =

∫
VF

∇ · E(r) dV . (2.5) ..
..

We use for E the expression (1.15) together with the important relation for electrodyna-
mics (see (A.19), Sec.A.5.5)

∇ · r

|r|3 = 4πδ3(r) , (2.6)

this gives for the divergence of the electric field [mehr in B.1.2] :

∇ · E(r) =
ρ(r)

ε0
. (2.7) ..

..

We use (2.7) in (2.5) und obtain

ΦF =
1

ε0

∫
VF

dV ρ(r) =
Q

ε0
, (2.8) ..

..

where Q is the total charge contained in the volume V . From (2.8) we can see that the
total flux of the electric field through a closed area F is produced by the charge contained
in it. The charge is therefore a “source” for the electric field lines.

2.3 Applications of Gauss’s theorem

For symmetric charge distributionss (2.8) offers the possibility to calculate the field in-
tensity with less effort. We consider two examples:

1.) Field of a homogenously charged sphere
Take

ρ(r) = ρ(r) for r ≤ R, ρ(r) = 0 otherwise. (2.9) ..
..

Due to the spherical symmetry, E points in the radial direction so that

ΦF = 4πr2E(r) =
Qr

ε0
, (2.10) ..

..

where Qr is the charge contained in a concentric (imaginary) sphere with radius r.

E(r)r

R
ρ
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Qr = Q is tht total charge for points within r ≥ R and from (2.10) it follows:

E(r) =
Q

4πε0r2
for r ≥ R. (2.11) ..

..

Qr

R

r E(r)

ρ

For r ≤ R the result depends on the special form of ρ(r). As an example we choose

ρ(r) = ρ0 = const, (2.12) ..
..

then we have:

Qr =
4π

3
r3ρ0 , (2.13) ..

..

therefore, as in (1.21):

E(r) =
1

4πε0

Qr

r2
=

ρ0
3ε0

r. (2.14) ..
..

Compare the effort here with the one required by (1.15)!

2.) Homogenously charged infinite plane

For symmetry reasons, E is perpendicular to the plane, the absolute value E is the same
points 1 and 2, which have the same distance r from the plane. Gauss’ theorem then
yields:

ΦF =

∮
F

E · df = aE(1) + aE(2) =
Q

ε0
=

γa

ε0
, (2.15) ..

..

where a is the cylinder basis and γ the surface charge density. There is no contribution
from the cylinder barrel, since E has no component in the direction of the normal on the
cylinder barrel. Result:

E =
γ

2ε0
(2.16) ..

..
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independent of r.
A Plate condensator consists of two parallel plates with opposite surface charge

density γ and −γ so that according to (2.16) the E-field vanishes outside of the plates.
Between the plates the total field (in absolute value) is E = γ

ε0
. The potential between the

plates is determined by ∇φ(r) = −E⇒ φ(r) = −E · r. The potential difference (Voltage)
between the two layers is, thus, V = φ(A)−φ(B) = E d, where d is the distance between
the plates.

The capacity of a condensator with the total area F , storing a total charge Q = Fγ,
is defined as

C ≡ Q

V
(2.17)

and equals

C =
Fγ

dγ/ε0
=
ε0F

d
(2.18)

and only depens on the geometry of the condensator.

2.4 Differential equations for the electric field and

potential
..
..

Alternatively, the relation (2.8) between divergence of E and the total charge can be ex-
pressed in the differential form (2.7):

∇ · E(r) =
ρ(r)

ε0
. (2.19) ..

..

So it is possible to use (2.19) as basis for electrostatics (“postulate”) instead of Coulomb’s
law (1.15). In fact, (2.19) is one of the Maxwell equations for the electric field.

So if we start from (2.19) we see that this equation does not change, if an arbitrary
divergenceless vector function E′ is added to E. Therefore, equation (2.19) is not sufficient
to determine the electric field.

Irrotationality of the electric field
We obtain a second differential relation for E from the fact that E is a conservative field

20

2.21


(see (1.11)):

E = −∇φ, (2.20) ..
..

whereby φ is the electocstatic potential. Via the vector identity

∇× (∇f) = 0 , (2.21) ..
..

equation (2.20) is equivalent to the irrotationality of the electric field

∇× E = 0 (2.22) ..
..

For a given E-field, the potential can be obtained from the inversion of (2.20) (apart for
a constant), namely:

φ(r) = φ(r0)−
∫
C(r0→r)

E(r′) · dl′ , (2.23) ..
..

i.e. with a curve integral of the E-field from a given starting point r0 to the observation
point r. Since E is conservative, the integral in (2.23) only depends from the start- and
end-points, but not on the choice of connection curve C(r0 → r).
This can also be proven with the help of Stoke’s theorem. We evaluate the difference
between the integrals (2.23) on two different curves C1 and C2:(∫

C1(r0→r)

−
∫
C2(r0→r)

)
E(r′) · dl′ =

∮
D

E(r′) · dl′ (2.24)

where D is the closed curve consisting of C1 and C2. From Stoke’s theorem we have∮
D

E(r′) · dl′ =
∫
F

∇× E · df (2.25)

which vanishes due to ∇×E = 0. This result does not hold in electrodynamics anymore.
In that case the E-field is no longer conservative and (2.23) does not apply anymore, since
the integral dependens on the connection curve. In principle, Eqs. (2.19) and (2.22) are
sufficient to determine the electrostatic field E for given boundary conditions (see Chap.
3).
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Poisson’s equation
In practice one goes one step further from the field E to the potential φ, out of which E
can be determined via differentiation according to (2.20). If we insert (2.20) into (2.19)
we obtain:

∇ · (∇φ) = ∇2φ = − ρ
ε0

(2.26) ..
..

i.e., Poisson’s equation. Here one uses the abbrevation

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.27) ..

..

for the Laplace operator ∇2 (often also denoted via ∆).

Laplace equation
Once the solution of (2.26) is found, an arbitrary solution of the homogenous equation,
the Laplace equation,

∇2φ = 0 (2.28) ..
..

can be added to it and one obtains a new solution of (2.26). This ambiguity can be
eliminated with specification of boundary conditions. For further discussion, see chapter
3.
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Kapitel 3

Boundary value problems in
electrostatics

..
..

3.1 Uniqueness theorem

..
..

In the following subchapter we will show that the Poisson equation and the Laplace
equation have a unique solution if one of the following boundary conditions apply:

(i) Dirichlet condition

φ is given on a closed area F, or (3.1) ..
..

(ii) von Neumann condition

n · ∇φ(≡ ∂φ

∂n
) is given on a closed area F , (3.2) ..

..

n is the normal vector to the area F .
Proof
We assume that there are 2 solutions φ1 and φ2 of

∇2φ(r) = −ρ(r)

ε0
(3.3) ..

..

with the same boundary conditions, (3.1) or (3.2). In that case the difference of those
solutions is U = φ1 − φ2:

∇2U = 0 (3.4) ..
..

in the volume V enclosed by the area F . Furthermore is due to the existing boundary
conditions

U = 0 on F (3.5) ..
..

or
n · ∇U = 0 on F . (3.6) ..

..

With the identity

∇ · (U∇U) = (∇U)2 + U∇2U (3.7) ..
..
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and (3.4) it can be expressed as follows:∫
V

(∇U)2 dV =

∫
V

(
∇ · (U∇U) − U ∇2U︸︷︷︸

=0

)
dV =

∮
F

U ∇U · df︸ ︷︷ ︸
=0

= 0 (3.8) ..
..

under application of Gauss’s theorem, for the case that one of the two conditions (3.5) or
(3.6) hold. Also: ∫

V

(∇U)2 dV = 0 , (3.9) ..
..

meaning in V is:

∇U = 0 , (3.10) ..
..

since (∇U)2 ≥ 0. This results to

U = const (3.11) ..
..

and φ1 as well as φ2 only differ by a constant, which has no effect on the electric field E.

Special case V →∞
While V represents the entire R3 the solution to Poisson’s equation is unique if ρ is limited
to a finite range and φ(r) decays asymptotically fast enough that:

r2φ(r)
∂φ(r)

∂n
→ 0 for r → ∞, (3.12) ..

..

whereas ∂φ/∂n denotes the normal derivative of φ. The proof above transfers directly if
we consider that the surface of an enclosed volume scales with r2.

3.1.1 Physical application: metals

..
..

Why are we interested in problems with boundary conditions? Let’s take a look at the
properties of an ideal metal (conductor) in the static case. An ideal metal is an object
which contains only freely movable charge carries (usually electrons). If one introduces
such an object into an electric field forces act on the charge carriers redistributing them
until an equilibrium state is reached. The E-field of the redistributed charge carriers is
added to the external E-field. The resulting E-field counts.

The equilibrium conditions are:
(i) E = 0 inside the entire metal. If this weren’t the case the charge carriers would
experience forces which would redistribute them until E = 0.

(ii) because of (i) the potential φ is constant inside the entire metal.

(iii) because of (ii) and Poisson’s equation (2.26) the charge density vanishes
inside the metal. In an ideal metal only an infinitesimally thin layer of charge carriers
(surface charge) exists on the surface of the object.

The surface charge density γ was already introduced in eq. (2.15). In a metal γ gene-
rally depends on the position vector r on the surface of the metal: γ(r) =(charge per area.
In the following subchapter we will take a look at the components of the electric field E
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parallel (E‖) and perpendicular (E · n, where n donates the normal vector) to the metal
surface.
(iv) Let E2 be the E-field on the outside and E1 on the inside of the metal [there is
actually no electric field inside a metal as stated in (i) with E1 = 0, however let’s just
generally assume one for now]. Next we want to show that:

E1‖ = E2‖ , (3.13) ..
..

meaning the parallel component is continuous through the surface, as well as

n · (E2 − E1) =
γ(r)

ε0
, (3.14) ..

