Inspection of

Bridge Painting & Re-Painting

New Structural Steel

- Shop Painted
 - Primary System
 - Inorganic Zinc Primer
 - Polyurethane Top Coat
 - County Secondary
 - Alkyd Paint System

Delivery to the Project

- Overall Condition
- Damaged Areas
- Missed Areas
- Runs and Sags
- Dry Film Thickness

Previous

Overall Condition

- Look for signs of:
 - unevenness
 - Mudcracking
 - blistering
 - peeling
 - soft-to-touch or tacky

Previous

Damaged Areas

- Observe Handling to Minimize Damage
 - Slings for unloading
 - Wood or padded blocking for temporary support
- Look for and document any nicks or scratches.
 - Observe Repair

Missed Areas

- Look for and Document Any Area Missed
 - inaccessible areas

Observe Repair

Previous

Runs and Sags

- Look for and Document Areas of Excessive Running or Sagging
 - Small isolated areas acceptable
 - Large areas indicate improper application
 - Contact Bridge Construction Engineer if large areas are encountered

Dry Film Thickness

- Thickness of Paint After Cured
- Shop Inspected Items Are Checked at Fabrication Plant
- Verify Shop Inspection with Bridge Construction Engineer
- Items not Shop Inspected Should be Inspected on Project

Field Touch-Up & Repair

- Touch-Up Should be Done After Any Work that May Further Damage Paint.
 - Deck Pour
 - Falsework Removal

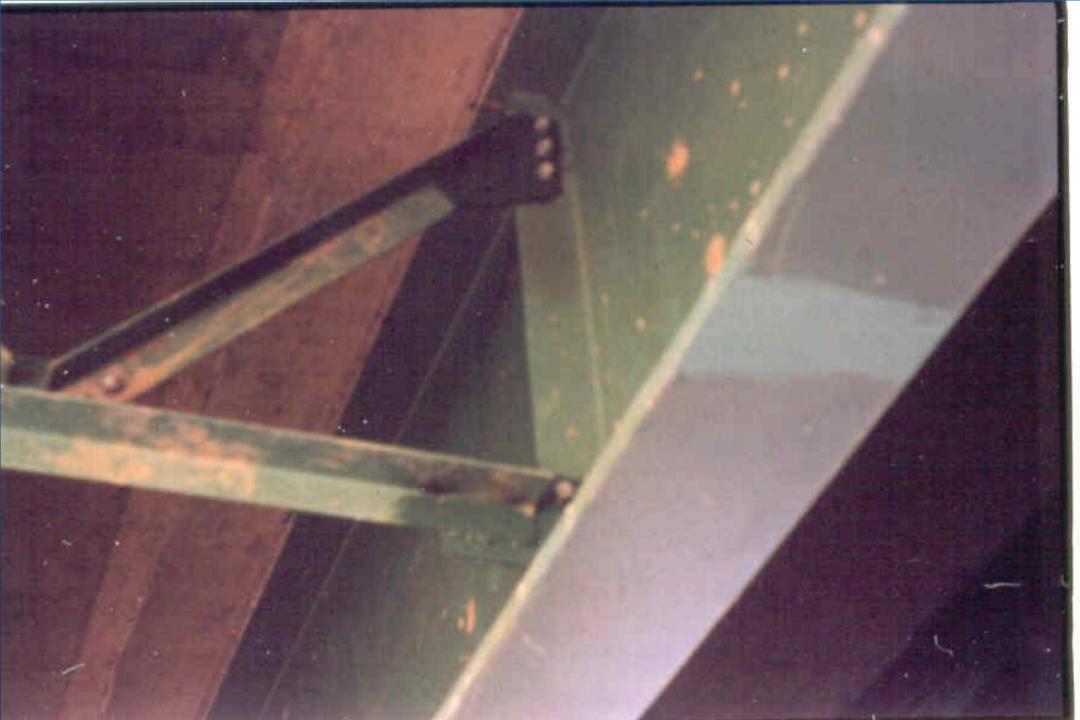
Previous

Field Touch-Up & Repair

- Damaged Areas
 - Aluminum FilledEpoxy Mastic Primer
 - Polyurethane Top Coat

- Faying Surfaces
 - Polyurethane Top Coat
 - Shop Primed

Previous


Field Touch-Up & Repair

- Touch-Up Paint
 - Supplied with the Steel
 - From Same Supplier as Shop Paint
 - Primer/Top Coat from Same Manufacturer
 - From Approved List

Previous

Bridge Repainting

- Spot Repair vs. Total Repainting
- Removal of Existing Paint
- Pre-Surface Preparation
- Surface Preparation
- Coating Application
- Final Inspection

