

"Insight into Renal Vascular

and Nonvascular Interventions

Dr. Anatoly Shuster, Department of Diagnostic Imaging, TBRHSC Assistant Professor, Lakehead University, NOSM

Conflict of Interest Declaration: Nothing to Disclose

Presenter: Anatoly Shuster

Title of Presentation: "Insight into Renal Vascular and Nonvascular Interventions"

I have no financial or personal relationships to disclose

Anatomy:

- □ Renal arteries (RA) arise from the lateral surface of the aorta at about the L1-L2 level
- ☐ Right RA runs posterior to the IVC
- Left RA passes behind the left renal vein (RV)
- At the renal hilum RA bifurcates into ventral and dorsal rami
- □ Accessory RA supply one or both kidneys in 25-35%; may
 - originate from aorta or iliac artery; most supply the lower pole

Anatomy:

- Kidney is the "end organ"
- Communications between extrarenal arteries (aorta, lumbar arteries, internal iliac artery, inferior adrenal artery) and intrarenal arteries (segmental, intralobar, arcuate) exist:

 Capsular, peripelvic, periureteric systems (Abrams/Cornell)

Atherosclerotic Renovascular Disease

Etiology:

- Nephrosclerosis: global damage of distal intrarenal vessels
- □ Renovascular Hypertension (RVH): stenosis/occlusion of main, accessory, or branch RA
- Reduction in intrarenal arterial pressure sensed by juxtaglomerular apparatus >> triggered renin-angiotensin-aldosterone system >> Vasoconstriction + sodium and water retention

Etiology:

- Ischemic nephropathy: loss of renal function as a result of hypoperfusion from renal arterial disease
- ☐ Microvascular Changes: diabetes, hyperlipidemia, hypertension
- Drug-resistant hypertension: refractory despite optimal doses of 3 drugs of different classes

1. Atherosclerosis

- □ Aortic plaque extending to the RA ostium (2/3 of cases): within 10 mm of the aortic lumen
- □ "Independent" plaque in the truncal portion of RA
- Calcified / Partially Calcified / Noncalcified
- Progressive stenosis in 1/3 to 2/3 of Cases
- □ 50% symptomatic RA stenosis cases progress to RVH
- ☐ Typically > 50 years old; M > F

- 2. Fibromuscular Dysplasia (FMD): 2nd most common cause of renal arterial stenosis
- 3. Dissection
- 4. Vasculitis: Takayasu arteritis, radiation arteritis
- 5. Coarctation syndromes: neurofibromatosis, tuberous sclerosis
- 6. Trauma
- 7. Extrinsic compression

Diagnosis:

- 1. <u>Ultrasound Doppler</u>
- \square Intrastenotic peak systolic velocity (PSV) > 180 cm/sec
- \square PSV renal/aortic ratio > 3.0 to 3.5
- Prolonged acceleration time > 0.06-0.07 sec
- "Parvus et tardus" waveform: damping and slowing of the time
 - to peak systole, indicates significant stenosis
- ☐ Intrastenotic aliasing artifact

Elevated acceleration index and "Parvus et tardus" waveform

Elevated flow velocity at the level of the stenosis and aliasing artifact

RK RRA O

Vel=246.6 cm/s

Diagnosis:

- 1. Computed Tomography Angiography (CTA)
- 2. Magnetic Resonance Imaging Angiography (MRA)
- □ 90-100% sensitivity and 75-100% specificity
- 3. Catheter Angiography
- "Gold standard" for the diagnosis of RVH

CTA Maximum Intensity Projection (MIP), coronal

When to treat?

- ☐ Hemodynamic Significance:
 - 1. Reduction in luminal diameter > 75%
 - 2. Systolic pressure gradient across the stenosis in the main renal artery > 10-20 mm Hg, or > 20% of aortic systolic pressure
- □ Stenosis with 50-75% reduction of luminal diameter may be
 - hemodynamically significant >>> pressures measurement +
 - Clinical significance: drug resistant or accelerated hypertension,
 - recurrent flush pulmonary edema, renal failure

Contraindications:

- □ Renal atrophy
- ☐ Uncorrectable coagulopathy
- □ Diffuse intrarenal vascular disease
- Ulcerative/unstable plaque >> risk of peripheral embolization

Pre-procedure:

- ☐ Hold antihypertensives on day of procedure or decrease dose by
 - 50% within 48 hours before the procedure
- ☐ Prefer INR < 1.5
- ☐ Prehydrate with IV normal saline for 4-6 hours

6 mm balloon angioplasty over 0.035 inch Rosen wire

Figure 5. Telescoping technique. (A) Cannulation of the renal artery origin with a 5 Fr diagnostic catheter (Sidewinder or SOS Omni Soft VU) through the 7 Fr guiding catheter. (B) A 0.014 inch or 0.018 inch extra-support guidewire is advanced into the renal artery; optionally, the lesion can additionally be crossed with the diagnostic catheter. (C) The guiding catheter advanced over the 5 Fr diagnostic catheter close to the renal artery origin. (D) Guiding catheter in position, 5 Fr catheter removed.