..

meaning the normal component has a discontinuity which is proportional to γ.

In order to prove this we will use the integral form of Gauss’s theorem as well as the
information that the curl of a stationary electric field E vanishes (2.22).

We first construct a volume element V = f h from two small surface elements (with
area f) which are parallel to the surface of the metal (sketch). The distance h between
the two surface elements is selected (vanishingly) small (h2 � f). According to Gauss’s
theorem the total charge q = f γ inside the volume element is proportional to the flux
ΦV of the E-field through the surface around V .

ΦV =
q

ε0
= f

γ(r)

ε0
, (3.15) ..

..

For a vanishingly small h we can now neglect the flux through the sides and we get

ΦV = n · (E2 − E1) f . (3.16)

This yields (3.14).
Next we will use two small line elements parallel to the metal surface of length l with a

(vanishingly small) distance h to construct a surface F = h l.We then get from ∇×E = 0
using Stokes’ theorem:

0 =

∮
∂F

ds · E = l (E2‖ − E1‖) , (3.17)

whereas the contribution to the line integral along h can be neglected. wobei der Beitrag
zum Linienintegral entlang h vernachlässigt werden kann. Which is evident from (3.13).
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Abbildung 3.1: {metall}

In a metal in which E1 = 0 we can therefore obtain from (3.13) and (3.14)

n · E2 =
γ(r)

ε0
E2‖ = 0 . (3.18)

Typical Dirichlet-problems are problems with a given charge density in the vicinity of
one or several metallic objects (Fig. 3.1) (A), which possibly surround the physical space
(B).

A Von Neumann problem one can imagine as a problem in which a defined surface
charge density is given (together with E · n from (3.14)).

We will study methods which allow finding one solution of Poisson’s equation for
given boundary conditions and charge distribution.The Uniqueness theorem (Sec. 3.1)
then ensures that this solution is the only solution.

3.2 Image charge

..
..

This method for finding a solution to the boundary value problem consists in the place-
ment of so called image charges of appropriate charge and location outside of the investi-
gated volume V in a way that the existing boundary conditions are satisfied.

This method is allowed because one can always add a solution of the homogeneous
Laplace equation (in V ) to the inhomogeneous Poisson equation(cf. chapter 2.4). By using
the Image charge method the particular solution of Laplace’s equation is selected which
satisfies the given boundary conditions when added to the selected (known) particular
solution of Poisson’s equation (for a single charge).

3.2.1 Point charge in front of a conducting plane

As a simple example we will consider a point charge q with a distance a to a conducting
plane which is grounded (meaning φ = 0 on the plane). We will here place the Image charge
q’ mirror-symmetric to q with respect to the plane (sketch).
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The potential at the point P is then:

(4πε0)φ(P ) =
q

r
+
q′

r′
(3.19) ..

..

and we obtain as requested φ = 0 for all points on the conducting plane x = 0 if we
choose:

q′ = −q . (3.20) ..
..

In the (here interesting) range x > 0 is q/(4πε0r) a particular solution to Poisson’s
equation, q′/(4πε0r

′) a solution to Laplace’s equation which actually ensures that the
boundary condition for x = 0 is satisfied.

Electric field and induced electric charge
The x-component of an electric field E can be derived from (3.19) and (3.20) [mehr in
B.1.1] :

Ex(P ) = −∂φ
∂x

=
q

4πε0

(
x− a
r3

− x+ a

r′3

)
, (3.21) ..

..

therefore the x-component for the plane x = 0 is

Ex(x = 0) = − 2qa

4πε0r3
. (3.22) ..

..

The parallel components of E on the plane x = 0 vanish due to (3.13) and since E1 = 0.
Eq. (3.22) means according to (3.14) that a charge with the location-dependent surface
density

γ = ε0Ex(x = 0) = − qa

2πr3
(3.23) ..

..

is induced on the plane x = 0 by the charge q (induced electric charge). This is the actual
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charge that creates the potential (3.19).

3.3 Overview electrostatics

..
..

1.) Basis: Coulomb’s law

K = qE mit E(r) =
∑
i

qi(r− ri)

4πε0|r− ri|3
=

∫
ρ(r′)

4πε0

r− r′

|r− r′|3 dV
′

2.) Field equations (Maxwell’s equations for electrostatics):

a) integral:

∮
S

E · ds = 0

∮
F

E · df =
Q

ε0
m m

b) differental: ∇× E = 0 ∇ · E =
ρ

ε0

3.) Electrostatic potential:

E = −∇φ → ∇2φ = − ρ
ε0

: Poisson’s equation

5.) Ideal metal:

• inside: φ = const. , E = 0

• surface: E · n =
γ

ε0
, E× n = 0.

6.) Nützliche Formeln:
r− r′

|r− r′|3 = −∇ 1

|r− r′|

∇ · r− r′

|r− r′|3 = −∇2 1

|r− r′| = 4πδ(r− r′)
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Kapitel 4

Ampere’s Law

..
..

4.1 Electric current and conservation of charge

..
..

Electric currents induced by the movement of charged particles. Those charged particles
can be for example charged ions in a particle accelerator, an electrolyte or a gas, electrons
in a metal etc. The primary cause for the movement of charges are electric fields, however
also material transport of charged particles can induce movement of charge. The electric
current is defined as the amount of charge flowing through the cross section of a conductor
per unit time.

Current density

We will now consider the simplest case of charge carriers of the same charge q and velocity
v. Let a be the vector perpendicular to the cross section of the conducting medium (sketch)
whereas the absolute value a represents the cross sectional area and n the charge density.
The charge carriers in the volume ∆V = (a · v)∆t then pass the cross section of the
conductor in the time interval ∆t, in total yielding an amount of charge carriers of n(a ·
v)∆t. Thereof one can calculate the electrical current

I(a) =
nq(a · v)∆t

∆t
= nq(a · v). (4.1) ..

..

If we now assume per unit volume ni charge carriers qi with the velocity vi we get:
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I(a) = a · (
∑
i

niqivi)︸ ︷︷ ︸
≡j

. (4.2) ..
..

Equations (4.1) and (4.2) now suggest the introduction of the current density j as

j =
∑
i

niqivi (4.3) ..
..

so that for an arbitrary infinitesimal (oriented) area ∆a the current can be expressed as

∆I = ∆a · j .

For several particles of the same charge qi = q one can calculate j with the mean velocity

< v > =
1

n

∑
i

nivi (4.4) ..
..

to:
j = nq < v > = ρ < v > . (4.5) ..

..

Equation (4.5) makes clear that high absolute velocities (4.5) of the charge carriers don’t
necessarily account for a strong electric current as only the mean of the velocities con-
tributes to an effective current. For example if the velocities of the charge carriers are
equally distributed over all directions then there is no resulting current < v >= 0 and
therefore also j = 0.

In a general case are ρ and < v > space and time dependent, therefore

j = j(r, t). (4.6) ..
..

The total current through an area F is also given by

I =

∫
F

j(r, t) · df (4.7)

Continuity equation
We can express the conservation law of charge using the charge and current density as
follows: From the conservation of charge follows:
We assume an arbitrary and finite volume V with the surface F .
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Let the charge within this volume be Q = Q(t). If V is time independent, the change in
charge within the volume V per unit time is:

dQ

dt
=

∫
V

∂ρ

∂t
dV. (4.8) ..

..

Since charge can neither be created nor annihilated, the decrease (increase) of charge
within the volume V must be equal to the charge flowing through the surface F of the
volume in the observed time interval. The latter is given through the surface integral of
the current density which can be transformed into a volume integral according to Gauss’s
theorem:

− dQ

dt
=

∮
F

j · df =

∫
V

∇ · j dV. (4.9) ..
..

Therefore is the charge balance:

−
∫
V

∂ρ

∂t
dV =

∫
V

∇ · j dV (4.10) ..
..

or since the volume V can be chosed arbitrarily, we obtain the Continuity equation:

∇ · j +
∂ρ

∂t
= 0. (4.11) ..

..

While (4.9) describes the conservation of charge in the integral form, (4.11) describes the
conservation of charge in the differential form.

Special cases

(i) electrostatics: stationary charges

j = 0 → ∂ρ

∂t
= 0 → ρ = ρ(r) (4.12) ..

..
(ii) magnetostatics: stationary currents

j = j(r) and ∇ · j = 0 → ∂ρ

∂t
= 0. (4.13) ..

..

For a stationary current is j (and therefore also ∇· j) constant with respect to time.
∇·j must be zero at every point in space otherwise the charge density would increase
unboundedly.

4.2 Ampere’s law

..
..

Consider a given stationary current density j = j(r). In order to eliminate electrostatics
effects we will assume that the density of the moving charge carriers which induce the
electric current is compensated by the charge carriers at rest with the opposite value
of charge (e.g. moving conduction electrons and the ionic cores at rest in a metallic
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conductor). On a moving charge q then acts a - non electrostatic - force in the proximity
of a current-carrying conductor, for which one can experimentally find:

K = q [v ×B] (4.14) ..
..

with

B(r) = Γm

∫
V

j(r′)× (r− r′)

|r− r′|3 dV ′ (4.15) ..
..

as the field of the magnetic induction (short: B-field). The equations (4.14) and (4.15)
are as fundamental principles of magnetostatics equally verified as

K = q E (4.16) ..
..

and (1.15) in electrostatics. Concluding, (4.14) and (1.8) yield the total force (Lorentz’s
force) acting on a charge q.