Previous

Type of Project

Spot Repair

- Girder End Modification
- Work Affected Areas
- Damage Repair
- Rail Retrofit

Total Repainting

- Deck Replacement
- Paint System Failure
- Aesthetics

Previous

Removal of Existing Paint

 Proper Containment of Lead Based Paint Residue is <u>REQUIRED BY LAW.</u>

- < 220 lbs. Paint Residue may be disposed of in permitted landfill
- -> 220 lbs. Paint Residue is considered hazardous material if > .05 mg/l leachable lead

Paint Residue

 Paint Residue is considered to be the combination of:

- Paint Chips
- Blasting Media
- Any other debris picked up with or added to above.

Bridge Repainting Classifications

Class I

- Spot Repair
- Power Tool Cleaning (SSPC SP3)
 - Shrouded
 - Vacuum Pickup
- < 220 lbs. Residue</p>

Class II

- Total Repainting
- Abrasive Blast Cleaning (SSPC SP6)
 - Complete Removal
 - 15% Blastox by Weight
- − > 220 lbs. Residue

Containment and Collection

- "Best Management Practices" required to be used.
- Containment Plan submitted & approved.
- Residue stored in sealed 55 gallon drums.
- Drum(s) handled as hazardous until tested.
- Drums stored in secure location.

- 55 Gallon Drums must:
 - be new or meet EPA definition of a reusable container.
 - Must never have previously contained petroleum products

Containment and Collection Class I

- Shrouded Vacuum Power Tools
- Contractor Must Collect and Weigh Residue
 - Collect only paint residue
 - Have Contractor furnish weigh ticket
- Store in Approved 55 Gallon Drums
- Disposal by Department
 - < 220 lbs. Dispose at permitted landfill</p>
 - > 220 lbs. Immediately notify Bridge Construction Engineer.

Previous

Containment and Collection Class II & III

- Contractor Must Contain and Collect Residue.
- Store in Approved 55 Gallon Drums.
- Representative Sample from 1st 55 Gallon Drum.
 - Notify Bridge Construction Engineer when sample is attained.
 - Bridge Construction Engineer will send out "Chain of Custody Record."
 - Send sample and Chain of Custody record to Bridge Construction Engineer for testing.
- Store in Secure Location Until Further Notified.

Previous

Responsibility

Contractor

- Perform work to specifications.
- Be knowledgeable of and comply with law.
 - OSHA
 - EPA

Department

- Monitor Contractor's work to assure compliance with specification/laws
- Is owner of any hazardous material.
- Disposal of Residue

Previous

Pre-Surface Preparation Inspection

- Contractor's Equipment
- Paint Materials
- Abrasive Blasting Media
- Ambient Conditions

Previous

Contractor's Equipment

- Contractor Responsible for Selection of Type and Size of Equipment.
- Inspector Needs to Assure Equipment Properly Functioning
 - No Contamination (oil, water, etc.)
 - Moisture traps
 - Oil separators
 - Blotter Test

Previous

Blotter Test (ASTM Practice 4285)

- Shut Off Flow of Abrasive.
- White Blotter Paper or Other Suitable White Absorbent Material 24 Inches from Outlet
- Allow Free Air Flow for 2 Minutes
- Visible Contaminants Require Corrective Action.

Paint Materials

- Approved List or Otherwise Specified.
 - All components from:
 - Same manufacturer
 - Otherwise specified by manufacturer (Thinners)
 - Proper Color

- Technical Data Sheets
- Proper Storage
- Undamaged Unopened Containers

Abrasive Blasting Media

- Typically Sand or Coal Slag
 - Sand not allowed for Class III
- Abrasive should be free of clay and other contaminants
- Blastox
 - Assure Blastox was added in proper amount
 - Make sure uniformly blended
 - Certificate of Compliance if pre-blended

Previous

Surface Preparation Inspection

- Surface Preparation Provides for Proper Paint Adhesion by:
 - Cleaning Substrate
 - Providing Surface Roughness (Anchor Pattern)
- Consists Primarily of:
 - Solvent Cleaning
 - Power Tool Cleaning
 - Abrasive Blast Cleaning

Solvent Cleaning (SSPS SP1)

- Required to Removal All Visible Oil, Grease, and Other Soluble Contaminants.
 - Coating will not adhere to surface with oil or grease
 - Abrasive Blasting will drive grease or oil into pores of steel.
- Closely Inspect All Surfaces for Visible Contamination.
- Notify Contractor of Contaminated Areas.