Telescoping Technique

- □ 7 French Guiding catheter (55 cm long)
- □ 4-5 French selective

 catheter: Cobra, SOS Omni,

 Sidewinder (depending on the angle of RA)
- □ 0.035/0.0018 inch guidewire

Renal Artery Intervention - Endovascular Techniques, Thomas Zeller, MD, Aljoscha Rastan, MD, Elias Noory, MD; *Vascular Disease Management 2011;8:E21–E27*

7 French Flexor Ansel guiding vascular sheath; Cook Medical

4-5 French hydrophilic Cobra (C2) selective Catheter; Cook Medical

4-5 French hydrophilic SOS Omni Catheter;
Angiodynamics

0.014-1.018 inch guidewire balloon-mounted stent, 7 mm diameter

Bilateral Renal Stents

Fibromuscular Dysplasia (FMD):

- 2nd most common cause of renal arterial stenosis
- \Box < 30 years old
- \Box F > M (3-4:1)
- □ Involve mid and distal RA >> segmental RA
- ☐ Medial fibroplasia- most common type (70-80%)
- "Beaded" appearance
- □ Rarely leads to ischemic nephropathy or complete occlusion
- □ Balloon angioplasty alone usually effective
- Other arteries: internal Carotid, iliac, subclavian, vertebral

Irregular "beaded" appearance of the RA

Case # 2

Complications

- □ 5-10% of Cases
- □ RA dissection or rupture >> stent placement >> surgery
- □ RA thrombosis
- □ Distal thrombus microembolization
- □ Access site complications: hematoma, CFA pseudoaneurysm
- Contrast nephropathy

Renal Arterial Embolization

RA Aneurysm

True aneurysms: dysplastic, FMD, connective tissue disorders: neurofibromatosis, Ehlers-Danlos syndrome, vasculitis: poliarteritis

nodosa (multiple aneurysms) and Takayasu arteritis, congenital

☐ False aneurysms: trauma, inflammation/Infection, post-transplant,

dissection, drug use (cocaine, methamphetamines), tumor related

Arteriovenous Fistulas and Malformations

Traumatic Hemorrhage

☐ Grade IV injures

Renal Arterial Embolization

Dysplastic aneurysms:

- Near the first bifurcation of the main RA
- □ 75% of patients have elevated blood pressure
- Succular or fusiform

Complications: rupture, thrombosis

□ Risk of rupture is heightened in pregnant women

When to treat: "rule of 2 cm", regardless of size in women of child-

bearing potential, symptomatic patients, all pseudoaneurysms

Endovascular treatment options: covered stent placement for main

RA aneurysms, embolization with microcoils or glue for intrarenal aneurysms

Traumatic RA
pseudoaneurysm
and AV fistula

RA Aneurysm Coil Embolization

RA pseudoaneurysm with microcoils

Renal Arterial Dissection

- □ Extension of aortic dissection
- Trauma: iatrogenic (e.g., catheterization, injury by guidewire), blunt or penetrating trauma
- □ FMD
- □ Segmental Arterial Mediolysis
- Spontaneous

RA Rupture

Renal Transplant Vascular Complications

- ☐ Develop up to 25% of Cases
- Arterial stenosis most common problem, 4-10% of cases, occurs between 3 months to 2 years after placement, usually located at the anastomosis
- Arterial thrombosis result of operative injury to the donor or recipient artery, arterial kinking, acute rejection, hypotension, thrombophilic state, atherosclerosis
- □ Renal vein thrombosis
- ☐ Vascular injury, pseudoaneurysm or arteriovenous fistula formation from percutaneous biopsy

Renal Neoplasms

<u>Benign</u>

- □ Adenoma/Oncocytoma
- Angiomylolipoma (tuberous sclerosis: multiple bilateral lesions)

Malignant:

- Renal Cell Carcinoma (RCC); von Hippel-Lindau disease
- Transitional Cell Carcinoma (TCC)
- □ Wilms Tumor
- Metastases (including lymphoma)

CT guided left renal mass biopsy

Complications:

- 2. Bleeding/hematoma
- 3. Infection
- 4. Pneumothorax

Renal Lesion
Core Biopsy

17 Gauge Introducer, Needle 18 Gauge Gun

Horseshoe kidney mass lesion

CT Guided Biopsy

of a horseshoe

kidney mass lesion

Confirmed RCC

Renal Oncology

Endovascular Transcatheter Embolization:

- Devascularization before open or laparoscopic nephrectomy to minimize intraoperative bleeding (within 24 hours of surgery)
- Palliative therapy in patient with unresectable disease
- Treatment or prevention hemorrhagic complications
- Embolic agents: 1. Absolute ethanol (1-5 mL)+ occlusion balloon placement to avoid reflux. Postembolization syndrome: fever, pain, nausea. 2. Microspheres (300-500-micron). 3. Microcoils

Renal Oncology

Radiofrequency Ablation or Cryoablation

- □ Percutaneous ablation under US or CT fluoroscopy guidance
- \square Definitive treatment for cortical tumors (RCC) of ≤ 4 cm
- □ Ablation of larger tumors is feasible if they are exophytic
- Central or hilar lesion, or lesions invading collecting system are

less favorable

Kidney tumor RFA

LeVeen Needle
Electrode
(Boston Scientific)

Percutaneous Nephrostomy

> US/Fluoroscopy guided or CT guided (in obese patients)

Indications:

- Hydronephrosis + Infection
- ☐ Hydronephrosis + Pain
- Hydronephrosis + Renal failure
- Diversion of Urine: traumatic urinary tract injury, malignant or
 - inflammatory urinary fistula, hemorrhagic cystitis
- Access for diagnostic or therapeutic interventions

Hydronephrosis

8 French nephrostomy

US and Fluoroscopic Guided Percutaneous Nephrostomy

Complications:

- 2. Perirenal/retroperitoneal hematoma
- 3. Clot within the collecting system
- 4. AV fistula, pseudoaneurysm
- 5. Infection (including sepsis)

Hobbs Catheter (8 Fr)
Insertion through the
mid ureteric stenosis

Bilateral 8 French Hobbs Catheters