K = q (E + v ×B) . (4.17) ..
..

(4.17) provides a precise measurement instruction for the electrostatic field E and for the
magnetic induction B. The contributions to (4.17) from both components can be identified
independently by first measuring the acting force on a charge at rest (v = 0). This force
is due to (4.17) solely caused by the electric field E. Then the charge is set in motion.
From the resulting force one can subtract the electrostatic contribution. The calculated
difference is then equivalent to the magnetic contribution to the total acting force.
Systems of measurement
Is Γe a set value, meaning one has defined the unit charge (compare section 1.2) then all
occuring quantities in (4.14) and (4.15) are uniquely specified with respect to their unit.
Therefore Γm can no longer be freely chosen:

(ii) cgs system:

Γe = 1, Γm =
1

c
(4.18) ..

..
with the speed of light c. Note that in the cgs measurement system Lorentz’s force
has a different form:

K = q
(
E +

v

c
×B

)
.

So that the E and B field have the same dimension.

(i) MKSA system:

Γe =
1

4πε0
, Γm =

µ0

4π
(4.19) ..

..

with

ε0 = 8.854 · 10−12
Cb2

N m2
, µ0 = 4π · 10−7

m kg

Cb2
. (4.20) ..

..

µ0 is the magnetic permeability.
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Principle of superposition
Equation (4.15) contains - as in (1.8) - the principle of superposition: the fields of two
current distributions j1 and j2 superpose linearly: B(j1 + j2) = B(j1) + B(j2).

Connection to relativity
The ratio Γm/Γe is independent of the choice of unit charge (therefore of ε0) since the
ratio of (4.14) to (1.8) is dimensionless. From (4.17) has the ratio of |B|/|E| the dimension
of an inverse velocity and from (4.15) to (1.8) has the ratio of Γm/Γe = ε0 µ0 the dimension
of an inverse velocity squared.

With (4.19) we obtain the relation

ε0 µ0 =
1

c2
(4.21) ..

..

This fundamental relation already indicates a connection to the special theory of rela-
vity. Indeed one can transform (4.14) and (4.15) to (4.16) and (1.15) using a Lorentz
transformation .

4.3 Biot-Savart law

..
..

In this subchapter we will calculate the vector field B(r) for different simple current
densities.

For a thin conductor we can immediately integrate over the cross section f of the
conductor [meaning

∫
j d V → I

∫
dl] and therefore we obtain from (4.15)

B(r) =
µ0I

4π

∫
L

dl′ × (r− r′)

|r− r′|3 (4.22) ..
..

with

I =

∫
F

j · df ′ (4.23) ..
..

as the electrical current (compare sketch).

If the conductor is furthermore straight we can derive from (4.22) or also (4.15) that
the field lines of B are concentric around the conductor. One then only has to calculate
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the absolute value of B since all contributions to the integral (4.22) for a small straight
conductor have the same direction. From the sketch we see that:

B(P ) =
µ0I

4π

∫
L

sinθ

|r− r′|2 dz (4.24) ..
..

We will evaluate the remaining integral for an infinitely long conductor: With

R = |r− r′| sinθ; z =
R

tan θ
→ dz =

−R
sin2θ

dθ (4.25) ..
..

we obtain for the field intensity in point P :

B(P ) =
µ0I

4πR

∫ 1

−1
d( cosθ) =

µ0I

2πR
. (4.26) ..

..

This is known as the Biot-Savart law for a thin, straight and infinitely long conductor.
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Kapitel 5

Fundamental equations of
magnetostatics

..
..

Like for the electrostatic field we now want to write down the equations for the B-field in
differential form.

5.1 Divergence of the magnetic induction

..
..

We rewrite (4.15) as follows:

B(r) =
µo
4π

∫
V

j(r′)× (r− r′)

|r− r′|3dV
′

= −µo
4π

∫
V

j(r′)×∇r|r− r′|−1dV ′

since ∇r only affects r we obtain:

B(r) =
µ0

4π
∇×

(∫
V

j(r′)

|r− r′| dV
′
)
, (5.1) ..

..

According to (5.1), B can be written in the form

B = ∇×A (5.2) ..
..

with

A(r) =
µ0

4π

∫
V

j(r′)

|r− r′| dV
′ . (5.3) ..

..

A(r) denotes the so called vector potential. Since ∇ · (∇×A)= 0, we obtain

∇ ·B = 0 . (5.4) ..
..

Equation (5.4) should be compared to ∇ · E(r) = ρ(r)
ε0

to see that magnetic charges do
not exist. If we form the integral corresponding to (5.4) we get:∫

V

∇ ·B dV =

∮
F

B · df = 0, (5.5) ..
..

and can therefore see that the magnetic flux through a closed surface F vanishes.
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5.2 Curl of B

In electrostatics we have found
∇× E = 0 (5.6) ..

..

or equivalently ∮
S

E · ds = 0 (5.7) ..
..

according to Stoke’s theorem. For the B-field we derived from (5.2)

∇×B = ∇×(∇×A) = ∇(∇ ·A)−∇2A . (5.8) ..
..

Next we will show that
∇ ·A = 0 . (5.9) ..

..

Proof: from (5.3):

∇r ·A(r) =
µ0

4π

∫
V

j(r′) ·∇r|r− r′|−1 dV ′ = −µ0

4π

∫
V

j(r′) ·∇r′ |r− r′|−1 dV ′ . (5.10)

Up next we need a
Lemma: General properties of a stationary current density bounded in space
We now use the following relation valid for a stationary ∇j = 0 current density,
which vanishes outside a volume V (as well as on its surface, or vanishing

”
rapidly enough“ in infinity).

With the condition given above and for arbitrary (sufficiently differentiable) scalar
fields g, f holds: 1 ∫

V

(f j · ∇g + g j · ∇f) dV = 0 . (5.11) ..
..

Using (5.11) with f(r′) = 1 and g(r′) = 1
|r−r′| , yields the last expression 0.

Now we use a formula from electrostatics

∇2 1

|r− r′| = −4πδ(r− r′)

If we apply the Laplace operator to (5.3) we then obtain

∇2A(r) = −µ0

4π

∫
V

j(r′)4πδ(r− r′) dV ′ = −µ0 j(r) . (5.12) ..
..

Together with (5.8) and (5.9) we get:

∇×B = µ0 j . (5.13) ..
..

The integral form of (5.13) can then be derived using Stoke’s theorem:∮
S

B · ds = µ0I , (5.14) ..
..

1 ∇ · (g f j) = (f j · ∇g + g j · ∇f), since ∇ · j = 0. Then we integrate over V , where the first term is
transformed into an integral over the surface using Gauss’s theorem and it therefore vanishes.
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where I denotes the current enclosed by S. Annotation:
In praxis (e.g. coil) S can circulate the current several times. In the case of S circulating
the current n-fold, one must substitute I with nI.
(5.13) and (5.4) form the fundamental equations (Maxwell’s equations) of magnetostatics.
Contrary to the electrostatic field E with∇×E = 0 is the B-field therefore not irrotational

5.3 Vector potential and gauge

In chapter 5.1 we have introduced a auxiliary quantity, the so called vector potential
A. From this vector potential one can derive the magnetic induction by differentiation (
similarly to the electrostatic potential φ). But unlike the electrostatic potential φ is A a
vector field and B is given by

B = ∇×A . (5.15) ..
..

In (5.12) we have found a differential equation for the vector potential A, from which A
can be determined for a given current distribution j.
Coulomb gauge
However, one has to consider that the relation (5.15) does not uniquely specify the vector
potential for a given B-field. This is due to the fact that the B-field does not change when
performing a so called gauge transformation

A ⇒ A′ = A +∇χ (5.16) ..
..

where χ denotes an arbitrary (however at least twofold partially differentiable) scalar
function. Since:

∇×A′ = ∇×A +∇× (∇χ) = ∇×A + 0. (5.17) ..
..

(5.16) provides additional freedom in the selection of A.
(5.3) is therefore not the only possible expression for A. With (5.3) is (compare (5.9)) A
divergence free. A choice for A, which satisfies (5.9) is generally called Coulomb gauge.
Since physics only depends on B and not on A, there are no special limitations to the
choice of a gauge. In Coulomb gauge (5.9) satisfies A [compare (5.8), (5.13) and (5.9)]
the differential equation:

∇2A = −µ0 j
Coulomb gauge

. (5.18) ..
..

The vectorial equation (5.18) can be split up into 3 components which are mathematically
speaking of the same type as the already introduced Poisson equation (2.26).

However, if one starts from a vector potential A which doesn’t satisfy the Coulomb
gauge condition

∇ ·A 6= 0, (5.19) ..
..

one can choose the gauge potential χ in a way that

∇ ·A′ = ∇ ·A +∇ · (∇χ) = 0 , (5.20) ..
..

A then satisfies the Coulomb gauge. One can determine χ by solving a differential equation
of the type (2.28):
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∇2χ = −∇ ·A, (5.21) ..
..

where −∇ ·A must be considered a given inhomogeneity.
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5.4 Overview of magnetostatics

1.) Basis: Ampere’s law

K = q(v ×B) mit B =
µ0

4π

∫
V

j(r′)× (r− r′)

|r− r′|3 dV ′

for stationary currents, where ∇ · j = −∂ρ/∂t = 0.

2.) Field equations: from

B = ∇×A mit A =
µ0

4π

∫
V

j(r′)

|r− r′| dV
′

one can derive

a) differential:

∇ ·B = 0; ∇×B = µ0 j

b) integral

flux:

∮
F

B · df = 0; circulation:

∮
S

B · ds = µ0I

3.) Vector potential:

∇× (∇×A) = µ0j → ∇2A = −µ0 j

for ∇ ·A = 0 (Coulomb gauge).

Static Maxwell’s equations

(A) ∇ · E =
ρ

ε0
(B) ∇ ·B = 0

(C) ∇× E = 0 (D) ∇×B = µ0 j

(5.22)

Lorentz force

K = q (E + v ×B)⇒
∫

(ρ E + j×B) d V (5.23)
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Fundamentals of elektrodynamics
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Kapitel 6

Maxwell’s equations

..
..

6.1 Concept of the electromagnetic field

The following chapter will explain the fundamental equations for the electric field E(r, t)
and for the magnetic induction B(r, t) for the case of arbitrary time dependent charge and
current distributions:

ρ = ρ(r, t); j = j(r, t) (6.1) ..
..

As a definition of the fields we will use Lorentz’s force

(Lorentz‘s force) K = q [ E + (v ×B) ] . (6.2) ..
..

Since ρ and j are now interconnected by the continuity equation

∂ρ

∂t
+∇ · j = 0 (6.3) ..

..

it is clear that the electric and magnetic fields can no longer be treated independently:
The Maxwell’s equations are a system of coupled differential equations for the fields E
and B.

6.2 Incompleteness of the static Maxwell’s equations

Once more the static Maxwell’s equations (in vacuum) which we derived so far. These
equations only hold for time independent fields.

Static Maxwell’s equations

(A) ∇ · E =
ρ

ε0
(B) ∇ ·B = 0

(C) ∇× E = 0 (D) ∇×B = µ0 j

(6.4) ..
..
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In these equations the E and B field can be treated separately, however as has been men-
tioned above this is not correct for general fields. There are two reasons why the E and
B field must be coupled:

(1) By the use of different inertial reference frames E and B are mixing with each other.

(2) Because of the continuity equation are ρ and j and therefore also E and B coupled.

We will see that an exact analysis of these two reasons will yield the appropriate genera-
lization of (6.4).

6.3 Faraday’s law of induction

Electromotive force
Let us consider a conductor ring (circular shape) R, which travels at the speed v in a
non-homogeneous B field. As an example we will now assume a B -field oriented in the
z-direction, which increases along the x-direction (sketch). The ring lies on the x−y-plane
and moves in the x-direction.

Due to the B -field the free charge carriers q = −e < 0 on the conductor ring now
experience a force K = q v × B in the +y-direction. This force, however, is larger on
the right side of the ring where the B -field is stronger. Because of this effect the charge
carriers are more strongly accelerated counter-clockwise around the ring. Mathematically
this means that the circulation of the force along R does not vanish.

Let’s assume to be in the inertial reference frame of the conductor ring with velocity
v. In this system the charges are immobile, however, they experience the same force (in
the non-relativistic case) as they do in the laboratory system. But since the charges are
immobile those forces cannot originate from the B -field but rather from an electric field
E = K/q (Lorentz’s force). Just like the force K has E also a non-vanishing circulation
which contradicts (6.4)(C). In the reference frame of the movable conductor therefore
exists a E -field which is no longer non-rotational as well as a time-dependent B -field.
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We now want to find the relation between these two fields, meaning we want to mathe-
matically derive the suitable generalization of (6.4)(C). We start by using the index “R”
for the fields in the reference frame of the conductor ring and no index for the laboratory
system. The BR-field is the same as B just spatially displaced by vt.
By comparing the forces in both reference frames we obtain ER:

K = q v ×B = KR = q ER . (6.5) ..
..

While the ring moves through the distance δr in the time interval δt, BR changes by

δBR = (δr ·∇)BR , (6.6)

the time derivative of the BR-field in the system R is therefore given by

∂ BR

∂ t
= (v ·∇)BR . (6.7)

The last term can be rewritten using the relation (valid for homogeneous v)

∇× (B× v) = (v ·∇)B− v (∇ ·B)︸ ︷︷ ︸
=0

= (v ·∇)B . (6.8)

Leading to

−∂ BR

∂ t
= ∇× (v ×BR) = ∇× ER , (6.9) ..

..

where we have used (6.5). This equation defines a relationship between the time derivative
of B and the curl of E . (6.9) is therefore the appropriate generalization of the Maxwell’s
equation (6.4)(C).

In order to study the effects on the conductor ring let us take a look at the integral
form of (6.9) using Stokes’ theorem. The circulation of E along R is equivalent to an
induction voltage Vind and is given by (we can omit the index R)

Vind =

∮
R

E dl = −k d

d t

∫
S

B · d f (k = 1) . (6.10) ..
..

This is known as Faraday’s law of induction. (6.10) means that a change in magnetic flux
through a closed conductor ring induces a voltage in this circuit.

Annotations

• (6.10) and its differential form

∇× E +
∂ B

∂ t
= 0 (6.11) ..

..

are universally valid: The change in flux can either be caused by moving the con-
ductor ring (as discussed above) or by a time dependence of the B -field.

• Equation (6.10) is valid even if the conductor ring doesn’t actually exist, the ring
only facilitates the measurement of the induced field.
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Abbildung 6.1: {flux} The flux of B through the surfaces S1 and S2 delimited by R is ..
..

the same, according to (6.10). Therefore is the total flux through the surface S1+S2 equal
to zero.

• By calculating the divergence of (6.11) one obtains ∂ ∇B
∂ t

= 0, meaning (6.4)(B)
remains valid. Also in (6.10) it is implicit that different surfaces delimited by R have
the same magnetic flux. This means that the magnetic flux through a closed surface
vanishes (Fig. ??).

• The sign in (6.10) reflects Lenz’s law. This means that the voltage, induced by the
time dependent B -field, and therefore current, induces (due to (4.22)) a magnetic
field of the opposite orientation with respect to the (growing) B -field (sketch).

• In the cgs-system is the constant k in (6.10) k = 1/c.

Applications:
Betatron: In the electric field, induced by a time dependent B-field, charge carriers are
being accelerated.
Alternating current generator: A rotating coil in a constant B -field experiences an induced
voltage due to the time dependence of the magnetic flux in the coil.
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6.4 Extension of Ampère’s law

Ampère’s law of magnetostatics (6.4)(D)

∇×B = µ0 j (6.12) ..
..

is only valid for stationary currents. If one evaluates

∇ · (∇×B) = µ0∇ · j, (6.13) ..
..

one obtains, using the identity

∇ · (∇× a) = 0, (6.14) ..
..

that ∇·j = 0 , meaning stationary currents. The continuity equation, however, is generally
valid

∇ · j +
∂ρ

∂t
= 0, (6.15) ..

..

so that (6.12) has to be modified for non-stationary currents.
What this modification has to look like will be instantly clear when one uses Gauss’s

law of electrostatics ((6.4)(A)):

∇ · E =
ρ

ε0
(6.16) ..

..

which is supported by the concept of charge invariance postulated in chapter 1. If one
combines the continuity equation (6.15) and (6.16), one obtains:

∇ · j +
∂ρ

∂t
= ∇ ·

(
j + ε0

∂E

∂t

)
= 0. (6.17) ..
..

Therefore by replacing

j → jM ≡ j + ε0
∂E

∂t
, (6.18) ..

..

one yet again obtains the
”
current density“ with a vanishing divergence, just like in

magnetostatics.
This

”
current density“ jM is known as Maxwell’s displacement current. In accordance

with the conservation of charge we therefore extend (6.12) as follows:

∇×B = µ0 jM = µ0 j + µ0ε0
∂E

∂t
. (6.19) ..

..

Ampère’s law (6.19) finds its experimental confirmation in the existence of electro-magnetic
waves (chapter IV).

Self-induction
A current-carrying conductor induces a B (and E ) field in it’s surroundings according
to (6.19). If the flux of the B -field through the conductor ring changes, an induction
current is induced in the ring (self-induction), which as per (6.10) has the opposite orien-
tation as the initial current (Lenz’s law). The self-induction depends on the geometry of
the conductor. For a quantitative formulation one can conveniently use electro-magnetic
potentials (chapter 7).
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6.5 Overview of Maxwell’s equations

Homogeneous equations

∇ ·B = 0 , (6.20) ..
..

which corresponds to the absence of magnetic monopols.

∇× E +
∂B

∂t
= 0 , (6.21) ..

..

which corresponds to Faraday’s law of induction.

Inhomogeneous equations

∇ · E =
ρ

ε0
, (6.22) ..

..

which corresponds to Gauss’s law.

∇×B− µ0ε0
∂E

∂t
= µ0j , (6.23) ..

..

which corresponds to Ampère-Maxwell’s equation.

In (6.22) and (6.23) is the conservation of charge (6.15) contained implicitly. (6.21) and
(6.23) show, that a time-dependent magnetic field B induces an electric field E and vice
versa. The equations (6.20) – (6.23) together with Lorentz’s force

K = q [ E + (v ×B) ] . (6.24) ..
..

fully describe the electro-magnetic interaction of charged particles in the framework of
classical physics.

Maxwell’s equations in vacuum

(A) ∇ · E =
ρ

ε0
(B) ∇ ·B = 0

(C) ∇× E +
∂B

∂t
= 0 (D) ∇×B− µ0ε0

∂E

∂t
= µ0 j

(6.25) ..
..
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Kapitel 7

Electromagnetic potentials

..
..

7.1 Scalar potential and vector potential

In order to solve the coupled differential equations (6.20) - (6.23) for E and B it is often
convenient - analogous to the procedure in electro and magnetostatics - to introduce
electromagnetic potentials.

Since
∇ ·B = 0, (7.1) ..

..

holds also for dynamic fields, we can continue to introduce a vector potential A = A(r, t)
using the relation

B = ∇×A . (7.2) ..
..

The law of induction (6.25)(C) then rewrites as

∇×
(

E +
∂A

∂t

)
= 0 . (7.3) ..

..

E itself is no longer irrotational and can therefore no longer be written as the gradient of
a potential. However, the vector field in (7.3) can be written as the gradient of a scalar
function φ = φ(r, t): (

E +
∂A

∂t

)
= −∇φ, (7.4) ..

..

or

E = −∂A

∂t
−∇φ . (7.5) ..

..

With (7.2) and (7.5) are E and B determined by the vector potential A and the scalar
potential φ.

Equations for A and φ
We will now construct the differential equations from which A and φ can be calculated
for a given ρ and j. For this task we will use the inhomogeneous equations (6.22) and
(6.23). From (6.22) one can obtain the following formula using E from (7.5):

∇2φ+∇ ·
(
∂A

∂t

)
= − ρ

ε0
(7.6) ..

..
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and from (6.23) with (7.2):

∇× (∇×A) + µ0ε0

(
∇∂φ
∂t

+
∂2A

∂t2

)
= µ0j. (7.7) ..

..

With the identity

∇× (∇× a) = −∇2a +∇(∇ · a) (7.8) ..
..

(7.7) transforms into:

∇2A − µ0ε0
∂2A

∂t2
= − µ0j + ∇

(
∇ ·A + µ0ε0

∂φ

∂t

)
(7.9)

With this procedure we successfully transformed the 8 Maxwell’s equations for E and B
into 4 equations ((7.6) and (7.9)) for the potentials A and φ, which, however, are coupled
to each other.

Gauge invariance
In order to decouple ((7.6) and (7.9)) we will make use of the so-called gauge invarian-
ce. According to this invariance the physical fields (7.2) and (7.5) (and therefore also
Maxwell’s equations) are invariant under the following gauge transformations:

A→ A′ = A +∇χ , (7.10) ..
..

φ→ φ′ = φ− ∂χ

∂t
(7.11) ..

..

Hereby χ(r, t) is an arbitrary (twofold continuously differentiable) function.
Proof:

B = ∇× (A + ∇χ) = ∇×A (7.12)

− E =
∂ A

∂t
+
∂ ∇χ

∂t
+ ∇φ−∇∂χ

∂t
=
∂ A

∂t
+ ∇φ (7.13)

7.2 Lorenz gauge

1

Equation (7.9) suggests to choose χ in a way that

∇ ·A + µ0ε0
∂φ

∂t
= 0, (7.14) ..

..

which corresponds to the Lorenz-convention. (That this is always possible will be shown
shortly).

1By Danish physicist Ludvig Lorenz. It is often incorrectly (also in earlier versions of this script)
spelled Lorentz gauge and attributed to the Dutch physicist Hendrik Antoon Lorentz.
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One can obtain decoupled equations from (7.9), (7.6) and (7.14):

∇2A− µ0ε0
∂2A

∂t2
= −µ0j. (7.15) ..

..

∇2φ− µ0ε0
∂2φ

∂t2
= − ρ

ε0
, (7.16) ..

..

both sharing the identical mathematical structure. For time-independent fields these for-
mulae simplify to (2.26) and (5.18) known from electro and magnetostatics. The Lorenz
gauge (7.14) is used in the relativistic formulation of electrodynamics under application
of

µ0ε0 = c−2 . (7.17)

Construction of χ
In the case that

∇ ·A + µ0ε0
∂φ

∂t
≡ f(r, t) 6= 0 , (7.18) ..

..

we can perform a gauge transformation ((7.10),(7.11)) and demand for the transformed
fields (7.22) (7.23) that:

∇ ·A′ + µ0ε0
∂φ′

∂t
= ∇ ·A + ∇2χ+ µ0ε0

∂φ

∂t
− µ0ε0

∂2χ

∂t2
= 0. (7.19) ..
..

Equation (7.19) is an inhomogeneous, partial differential equation of 2nd order of the
form

∇2χ− µ0ε0
∂2χ

∂t2
= −f(r, t). (7.20) ..

..

For a given inhomogeneity −f(r, t) is the solution not unique, since to the solution of
(7.20) one can always add a solution to the homogeneous equation

∇2χ− µ0ε0
∂2χ

∂t2
= 0 . (7.21) ..

..
7.3 Coulomb gauge

In atomic and nuclear physics χ is chosen in a way that

∇ ·A = 0. (7.22) ..
..

(7.6) then transforms into

∇2φ = − ρ
ε0
, (7.23) ..

..

with the already known (particular) solution:2

φ(r, t) =
1

4πε0

∫
V

ρ(r′, t)

|r− r′| dV
′ . (7.24) ..

..

2(7.24) seems to be a long-distance effect on the potential φ. However, it turns out that the effect on
the B and E fields is always a proximity effect.
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Kapitel 8

Energy of the electromagnetic field

..
..

..
..

In this chapter we want to construct the energy balance for an arbitrary electromagnetic
field.

First let’s assume a point charge q traveling at the speed v in an electromagnetic field
{E,B}. The work performed by the field on the charge is given by:

dWM

dt
= K · v = q [ E + (v ×B) ] · v = qE · v , (8.1) ..

..

since the magnetic field does not perform any work. Accordingly holds for a current with
the current density j:

dWM

dt
=

∫
V

E · j dV. (8.2) ..
..

The work performed on the charge by the field is accounted for by the energy of the
electromagnetic field, for which we will derive an explicit relation.

As in the static case we want to look upon the potential energies of the charges as
field energies. Therefore the charges and currents must be eliminated using Maxwell’s
equations.

In (8.2) we will start by eliminating the current density j regarding the moving points
of mass using Ampère-Maxwell’s law (6.23):∫

V

E · j dV =

∫
V

(
1

µ0

E · (∇×B)− ε0E ·
∂E

∂t

)
dV . (8.3) ..

..

This expression , which only contains the fields E and B, can be symmetrized with respect
to E and B. We use

∇·(E×B) = ∂i εijk EjBk = εijk (∂iEj)Bk + εijk Ej (∂iBk) = = B·(∇× E)−E·(∇×B)

as well as the law of induction ∇× E = −Ḃ and find:

E · (∇×B) = B · (∇× E)−∇ · (E×B) = −B · ∂B

∂t
−∇ · (E×B) (8.4) ..

..
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If we put (8.4) in formula (8.3), we obtain:

dWM

dt
=

∫
V

E · j dV = −
∫
V

 1

2µ0

∂B2

∂t
+
ε0
2

∂E2

∂t︸ ︷︷ ︸
∂ωF /∂t

+
1

µ0

∇ · (E×B)︸ ︷︷ ︸
∇·S

 dV. (8.5) ..
..

Interpretation
We write (8.5) as the sum of three contributions:

dWM

dt
+
dUF
dt

+

∫
V

∇ · S d V = 0; , (8.6) ..
..

with the field energy

UF =

∫
V

(
1

2µ0

B2 +
ε0
2
E2

)
dV , (8.7) ..

..

and the Poynting-vector

S =
1

µ0

(E×B) . (8.8) ..
..

In (8.7) we can now introduce the energy density of the electromagnetic field

ωF =
1

2µ0

B2 +
ε0
2
E2 , (8.9) ..

..

which consists of an electric contribution

ωel =
ε0
2
E2 (8.10) ..

..

and a magnetic contribution

ωmag =
1

2µ0

B2 . (8.11) ..
..

Using Gauss’s theorem we can now transform the divergence in (8.6) into a surface
integral:

dUF
dt

= −dWM

dt
−
∫
∂V

S · df . (8.12) ..
..

(8.12) therefore describes the following energy balance: The field energy UF in a volume
V can change

(a) when the electromagnetic field performs work (dWM

dt
) on charges (8.2) (UF is therefore

transformed into kinetic energy of the charges)

(b) by radiating energy in the form of electromagnetic radiation through the volume V
(also into the volume from the outside in the case that the surface integral in (8.12)
is negative). Analogous to the conservation of charge (section 4.1) we identify the
Poynting-vector S as the energy current density.
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The energy balance shows that the energy of a closed system (point charges plus the
electromagnetic field) is a conserved quantity.

The energy balance (8.12) can be rewritten in the differential form as

E · j +
∂ωF
∂t

+∇ · S = 0 . (8.13)

In the case of an infinite volume and that the fields E and B decay asymptotically
fast enough (meaning that the product of the fields decays faster than 1/r2), the surface
integral vanishes. The energy balance (8.12) is then given by the work and the field energy.

While the condition given above is fulfilled for static fields, it is not for radiation fields.
As we will see, energy is so to speak sent off “to infinity” by radiation fields.

Similar to (8.6), there are also conservation laws for the momentum and for the angular
momentum of electromagnetic fields.

53



Teil IV

Electromagnetic radiation in vacuum
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Kapitel 9

The electromagnetic field in vacuum

..
..

9.1 Homogeneous wave equation

Maxwell’s equations in vacuum (ρ = 0; j = 0) are defined as

∇ · E = 0; ∇ ·B = 0; ∇× E = −∂B

∂t
; ∇×B = ε0µ0

∂E

∂t
. (9.1) ..
..

In order to decouple E and B we construct

∇× (∇×B) = ∇ (∇ ·B)−∇2B

= ε0µ0
∂

∂t
∇× E = −ε0µ0

∂2B

∂t2
. (9.2)

This results in a homogeneous wave equation(
∇2 − 1

c2
∂2

∂t2

)
B = 0 ;

1

c2
= ε0µ0. (9.3) ..

..

Analogous we can proceed with the E-field. With the abbreviation

� ≡ 1

c2
∂2

∂t2
−∇2 (9.4) ..

..

for the d’Alembert-operator � we obtain instead of (9.1)

�B = 0; ∇ ·B = 0

�E = 0; ∇ · E = 0 (9.5)

The corresponding potentials can be found in chapter 7:

�A = 0; ∇ ·A = 0 (9.6) ..
..

φ = 0 (9.7) ..
..

in the so-called Coulomb-gauge .

56

9.1
9.3
9.4
9.6
9.7


We therefore have to solve a differential equation of the type

�f(r, t) = 0 , (9.8) ..
..

where f stands for any component of E,B or A. The solutions for E,B and A are
then furthermore limited by the secondary condition that the divergence must vanish
(transversality condition).

9.2 Monochromatic plane waves

In order to solve (9.8) we start off with the approach

f = f0 exp(i(k · r− ωt)). (9.9) ..
..

(9.8) yields

(−k2 +
ω2

c2
)f = 0 . (9.10)

(9.9) is therefore a solution to (9.8) provided that the dispersion relation

ω2 = k2c2 (9.11) ..
..

is valid.
For the electric field strength and the magnetic induction we obtain:

E = E0 exp(i(k · r− ωt)), (9.12) ..
..

B = B0 exp(i(k · r− ωt)), (9.13)

where E0 and B0 are constant vectors that furthermore have to satisfy several conditions
(see below). The solution for A is analogous.
Complex vs. real fields
E,A and B are as measurable quantities real-valued vector fields. As arranged should
the complex notation in equations (9.9,9.12) be interpreted in a way that only the real
part corresponds to the actual physical vector field. The complex notation is at times (for
example when differentiating) more convenient than the real one; there arise no problems
as long as only linear operations are performed.

Caution is required when calculating physical quantities as for instance the energy
current density. In this case products of vector fields occur, as for example

E2 . (9.14)

Here has to be taken the real part of the fields before the product is evaluated:

E2 = (Re E0 exp(i(k · r∓ ωt)))2 (9.15)

6= Re (E0 exp(i(k · r∓ ωt)))2 wrong !
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By taking a look at the convention that the real part is being taken at the end of
linear operations, expressions like (9.12) can be easily differentiated. One can easily show
(compare sec. 9.3) that the differentiation can be replaced as follows:

∇ · · · → ik
∂

∂ t
→ −iω . (9.16) ..

..

Properties of the solution

i) Plane waves

Functions of type (9.12) describe plane waves, meaning their wave fronts are planes:
The points r in which f(r, t) has the same function value at a fixed point in time t
lie on a plane (Hesse normal form)

k · r = const , (9.17) ..
..

which is perpendicular to k. k denotes the direction of propagation. Depending
on the sign of ω one obtains waves running in the ±k-direction.

ii) Transversality of electromagnetic waves

From ∇ ·B = 0 using (9.16) we can derive

ik ·B = 0→ k ·B0 = 0 (9.18) ..
..

and similarly for E:
k · E = 0 , (9.19)

meaning the fields are transversal with respect to the direction of propagation.
The same holds for A.

iii) Orthogonality of E and B

From the Maxwell’s equation

∇× E = −∂B

∂t
(9.20) ..

..

using (9.16) can be derived that

k× E = ωB . (9.21) ..
..
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therefore E ⊥ B. E,B and k also construct an orthogonal trihedron (compare
sketch). (9.21) with (9.11) furthermore determines the absolute values of B and
E, namely:

|B| = |E|/c . (9.22)

k

B

E

Annotations

1.) Apart from plane waves are for example also spherical waves solutions to (9.8); they
have the form:

f(r − ct)
r

, (9.23) ..
..

where f denotes an arbitrary (at least twofold differentiable) function.

2.) The existence of electromagnetic waves (e.g. light waves, radio waves, micro waves,
γ-radiation etc.) proves the correctness of the relation ∇ × B = ε0µ0∂E/∂t in
vacuum, which was crucial for the derivation of the wave equation. It represents the
experimental confirmation for Maxwell-Ampère’s law (6.19).

Terminology

wave vector k
wave number k k = |k|

angular frequency ω ω = ±c k
frequency ν ν = ω/(2π)

wavelength λ λ = (2π)/k
oscillating period τ τ = (2π)/ω

In (9.12) we can see, that τ describes the temporal periodicity of the wave at a fixed point
in space r,

exp(iω(t+ τ)) = exp(iωt+ 2πi) = exp(iωt); (9.24) ..
..

analogously describes the wavelength λ the spatial periodicity

exp(ik(z + λ)) = exp(ikz + 2πi) = exp(ikz) (9.25) ..
..

for a wave oriented in z-direction at a fixed point in time t.
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Phase velocity
The quantity

ψ = k · r− ωt (9.26) ..
..

is referred to as the phase of the wave. The phase velocity vph describes the velocity at
which a wave point with a fixed phase travels. In order to determine vph we will now
again take a look at the plane wave in z-direction and construct the total differential of
ψ(z, t):

dψ = kdz − ωdt. (9.27) ..
..

For ψ = const. then follows that:

vph =
dz

dt
=

ω

k
= c; (9.28) ..

..

the phase velocity is therefore equal to the speed of light c.
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9.3 Addendum: Differential operators for plane wa-

ves

..
..

In this section we want to derive results like (9.16) in more detail and provide suitable
examples to demonstrate their validity.

Let’s assume a monochromatic plane wave

E(r, t) = Re Ẽ(r, t) . (9.29) ..
..

E is the physical (real) field, while

Ẽ(r, t) = u ei(k·r−ω t) (9.30) ..
..

is a conveniently introduced complex field. The formation of the real part for linear
operations, however, is not an issue: The derivations regarding real variables such as ∇,
∂/∂t

”
commute“ with Re, since

∂

∂ ri
Re f(r) = Re

∂

∂ ri
f(r) , (9.31)

as one can verify using the definition of derivation. This means that when applying a
linear operator to (9.29), one can simply apply it to the more convenient form (9.30) first
and then form the real part at the end of the calculation. This, however, is only valid for
linear operators.

Let’s assume for example

∇× Ẽ(r, t) = i k× u ei(k·r−ω t) , (9.32)

or
∇× E(r, t) = k× Re i u ei(k·r−ω t) . (9.33)

It is practical to keep u
”
right“ of the real part, since generally u can be complex. A

complex u describes different polarization states .
As shown in (9.16), it is therefore possible to replace differential operators with multi-

plicative factors for monochromatic plane waves (9.29), which can be written as the real
part of (9.30). With the convention, that the real part is taken at the end of the calculation.
Trivial annotation: Plane waves potentially carry a +ω instead of −ω in the exponent
of (9.30). In that case the sign of ω flips accordingly in (9.16). Similarly this can occur
with the sign of k: Caution is required!

Absolute value of r

Not so simple is the case of a vector field of the form (e.g.) (not a plane wave!)

E(r, t) = u f(q|r|+ c t) , (9.34) ..
..

or something like

E(r, t) = u
f(q|r|+ c t)

|r| , (9.35) ..
..
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E(r, t) = r
f(q|r|+ c t)

|r| , (9.36) ..
..

or

E(r, t) = u× r
f(q|r|+ c t)

|r| . (9.37) ..
..

Let’s assume the simplest case (9.34). The chain rule yields

∇ f(q|r|+ c t) = f ′(q|r|+ c t)∇(q|r|+ c t) = f ′(q|r|+ c t)q
r

|r| . (9.38)

In the case of (9.34) we therefore have the
”
rule“

∇ · · · → q
r

|r|
∂

∂ξ
· · · (ξ = q|r|+ c t) . (9.39)

We have already seen something similar before in the exercise tasks, namely

∇f(|r|) =
r

|r|f
′(|r|) . (9.40)

The time derivative is simpler.
For formulas like (9.35), (9.36), (9.37) one can apply the product rule and then apply

∇ to each term separately.
For example:

∇ ·
(

r

|r| f(q|r|+ c t)

)
=
f(ξ)

|r| ∇ · r + r ·∇f(ξ)

|r| =

= 3
f(ξ)

|r| + (r · r

|r|)
∂

∂|r|
f(ξ)

|r| =

= 3
f(ξ)

|r| +
f ′(ξ) q|r| − f(ξ)

|r| (9.41)

(ξ = q|r|+ c t)
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Teil V

Quellen elektromagnetischer
Strahlung
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Kapitel 10

Lösungen der inhomogenen
Wellengleichungen

..
..

10.1 Problemstellung

Bei Anwesenheit von Ladungen haben wir die inhomogenen Gleichungen (vgl. (7.15),
(7.16))

∇2A− 1

c2
∂2

∂t2
A = −µj, (10.1) ..

..

∇2φ− 1

c2
∂2

∂t2
φ = −ρ

ε
(10.2) ..

..

mit der Nebenbedingung (Lorenz-Eichung)

∇ ·A +
1

c2
∂φ

∂t
= 0 (10.3) ..

..

zu lösen. Das Problem ist also die Lösung einer inhomogenen Wellengleichung

�Ψ(r, t) = γ(r, t) , (10.4) ..
..

wo Ψ für φ, Ai und γ für ρ/ε, µji steht.

Green’schen Funktionen
Die allgemeine Lösung von (10.4) setzt sich aus der (in Abschnitt 9 diskutierten) all-
gemeinen Lösung der homogenen Wellengleichung (9.9) und einer speziellen Lösung der
inhomogenen Wellengleichung zusammen. Zur Konstruktion einer speziellen Lösung von
(10.4) benutzen wir die Methode der Green’schen Funktionen: Mit der Definition der
Green’schen Funktion:(

∇2 − 1

c2
∂2

∂t2

)
G(r, r′; t, t′) = −δ(r− r′) δ(t− t′) (10.5) ..

..

können wir als (formale) Lösung angeben:

Ψ(r, t) =

∫
G(r, r′; t, t′) γ(r′, t′) d3r′dt′ , (10.6) ..

..
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wie man durch Einsetzen von (10.6) in (10.4) direkt bestätigt. Dabei wird ohne (die an
sich nötigen) Skrupel die Reihenfolge von Integration bzgl. r′, t′ und Differentiation bzgl.
r, t vertauscht.

10.2 Konstruktion von G

Die Green’sche Funktion hat zwei fundamentale Eigenschaften:

G(r, r′; t, t′) = G(r− r′; t− t′) (10.7) ..
..

aufgrund der Invarianz von (10.5) gegen Raum- und Zeit-Translationen;

G(r− r′; t− t′) = 0 für t < t′ (10.8) ..
..

wegen des Kausalitätsprinzips.

Wir transformieren wegen (10.7) r − r′ → r und t − t′ → t und suchen eine Lösung
der Differentialgleichung (

∇2 − 1

c2
∂2

∂t2

)
G(r, t) = −δ3(r)δ(t) . (10.9) ..

..

Dazu führen wir eine Fouriertransformation bezüglich der Zeitkoordinate durch:

G(r, t) =
1

2π

∫
G(r, ω)e−iωt dω . (10.10) ..

..

Mit Hilfe von

δ(t) =
1

2π

∫
e−iωt dω , (10.11)

wird (10.9) zu
1

2π

∫
dω e−iωt

[(
∇2 +

ω2

c2

)
G(r, ω) + δ(r)

]
= 0 . (10.12)

Da diese Gleichung für alle t verschwinden muß, müssen auch alle Fourierkoeffizienten
verschwinden: (

∇2 +
ω2

c2

)
G(r, ω) = −δ(r) . (10.13) ..

..

Zur Lösung dieser Gleichung benutzen wir die Eigenschaft (die wir im Absch.10.2.1
beweisen werden) gültig für eine beliebige, ausreichend (auch im Ursprung) differentier-
bare Funktion f(r) des Betrages r = |r|:

∇2f(r)

r
=

1

r

∂2f(r)

∂r2
− 4πf(0)δ(r) . (10.14) ..

..

Als Ansatz für G(r, ω) nehmen wir genau diese Form

G(r, ω) =
fω(r)

r
, (10.15) ..

..
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dann gibt (10.13)(
∇2 +

ω2

c2

)
G(r, ω) =

1

r

(
f

′′

ω (r) +
ω2

c2
fω(r)

)
− 4πfω(0)δ(r) = −δ(r) , (10.16)

was die Lösungen

fω(r) =
1

4π
e±iωr/c (10.17) ..

..

hat. Durch Fouriertransformation (10.10) erhält man mit Hilfe von (10.17),(10.15)

G(r, t) =
1

4πr

1

2π

∫
e−iω(t∓r/c)dω =

1

4πr
δ(t∓ r

c
) . (10.18) ..

..

Das Kausalitätsprinzip (10.8) zwingt uns, die Lösung mit dem oberen (−) Vorzeichen
zu wählen. Diese Greensfunktion ist die sogenannte

”
retardierte“ Greensfunktion, weil

diese eine verzögerte Antwort (t = r
c
) beschreibt. Die Funktion mit dem + Vorzeichen

heißt
”

avancierte“ Greensfunktion, weil in diesem Fall die Antwort vor deren Ursache
stattfindet. Die retardierte Greensfunktion für die Wellengleichung lautet also (wir führen
die relativen Koordinaten r− r′ t− t′ wieder ein):

G(r− r′, t− t′) =
1

4π|r− r′|δ(t− t
′ − |r− r′|

c
) . (10.19) ..

..

Interpretation von G
Die Inhomogenität in (10.5) stellt eine punktförmige Quelle dar, welche zur Zeit t′ am Ort
r′ für eine (infinitesimal) kurze Zeit angeschaltet wird. Die von dieser Quelle hervorgeru-
fene Störung breitet sich als Kugelwelle mit der Geschwindigkeit c aus. Die retardierte
Greensfunktion (10.19) erfüllt also folgende physikalische Erwartungen:

i) Die Kugelwelle G muss für t < t′ nach dem Kausalitätsprinzip verschwinden.

ii) Sie muss am Ort r zur Zeit t = t′ + |r − r′|/c ankommen, da elektromagnetische
Wellen sich mit der (endlichen) Lichtgeschwindigkeit c im Vakuum ausbreiten.

Gleichung (10.6) zeigt, wie man die Potentiale A, φ zu gegebener Quellen-Verteilung
ρ, j aus den Beiträgen für punktförmige Quellen aufbauen kann.

10.2.1 Beweis von (10.14)

..
..

(10.14) kennen wir bereits aus der Elektrostatik für den Fall f(r) = 1. Schon in diesem
Fall führt die naive Anwendung des Laplace-Operators in Polarkoordinaten (hier brauchen
wir nur den r-Anteil)

∇2g(r) =
1

r

∂2

∂r2
(rg(r)) (10.20) ..

..

zum falschen Ergebnis ∇21/r = 0, was die ganze Elektro-statik und -dynamik entkräften
würde. Der Grund ist, dass (10.20) nicht in der Nähe von r = 0 angewandt werden kann,
wo die Funktion singulär ist. Es ist dagegen klar, dass für r > 0, (10.20) korrekt sein
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muss. ∇2f(r)/r besteht also aus einem regulären Anteil ∇2
reg (gegeben in (10.20)), der

für jedes r > 0 gültig ist und einem irregulären Anteil bei r = 0. Aus (10.20) ist es klar,
dass

∇2
reg

f(r)

r
=

1

r
f

′′
(r) . (10.21)

Um den irregulären Anteil zu bestimmen integrieren wir ∇2f(r)/r in einer Kugel K(a)
mit Radius a: ∫

K(a)

∇2f(r)

r
d3r =

∫
K(a)

∇ · (∇f(r)

r
)d3r =∮

∂K(a)

(∇f(r)

r
) · n df = 4πa2

(
f ′(a)

a
− f(a)

a2

)
, (10.22)

wo wir das Gauß’sche Theorem, sowie

∇f(r)

r
=

r

r

(
f ′(r)

r
− f(r)

r2

)
(10.23)

benutzt haben. Den irregulären Anteil bekommen wir indem wir den Limes von (10.22)
für a→ 0 nehmen:

lim
a→0

∫
K(a)

∇2f(r)

r
d3r = −4πf(0) (10.24) ..

..

was bedeutet, dass in der Nähe von r = 0

∇2
irreg

f(r)

r
= −4πδ(r) f(0) . (10.25)

Insgesamt also haben wir (10.14)

(∇2
irreg + ∇2

reg)
f(r)

r
=
f

′′
(r)

r
− 4πδ(r)f(0) . (10.26)

10.3 Lösung der Wellengleichung und retardierte Po-

tentiale
..
..

Die (asymptotisch verschwindende) Lösung der Wellengleichung (10.4) von (10.6) ist also
mit (10.19) gegeben durch:

Ψ(r, t) =

∫
d3r′

∫
dt′

δ(t− t′ − |r− r′|/c)
4π|r− r′| γ(r′, t′) =

∫
d3r′

1

4π|r− r′| γ(r′, t′ret) ,(10.27)

wo wir im letzten Term die Integration über t′ mit Hilfe der δ-Funktion durchgeführt
haben und die retardierte Zeit

t′ret = t− |r− r′|/c (10.28) ..
..

eingeführt haben. Die Differenz t− tret ist die Zeit, die ein Lichtstrahl braucht, um von r′

den Aufpunkt r zu erreichen. Die Interpretation von (10.27) ist, dass ein Quellenelement
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γ(r′, t′) im Punkt r′ bei der Zeit t′ das Potential im Aufpunkt r erst bei einer späteren Zeit
t = t′ + |r− r′|/c beeinflusst, d.h. die Information bewegt sich mit Lichtgeschwindigkeit.

Die Allgemeine Lösung der Wellengleichung ist gegeben durch die par-
tikuläre Lösung (10.27) plus eine beliebige Lösung der homogenen Wellen-
gleichung, d.h. eine beliebige Linearkombination monochromatischer, ebenen
Wellen wie in (9.9).

Angewandt auf Ladungen und Ströme gibt (10.27) die retardierten Potentiale

φ(r, t) =
1

4πε

∫
ρ(r′, t′)δ(t− t′ − |r− r′|/c)

|r− r′| d3r′dt′ =
1

4πε

∫
ρ(r′, t′ret)

|r− r′| d3r′ (10.29) ..
..

und

A(r, t) =
µ

4π

∫
j(r′, t′)δ(t− t′ − |r− r′|/c)

|r− r′| d3r′dt′ =
µ

4π

∫
j(r′, t′ret)

|r− r′| d
3r′ . (10.30) ..

..

Die Lösungen (10.29) und (10.30) sind über (10.3) bzw. die Ladungserhaltung (6.3)
miteinander verknüpft.
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Teil VI

Mathematik
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Anhang A

Summary of mathematical concepts

..
..

1

A.1 Vector algebra

With the help of the δij (Kronecker-delta) and εijk (Ricci-tensor) and of the Einstein sum
convention (always implicit!) we have:

A.1.1 Scalar produkt

A ·B = AiBjδij = AiBi (
∑
i

· · · implicit!) (A.1)

A.1.2 Vector product (or cross product)

A×B = AiBjεijkêk (Äquivalent: (A×B)k = AiBjεijk) (A.2)

where êk is the unit vector in the direction k (k = 1, 2, 3 or, equivalently x, y, z) in
cartesian coordinates.

Properties

A×B = −B×A ⇐⇒ εijk = −εjik (A.3) ..
..

(z.B. εiik = 0⇔ A×A = 0)

The exchange relation (A.3) together with ε123 = 1 define εijk completely.

A.1.3 Scalar triple product

A · (B×C) = C · (A×B) ⇐⇒ εijk = εkij (A.4)

(cyclic permutation, resulting from two exchanges from Eq. (A.3))

1Herzlichen Dank an Herrn G. Huhs für das Tippen!
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Properties
We additionally need

A× (B×C) = B (A ·C)−C (A ·B) ⇐⇒ εmil εjkl = δmjδik − δmkδij . (A.5) ..
..

Here, we used the Einstein convention to sum over the index l, which occurs twice. From
this, one can derive additional relations.

A.2 Nabla-”operator”

Taking into account the fact that this is a differential operator (product rule, possibly
chain rule: it must be clear on which terms it acts), the Nabla operator ∇ can be treated
as a vector

∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
≡ (∂1, ∂2, ∂3) (A.6)

∇ . . . = êi ∂i . . . = ∂i êi . . . (A.7)

(Careful: ∇ needs to be applied to something)

Remark::
Position coordinates are typically denoted as x or r, which also corresponds to (x, y, z)
or (x1, x2, x3).

A.2.1 Divergence ←→
”
Scalar produkt“

Divergence of a Vevtor field v

∇ · v = ∂i vi (Sum convention!) (A.8)

=
∂

∂x
vx +

∂

∂y
vy +

∂

∂z
vz

A.2.2 Curl ←→
”
Vector product“

Curl of a Vector field v
∇× v = εijk ∂i vj êk (A.9)

A.2.3 Gradient ←→
”
Product with a scalar“

Gradient of a scalar field φ
∇ · φ = êi ∂i φ (A.10)
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A.3
”
Nabla-calculus“

A.3.1 Examples

∇× (A×B) = ?

2 methods:

1.
[∇× (A×B)]k = ∂i (A×B)j εijk

Careful! don’t change the order

= ∂i An Bm εnmj εijk︸ ︷︷ ︸
(Application of (A.5)) = εnmj εkij

= δnkδmi − δniδmk
= ∂m Ak Bm − ∂n An Bk

= Ak∂m Bm +Bm∂m Ak −Bk∂n An − An∂n Bk

=
[
A (∇ ·B) + (B ·∇) A−B (∇ ·A)− (A ·∇) B

]
k

The first and the last vector in parentheses ar therefore identical. The convention
is that ∇ applies to everything which is on its right-hand side (unless otherwise
specified, see below).

2. Using

C× (A×B) = A (C ·B)−B (C ·A)

Replace C→∇!
But careful!
∇ applies to A and B
⇒ mark terms to which ∇ applies (product
rule)

∇× (A×B) = ∇× (
↓
A×B) + ∇× (A×

↓
B)

=
↓
A(∇ ·B)−B(∇ ·

↓
A) + A(∇ ·

↓
B)−

↓
B(∇ ·A)

Using the convention
”
∇ applies to the right“

= (B ·∇) A︸ ︷︷ ︸
v

−B (∇ ·A)︸ ︷︷ ︸
u

+A (∇ ·B)− (A ·∇) B

mit vi = Bj ∂j Ai

ui = Bi ∂j Aj

A.3.2 Using the chain rule

f (|r|) is a scalar function of the modulus of the coordinates (one often uses the notation
r, without boldface or arrow to denote |r|).

∇ f (|r|) = f ′ (|r|)∇ |r| (Chain rule)

(∇ |r|)i = ∂i
√
r12 + r22 + r32 =

ri
|r| = (êr)i

∇ |r| = êr =
r

|r| A formula often used in electrodynamics (A.11)
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also
∇ f (|r|) = f ′ (|r|) êr

A.3.3 Further important aspects

1. Linearity

z.B. ∇ · (A + B) = ∇ ·A + ∇ ·B
∇× (A + B) = ∇×A + ∇×B

2. ∇ does not act to constante fields

z.B. ∇ · êi φ = φ ∇ · êi︸ ︷︷ ︸
=0

+êi ·∇ φ = êi ·∇ φ

In the case of unit vectors, one should consider that cartesian unit vectors êi, êx,
. . . are constant, while êr not!
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A.4 Gauss’ law

1. Surface element (oriented) (see Fig.)

dS = dS n̂ (A.12)

where n̂ is the vector perpendicular to the surface

2. Flux Φ of a vector field v through a closed surface ∂V , enclosing a volume V
(see Fig.)

Φ (∂V ) =

∫
∂V

v · dS (A.13)

3. is equal to the volum integral of the divergence of v in V

Φ (∂V ) =

∫
V

∇ · v d3r (A.14)

A.4.1 Interpretation

..
..

divv = ∇ · v = flux (to the outside) per unit volume of the vector field v through the
boundary surface of an infinitesimal volume

∇ · v =
δΦ (∂δV )

δV

Whenever ∇ · v 6= 0 additional field lines
”
arise“: source
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A.4.2 Application

• In Electrostatics
∇ · E =

ρ

ε0

Charge density if the source of the electric field

• Continuity equation
∂ρ

∂t
= −∇ · j

A variation of charge in time can only originate from an incoming or outgoing current
flux
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A.5 Stokes’ law

1. Curve in three-dimensional space

dl = oriented curve element

2. Circulation Z = line integral of a vector field v along a closed curve ∂S, which
bounds a surface S (∂S does not uniquely define S!) (see Fig.).
The orientation of the surface can be determined from the

”
thumb rule“.

Z (∂S) =

∫
∂S

v · dl (A.15)

3. = Fluc of the curl of v through S

Z (∂S) =

∫
S

(∇× v) · dS (A.16)

[The fact that the flux is independent of S for given ∂S is a consequence of ∇ ·
(∇× v) = 0]

A.5.1 Interpretation

(∇× v) · n̂ = rotv · n̂ = Circulation per unit surface of v around an infinitesimal surface
oriented in the direction n̂

(∇× v) · n̂ =
δZ (∂δS)

δS

A.5.2 Applications

In Electrostatics
∇×B = µ0j
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A.5.3 Multidimensional δ-function

δ3 (r− r0) = δ (x− x0) δ (y − y0) δ (z − z0) (A.17)

A.5.4 Fourier-representation

δ (x− x0) =
1

2π

∫ +∞

−∞
eiq(x−x0)dq (A.18)

A.5.5 Important result for electrodynamics

..
..

∇ · r

|r|3
= 4π δ (r) (A.19) ..

..

Proof: ∇ · r

|r|3
=

1

|r|3
∇ · r︸ ︷︷ ︸
=3

+r ·∇ 1

|r|3

=
3

|r|3
+ r · êr︸ ︷︷ ︸

|r|

−3

|r|4

= 0 Valid for |r| 6= 0

However:

∫
∂V

r

|r|3
· dS = 4π (V is a sphere of radius R)

⇒
∫
V

∇ · r

|r|3
dV = 4π

from which in total (A.19) follows
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Anhang B

A few details

..
..

B.1

B.1.1

..
..

Let (x, y, z) be the coordinates of point P .
Now assume two point charges q and q′ with their own set of coordinates.
Determine r and r′ from these coordinates and apply them to formula (3.19)

B.1.2

..
..

∇ · E(r) =
1

4πε0

∫
dV ′ρ(r′)∇ · (r− r′)

|r− r′|3 ,

=
1

4πε0

∫
dV ′ρ(r′)4πδ3(r− r′) ,

= ρ(r)/ε0

B.1.3

..
..

One cannot choose ∇G(r′, r) · n = 0 , since∮
F

∇G(r′, r) · n dS = 0 =

∫
V

∇2G(r′, r) d V = − 1

ε0

B.1.4

..
..

On both sides one can furthermore apply

2

y0

∫ y0

0

sin(kmy) d y .

We can then use the orthogonality properties of the sine function:

2

y0

∫ y0

0

sin(kmy) sin(kny) d y = δnm
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B.1.5

..
..

Alternatively we can also approach this with
”
nabla-calculus“:

E (∇ · E)− 1
2
∇E2 + (E ·∇)E = ∇ · EE− 1

2
∇E2

B.1.6

..
..

Let us consider a “photon” occupying a (small) volume ∆V = ∆F∆l propagating per-
pendicularly through the area ∆F with velocity c. The photon requires the time inter-
val ∆t = ∆l/c to pass the plane. The total energy carried by the photon is therefore
∆E = S ∆F ∆t. Its momentum is furthermore ∆P = πF∆V = πF∆F c ∆t. Therefore is
the dispersion relation

∆E

∆P
=

S

cπF
= c .

This is the dispersion relation of a relativistic particle with velocity c and rest mass 0,
compare (??).

B.1.7

..
..

One can verify this by performing a Fourier transformation for all three components one
by one:

g(r) = g(r1, r2, r3) =
1

(2π)1/2

∫
ḡ(k1, r2, r3) exp(ik1 r1) dk1

=
1

(2π)2/2

∫ ∫
¯̄g(k1, k2, r3) exp(ik2 r2) dk2 exp(ik1 r1) dk1 =

1

(2π)3/2

∫ ∫ ∫
g̃(k1, k2, k3) exp(ik3 r3) dk3 exp(ik2 r2) dk2 exp(ik1 r1) dk1

=
1

(2π)3/2

∫
g̃(k) exp(ik · r) d3k
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