Power Tool Cleaning (SSPC SP3)

- Power Assisted Hand Tools
- Remove All Loose Mill Scale, Loose Rust, Loose Paint, and Other Loose Foreign Material
 - Not intended to remove tightly adherent mill scale, rust, or paint.
- Typically Used for Spot Repair

Abrasive Blast Cleaning

- Required for Removal of:
 - Existing Paint
 - Rust
 - Mill Scale
- Required to Attain Proper Anchor Pattern

Previous

Abrasive Blast Cleaning

- Compressed Air Cleanliness (Blotter Test)
- Blasting Pressure
- Determine Degree of Cleaning Specified
 - Usually SSPC SP6 Commercial Blast Cleaning
 - No Visible Contaminants W/O Magnification
 - Minor Discoloration (Staining) on No More Than 33% of Surface.
 - Use 3 ft. X Full Web Depth Test Sect. and SSPC-VIS 1 (Visual Standard for Abrasive Blast Cleaned Steel)

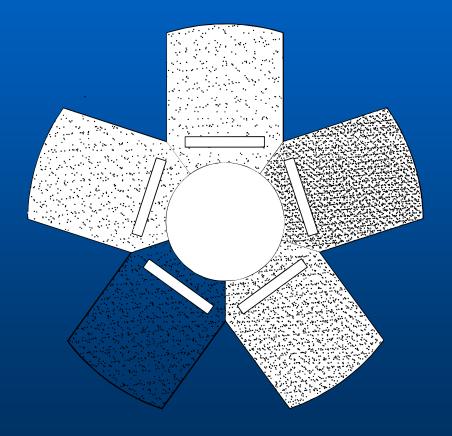
Previous

Use of SSPC-VIS 1 (Visual Standard for Abrasive Blast Cleaned Steel)

- Determine Initial Grade of Rust Prior to Surface Preparation.
- Determine Specified Degree of Cleaning
- From Table-1, Determine Which Visual Standard to Use.

Note: Visual Std's. are only a guide. Specified degree of cleaning governs.

Previous


Anchor Pattern (Surface Profile)

- Specifications Require 1 to 3 mils
 - If max. surface profile of 3 mils cannot be maintained, Increase coating thickness accordingly.
- Surface Comparator
- Testex Tape

- To Achieve Anchor Pattern, Contractor May Need to Change:
 - Abrasive Size
 - Abrasive Type
 - Blasting Pressure

Surface Comparator

- Placed on prepared surface
- 5X to 10X Magnification
- Anchor profile is determined, based on a comparison between comparator & surface,

Previous

Testex Tape (Film)

- Equipment:
 - Micrometer
 - Testex Tape (Film)
 - 0 to 2 mils (Coarse)
 - 1.5 to 4.5 mils X-Coarse
 - Burnishing Tool

Previous

Testex Tape

PROCEDURE

- Clean/CalibrateMicrometer to Zero
- Prepare Tape
 - Remove Backing
 - Inspect for damage
- Measure Thickness
 - Pre-measured thickness is max. profile height tape should be used for.

- Place Tape on Steel & Rub With Burnishing Tool
- Measure Tape ThicknessProfile = Reading 2 mils
 - If Profile is close to or exceeds pre-measured value, retest with different tape.

Inspection of Coating Application

- Time Restraints
- Ambient Conditions
- Mixing & Thinning Paint
- Application Methods
- Coating Thickness

Previous

Time Restraints

- Steel Must be Primed Within 24 Hours of Surface Preparation.
- Follow Manufacturer's Recommendations From Product Data Sheet for:
 - Induction Time (Time between mixing and appl.)
 - Pot Life
 - Cure Time Between Coats

Previous

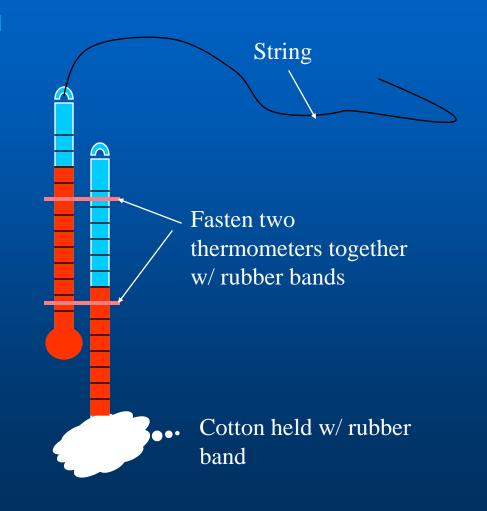
Ambient Conditions

- Specification Requirements
 - Manufacturer's Recommendation or Standard Specifications, Whichever is More Stringent.
- Temp. of Paint, Steel, & Air
 - Between 40°F and 90°F
- Steel Temp. ≥ 5°F Above Dew Point
- Relative Humidity < 85%

Temperature

 Coating Materials Should be Stored to Attain Proper Temp.

- Steel Temperature
 - Magnetic Surface Thermometer
 - At Exact Location of painting
 - Not in Direct Sunlight


Psychrometer

Measures:

- Ambient Air Temp.
- Relative Humidity
- Dew Point

Instructions

- Saturate cotton with water
- Swing apparatus several times
- Record temperature
- Repeat until no change in readings
- Use Table or Graph for Rel. Humidity & Dew Point
- Ambient Air Temp. = Dry Bulb Therm. Reading

Previous

Mixing Paint

- Proper Mixing Is Important To Assure Consistency
- Mixing in accordance with Tech. Data Sheet
- Paint Consists Of:
 - Vehicle
 - Solids
- Vehicle and Solids Must Be Thoroughly Mixed

Previous

Thinning

- Thin Paint Materials:
 - Only when absolutely necessary
 - In accordance with manufacturer's technical data sheet
 - Only with the proper thinners

(Wrong Thinner or Too Much Thinner is Detrimental to Coating)

Previous

Paint Application

Stripe Coating

- Edges, Corners, Bolt Heads, Nuts, Etc. Shall be coated prior to application of primer and top coats.
- Typically done by brush
 - Roller or Mitts may be allowed, but coating thickness should be closely monitored.
 - Spray application of stripe coat is not allowed.

Application Methods

- Conventional Spray
- Airless Spray
- Brushes
- Rollers
- Mitts

Previous

Conventional / Airless Spray

- Contractor Responsible for Equipment Setup / Adjustments
- Inspector Should be Concerned with Painter's Technique for Application
 - Proper Overlap
 - Sectioning
 - Triggering
 - Inside/Outside Corners

Previous

Spray Technique

- Overlap previous pass by approx. 50%
- Large areas should be broken down such that 18 to 38 inch strokes are used
- Spray gun turned off at end of stroke and not turned back on until gun is moving in opposite direction
- Inside/Outside Corners
 - Each Face Separately on Inside Corners
 - Spray Gun Faced Directly at Corner for Outside Corners, then each surface.

Previous

Spray Technique

- Proper Spray Technique Should Result in:
 - Proper Thickness
 - No Runs or Sags
 - No Dry Spray
 - No Holidays
- Visual Inspection & Wet/Dry Film
 Thickness Will Confirm Compliance

Previous

Feathering and Spot Painting

- Junction Between Sound Existing Coating and Spot Cleaned Areas Should Present a Smooth, Feathered Appearance.
 - Sand Around Spot Repair (Feather Edging)
 - Overlap Existing Coating
 - Note Any Effect New Coating May Have on Existing Coating (Stop! and Notify Bridge Constr. Engr.)
 - Bubbling
 - Wrinkling
 - Lifting

Coating Thickness

- Wet Film Thickness (WFT)
 - Used only as a guide as to what final dry film thickness will be achieved.

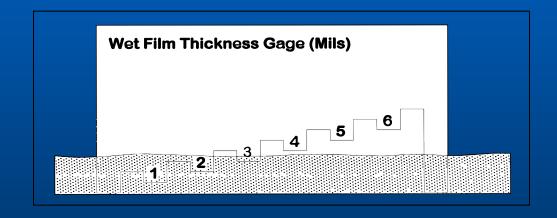
- Dry Film Thickness (DFT)
 - Governed by specifications and used for acceptance.

Previous

Wet Film Thickness

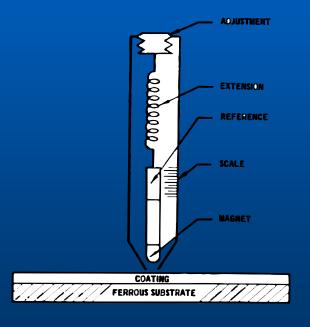
Estimate of DFT

```
W = \frac{D[1.0+T]}{S}
```


Where:

W = WFT is in mils

D = DFT is in mils


S = % Solids by Volume

T = % Volume of Thinner added

Dry Film Thickness

- 5 Spot Measurements
 Every 100 Sq. Ft.
 - Each spot measurement consists of an average of 3 gage readings
- Acceptable Results
 - Average of 5 spot measurements within specified limits for DFT
 - No spot measurement less than 80% of min. specified

Visual Inspection

Same as Previously Discussed for New Structures: