
UNCL	ASSIFIED) FRIM	-138300	-23-T					NL	
	A)' A. Ve(SuP	,								
		<u>.</u>	_	·					 	
				K .	₹ %i	1.1.1	1050			
				Y			47 - L 19-1			
		_								
		 					_		 	

NOTICES

<u>Sponsorship</u>. The work reported herein was conducted by the Environmental Research Institute of Michigan for the U.S. Army Mobility Equipment Research and Development Command under Contract DAAK70-78-C-0198). Contracts and grants to the Institute for the support of sponsored research are administered through the Office of Contracts Administration.

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

Distribution. Initial distribution is indicated at the end of this document.

<u>Final Disposition</u>. After this document has served its purpose, it may be destroyed. Please do not return it to the Environmental Research Institute of Michigan.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS **REPORT DOCUMENTATION PAGE** BEFORE COMPLETING FORM RECIPIENT'S CATALOG NUMBER GOVT ACCESSION NO 20.201280021012181 1383ØØ-23-T D-A086 949 TITLE (and Submite) Climatology of Selected Areas of West 0 Technical Kep**er**t,// Germany Affecting Sensor Performance. MBFR ТЫМ 138300-23-T CONTRACT OR GRANT NUMBE 15 Lawson DAAK7Ø-78-C-Ø198 9 PERFORMING ORGANIZATION NAME AND ADDRESS Environmental Research Institute of Michigan PROGRAM ELEMENT PROJECT TASK P. O. Box 8618 Ann Arbor, MI 48107 11 CONTROLLING OFFICE NAME AND ADDRESS 10.1 2 REPOR U.S. Army Mobility Equipment Research & Development June 1079 Command, Mine Detection Division, Ft. Belvoir, 13 NUMBER OF PAG VA 22060 viii + 114 MONITORING AGENCY NAME AND ADDRESS (if different from Controlling Office) SECURITY CLASS (of this report) 14 UNCLASSIFIED * 121 154 DECLASSIFICATION / DOWNGRADING SCHEDULE 16 DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17 DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) 18 SUPPLEMENTARY NOTES Dr. J. R. Gonano was the contract monitor for this project. 19 KEY WORDS (Continue on reverse side if necessary and identify by block number) Climate Clouds Weather Fog Temperature Visibility Precipitation Sensors 20 ABSTRACT (Continue on reverse side if necessary and identify by block number) (U) This report contains a body of climatological data on several areas in West Germany which are being used in scenarios for study of the technical and operational effectiveness of methods of detecting remote minefields. The weather to be considered in the technical screening and analysis is that typical of the North German Plain, the Fulda Gap, and the Hof Corridor. (ψ) Climate affects the ability of the sensor to obtain a useful signal \rightarrow DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter 4\$19\$5

のというないないないないないないであり、ころうち

i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Duta Entered)

return from the target and affects the signal return from background i.e., the vegetation and terrain surface and subsurface materials.

Temperature data given include mean temperatures and diurnal temperature variations. Precipitation data include monthly mean precipitation, precipitation rates, rainfall frequency and duration. Data are given on cloud types, fractional sky cover, and various types of statistics on cloud obscuration. Data on fog frequency and visibility provide further information affecting target obscuration. Representative weather sequences are also tabulated for use in scenarios.

ŝ

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (& how Durin I network)

ERIM_

1.	Introduction
2.	General Characteristics of German Climate 8
	2.1 Significant Climate Characteristics 8
	2.2 West German Climatology
	2.3 Selection of Climate Zones for Systems Analysis 11
3.	Temperature.
4.	Precipitation
5.	Clouds and Other Aerosols
6.	Coping with Correlations
Ref	Terences

Access	ion For				
NTIS (Jakkal	U			
POU TA	3				
	Universitizeed				
Ja. th.	isation				
Ey	Бу				
r · · · · · · · · · · · · · · · · · · ·					
1.1.13	2617111	Cados			
	Availand	l/or			
Dist	special	1			
$\overline{\mathbf{a}}$					
IL					
	1				

١,

iii

<u>ERIM</u>

.

LIST OF FIGURES

Figure	2-1.	January Mean Sea Level Isotherms (Detroit = 28°F.)
Figure	2-2.	July Mean Sea Level Isotherms (Detroit = 73°F.)
Figure	2-3.	Mean Annual Range of Mean Monthly Temperature (Detroit = 45°F.)14
Figure	2-4.	Topographic Regions of Germany
Figure	2-5.	Mean German Temperatures, January (°F.) 15
Figure	2-6.	Mean German Temperatures, July (°F.)
Figure	2-7.	Mean German Precipitation, Annual (inches) 15
Figure	2-8.	Temperature Extremes (°F.)
Figure	2-9.	Coarse Climatic Divisions of W. Germany
Figure	2-10.	Detailed Climatic Regions of Germany
Figure	2-11.	Germany Physical Map
Figure	2-12.	Map - Helmstedt-Minden Area
Figure	2-13.	Map - Fulda - Frankfort Area · · · · · · · ·
Figure	2-14.	Map - Hof - Nurnberg Area
Figure	4-1.	Temperature - Precipitation Diagrams
Figure	4-2.	Water Concentrations Expected Within Precipitation Regions
Figure	5-1.	Expected Frequency (%) for a Given Sky Cover in a Specified Altitude Band. January, 0 to 5000 ft. AGL
Figure	5-2.	Expected Frequency (%) for a Given Sky Cover in a Specified Altitude Band. January, 5000 to 10,000 ft. AGL
Figure	5-3.	Expected Frequency (%) for a Given Sky Cover in a Specified Altitude Band. January, 15,000 to 20,000 ft. MSL
Figure	5-4.	Expected Frequency (%) for a Given Sky Cover in a Specified Altitude Band. January, 20,000 to 30,000 ft. MSL
Figure	5-5.	Expected Frequency (%) for a Given Sky Cover in a Specified Altitude Band. January, 30,000 ft. MSL to U.L

LIST OF FIGURES (Cont.)

Figure 5-6.	Expected Frequency (%) for a Specified Altitude Band. AGL	
Figure 5-7.	Expected Frequency (%) for a Specified Altitude Band. 10,000 ft. AGL	April, 5,000 to
Figure 5-8.	Expected Frequency (%) for a Specified Altitude Band. 20,000 ft. MSL	
Figure 5-9.	Expected Frequency (%) for a Specified Altitude Band. 30,000 ft. MSL	a Given Sky Cover in April, 20,000 to
Figure 5-10.	Expected Frequency (%) for a Specified Altitude Band. MSL to U.L.	
Figure 5-11.	Expected Frequency (%) for a Specified Altitude Band. AGL	
Figure 5-12.	Expected Frequency (%) for a Specified Altitude Band. 10,000 ft. AGL	
Figure 5-13.	Expected Frequency (%) for a Specified Altitude Band. 15,000 ft. MSL	July, 10,000 to
Figure 5-14.	Expected Frequency (%) for a Specified Altitude Band. 20,000 ft. MSL	July, 15,000 to
Figure 5-15.	Expected Frequency (%) for a Specified Altitude Band. 30,000 ft. MSL	July, 20,000 to
Figure 5-16.	Expected Frequency (%) for a Specified Altitude Band. MSL to U.L.	
Figure 5-17.	Expected Frequency (%) for a Specified Altitude Band. 5,000 ft. AGL	
Figure 5-18.	Expected Frequency (%) for a Specified Altitude Band. 10,000 ft. AGL	October, 5,000 to

<u>ERIM</u>

1

とうからる

3

v

ERIM

LIST OF FIGURES (Cont.)

Figure	5-19.	Expected Frequency (%) for a Given Sky Cover in a Specified Altitude Band. October, 10,000 to 15,000 ft. MSL
Figure	5-20 .	Expected Frequency (%) for a Given Sky Cover in a Specified Altitude Band. October, 15,000 to 20,000 ft. MSL
Figure	5-21.	Expected Frequency (%) for a Given Sky Cover in a Specified Altitude Band. October, 20,000 to 30,000 ft. MSL
Figure	5-22.	Expected Frequency (%) for a Given Sky Cover in a Specified Altitude Band. October, 30,000 ft. MSL to U.L
Figure	5-23.	Average Annual Days of Fog
Figure	5-24.	Stored Water Concentration Expected Within Summer Stratiform Raincloud
Figure	5-25.	Stored Water Concentration Expected Below Freezing Level Within Spring or Fall Stratiform Rain Clouds 84
Figure	5-26.	Stored Water Concentration Expected Within Cumulonimbus Clouds
Figure	6-1.	Rainfall Duration in England
Figure	6-2.	Air Mass Incidence - Frankfurt A.M After E. Dinies
Figure	6-3.	Air Mass Statistics - Frankfurt A.M 96

vi

<u>ERIM</u>

i

ŝ

i i T

r ł 1

States and the states of the s

いないのまますのとちいいたない

. ?

LIST OF TABLES

Table 1-1.	Types of Data Presented 6
Table 2-1.	Selected European Temperature [°F]
Table 2-2.	Climatic Zones for the Study Regions
Table 2-3.	Stations Typifying the Climatic Zones
Table 3-1.	Monthly Mean Temperatures [°C]
Table 3-2.	Minimum, Mean and Maximum Monthly Temperature Means [°C]
Table 3-3.	Temperature [°F] Statistics
Table 3-4.	Typical Temperature Minima [°C] for a Zone
Table 3-5.	Frequency (%) of Temperatures Below a Specified Level
Table 4-1.	Monthly Total Precipitation [mm]
Table 4-2.	Minimum, Mean and Maximum Monthly Precipitation Totals [mm, Liquid]
Table 4-3.	Precipitation Statistics [Inches & Days/Month] 40
Table 4-4.	Precipitation Rates [Inches/Hour], Frequency [%] at Which They are Exceeded
Table 4-5.	Frequency [%] of Days with Thunderstorms 42
Table 5-1.	Cloudiness Typical of North German Plain 48
Table 5-2.	Cloud Cover Characteristics for Climatic Zones 5a (Essen) & 4b (Stuttgart)
Table 5-3.	Probability of 4/10 or More Sky Cover in Altitude Bands 10°E 50°N
Table 5-4.	Cloudiness [Days/Month] & Frequency of Cloudiness at Indicated Altitudes [%]
Table 5-5.	Cloudiness [Days/Month] & Frequency of Cloudiness at Indicated Altitudes [%]
Table 5-6.	Frequency of Ceilings Below the Given Level. Zones 5a (Dusseldorf) & 7c (Bayreuth)
Table 5-7.	Frequency [%] of Ceilings at or Below 2000 Ft 76
Table 5-8.	Fog Incidence, BRD
Table 5-9.	Fog Characteristics Zone 5a
Table 5-10.	Frequency (%) of Fogs and Haze by Month 80

vii

LIST OF TABLES (Cont.)

<u>ERIM</u>

Table	5-11.	Impact of Fog on Ceiling and Visibility 81
Table	5-12.	Frequency of Visibility Being Reduced to a Given Range Zones 5a (Hannover) and 7c (Bayreuth) 82
Table	5-13.	Frequency of Occurrence (%), Ceiling/Visibility Less Than or Equal to 300 Feet/1 Mile
Table	5-14.	Liquid Water Expected Within Cumuliform Clouds 86
Table	5-15.	Maximum Altitude [km] for a Given Probability of a Cloud-Free Line of Sight
Table	6-1.	Percentage Frequency of Occurrence of Ceiling/ Visibility Less than or Equal to 200 ft/1 1/4 mi. for a Duration of at Least the Indicated Number of Hours
Table	6-2.	Hourly Duration Percentiles - C/V \leq 200 ft/l 1/4 mi 93
Table	6-3.	Probability (%) of a Specific Change in Fractional Obscuration over a Specified Time Interval (10°E x 45°N)
Table	6-4.	Probability of Occurrence of a Particular Feature on the 500 mB Chart in the 10° x 10° Sector 10°E 45°N
Table	6-5.	Seasonal Probability of Levels of Obscuration in Different 500 mB Features 10°E 45°N
Table	6-6.	Probability of Clear Line of Sight From Satellite to a Specific Spot on the Ground, 10° x 10° Area Centered on 10°E 45°N
Table	6-7.	Representative Weather Sequences for Zone 7c Leinefelde (51°23'N 10°19'E 354 m.)-Summer Jul'53100
Table	6-8.	Representative Weather Sequences for Zone 7c Leinefelde (51°23'N 10°19'E 354 m.)-Autumn Oct'60104
Table	6-9.	Representative Weather Sequences for Zone 7c Leinefelde (51°23'N 10°19'E 354 m.)-Winter Dec'59108

viii

<u>ERIM</u>

1 INTRODUCTION

The objective of the minefield detection project is to determine the effectiveness of various methods of detecting and identifying mines, minefields, minelaying equipment, or minelaying operations, and to recommend continuing effort on the most promising methods.

Work under the project concerned with each of the concepts to be investigated is being performed in a sequence of four major tasks: (1) identification and screening of promising techniques; (2) preliminary systems analysis and definition of experimental or other data acquisition systems; (3) acquisition of critical data through experiment, literature survey, or access to SCI; and (4) evaluation of conceptual systems for technical and military usefulness.

The performance of mine detection sensor/carrier-vehicle combinations and the tactics which will be employed in scenarios representative of anticipated combat situations are heavily influenced by the climate and terrain in which the systems are to be employed. This report has been prepared to provide a unified and consistent documentation of those climatic characteristics which are needed for the analysis and evaluation of candidate mine detection systems.

The generic types of sensors which are being studied in the project as well as specific sensors representing these generic types have been selected through an identification and screening task which is discussed in Ref. 18. The identification and screening task has been conducted with reference to four scenarios which have been defined by BDM Corp. These scenarios are typical examples of doctrine, tactics, and methods of Soviet use, together with typical equipments, time frames and areas involved.

The technical implications of these scenarios which impact on

ERIM

the use of climate and terrain data may be summarized as follows:

- Weather and terrain to be considered in technical screening and analysis are those typical of the North German Plain, the Fulda Gap and Hof Corridor.
- There is a predominance of surface mines and minefields in the scenarios, but buried mines and minefields must also be considered.
- 3. Since the Soviet forces have a 24-hour fighting capability and the in-place times for the offensive minefields is relatively short, the sensors should ideally have a capability to operate both day and night.
- 4. An all-weather sensor capability is highly desirable in view of the short in-place times of the offensive minefields.

In the process of analyzing and evaluating minefield detection systems, both climate and terrain characteristics have a significant influence on system performance. These characteristics influence both the sensor/carrier-vehicle performance and the combat tactics. This report is particularly concerned with those aspects of climate which affect the sensor performance.

Figure 1-1 illustrates the general procedure used in the analysis of candidate minefield detection systems. The statistics of mine and minefield detection refer only to those areas actually observed by the sensor. It is necessary to account for areas not covered by the sensor because of obscuration by the terrain, vegetation, weather, etc. This characteristic is referred to here as target accessibility. A preliminary definition of target accessibility will be used for purposes of generic screening. After specific sensors have been selected for analysis, target accessibility will be defined separately for each candidate.

SERIM

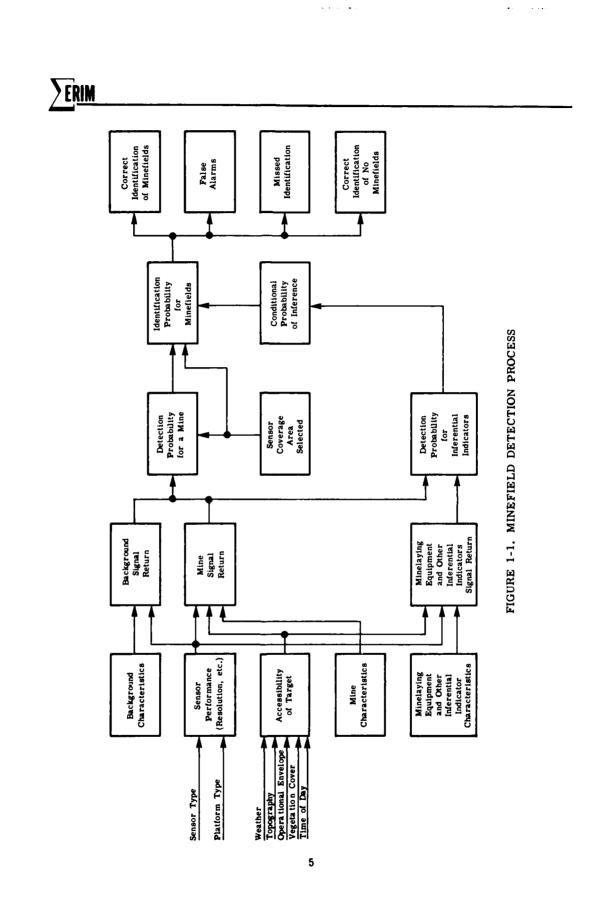
4

Climate and terrain affect sensor performance in two major ways:

1. They affect the accessibility of the target, that is, the ability of the sensor to obtain a useful signal return from the target. Weather primarily affects the transmission of radiation through the atmosphere, while topography and vegetative cover also affect target accessibility by interfering with the line-of-sight between target and sensor. (Accessibility of the target will also be affected by the extent of area coverage provided by the sensor, but this effect is not discussed in this report.)

2. They affect the signal return from the background, i.e., the vegetation and terrain surface and subsurface materials. Vegetation cover and topography affect the signal return of both optical and microwave sensors. Temperature and precipitation affect the background return in the visible and infrared wavelengths, and precipitation affects the soil moisture content which in turn affects the signal return in the microwave regions. Conditions which reduce the contrast between target and background or which increase background clutter will have the effect of degrading sensor performance.

The types of information on climate needed for sensor performance analysis include much of the information normally documented and used in climatic studies. Certain additional types of information are of special interest for sensor analysis.


The tabular and graphic data contained in this report can be adapted for use in analytical modeling of sensor performance to support the technical and operational evaluation of a variety of sensor/carrier vehicle combinations. Although prepared primarily for use in evaluating minefield detection sensor systems, the data are sufficiently general that they can be used for any other sensor applications. In addition, the effects of weather on combat tactics in West Germany can also be modeled using the weather data base contained herein.

a - wall and the Key w

Table 1-1 lists the major categories of weather data presented in the following sections of this report. Some of these categories are presented in more than one table, showing its relation to various other parameters, such as altitude, or using various methods of expressing probability. In all cases, the tables and figures show the variation of the parameters with respect to month or season in order to indicate seasonal effects. Also included in the Table 1-1 for most of the parameters listed are indications of the application of the data to technical and operational analysis of sensor performance and utility.

4

and the second

. .- · --

- WELLAND MALLAND

•

;

.

. .

.

;

•

TABLE 1-1. TYPES OF DATA PRESENTED

PARAMETER

APPLICATION

Temperature

Monthly mean temperature	
Daily minimum temperature	Thermal IR sensor analysis
Diurnal and day-to-day temperature variations	Thermal IR sensor analysis
Precipitation	
Monthly mean precipitation	
Rain Snow	Soil moisture content Terrain background
Days precipitation per month	Mission availability
Thunderstorm frequency	Mission availability
Precipitation rate	Target obscuration (microwave)
Water concentrations within precipi- tation region at various altitudes	Target obscuration (microwave)
Rainfall duration	Mission delay

Sky Cover

Fractional sky cover	Target obscuration (optical)
Vertical distribution of cloud cover	Aircraft altitude selection
Clear/partly cloudy/cloudy days	Target obscuration (optical)
Cloud types	
Cloud obscuration vs. depression angle	Flight path selection
Water content of clouds	Target obscuration (microwave)
Sky cover duration	Mission delay

Fog

26.12

Frequency of fog, by month		Target obscuration (optical)
Frequency of fog (day/night)		Target obscuration (optical)
Effect of fog type on ceiling and visibility		Target obscuration (optical)
,	6	

VERIM	
TABLE 1-1. TYPES OF DATA	A PRESENTED (Cont.)
PARAMETER	APPLICATION
Visibility	
Frequency of Visibility, by month Ceiling/visibility duration	Target obscuration (optical) Mission delay
Other	
Monthly precipitation-temperature relations	
Air mass incidence and statistics	Weather modelling
Height of 500 mB atmospheric pressure surface	Weather modelling
Representative weather sequences	Scenario for operational analysis

GENERAL CHARACTERISTICS OF GERMAN CLIMATE

2.1 Significant Climate Characteristics

Atmospheric effects can degrade or deny remote electromagnetic sensing from airborne platforms. Man contributes to some in the form of smoke or smog but most are natural in origin consisting generally of water in the liquid or solid phase.^{*} These are represented by some form of cloud or fog and by falling or fallen precipitation. Meteorological phenomena may be severe enough to deny operation of the vehicle as well as degrading the performance of its sensors. Airborne vehicle operation can be hampered by high winds and turbulence as well as the phenomena already mentioned.

Several characteristics of a region and its climate impact the incidence of these weather phenomena. The "continentality" of a region influences the amount of water to be expected in the atmosphere. The temperature influences the amount and form of condensation and precipitation of that water. Temperature inversions influence cloud levels and smoke and haze build up. Air stability impacts atmospheric clarity and cloud forms. The topography influences cloud forms, precipitation, and turbulence. Proximity to the mean position of the polar front helps determine the frequency of its exposure to frontal weather patterns and cyclonic storm activity.

Regrettably, most climatological references concentrate on the data which are less applicable or presented in less useful forms. The three most-reported climatological parameters are mean monthly pressure, mean monthly temperature, and mean monthly precipitation. To the temperature data we would wish to have added the mean daily

^{*}One notable exception is the dust storm. Dust storms are not a significant problem in middle Europe however.

minimum and maximum for each month. We would also add the frequency of encountering days in which a significant amount of precipitation occurred and the statistics of duration and intensity of the rain for the rainy days. Distinctions should also be drawn between the shower activity associated with cumuliform clouds and the extended rain associated with the stratiform clouds.

FRIM

Cloud cover is normally reported as a mean value of dawn-to-dusk percent sky cover. Cloudiness appears to be bimodally distributed, however, and we often find fewer days with percent cloudiness near the monthly average than clear days and heavily overcast days. For example with 50% mean cloudiness in January we would expect to find 12 clear days, 10 cloudy days, and only 9 partly cloudy days.

For many airborne sensors the height of cloud layers is of critical importance since if reasonably high, they may be underflown. But clouds often form in decks and we define "ceiling" as the height above ground level of the base of the lowest cloud deck which, combined with all lower clouds, obscures more than 50% of the sky. An unlimited ceiling means only that at least 50% of the sky is unobscured. Thus a ceiling reported as being above the desired operational altitude of a given platform (or even reported unlimited) may be an accurate description of a situation in which 40% of the terrain is denied by a partial low-altitude cloud deck.

The usual reports of visibility present similar problems. Horizontal visibility near the surface is routinely reported and recorded. For airborne sensor applications we would prefer visibility as a function of elevation angle or horizontal visibility as a function of altitude. Some measure other than visibility might also be preferable for describing the scattering/attenuation phenomena involved.

VERIM

2.2 West German Climatology

Germany's topography along with that of its neighbors and its geographic placement dictate its particular climatic patterns. Its high latitude is considerably compensated by its proximity to large bodies of water to the north and west, especially to the Atlantic Ocean with its warming currents. There are no intervening highlands to block the flow of maritime air masses from these bodies of water. The mountain ranges (Alps, Pyrenees, etc.) partially isolate it from Saharan or Mediterranean influences. Thus its weather is primarily associated with those maritime influences and only occasionally (but dramatically) with the dry continental air masses from the great Russo-Siberian land mass.

Mean annual range of mean monthly temperatures is a reasonable index of continentality.* Figures 2-1 and 2-2 show the general temperature pattern to be expected in Central Europe in January and July. These show the impact of the maritime air masses. The effect of the west-to-east increasing continentality may be seen even more dramatically in Figure 2-3.

The general topography of Germany modifies the pattern shown in Figures 2-1 through 2-3. Figure 2-4 outlines these German regions of topographic significance. Figures 2-5 through 2-7 indicate the nature of that modification on temperature and precipitation. Table 2-1 gives temperature data for specific locations in Europe and the maxima and minima are mapped in Figure 2-8.

[&]quot;This is not a primary index of continentality. Any standard reference on general climatology will provide good measures for this purpose (e.g. Ref. 1 or 3).

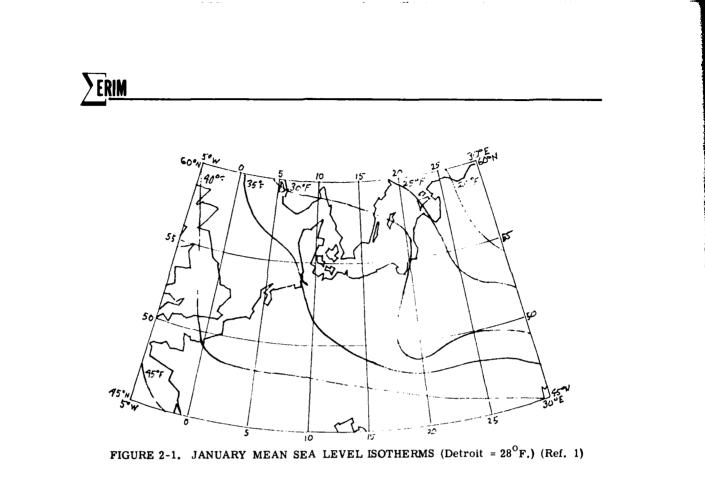
ERIA

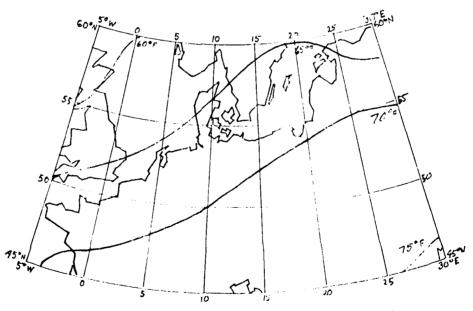
2.3 Selection of Climatic Zones for Systems Analysis

Various studies have used different divisions of Germany to try to better describe its climatic variations. Some U.S. Air Force documents* use the following climatic regions:

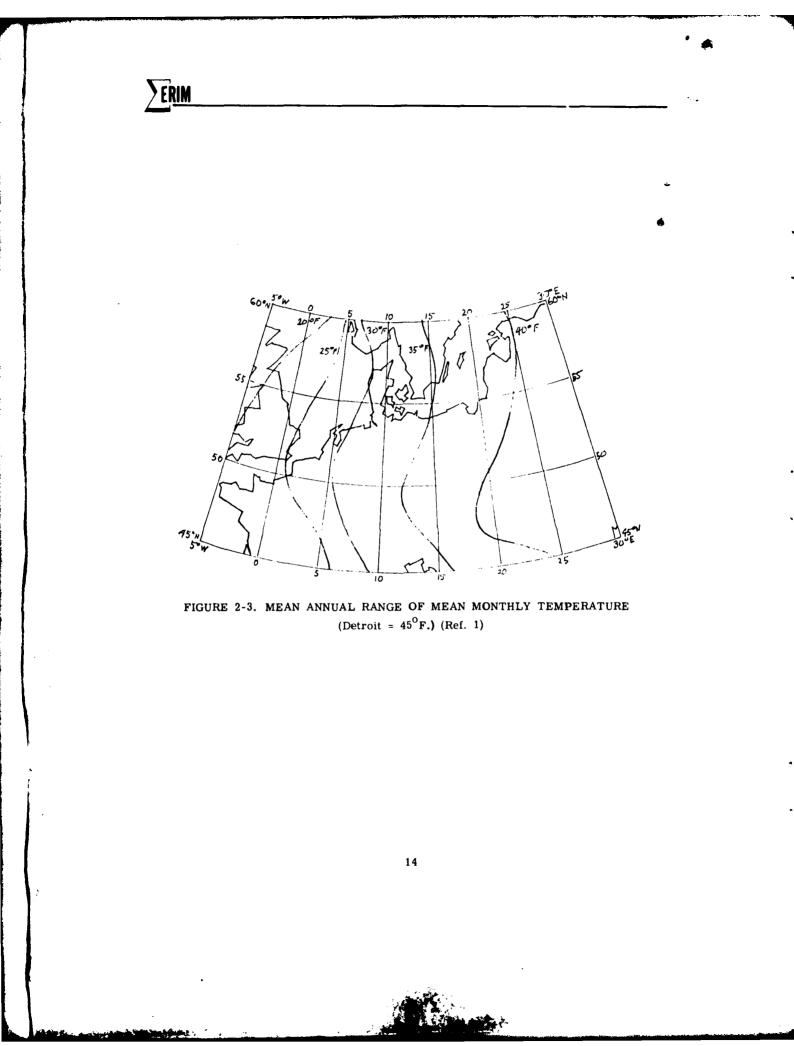
- 1.) Northern Lowland
- 2.) Rhine Valley
- 3.) Central Mountain Chain
- 4.) Eifel Mountain Range
- 5.) Southern Plateau
- 6.) Bavarian Alps

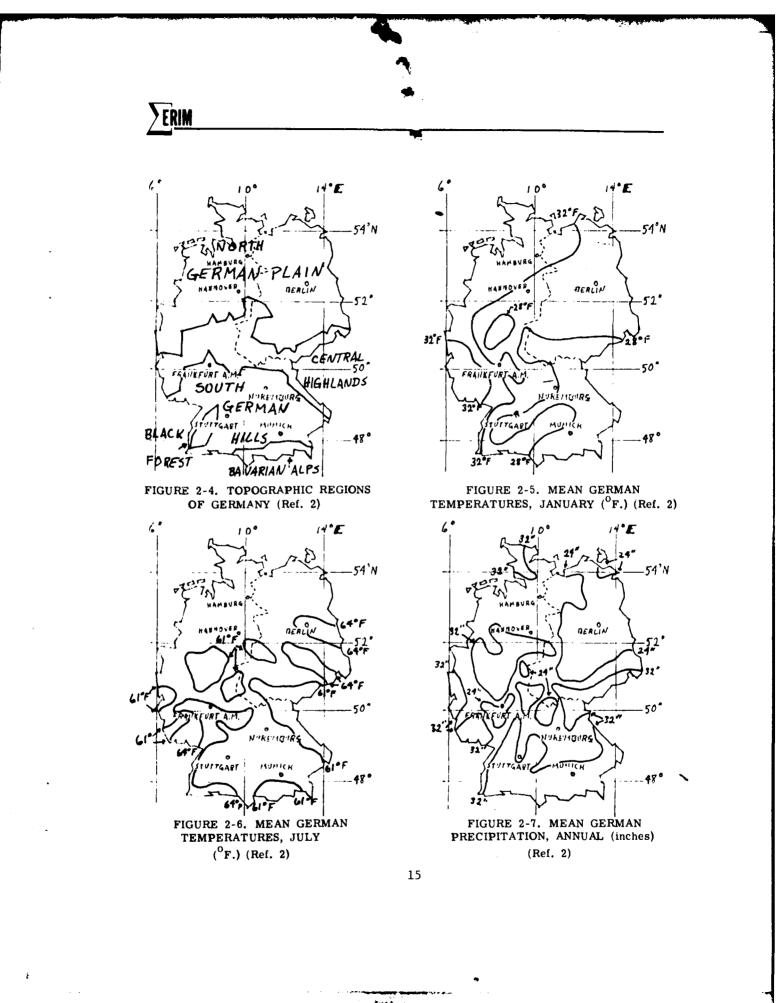
These regions are shown in Figure 2-9a. The report cited notes, however, that there is no one station that can be considered representative of any one area. Figure 2-9b shows another set of zones which is sometimes used but it is even less satisfactory than the first.

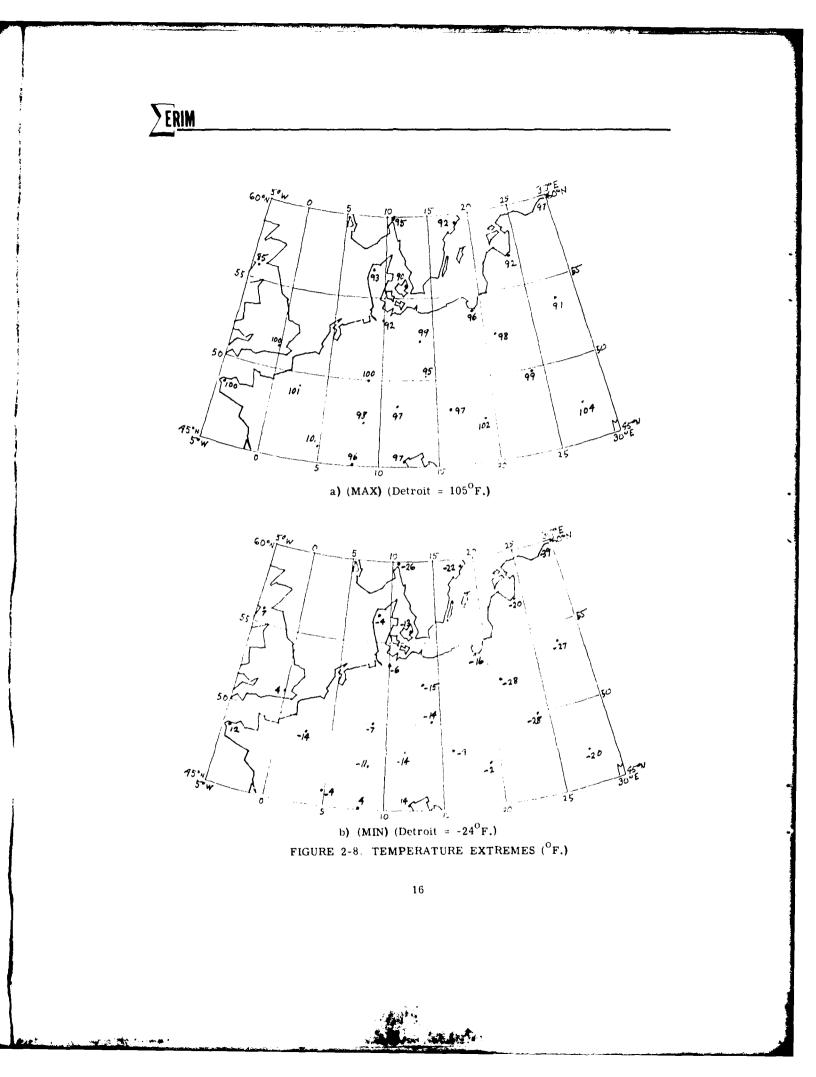

There is an E. German Climatic Atlas [ref.5] that provides a sufficiently fine-grained analysis for our purpose. This is shown in Figure 2-10. Note that it conforms very well to the German topography as shown in Figure 2-11. The climatology of each of these regions can be fairly typified by a single weather station. The three regions for our study are suggested by the length and breadth of the arrows in Figure 2-10. These advances and the climatic regions are shown in more detail in Figures 2-12, 2-13, and 2-14.


For each of these study regions, Table 2-2 lists the primary climatic zones which are certain to be penetrated and Hearby secondary zones which might be penetrated. Table 2-3 lists some of the stations which can be used to characterize each of these zones.

^{*}e.g."Meteorological Aspects of All-Weather Interdiction in the Latter 80's", office of the Staff Meteorological, U.S.A.F.A.D.T.C., Eglin Air Force Base, Florida. Nov. 1978


ERIM


Note that 7c is the one primary climatic zone present in all three regions. For some purposes we can reasonably use 7c to typify our climate. On the other hand, we see that 5a is really the predominant zone in the North German Plain attack region, 9b in the Hof region and that 7c is predominant only in the Fulda advance region and then, not overwhelmingly so.



and the second second second second

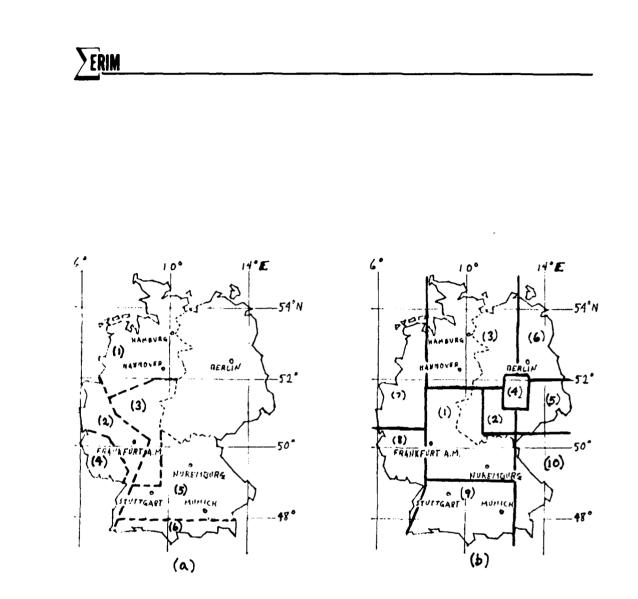
<u>ERIM</u>

	TABLE Jan. A Mean h	2-1. ibsolut finimum	SELECTED EUROPEAN TEMPERATURES (5°W-30°E) x (45°N-60°N) e July Absolut Difference Mean Maximur	AN TEMPE) x (45° July Mean		[°F] (Ref.4) e Difference	July- Jan.	Max Min.
Austria Vienna	31.9	-4.0	35.9	65.8	97.0	31.2	33,9	101.0
Britain Glasgow London	38.6 38.5	7.0	31.6 34.5	58.0 63.5	85.0 100.0	27.0 36.5	19.4 25.0	78.0 96.0
Bulgaria Sofia	28.4	-24.0	52.4	69.1	102.0	32.9	40.7	126.0
Czechoslovakia Prague	30.0	-14.0	44.0	66.6	95.0	28.4	36.6	109.0
Denmark Copenhagen Vestervig	30.5 34.0	-13.0 -4.0	43.5 38.0	61.8 60.2	90.0 93.0	28.2 32.8	31.3 26.2	103.0 97.0
France Brest Lyon Paris	44.9 35.4 37.8	12.0 -4.0 -14.0	32.9 39.4 51.8	64.2 69.4 65.6	100.0 101.0 101.0	35,8 31.6 35.4	19.3 34.0 27.8	88.0 105.0 115.0
Germany Berlin	30.2	-15.0	45.2	64.4	99.0	34.6	34.2	114.0
Danzig Frankfurt AM	28.8 32.4	-16.0	44.8 39.4	03.0 66.4	96.0 100.0	33.6	34.0 34.0	102.0
Hamburg Munchen	31.7 28.2	-6.0 -14.0	37.7 42.2	62.6 64.2	92.0 97.0	29.4 32.8	30.9 36.0	98.0 111.0
Hungary Budapest	31.6	-2.0	33.6	70.4	102.0	31.6	38,8	104.0
Italy Turin Venice	33.2 35.8	4.0 14.0	29.2 21.8	72.8 75.3	96.0 97.0	23.2 21.7	39.6 39.5	92.0 83.0

- **1**-

1

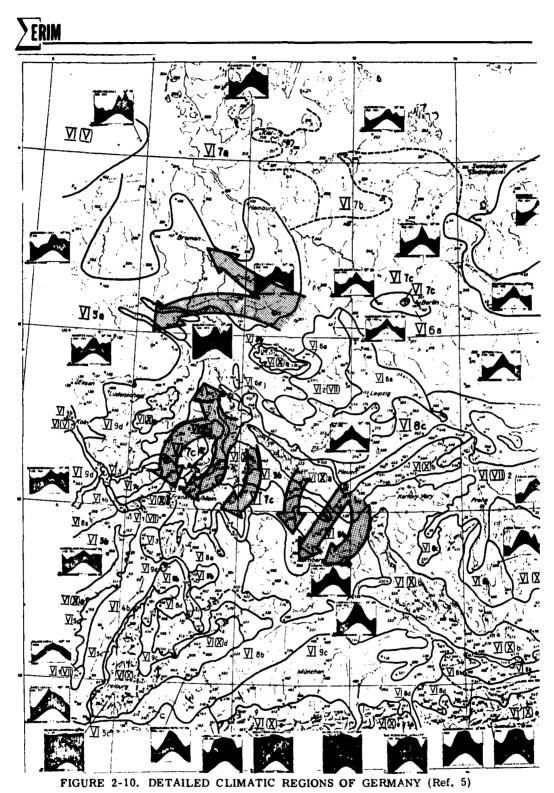
17

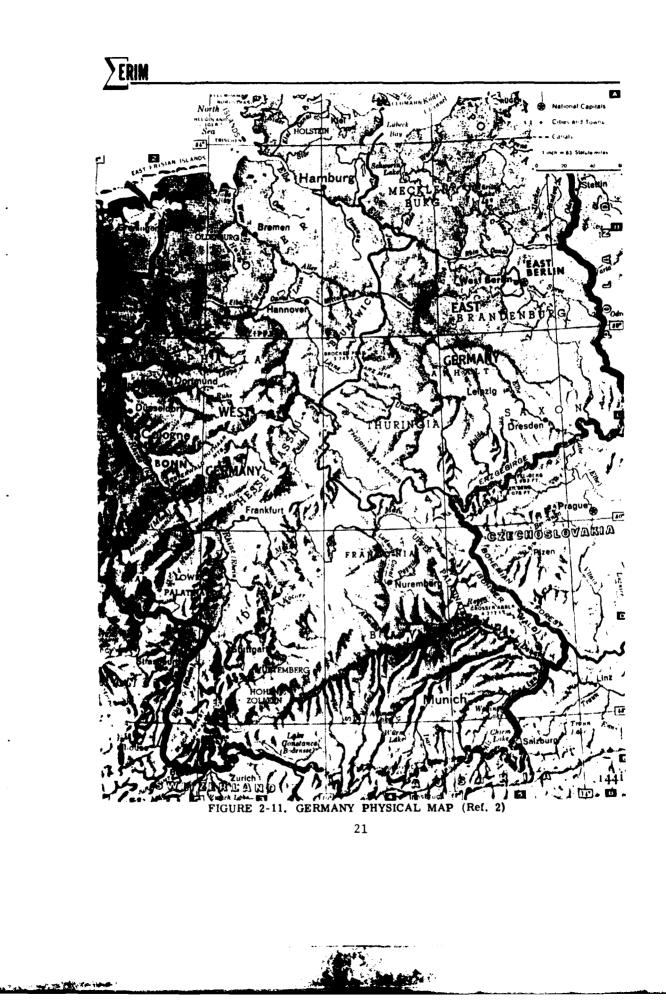

Anna sansa

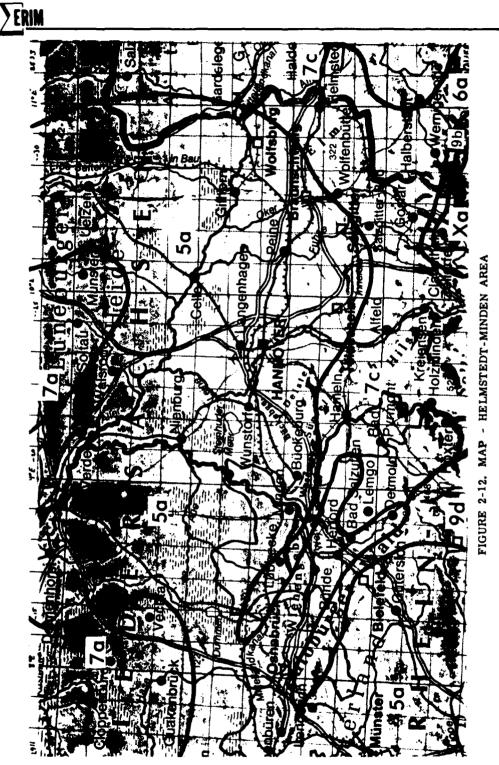
<u>ERIM</u>

Ster wat

TABLE	2-1. Abo	SELECTED EUROPEAN TEMPERATURES [°F] (5°W-30°E) x (45°N-60°N)	FEMPERAT E) x (45 T1	rURES [°F] 5°N-60°N) Åhsolite	(Ref.4) (Cont.)	(, [1])	No.
,	Absolute Minimum	Difference	Mean	Absolute Maximum	Difference	Jan.	Min.
24.3	-20.0	44.3	64.8	92.0	27.2	40.0	112.0
37.5	4.0	33.5	63.0	91.0	27.0	25.5	87.0
24.1	-26.0	50.1	62.6	95.0	32.4	38.5	121.0
25.2 25.7	-28.0 -28.0	53.2 53.7	66.2 65.4	9.0 98.0	32.8 32.6	41.0 39.7	127.0 126.0
25.8 -	-29.0	45.8	70.4	104.0	35.6	44.6	124.0
26.6 -	-22.0	48.6	62.6	92.0	29.4	36.0	114.0
31.5 -	-11.0	42.5	64.8	98.0	33.2	33.3	109.0
18.3 - 19.8 -	-39.0 -27.0	57.3 46.8	63.5 63.5	97.0 91.0	33.5 27.5	45.2 43.7	136.0 118.0
44.9 18.3 -	14.0 -39.0	57.3 21.8	75.3 58.0	104.0 85.0	36.5 21.7	45.2 19.3	136.0 78.0
30.8 -	-11.2	41.9	65.4	96.4	31.1	34.6	107.6

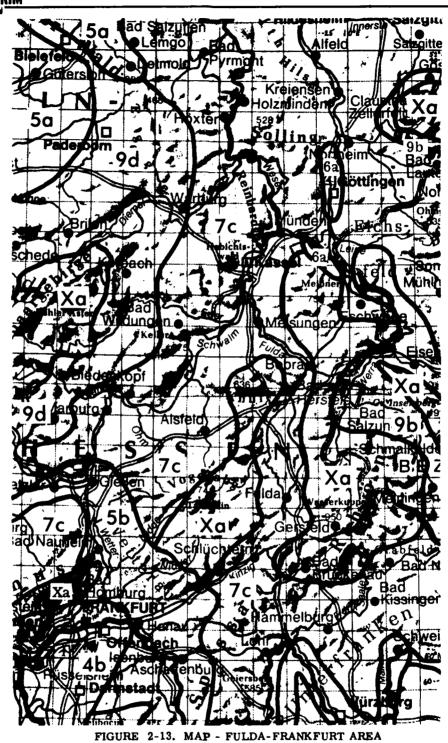

18





19

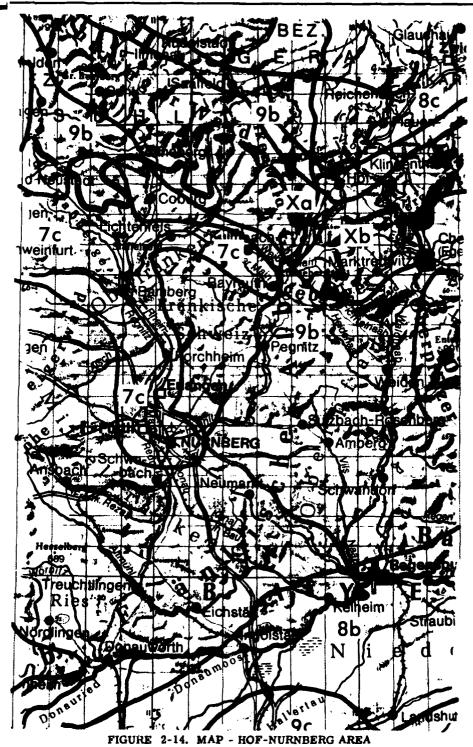
the Standard



No.P

T. P. Aspeller

i i



ġ,

and the second

<u>ERIM</u>

a dia ta

24

20.00

	N. German Plain	Fulda	Hof
Primary Zones	5a	4b	7c
	7c	5ь	8c
		7c	9Ъ
		9Ъ	Xa
		Xa	ХЪ
Secondary Zones	7a	3	8a
	9Ъ	5a	8ъ
	9d	6a	9c
		8a	Xd
		9d	

TABLE 2-2. CLIMATIC ZONES FOR THF STUDY REGIONS

hald to the

10.00

TABLE 2-3. STATIONS TYPIFYING THE CLIMATIC ZONES

Primary Zones	4Ъ	Frankfurt AM, Freiburg lB, Neuwied, Stuttgart,
		Wiesbaden
	5a	Arnsberg, Bremen, Bremerhaven, Dusseldorf, Essen, Hamburg, Hannover, Kleve, Munster, Oldenburg
	5Ъ	Giessen
	7c	Bayreuth, Fulda, Helmstedt, Kassel, Marburg ADL, Nürnberg
	8c	Plauen
	9Ъ	Amberg, Coburg, Grafenwöhr, Hof, Kitzingen, Weiden
	Xa	Clausthal-Zellerfeld, Wasserkuppe
	ХЪ	Grosser Falkenstein
Secondary Zones	3	Heidelburg, Mannheim
	6a	Berlin-Templehof
	7a	Flensburg, Lübeck, Schleswig, Wyk
	8a	Gerrabronn, Hahn AFB, Idar-Oberstein
	8Ъ	Augsburg, Eggenfelden, Passau, Regensburg, Ulm
	9c	München
	9d	Bitburg, Trier, Spangdahlem

Xd Donaueschingen

E<u>rim</u>

3 TEMPERATURE

A closer look at German temperatures shows the details of the **variation** from zone to zone, within zones, within the month, and from year to year.

Table 3-1 shows the monthly mean variations to be expected in the primary and secondary climatic zones. Six representatives of zone 7c are included because of the importance of this zone, but also to show the magnitude of the variation to be expected within a zone. Note that while variation is observed in each month it never exceeds 1° C.

Table 3-2 shows how much variation has been found in monthly means from year to year. The 4 representative zones all show a greater winter than summer variation. That large winter variation is concentrated on the low side of the mean. This rather clearly indicates the impact of the polar continental air mass from the USSR which occasionally flows from east to west across the land. Table 3-3 provides some additional temperature variation data from another source. Here the temperatures are in degrees Fahrenheit and a different time period has been covered. The shorter time span tends to reduce the max-to-min excursion.

These three last temperature tables suppressed the day-today variation within a month and the diurnal variation as well. Table 3-4 shows two types of minimum temperatures for each of our primary and secondary climatic zones. First the mean daily low to be expected in January. These are typically about 3°C below the monthly means. This table also shows the typical absolute minima; the lowest temperature which had been recorded. The last column records the lowest minimum recorded anywhere within the zone: an absolute absolute minimum, if you will.

Table 3-5 attempts to show the magnitude of both diurnal and day-to-day temperature variations. For three representative regions, the table shows, on a monthly basis, the frequency with which the temperature may be expected below a given level.

Cold air coupled with sufficient moisture may create the secondary problem of icing conditions at altitudes which might be used for sensor platforms. The probability of encountering icing conditions at the 850 mB level (~5000 ft.) over Germany exceeds 5% from December through March. It exceeds 5% at the 700mB level (~10,000 ft) from November through May.

		T <i>i</i>	TABLE 3	3-1.	MOM	ТНГҮ	MEAN	MONTHLY MEAN TEMPERATURES [°C]	RATUF	VES ['	C] (F	(Ref.5)			
	Station	Zone		њI	Σ	A)	ΣÌ	ا د.	ıط	A	s	0)	z	a	Annua1
	Frankfurt AM	4 b	0	2	5	6	14	18	19	5	15	10	S	1	6.9
	Hannover	5a	н	7	2	ω	13	16	17	1.6	14	σ	2	2	0.6
	Giessen	5b	Ч	2	5	8	14	16	17	16	13	8	4	r,	8.8
	Helmstedt	7c	-1	0	4	7	13	16	17	16	12	7	ŝ	1	8.4
	Kassel	7с	-1	щ	4	٢	12	15	16	15	13	8	4	г	8.4
	Marburg ADL	7c	-2	0	4	8	13	15	17	16	13	80	4	0	8.0
	Fulda	7c	7	0	4	7	12	15	16	15	12	7	e	Ц	8.0
	Bayreuth	7c	-2	0	ĉ	7	12	15	17	16	12	7	ς	0	7.8
	Nurnberg	7c	-1	0	4	∞	13	16	18	16	13	8	4	1	8.7
29	Plauen	8c	-2	7	÷	9	11	15	16	15	12	80	с	0	7.8
)	Hof	$^{ m 6p}$	-3	-2	2	9	11	14	15	14	11	2	1	7	6.3
	Wasserkuppe	Ха	-7	۳	0	с	7	11	13	12	6	5	0	-2	4.4
	Alexandersbad	Хb	-3	Ϋ́	0	2	10	13	15	14	11	5	1	-2	5.7
	Heidelberg	e	T	ę	9	10	14	17	18	17	14	10	Ś	2	10.2
	Witzenhausen	6a	1	2	S	∞	12	15	16	15	13	8	4	2	8.6
	Vechta	7a	0	Ч	4	٢	12	14	16	15	13	8	4	2	8.2
	Gerrabronn	۶a	-2	0	4	7	12	15	16	15	12	7	'n	0	7.6
	Regensburg	8b	-2	0	4	ø	12	15	17	16	12	9	2	Ţ	7.7
	Munchen	9с	r,	-1	2	9	12	15	16	15	12	9	2	-1	7.4
	Trier	P6	0	2	9	10	14	17	19	18	15	10	5	2	9.9
	Donaueschingen	рх	ĥ	-2	2	Ś	10	14	15	14	11	9	1	-2	6.3

.....

TABLE 3-2. MINIMUM, MEAN AND MAXIMUM MONTHLY TEMPERATURE MEANS [°C]

4: 4

(Ref. 6 and 7)

Month	7c	7c(Potsdam)	(u	1)q+	4D(FTANKIUTC)	rt)	ĕ	oa(berlın)	u`)	5	9d(Trier)*	*
	Min.	Mean	Max.	Min.	Mean	Max.	Min.	Mean	Max.	Min.	Mean	Max.
January	-10.0	-0.7	3.5	-8.0	0.1	5.5	-11.9	-1.1	6.5	-6.6	0.1	5.0
February	-8.4	0.6	4.1	-5.6	Ĭ.9	6.8	-8.1	0.6	5.4	-3.5	2.1	6.1
March	-0.8	3.6	7.0	-2.7	4.9	9.3	-4.3	3.3	8.0	3.1	5.9	7.9
April	5.3	7.8	11.3	5.5	9.4	13.1	3.9	8.6	14.4	6.6	10.4	12.0
May	9.6	12.9	15.8	10.6	14.1	19.2	10.0	13.8	19.2	10.4	14.0	15.9
June	13.8	16.3	20.2	14.2	17.5	22.2	13.7	17.3	21.7	15.1	16.8	18.9
July	14.4	17.6	20.1	15.8	18.9	23.8	15.5	18.9	23.6	17.0	18.9	20.3
August	14.4	16.6	21.3	15.3	18.2	22.0	14.0	18.2	23.3	16.0	18.1	20.8
September	9.6	13.1	18.0	10.8	14.7	18.6	10.9	14.6	18.0	13.6	15.1	17.8
Oc tober	4.8	8.4	12.1	6.0	9.6	12.9	4.7	9.2	13.5	8.3	10.2	13.0
November	-0.8	3.3	7.2	-1.0	4.5	8.5	-2.5	3.7	8.0	4.3	5.1	8.6
December	-3.7	0.8	3.9	-7.9	1.3	6.1	-11.2	0.6	4.7	-1.1	2.0	4.0

6.

Sector .

* Trier data represents only 13 years. Others 42 to 165 years. Company -

İ

	Range/ Average	38/55	32/43	35/49	-/12	33/53	27/42	29/47	-/11	34/55	25/40	29/48	-/ ا د	38/57	27/42	32/49	-/14
	D	40	33	36	٢	38	32	35	$^{\Gamma}_{9}$	40	31	35	$^{\mathrm{T}}_{\mathrm{6}}$	39	31	35	$^8_{ m I}$
	N	44	37	40	1	44	36	40	œ	45	35	40	10	45	36	40	6
	0	56	45	50	11	53	44	49	6	54	42	48	12	56	43	50	13
	S	99	51	58	15	63	51	57	12	99	48	57	18	67	51	56	16
(Ref.3)	A	73	58	65	15	68	55	61	13	71	53	62	18	74	55	65	19
	٦	74 _H	59 _H	66 _H	15	69 _H	56 _H	62 _H	13	72 _H	53_H	62 _H	19	75 _H	56 _H	65 _H	19
STATISTICS	Ŀ	71	55	63	16	66	53	59	13	70	50	60	20	72	53	62	$19_{ m H}$
	Σ	65	48	56	$17_{\rm H}$	61	47	54	$14_{ m H}$	65	44	54	$21_{ m H}$	67	48	57	19
[°F]	A	55	40	47	51	52	39	45	13	55	37	46	18	58	41	50	17
URE	Σ	46	33	38	13	44	34	39	10	97	33	39	13	49	35	41	14
TEMPERATURE	E.	36	$27_{\rm L}$	$31_{\rm L}$	6	38	30	34	œ	40	29	34	11	42	31	36	11
	Ы	$36_{\rm L}$	29	32	$^{2}{ m L}$	36 _{1.}	29 _{1.}	33	7	381	$^{28}_{ m L}$	$33_{\rm L}$	10	37 _{1.}	29 ₁	33 ₁	8 I
TABLE 3-3.	Parameter	Max imum	Minimum	Mean	Range	Maximum	Minimum	Mean	Range	Max imum	Minimum	Mean	Range	Maximum	Minimum	Mean	Range
	Station	Berlin				Hamburg				Hannover				Frankfurt AM			
	Zone	6a				5а				د 5a	1			4 P			

AND CARANTER

<u>ERIM</u>

-1

4-6

Zone	Mean Daily Minimum - Jan.	Typical Absolute Minimum	Absolute Minimum in Zone
3	-1.3°C	-22.2°C	-22.9°C
4b	-1.7	-21.9	-28.4
5a	-1.7	-25.0	-28.0
5Ъ	-2.5	-28.8	-30.3
6a	-2.4	-26.1	-31.0
7a	-2.4	-22.0	-30.3
7c	-3.5	-28.0	-35.1
8a	-4.1	-26.6	-30.0
8Ъ	-5.1	-28.8	-35.4
8c	-4.4	-29.7	-35.8
9b	-6.0	-32.3	-37.2
9c	-5.0	-25.4	-31.8
9d	-3.6	-24.4	-36.4
Ха	-6.0	-25.5	-29.0
Xb	-6.9	-23.1	-37.0
Xđ	-6.9	-33.6	-33.6

TABLE 3-4. TYPICAL TEMPERATURE MINIMA [°C] FOR A ZONE (Ref. 5)

32

- Salarta

<u>ERIM</u>

we and the second

Region	M . 1	0.9 17	1580	2280	508m	7085	0585	10085
Centered on	Month	<u>0°</u> F	<u>15°F</u>	<u>32°F</u>	50°F	70°F	<u>85°F</u>	<u>100°F</u>
Hannover	Jan	×1%	2%	42%	98%	>99%		
	Feb	~ 1	5	35	97	·• 99		
	Mar		~1	20	86	>99		
	Apr		· 1	2	61	99	∵99%	
	May			~1	30	92	>99	
	Jun			< 1	5	81	~99	
	Jul			< 1	1	74	98	··99%
	Aug			~1	1	78	99	.99
	Sep			· 1	10	90	~99	
	Oct		• 1	2	50	.99		
	Nov		· 1	9	90	- 99		
	Dec	· 1	2	32	96	-99		
Fulda	Jan	· 1	4	45	97	.99		
ruida	Feb	- 1	3	38	96	.99		
	Mar	· T	•1	11	80	.99		
	Apr		- 1	1	58	98	~99%	
	Мау		. T	• 1	26	90	·99%	
	Jun			- 1	3	78	99	.99%
	Jul			- 1	1	75	97	~99
				• 1	· 1	74	97 97	.99
	Aug			,				.99
	Sep			· 1	10	86	.99	
	Oct		• 1	2	50	.99		
	Nov		• 1	10	90	.99		
	Dec	· 1	3	33	95	~99		

TABLE 3-5. FREQUENCY (%) OF TEMPERATURES BELOW A SPECIFIED LEVEL (Ref. 9)

,

33

Ne + 2 - 1

See States

ERIM

Region Centered on	Month	<u>9°F</u>	<u>15°F</u>	<u>32°F</u>	<u>50°F</u>	70°F	<u>85°F</u>	100°F
Bayreuth	Jan	<1%	8%	49%	97%	> 99%		
	Feb	<1	5	43	97	⊳99		
	Mar		< 1	16	82	<u>~99</u>		
	Apr		<1	3	57	98	>99%	
	May			<1	22	89	>99	
	Jun			<1	3	74	98	>99%
	Jul			<1	1	60	97	-99
	Aug				~1	75	98	··99
	Sep			· 1	10	86	··99	
	Oct		· 1	3	55	>99		
	Nov		~ 1	15	91	>99		
	Dec	<1	3	39	97	~99		

TABLE 3-5. FREQUENCY (%) OF TEMPERATURES BELOW A SPECIFIED LEVEL (Ref. 9) (Cont'd)

and the

YERIM

4 PRECIPITATION

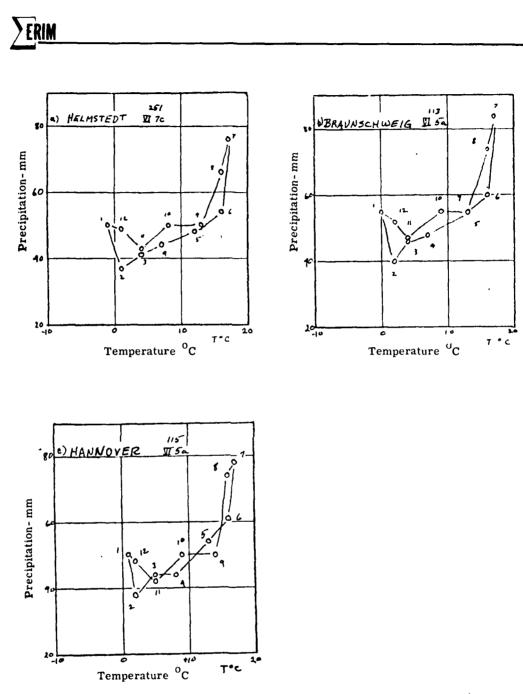
The month-to-month variation of precipitation in Germany is comparable in relative magnitude to the variation in temperature and both exhibit a distinctive pattern. Figure 4-1 shows the month-to-month variations to be expected in both for three representative North German Plain stations. Note a marked summer precipitation peak in July followed closely by a slightly lower peak in August. Two minima occur in November and February, with a small winter peak in January which exceeds December only slightly.

Table 4-1 shows the mean total precipitation to be expected in any month for all of our climatic zones. Note, again, that stationto-station variations within a zone are modest in magnitude.

Table 4-2 shows the variation in total monthly precipitation that has been recorded for four representative sites. These absolute variations are very large indeed. Examination of the original data also showed that a very dry month can occur immediately between two very wet months or between two years in which the corresponding months were very wet. Table 4-3 provides additional precipitation data which adds new stations and statistics on snow and thunderstorms (TSTM's) as well. A difference in time period covered explains the difference in Berlin & Frankfurt data between tables 4-2 and 4-3.

In Table 4-4, for two stations, we show the expectation for a given rainfall rate. It shows, for example, that the probability of an hour in Munich in which more than 0.18 inches of water falls is 0.3%. Similarly the probability of an instantaneous rate exceeding 0.06 inches per hour in Berlin, is 0.76%.

The greatest precipitation rates occur from thunderstorms. Instantaneous rates in excess of 12 inches per hour have been recorded. Fortunately the peak rate is not maintained long and the total period of precipitation from a single thunderstorm cell is typically about 25 minutes although this may vary from a few minutes to just under an hour.



Thunderstorms also provide strong, gusty surface winds, strong winds within and about the cloud, turbulence, great vertical development and electrical disturbance all in amounts sufficient to handicap most sensors and most platforms.

European thunderstorms tend to develop to lesser altitudes than those in the U.S. midwest. Most importantly, less development occurs above the freezing level which tends to inhibit their development and make the European thunderstorm somewhat less formidable. Winter thunderstorms in Europe are especially inhibited. They seldom develop to a height greater than 13,000 feet. They are infrequent, but, especially if a High sits over the British Isles and a Low sits in Russia with a cold front stretching between them, the moist maritime air is "pumped" over Scandinavia and down into Germany and thus frontal and prefrontal thunderstorms are generated.

Table 4-3 had provided the days of thunderstorms per month for four stations. Table 4-5 shows the probability of encountering a thunderstorm day at several additional stations by month. At all stations, the activity peaks in either June or July with a considerable concentration generally between May and August inclusive.

Many remote sensors are specifically handicapped by the amount of falling liquid water that is volumetrically distributed in a propagation path. Figure 4-2 shows as a function of altitude, the concentration of water expected within rain falls of different types and rates. Note that these do not include the stored water within the cloud itself.

Light Martine

	TABLE	4-1.	MONTHLY		TOTAL	PREC	PRECIPITATION		[נוש]	(Ref.	5,6	¢.	<u>ہ</u>	
Station	Zone	ΓI	۲ <u>۰</u>		A	Σ	. .!	u	A	sı	0!	N	ai	<u>Annua l</u>
Frankfurt	4Þ	45	35	١'n	37	52	63	71	67	50	55	50	52	616
Hannover	5a	50	38	45	77	54	61	78	73	49	50	42	49	644
Giessen	5b	45	36	38	37	50	69	76	61	48	56	50	53	619
Helmstedt	7c	50	38	42	77	50	55	76	66	51	51	44	49	613
Kassel	7c	40	35	37	41	50	58	74	65	46	48	44	46	591
Marburg A.D.L.	7c	51	41	43	43	51	60	69	64	50	60	51	56	637
Fulda	$7_{\rm C}$	46	36	40	47	61	65	76	71	57	55	46	49	640
Bayreuth	7c	47	35	37	77	55	60	70	69	47	46	45	49	595
Nürnberg	7c	40	31	35	43	56	64	77	80	54	55	49	77	623
Plauen	8c	38	37	77	51	76	82	87	77	57	77	40	40	665
Hof	9b	51	40	47	49	59	73	81	75	54	49	49	55	679
Wasserkuppe	Ха	06	82	77	82	76	85	120	105	96	16	71	86	1076
Alexandersbad	Хb	67	51	58	70	80	81	06	100	70	70	99	81	882
Heidelberg	ŝ	50	44	45	51	56	70	82	76	68	60	53	55	718
Witzenhausen	6а	43	37	37	47	51	60	74	64	52	56	41	46	606
Vechta	7а	55	45	50	48	55	69	79	71	58	59	51	60	695
Gerrabronn	8a	63	52	56	62	70	76	84	80	70	61	63	77	818
Regensburg	8b	40	32	33	43	59	68	82	71	51	40	36	42	591
München	9c	44	36	51	71	81	120	125	110	80	58	48	49	866
Trier	P6	49	43	48	77	58	67	71	68	57	62	57	62	684
Donaueschingen	РХ	50	38	47	56	70	81	81	76	67	58	51	56	732

A AND A A

	7c	(Potsdam)	am)	4P ((Frankfurt	urt)	6a	(Berlin)	(u	P6	l (Trier)	(<u>1</u>
Month N	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Мах
-	14	43	97	5	45	123	6	42	100	1	49	127
П	13	41	66	Ч	35	102	2	36	124	°,	43	123
	10	34	69	5	41	110	4	41	134	7	48	125
Apr 1	13	43	17	0	37	146	-	39	106	0	44	129
	17	48	73	2	52	156	7	48	145	2	58	142
Jun 2	25	60	124	12	63	961	x	59	142	13	67	138
	28	66	118	1	11	208	20	76	230	9	71	168
Aug l	17	69	152	9	67	214	œ	58	202	13	68	166
	7	42	72	-	50	126	7	43	67	1	57	239
	6	46	108	C)	55	147		44	134	1	62	153
Νον Ι	15	48	116	11	50	153	-	42	118	Ś	57	181
Dec 1	10	35	86		52	130	ŕ	49	117	2	62	154
ANNUAL 444	4	575	722	359	616	936	389	577	763	383	684	998

۳, æ

39

and the second

......

TABLE 4-3. PRECIPITATION STATISTICS [INCHES & DAYS/MONTH] (Ref. 8)

Avg.	1.9 14 -	2.4 16 -	2.0 15 -	2.0 14 -
	22.4 171 15.8 21	29.0 196 12 23	24.0 175 18.9 21	23.7 166 14.5 22
01	1.8 17H 2.0 -	2.4 18H 3 -	1.9 16 2.9 -	2.1 17H 3 -
z	1.6 15 0.5 -	2.1 17 1 -	1.7 14 1.0 -	1.9 14 -
	1.9 14 0.1 -	2.6 17 TR. 1	1.9 14 TR.	2.2 14 TR.
s	2.1 13L 1	2.4 15 - 2	1.8 14L - 2	2.0 12L 2
۲i	2.4 14 4	3.4H 18H - 5	2.7 16 - 4	2.7H 14 - 4
ıر	2.8 14 5H	3.3 17 - 5H	3.0H 16 - 5H	2.5 14 5
	2.9н 13г - 5	2.8 15 - 4	2.7 14 -	2.2 13 - 5H
ΣI	1.6 13L - 4	2.1 14L - 3	2.0 14L - 4	1.9 13 4
V	1.5 14 0.1 1	2.0 16 - 2	1.5 15 0.2 1	1.5 14 1 1
X)	1.0L 13 1.7 1	1.9 16 1 1	1.6 15 2.0 1	1.6 13 1 1
P41	1.2 13 5.8H -	1.9L 15 3 -	1.4L 14L 6.8H -	1.4L 13 4 -
١Ļ	1.8 17H 5.6	2.3 18H 4H -	1.7 17H 5.9	1.7 15 5H -
Parameter	Rain, Total Precip., Days Snow, Total TSTM's			
Station	Berlin	Hamburg	Hannover	Frankfurt A.M.
2one	6a	Sa	5a	4 Þ
		40		

an ante

TABLE 4-4. PRECIPITATION RATES [INCHES/HOUR], FREQUENCY [%] AT WHICH THEY ARE EXCEEDED (Ref. 10)

3

		Average	No. of Days With		20400[2000] 40010	4 0 0			
Station	Zone	Precip.	Measurable Precip.	0.06	0.12	0.18	0.06	0.06 0.12 0.18	0.18
nual	Data Based	l on Long-Te	a) Annual Data Based on Long-Term Statistics [Ref. 10 & 2]	[Ref. 10	δ 2]				
Berlin	6a	22.88	169	0.84	0.16	0.03	0.76	0.15	0.03
München	9с	34.09	137	1.35	0.55	0.30	1.22	0.52	0.30
nnual	Data Based	l on Recent	Annual Data Based on Recent Short-Term Statistics [Ref. 8	tistics [Ref. 8]				
Berlin	6a	22.4	171	0.81	0.13	0.01	0.73	0.12	0.01
Hamburg	5a	29.0	196	0.89	0.19	0.05	0.80	0.18	0.05
Hannover	5а	24.0	175	0.84	0.15	0.02	0.75	0.14	0.02
Frankfurt	4P	23.7	166	0.87	0.17	0.04	0.78	0.16	0.04
		Doto Do	troccol ro	L T T T T T T T			Dof Q]		
r (an	ury, a Aug	ust Data Da	c) June, July, a August Data based on Recent and t-lefm statistics (Net. o)		שובור ש	STICS			
Berlin	6a	8.1	41	1.15	0.37	0.17	1.03	0.35	0.17
Hamburg	Sа	9.5	50	1.11	0.34	0.16	1.00	0.32	0.16
Hannover	5а	8.4	46	1.07	0.31	0.14	0.96	0.29	0.14
Frankfurt	4Þ	7.4	41	1.06	0.31	0.13	0.95	0.29	0.13

41

41

- Salation

TABLE 4-5. FREQUENCY $[z]^*$ OF DAYS WITH THUNDERSTORMS (Ref. 11)

140 **4**

Annua 1	9	9	S	80	9	8	S	6	2	9	9	7	r	9	9	Ś	6	9	9	
۵I	1	1	1	1	1	1	1	1	1	Ч	1	1	Ч	1	Ч	1	1	٦	1	
Z	1	1	1	1	T	0	1	1	1	1	1	1	1	1	П	1	1	Г	T	
01	1	1	1	e	-1	1	1	ĉ	1	e	1	m		٦	1	с	1	ć	Г	
s!	٢	7	ς	7	7	č	e	2	e	e	e	7	10	7	7	ŕ	7	e	ć	
Ā	13	13	10	13	13	13	13	19	13	13	16	13	23	13	13	13	19	13	13	
- 1	16	16	13	19	16	16	16	23	16	16	16	19	23	16	16	16	23	16	16	
-	17	17	13	17	13	20	10	20	13	17	17	20	23	17	17	13	27	17	17	
Σ^{\pm}	10	13	10	13	13	16	10	19	13	13	13	13	19	13	16	13	19	13	13	
¥.	٣	ę	c	٣	3	٣	3	7	ť	÷	3	e	10	e	°	ŝ	7	c	ŝ	
Σ	~	~	~	1	ſ	~	1	e	č	m	æ	ć	m	c		1	č	3	e	
تہ !	1	1		-	1	-	-	÷	1	1		1	1	٦		-1	1	-	1	
. ر.	1	-	1	1	7	Ч	1	-1	1	1	I	1	1	1	1	Ч	1	0	1	
Station	Mannhe im	Frankfurt	Wiesbaden	Bremen	Hannover	Giessen	Lübeck	Bayreuth	Fulda	Helmstedt	Kasse l	Marburg A.D.L.	Nürnberg	Gerabronn	Regensburg	Hof	München	Trier	Clausthal- Zellerfeld	
Zone		4 þ	4Þ	5a	5а	5b	7.a	76	7 c	7.6	7.0	7c	7c	8a	8b	$^{9\mathrm{b}}$	9c	$^{ m p6}$	Ха	

42

Sec. Sec.

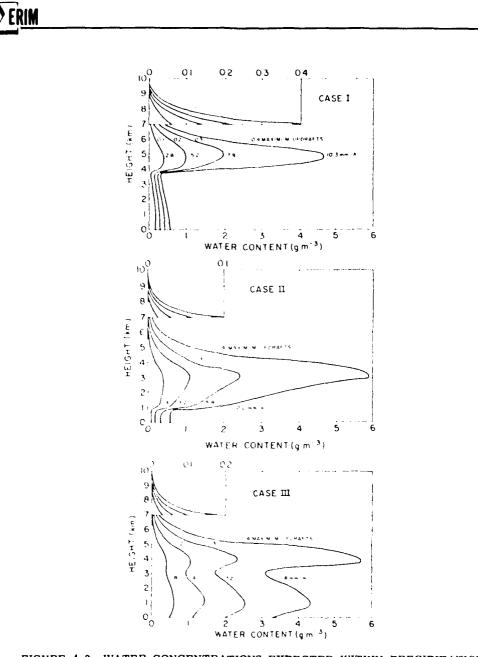


FIGURE 4-2. WATER CONCENTRATIONS EXPECTED WITHIN PRECIPITATION REGIONS (Ref. 10)

Case I Summer Rain Case II Spring or Fall Rain Case III Winter Rain or Severe Snowstorm

ERIM

5 CLOUDS & OTHER AEROSOLS

Fractional Sky Cover and Ceiling are the usual quantitative descriptors of cloudiness. Both are cumulative measures in altitude, that is, sky cover considers clouds in all decks and ceiling is the height of the base of the lowest cloud deck which, in combination with all lower cloud decks, brings the sky cover to 5/10 or more.

Table 5-1 shows how fractional sky cover varies during the year. The table also shows that the fraction may be misleading since it is obtained by averaging and that there are usually more clear days and cloudy days in a month than there are partly cloudy days. The number of clear, cloudy, and partly cloudy days are estimated using methods suggested by H. Landsberg in Reference 1.

Table 5-2 shows instead the frequency of obtaining a given sky cover. It also shows the probability of different cloud types. Note that Stratocumulus are the most likely clouds in any month for either zone, Stratus belong to the Fall and Winter, while Cumulus go with Spring and Summer in zone 5a. The appearance of Altostratus as a prominent cloud type complicates the pattern in zone 4b since it occurs with greater frequency than every cloud but the Stratocumulus.

With sensor platforms which operate at the middle altitudes, the vertical distribution of these clouds become very important. In Figures 5-1 through 5-22 we have shown the somewhat generalized expectation of a given sky cover by altitude bands over middle Europe for four different months.

In Table 5-3 we have extracted an example distribution for 10°E and 50°N, a position very close to Schweinfurt. The probability of total cloudiness but especially low altitude cloudiness in January is very marked. It is all part of the general lowering of the cloud processes in the winter as the altitude of the freezing level descends.

VERIM

Table 5-4 shows cloudiness incidence at two altitudes, for four stations in important climatic zones as reported in Reference 8. The asterisks indicate four rows of highly suspect data. We are reasonably well satisfied that we understand the mechanical error apparently made while the data was being processed. With some confidence then we have made the required corrections and reproduce the corrected Table 5-5. Note again the high incidence of low altitude winter cloudiness.

A more concise, although more limited, descriptor for vertical cloud deck development is the ceiling. It is defined as the altitude (AGL) of the base of the lowest cloud deck which, along with all lower cloud decks, obscures at least half of the sky from the surface observer. Thus almost half the sky could be densely covered and an unlimited ceiling would still be reported. Or if 4/10 of the sky were obscured at 500 ft and a few scattered clouds at 7,000 ft brought the total over 50%, then the ceiling would be reported at 7,000 ft.

Nonetheless it is such a compact statistic that it is useful. Table 5-6 shows the expectation of ceiling height by month for two primary climatic zones in the North German Plain study area. While they cannot tell anything of the vertical structure, they do clearly exhibit the winter lowering of the cloud processes. Note also that 7c and 5a are adjacent zones yet they show a rather marked difference in ceiling behavior, perhaps due to the greater elevation of 7c.

In Table 5-7 we display ceiling frequencies for eight stations each for zones 4 b and 5a. In any given month the variation from zone to zone are not markedly greater than that within a zone. That is not true for the annual average however. That strongly suggests that

) ERIM

insufficient data have been accumulated for the monthly frequencies to be stable^{*}. The annual frequency sample should be adequate how-ever.

Fog is a special type of cloud. It can limit a ceiling but its most dramatic inpact is on visibility.

The incidence of fog in Germany is high. The strong maritime influence is responsible. The general fog occurrence in days per year is shown in Figure 5-23. This shows Germany to be foggier than her neighbors. It suggests more than 40 foggy days per year; actually, 78 days per year is typical. This varies with the season as shown in Table 5-8.

Ground fog is quite shallow and may markedly impede horizontal visibility while permitting good vertical visibility. Other fog however is rather like low stratus clouds and may reach or exceed 1,000 feet in depth. Ground fog shows a smaller, but similar seasonal variation compared to fog. Unlike fog, ground fog occurs most frequently at night, ground fog has the highest incidence in the higher altitudes of Germany; fog occurs most in the low altitude of the German Plain.

Directing our attention specifically to the Helmstedt-Hannover-Minden Corridor in the Plain, we offer the data of Table 5-9 as typical of the predominant central region identified as a 5a climatic zone.

^{*}The question of data length required for stability is discussed by Landsberg and Jacobs in Reference 3 and by others. In general, more data are required for short term statistics (e.g., monthly vs. monthly means) and more for extra tropical than tropical regions. Geographically, most is required for the mountains, less for plains, somewhat less still for shorelands, and the least for islands. As for parameters the most data are required for precipitation, less for temperature, still less for cloudiness, less for humidity, and least for visibility. About 50 years of data is required to develop a stable mean annual precipitation total in the mountains. One year may suffice to establish mean humidity for a Tropical island. All other annual measures lie between these two extremes.

ERIM

Smoke and haze consist of solid particulate matter and their scattering properties may differ in detail from fog. Their similarities are great, however, so in Table 5-10 we summarize the monthly incidences of fog, ground fog, haze, and smoke.

When these fogs occur they may degrade ceilings and will degrade visibilities. The following Table 5-11 shows the percentile values of ceiling and visibility values (ft & st. mi) that are exceeded under particular fog conditions.

Table 5-12 shows the expectation for given visibility levels in two of our most important zones.

Ceiling and visibility vary with the time of day and all of the previous tables ignored this divisional variation. For five of our zones we show in Table 5-13 how the likelihood of a given low ceiling/visibility varies at three-hour intervals.

For many sensors, the presence of a cloud may or may not be serious depending on its water content. Figures 5-24 and 5-25 show the expected water content of stratiform clouds which are heavy enough to be producing rain at a given rate. Figure 5-26 shows the same for cumulonimbus clouds. Finally, Table 5-14 predicts the water content of cumulus clouds with different degrees of vertical development.

One special visibility problem concerns likelihood of seeing a given spot on the ground when looking at a given depression angle from a given altitude. We have extracted some altitudes under which a given cloud-free line of sight could be expected with a given probability (Table 5-15). It should be carefully noted that these values are obtained from some very small graphs in Reference 11. Thus the specific values should not be adopted uncritically. Nonetheless the values will not be greatly in error and will show the approximate performance to be expected by a cloud limited airborne sensor. Note also that this visibility measure is concerned only with airborne clouds. Haze, smoke, ground fog, etc., must be considered independently.

<u>ERIM</u>

TABLE 5-1. CL	OUDINESS T	YPICAL OF	NORTH	GERMAN	PLAIN	(Ref.1)
---------------	------------	-----------	-------	--------	-------	---------

	JAN	MAR	MAY	JUL	SEP	NOV
Fractional Sky Cover	.75	.67	•60	.62	. 56	.75
No. of Clear Days, est.	4	5	5	6	7	5
No. of Cloudy Days, est.	19	15	10	10	9	16
No. of Partly Cloudy Days, est.	8	10	16	15	14	9

48

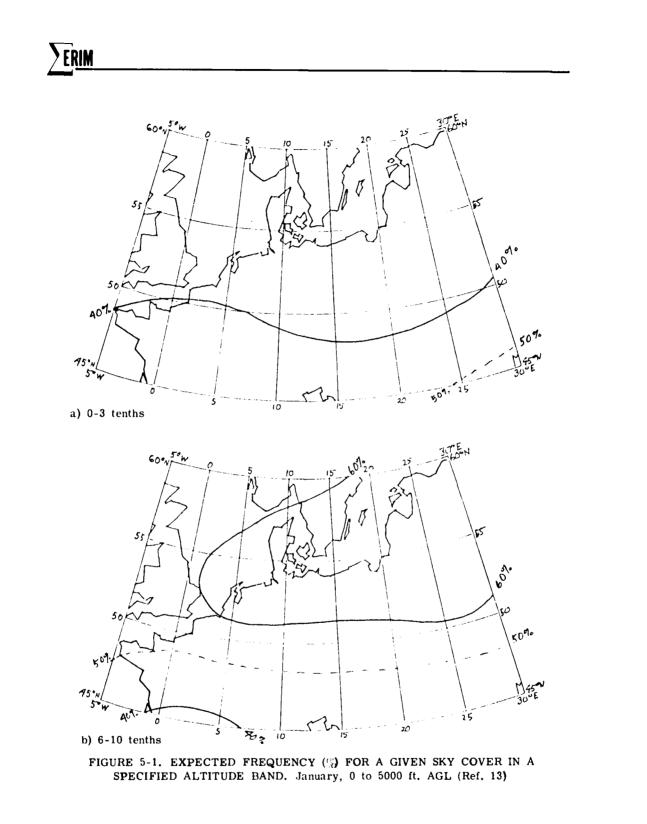
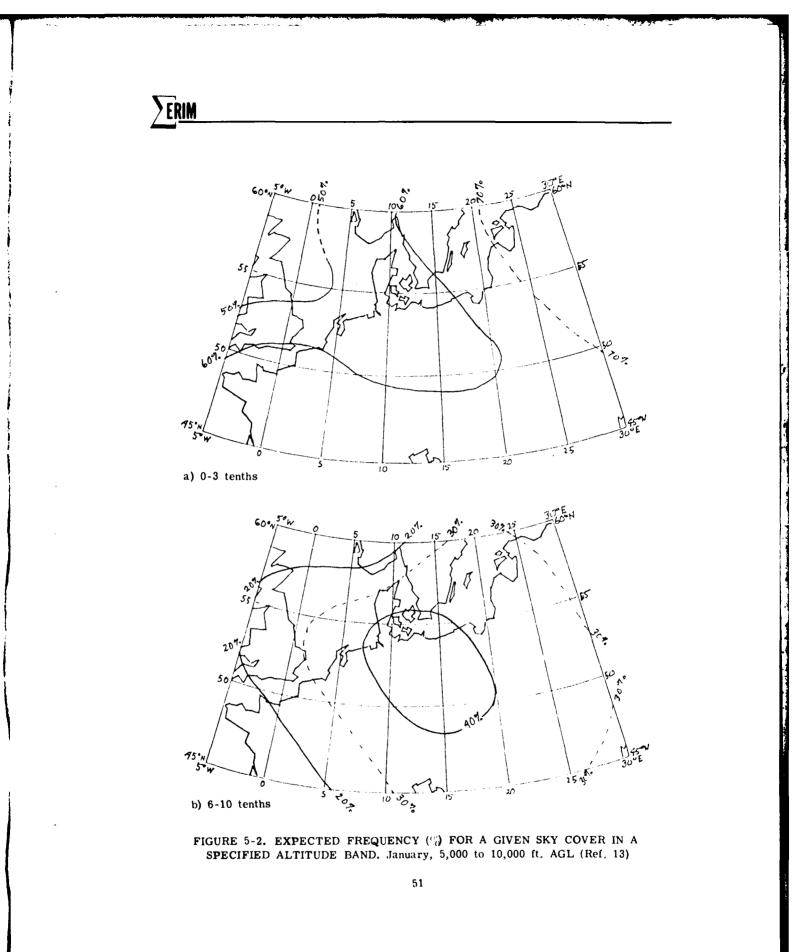
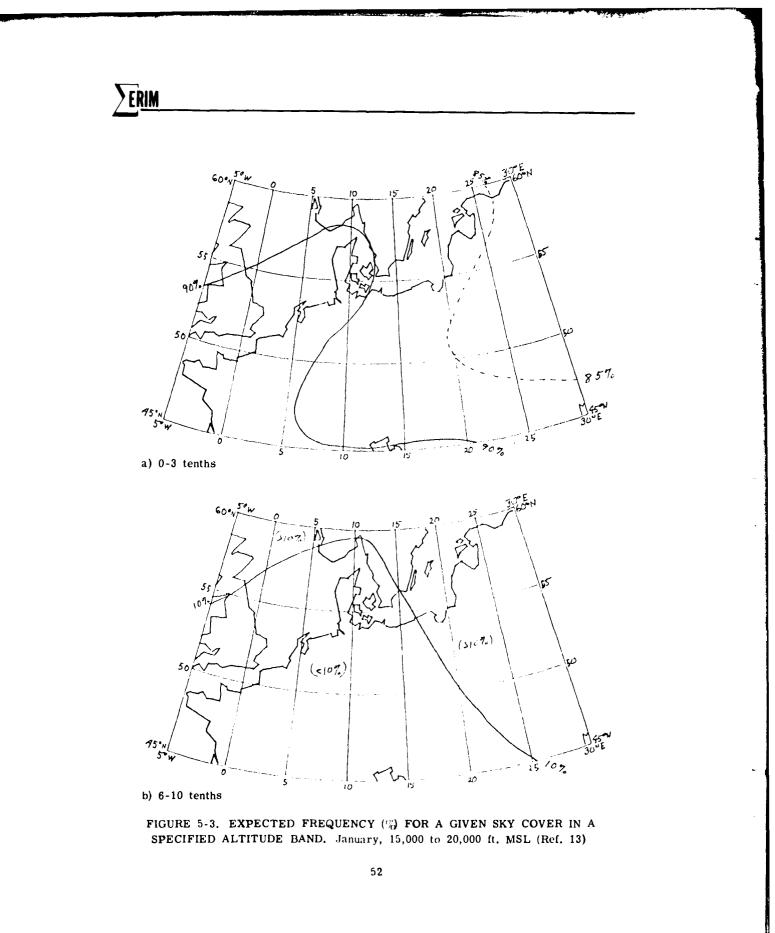
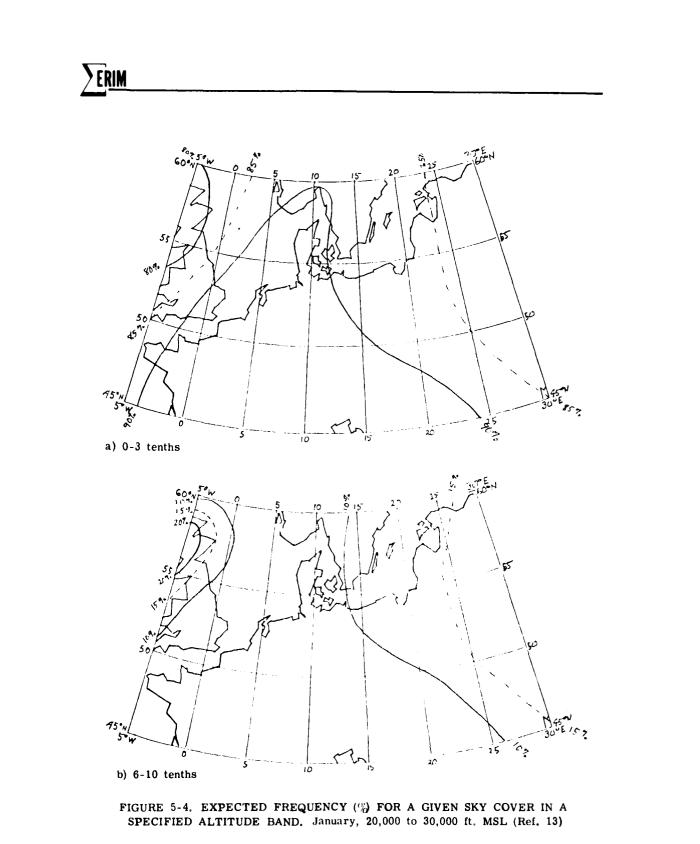

the set of

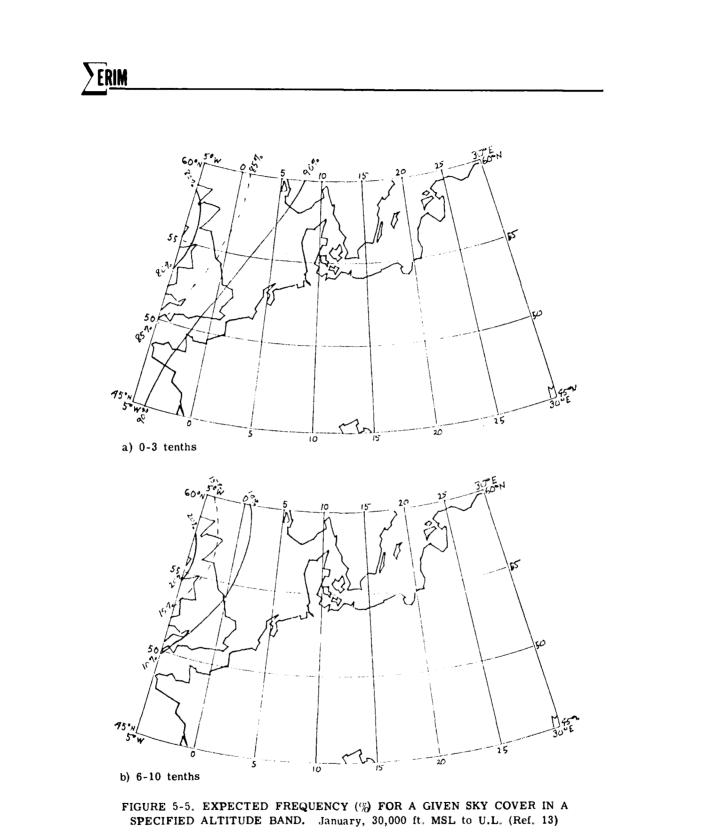
TABLE 5-2. CLOUD COVER CHARACTERISTICS FOR CLIMATIC ZONES 5a (ESSEN) & 4b (STUTTGART) (Ref. 12)

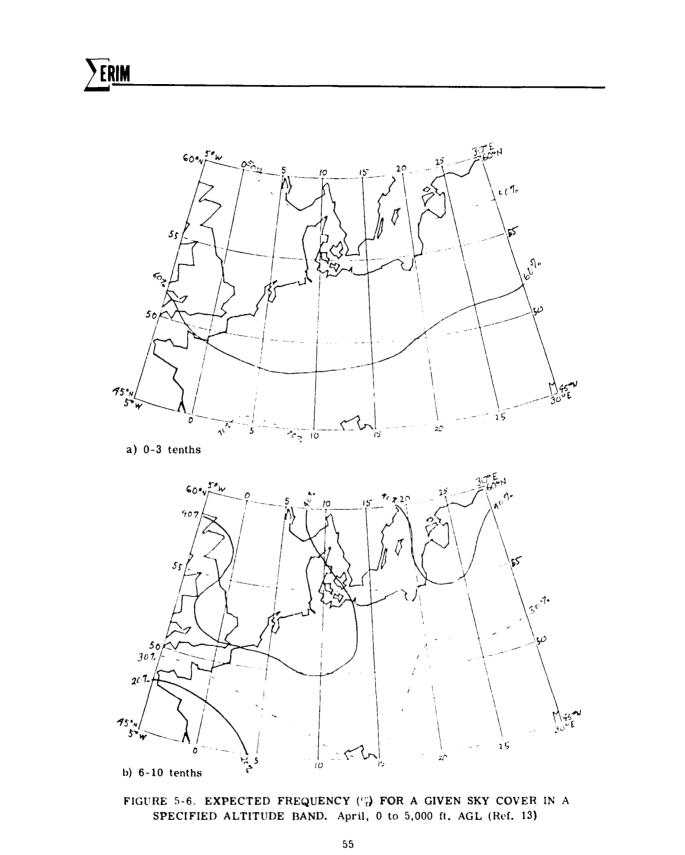

<u>1 10. 185</u> 1


.3632	Parameters	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Overcast, Freq.	0.32	0.31	0.27	0.20	0.15	0.13	0.13	0.13	0.16	0.15	0.28	0.28
(≥ 7/8 Cover, Freq.	0.59	0.56	0.53	0.38	0.37	0.31	0.33	0.32	0.33	0.34	0.51	0.62
NES	≥ 3/8 Cover, Freq.	0.84	0.81	0.79	0.51	0.74	0.71	0.76	0.74	0.71	0.71	0.81	0.89
SE)	Stratus, Freq.	0.23	0.25	0.20							0.14	0.25	0.32
øς	Strato-Cumulus, Freq.	0.48	0.50	0.47	0.41	07.0	0.40	0.46	0.47	0.45	0.47	0.45	0.46
	Cumulus, Freq.				0.22	0.26	0.26	0.22	0.19	0.19			
	Overcast	0.46	0.44	0.38	0.31	0.26	0.21	0.16	0.27	0.16	0.27	0.36	67.0
	≥ 7/8 Cover	0.61	0.57	0.51	0.43	0.39	0.34	0.31	0.38	0.27	0.38	0.52	0.63
(15	23/8 Cover	0.86	0.84	0.75	0.70	0.70	0.73	0.65	0.74	0.63	0.74	0.81	0.88
IADT	Stratus							1			0,22	l	0.25
TUT	Alto-Stratus	0.20	0.24	0.16	0.25	0.23			0.23	1		0.21	1
5) 9	Strato-Cumulus	0.38	0.44	0.47	0.40	0.35	0.30	0.34	0.29	0.32	0.32	0.39	0.38
<u>י</u>	Cumulus					-	0.29	0.25	1	0.20			ł
	-												

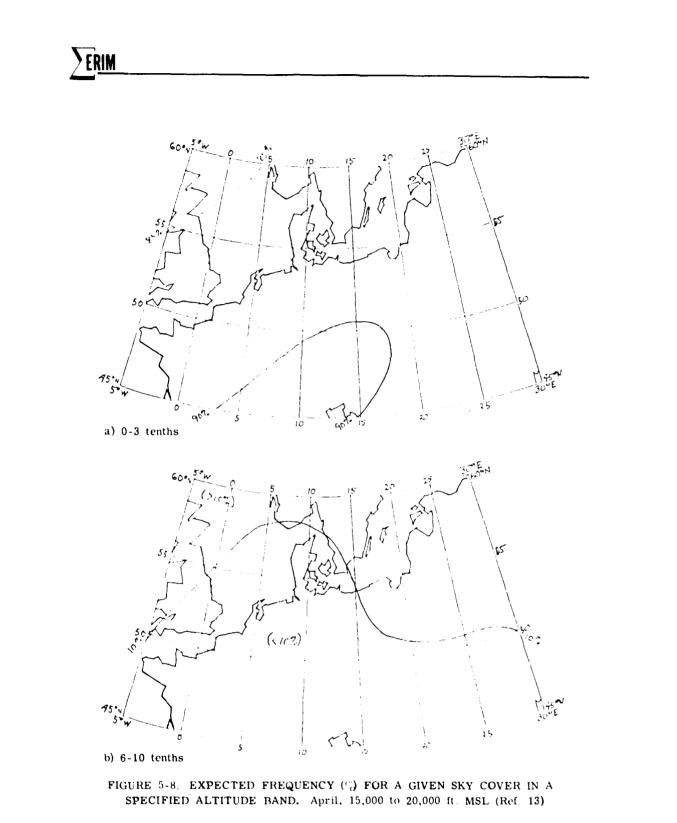
1.12

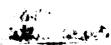





1.7 . 19

Sec. 1





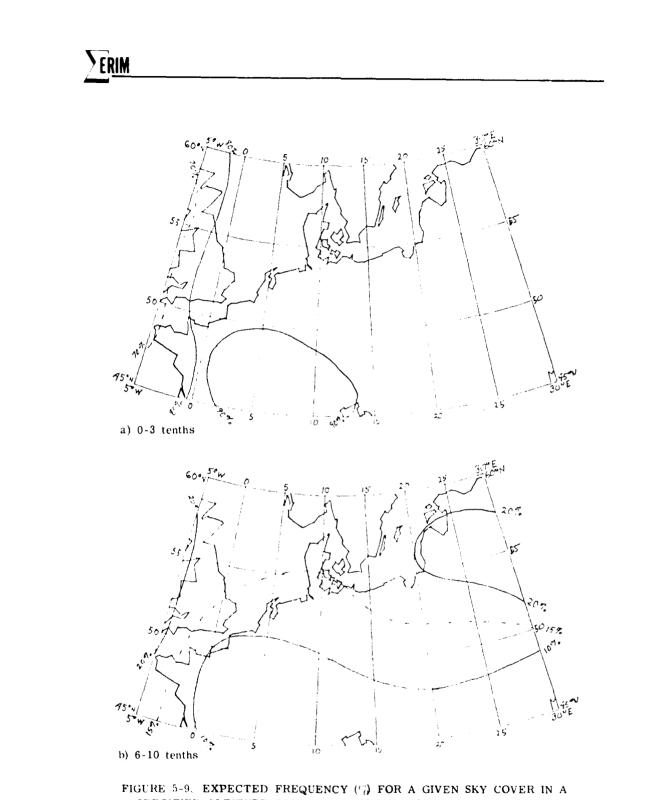
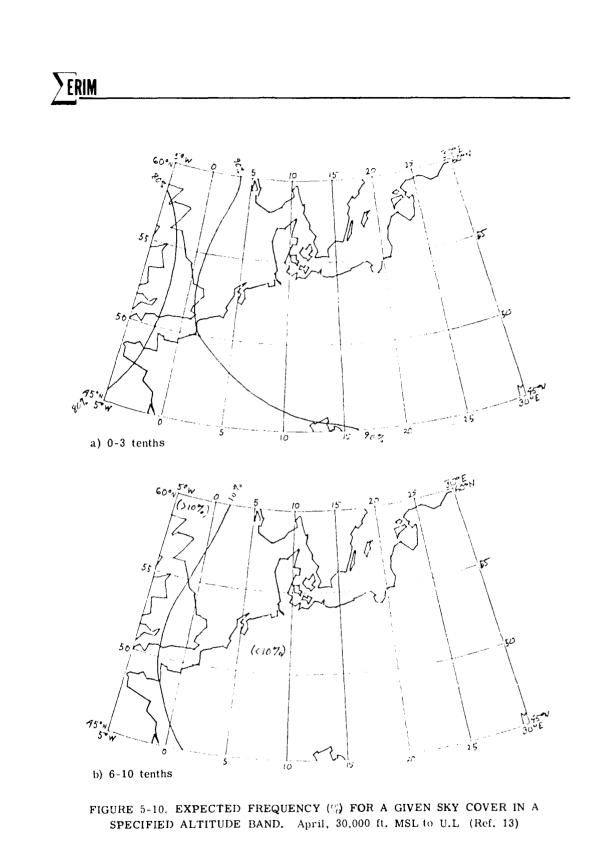

YE<u>RIM</u> T. Land 60. 1807. 5 145 15. 18c7. 25 101. 20 10 a) 0-3 tenths 60 1)45 30"E 95 \$ 325 15.7 20 טוֹצי ד b) 6-10 tenths

FIGURE 5-7. EXPECTED FREQUENCY (%) FOR A GIVEN SKY COVER IN A SPECIFIED ALTITUDE BAND. April, 5,000 to 10,000 ft. AGL (Ref. 13)

Į



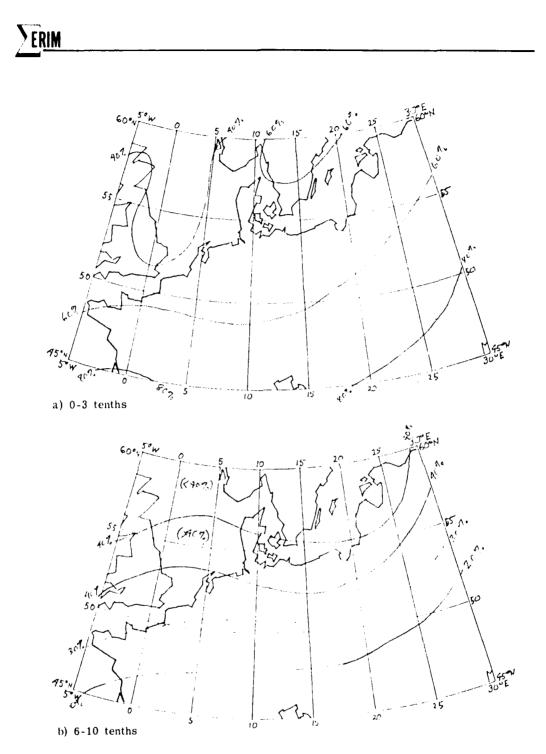
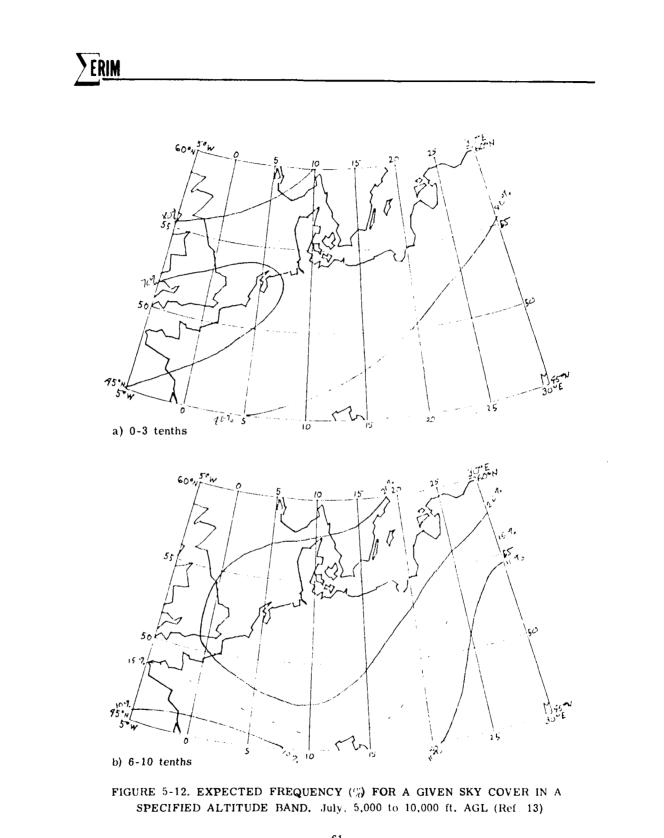
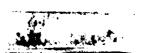
SPECIFIED ALTITUDE BAND, April, 20,000 to 30,000 ft. MSL (Ref. 13)

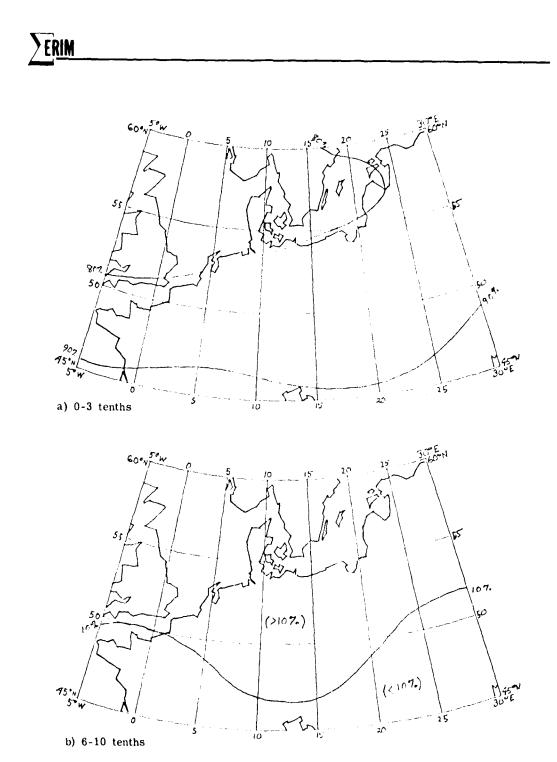
6.

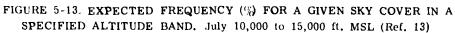
Sec. Sector

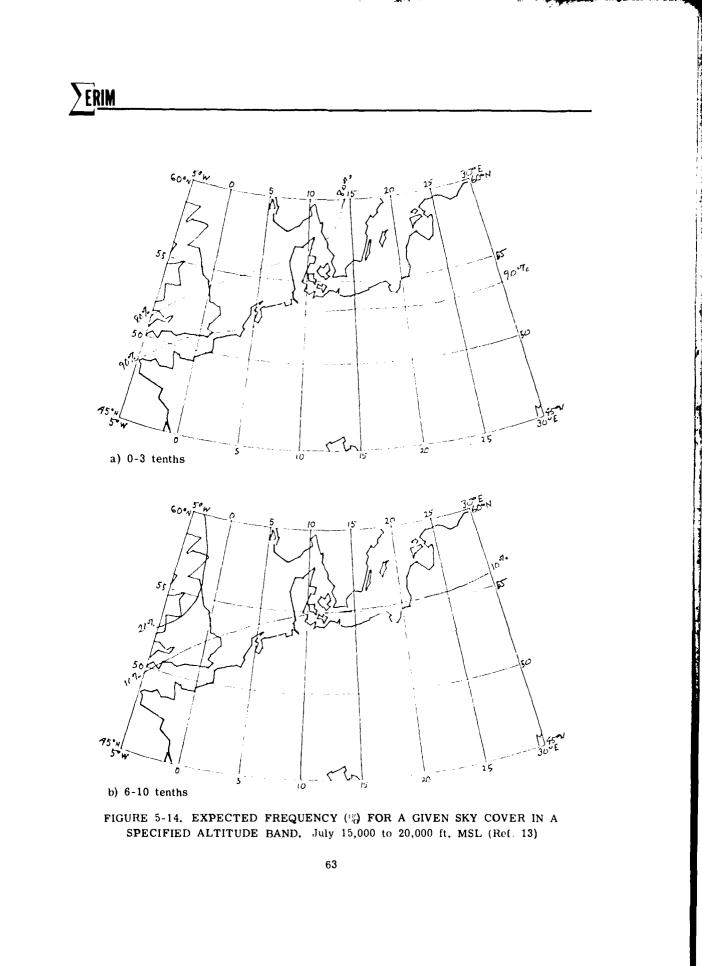
ł

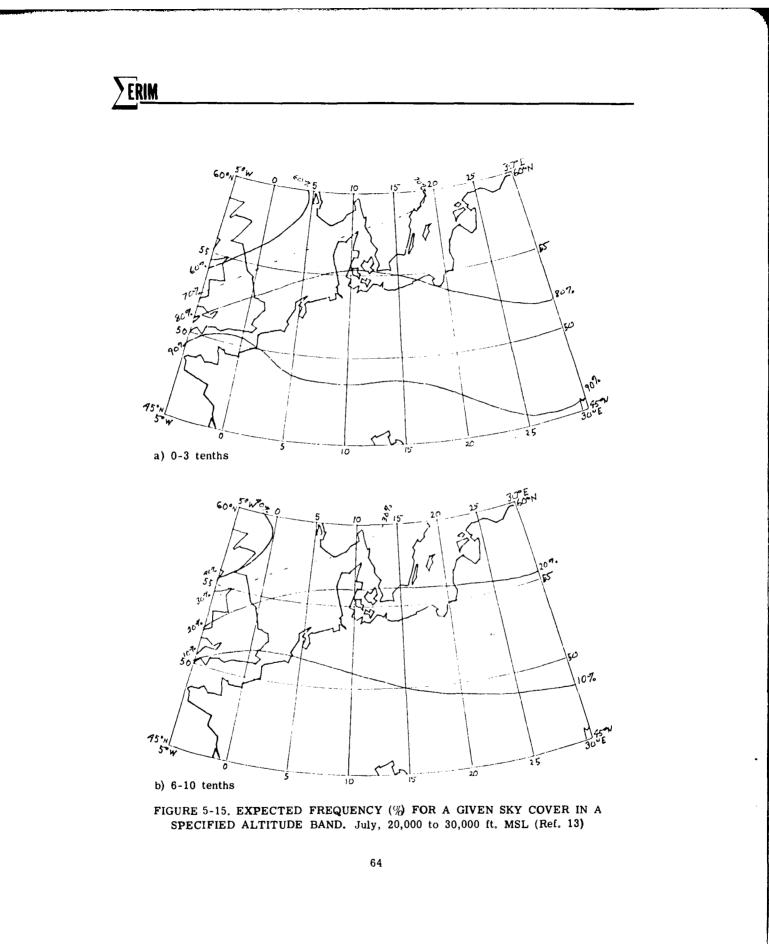
;

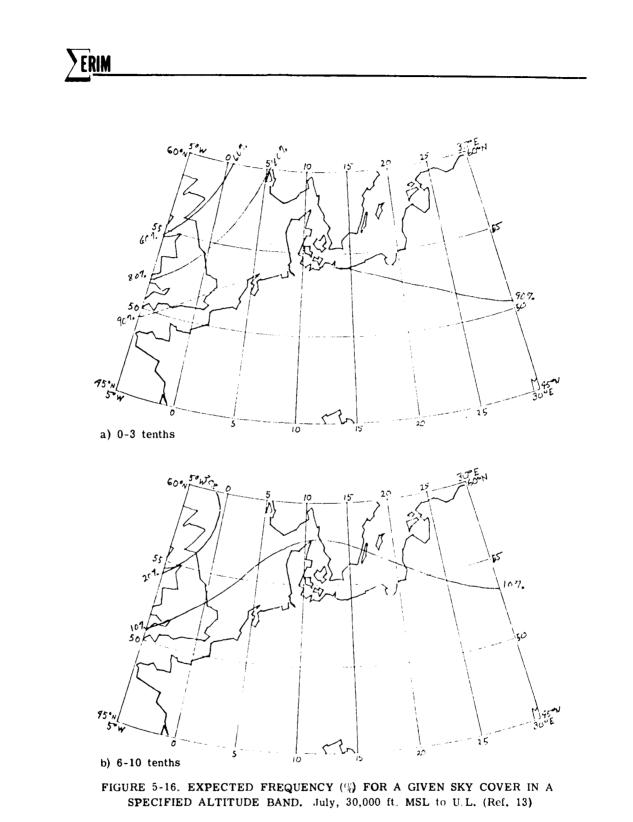





FIGURE 5-11. EXPECTED FREQUENCY (%) FOR A GIVEN SKY COVER IN A SPECIFIED ALTITUDE BAND. July, 0 to 5,000 ft. AGL (Ref. 13)


in the second


Í




See 1 Ver

States .

Merchannes

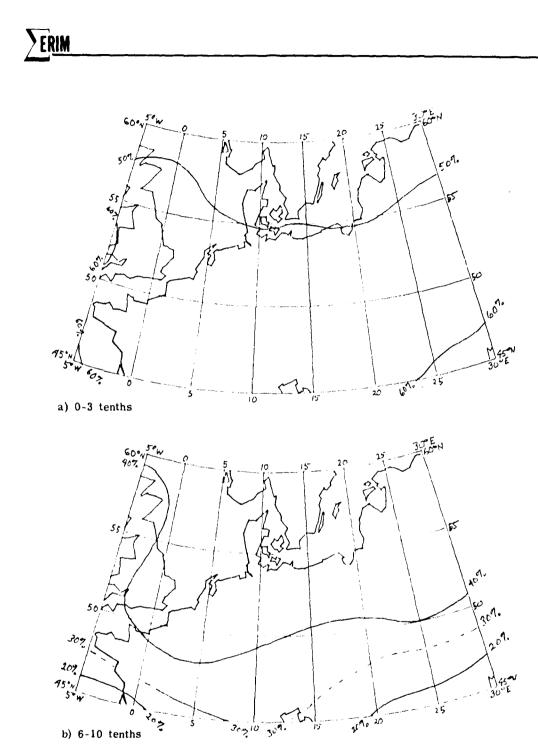
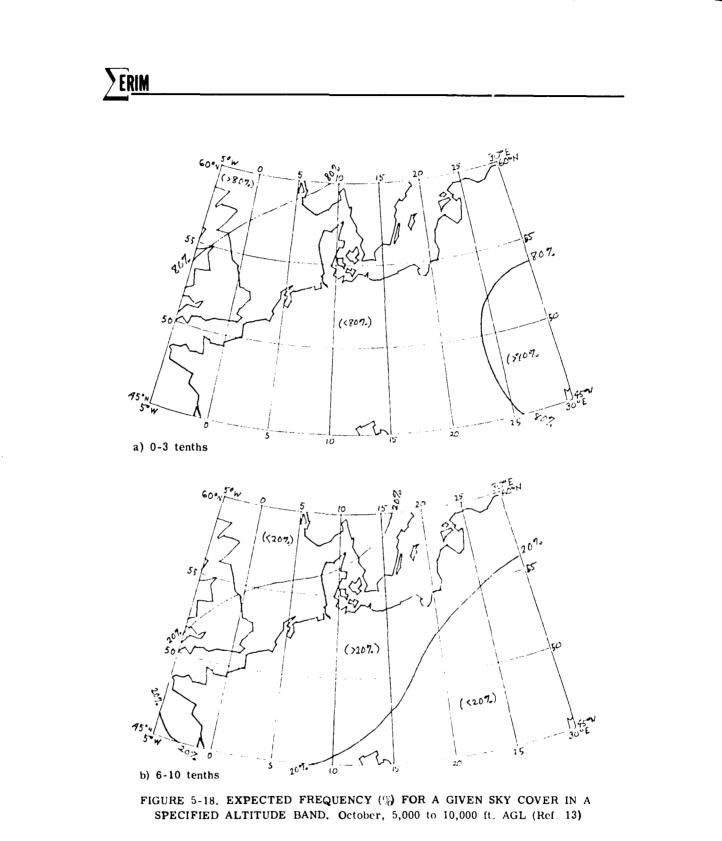
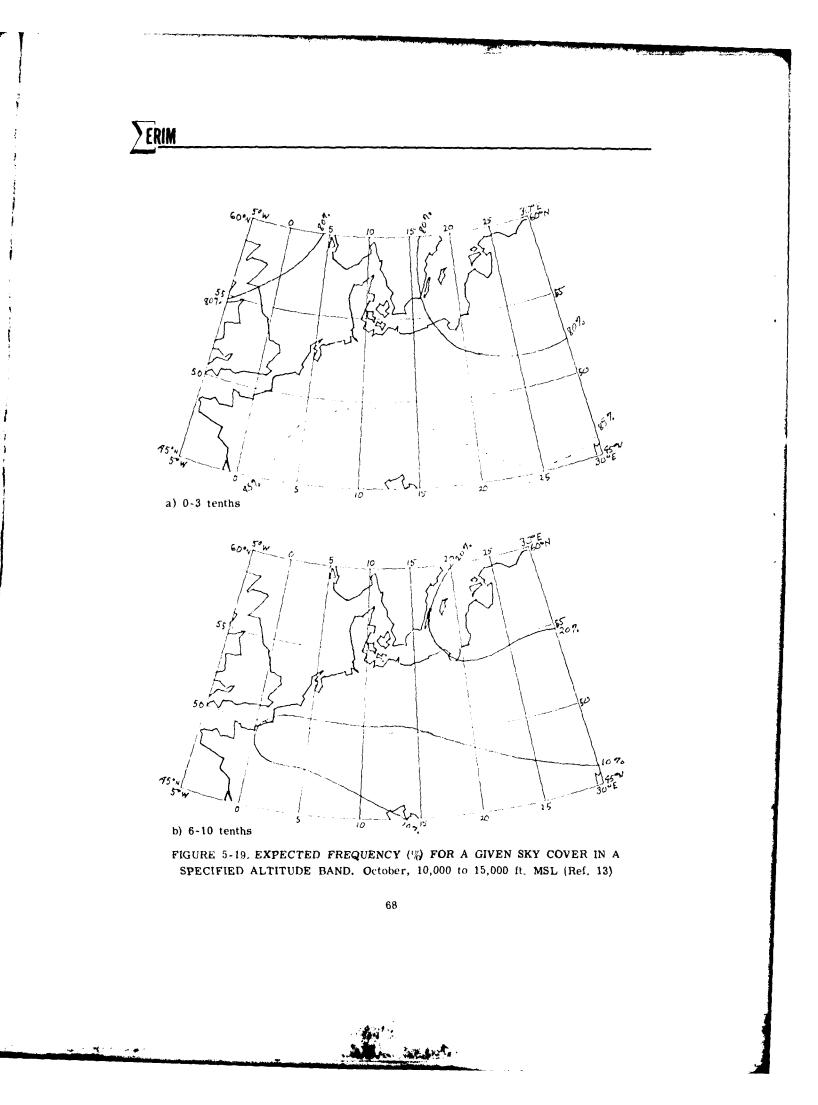
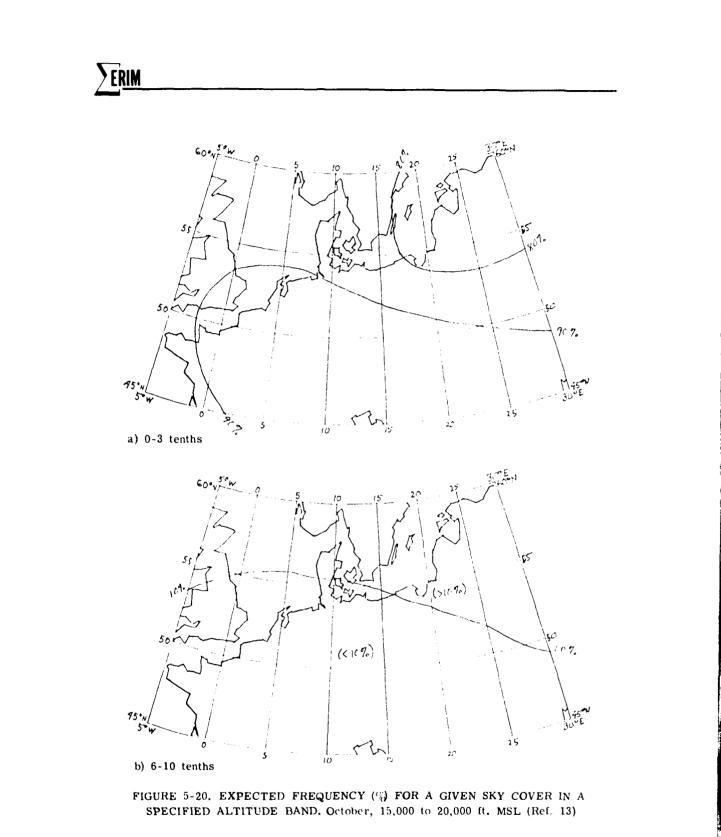



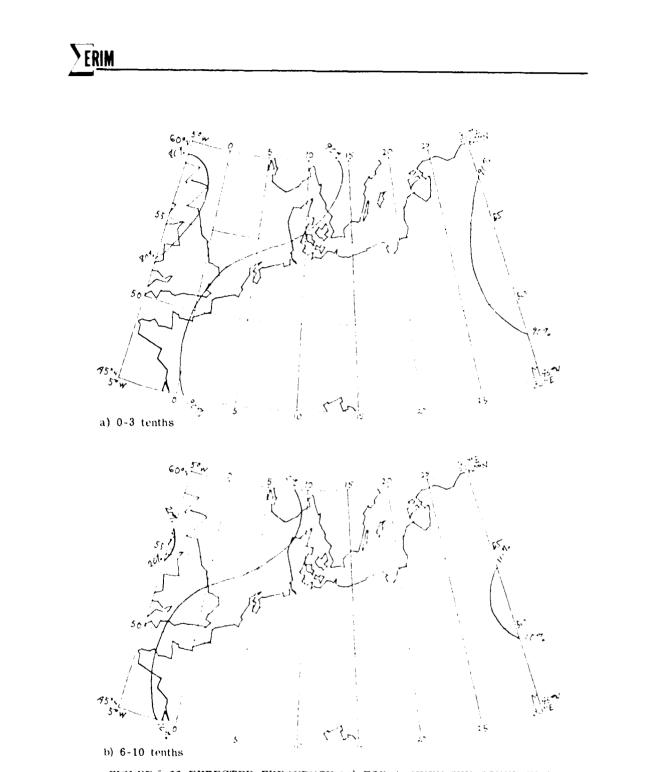
FIGURE 5-17. EXPECTED FREQUENCY (%) FOR A GIVEN SKY COVER IN A SPECIFIED ALTITUDE BAND. October, 0 to 5,000 ft, AGL (Ref. 13)


66


۶,

the in

and the



and a

ERIM 60. 1 m ç 1 ST A. Missar J. E 75 5 15 5 a) 0-3 tenths •• E 6 De Car 10 00. 95•. 5•W 11+4 ົ. 2.5 ð { 5 <u>،</u>، 5 b) 6-10 tenths

í

FIGURE 5-21 EXPECTED FREQUENCY (%) FOR A GIVEN SKY COVER IN A SPECIFIED ALTITUDE BAND, October, 20,000 to 30,000 ft. MSL (Ref. 13)

ł

FIGURE 5-22. EXPECTED FREQUENCY (*) FOR A GIVEN SKY COVER IN A SPECIFIED ALTITUDE BAND, October, 30,000 ft. MSL TO U.L. (Ref. 13)

71

- **1** - **1** -

TABLE 5-3.PROBABILITY OF 4/10 OR MORE SKY COVERIN ALTITUDE BANDS 10°E 50°N (Ref. 13)

Altitude Band	Jan	Apr	Jul	<u>Oct</u>
0 AGL to 5,000 ft AGL	61%	42%	44%	46%
5,000 ft AGL to 10,000 ft AGL	41	29	27	25
10,000 ft AGL to 15,000 ft MSL	14	14	16	15
15,000 ft MSL to 20,000 ft MSL	11	10	5	8
20,000 ft MSL to 30,000 ft MSL	8	11	13	8
30,000 ft MSL to UL	5	5	5	5

72

and a second second

<u>ERIM</u>

					1				1				1		
Average	19	80	62%	244%	19	9	51%	269	2.0	9	23%	397.	19	7	24%
%] (Ref. 8) Total	231	97	ļ		231	75	}	1	239	11		1	230	68	1
Dec	24H	5L	28L	151	2 3H	4	74	481.	26H	3L	36	55	24	4	нос
Nov	22	9	31	17	22	4L	17H	52	24	4	38	52	24H	зĽ	43
ATED Oct	21	7	52	34	18	H6	57	11	19	8	20	26	18	6	35
Sep	191	10	78	62	16L	2	41	82	19	~	12	28	18	80	18
Aug	19	20	85	63H	18	9	34	89н	18	7	101	20L	17	~	6
Jul	18	80	87	67	20	~	30	19	19	9	13	29	16L	a o	e
Jun	17	6	86	67	18	~	26L	11	18	7	12	29	17	~	1
May	17	10	H68	66	17	æ	30	80	18	8	14	32	17	8	5L
APL	18	6	11	56	17	æ	67	11	141	6	14	36	18	æ	2
Mar	18	HII	58	40	20	^	55	67	19	H6	27	17	17	HOI	22
Feb	19	~	34	16	20	~	20	20	21	Ś	36	53	20	و	40
Jan	22	~	36	17	22	5	68	67	24	4	42H	63H	24H	~	40
Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Tota	Cloudy (20.6) Days	Clear (0.6) Days	Cloudy @ 1500'[7]	Cloudy @ 5000'[7]	Cloudy (>0.6) Days	Clear (≤0.6) Days	Cloudy @ 1500' [2]	Cloudy 2 5000' [2]	Cloudy (.0.6) Days	Clear (< 0.6) Days	Cloudy @ 1500' [%]	Cloudy @ 5000' [%]	Cloudy (-0.6) Days	Clear (0.6) Days	Cloudy @ 1560' [2]
Station	Berlin		*	*	Hamburg			*	Hannover				Frankfurt A.M.		*
20ne	64				Şa				Şa				न्द्र ह		

* Suspect Data

and the second s

ţ

1		t				Т				1				<u> </u>			
	Average	19	80	387	267	19	9	512	317	20	Ŷ	237.	397	19	7	247	397
.l. (Ref. 8)	Total	231	97		1	231	75		1	239	77			230	89		
UDES 17	Dec	24H	5L	72H	85H	2 ЗН	4	74	52H	2.6H	3L	36	55	24	4	50H	67н
ALTIT	Nov	22	9	69	83	22	41	77H	48	24	t	38	52	24H	31	43	60
ATED	Oct	21	7	48	66	18	H6	57	23	19	æ	20	26	18	6	35	30
INDIC	Sep	16L	10	22	38	16L	7	41	18	19	2	12	28	18	ø	18	26
S AT	Aug	19	æ	15	32L	18	9	34	111	18	~	101	201	17	7	0	22L
DINES	Jul	18	80	13	33	20	Ś	30	21	19	9	13	29	16L	80	9	24
CLOUT	Jun	17	6	14	E	18	2	261	23	13	7	12	29	1	2	2	24
Y OF	Мау	17	10	111	34	17	80	30	20	18	8	14	32	11	80	5L	25
GUENC	APr	18	6	23	77	17	80	49	23	14L	6	14	36	18	80	2	31
& FRE	Mar	18	HII	42	60	20	7	55	33	19	H6	27	41	17	HOI	22	36
LON/	Feb	19	2	66	18	20	S	70	20	21	\$	36	53	20	9	40	53
IDAYS	Jan	22	7	94	83	22	2	68	21	24	4	42H	63H	24H	Ś	40	62
TABLE 5-5. CLOUDINESS [DAYS/MO] & FREQUENCY OF CLOUDINESS AT INDICATED ALTITUDES [7]. (Ref.	Parameter	Cloudy (20.6) Days	Clear (<0.6) Days	Cloudy @ 1500' [%]	Cloudy @ 5000' [2]	Cloudy (>0.6) Days	Clear (< 0.6) Days		Cloudy @ 5000' [%]	Cloudy (20.6) Days	Clear (<0.6) Days	Cloudy @ 1500' [7]	Cloudy @ 5000' [%]	Cloudy (>0.6) Days	Clear (<0.6) Days	Cloudy @ 1500' [7]	Cloudy @ 5000' [7]
TA	Station	Berlin				Hamburg				Hanover			1	Frankfurt A.M.			
	Zone	6a			-	Şa				Sa				47			

74

and the second of the

<u>ERIM</u>

- . 41

1

.....

i

r									
. (Ref. 11)	Ann. Avg.	.20	.10	.07	.03	.34	.18	.07	.02
ZONES 5a (DUSSELDORF) & 7c (BAYREUTH).	Dec	15.	.19	. 11	.08	.67	.40	.06	.03
& 7c (Nov	.27	.11	.09	.02	.56	.24	•0.	.02
ELDORF)	Oct	.13	.08	.06	.02	.27	61.	05	.02
a (DUSSI	Sep	.13	.08	.05	.02	.26	.10	.05	.01
ZONES 5.	Aug	.10	. 05	.03	.01		.06	.02	10.
	lul	.12	.07	.05	10.	.12	.07	.02	10.
CIVEN L	Jun	.10	.05	.04	.01	.20	. 08	.02	.01
OW THE	May	.12	.05	.03	10.	.21	60.	.03	10.
NGS BEL	Apr	.13	.05	£0.	10.	.28	.15	.07	.02
F CEILI	Mar	.24	.13	60.	č 0.	. 30	.21	.10	.03
FREQUENCY OF CEILINGS BELOW THE GIVEN LEVEL.	Feb	.29	.15	.08	.02	. 54	.26	.14	.03
i	Jan	. 38	.24	.12	.06	.60	.30	.19	£0.
TABLE 5-6.	Ceiling	2000	1000	200	400	2000	1000	700	400
	2.one	Sa				76			_

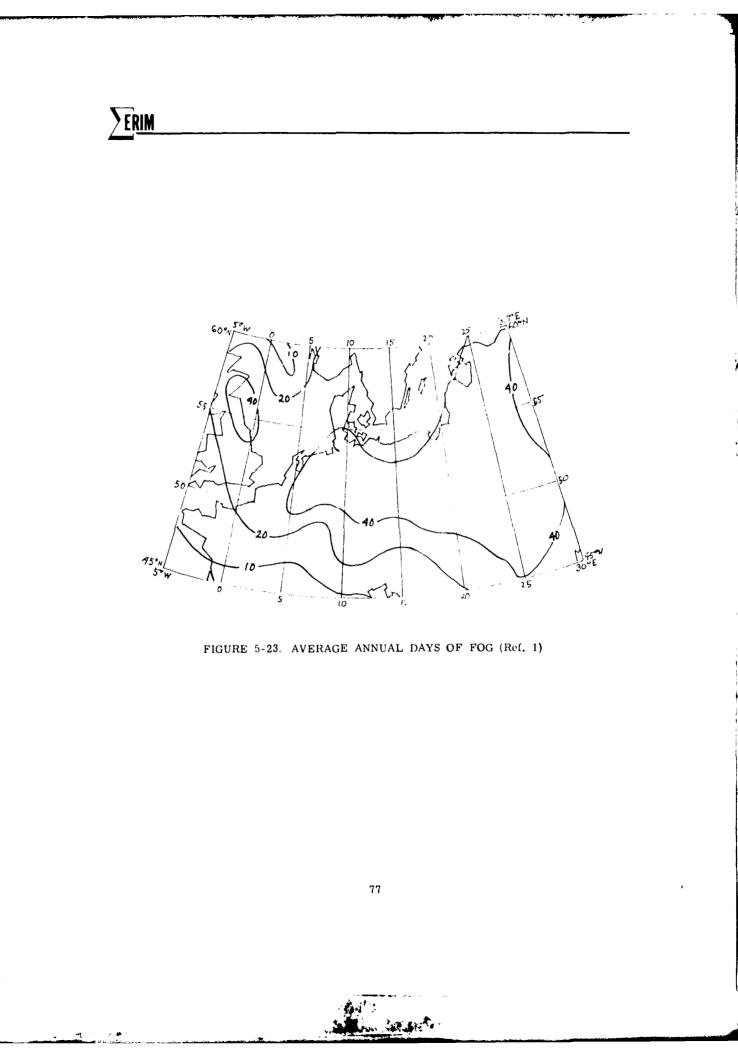
75

and the second

<u> YERIM</u>

i

2.11.2


1.

	AVG.	16	16	20	26	21	34	19	29
11)		32	40	41	46	41	67	40	59
FREQUENCY [Z] OF CEILINGS AT OR BELOW 2000 FT. (Ref. 11)	Z	26	28	27	47	40	56	30	45
) FT.	01	18	14	13	17	19	27	18	36
2000	S	11	8	13	13	10	26	6	21
BELOW	A	7	9	10	œ	80	11	7	18
AT OR	٦I	5	S	12	17	6	12	9	16
NGS 4	r	œ	S	10	14	12	20	7	16
CEILI	Σ	10	ę	12	16	10	21	11	10
(] OF	A.	12	S	13	17	15	28	16	15
	2 :1	11	10	29	30	22	30	15	20
(an)a	íد.	21	40	29	46	30	54	29	77
	►1	33	31	38	46	36	60	36	51
TABLE 5-7.	Station	Freiburg I.B.	Wiesbaden	Dusseldorf	Hamburg	Berlin	Bayreuth	Műnchen	Bitburg
	Zone	4 b		ĩa		6a	7c	9c	P6

76

Real 1

Same .

İ

ERIM

TABLE 5-8. FOG INCIDENCE, BRD (Ref. 14)

Probability of a Foggy Day	Fog Duration [Hours]
0.12	3.6
0.04	3.2
0.33	5.0
0.37	6.0
	0.12 0.04 0.33

destric Marine Landard St

2 40 K

	Dec	.11			.55	.49	• 03	.07
	Nov	.11			.48	.47	.02	.06
	Oct	.12	0090	1500	.26	.22	.02	.08
14)	Sep	.07	 	}	.11	.13	10.	•06
12 and 14)	Aug	.08			.07	.08	.01	.02
(Ref.]	Jul	.04	0600	1500	.04	.04	.01	.01
5a	Jun	.04]	•06	.05	.01	.01
ICS ZONE	May	.02			.06	.07	.01	.02
CHARACTERISTICS	Apr	.02	0600	1500	.10	.10	.01	.03
CHARAC	Mar	.04			.20	.21	.02	.05
. FOG	Feb	.06			.36	.35	.02	.08
LE 5-9.	Jan	.07	2400	1500	.37	.31	•03	.10
TABLE	Month	Frequency of days in which fog obscures the sky	Hour of Max. Frequency	Hour of Min. Frequency	Frequency of Fog-Day*	Frequency of Fog-Night*	Frequency of Ground Fog-Day	Frequency of Ground Fog- Night

79

All and the second

1.11

ERIM

r		Zone	Station	<u> </u>	F	м	A	M	J	J	<u>A</u>	<u>_S</u>	0	N	D
	D	3	Heidelberg	12	12	5	3	2	1	1	2	4	8	12	13
	Ă	6a	Berlin	37	36	21	11	6	6	4	7	11	27	48	65
F	Y	9Ъ	Kitzingen	8	7	5	2	1	2	2	3	6	13	10	11
0	-	9d	Spangdahlem	15	14	6	4	4	3	3	4	7	16	19	22
c	N	3	Heidelberg	12	11	4	2	1	1	1	3	5	11	15	13
	I G	6a	Berlin	31	35	20	10	7	5	4	8	13	22	47	48
	Ĥ	9Ъ	Kitzingen	7	7	3	1	1	1	1	1	3	8	13	11
	Т	9d	Spangdahl e m	15	12	5	4	3	2	3	5	9	15	19	21
G	D	3	Heidelberg	18	15	11	8	7	6	5	6	9	13	19	18
R	Ā	6a	Berlin	3	2	2	1	1	1	1	1	1	1	2	2
0	Y	96	Kitzingen	25	18	15	13	11	10	9	10	13	19	24	20
N D		9d	Spangdahlem	16	13	12	11	9	9	9	10	14	17	20	18
	N	3	Heidelberg	8	17	15	10	9	9	8	9	15	19	20	18
F	I G	6a	Berlin	10	7	4	2	2	1	1	2	5	8	5	6
O G	ਸ	9Ъ	Kitzingen	23	21	19	16	12	15	14	20	29	34	33	28
	Т	9d	Spangdahlem	18	15	14	14	8	10	11	15	20	22	21	19
н		3	Heidelberg	74	69	69	52	45	44	42	40	50	65	71	69
A Z	D	6a	Berlin	9	11	8	4	3	2	2	3	5	8	7	7
Ē	A	9Ь	Kitzingen	55	45	40	26	17	19	17	17	25	37	44	45
6	Y	9d	Spangdahlem	30	34	31	20	14	13	12	10	20	26	14	15
S I M	N	3	Heidelberg	77	75	73	60	53	55	54	46	61	72	75	73
0	O G K H	6a	Berlin	4	6	5	2	1	1	1	1	2	4	3	3
K		9Ь	Kitzingen	64	54	47	36	28	28	30	30	38	50	52	50
E T	9d	Spangdahlem	23	27	25	19	13	13	13	10	19	24	19	18	
L		L					-								

TABLE 5-10. FREQUENCY (%) OF FOGS AND HAZE BY MONTH (Ref. 11)

80

Sale Partie

<u>ERIM</u>

1. 1. 1.

TABLE 5-11. IMPACT OF FOG ON CEILING AND VISIBILITY (Ref. 12)

		Percentile C/V's [ft./s. mi.]								
Fog Ty	ре	<u>10</u>	25	<u>50</u>	<u>75</u>	<u>90</u>				
Fog	- day	4000/3	2000/2	1000/1	500/%	200/戈				
Fog	- night	4000/3	4000/3	1000/1	500/눈	200/눛				
Ground Fog	- day	5000/4	4000/3	2000/2	2000/2	1000/1				
Ground Fog	- night	5000/4	4000/3	4000/3	2000/2	2000/1				

81

ý

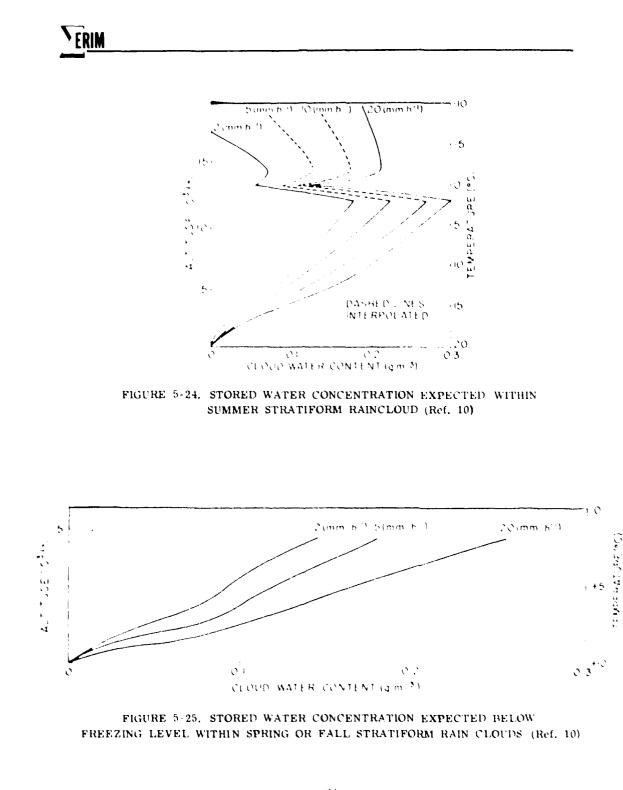
1

	Tot	•04	.08	.20	.02	.05	.13
	Dec	.08	.16	.35	.05	.12	.32
/EN	Nov	•06	.18	.39	.03	.07	.21
A GIV	0ct	.06	.11	.26	.05	60 .	.20
CED TO EUTH)	Sep	.02	.04	.10	.02	.03	.08
G REDU (BAYR	Aug	.01	.04	.12		.01	.02
Y BEIN AND 7C	Jul	.01	.02	.07		.01	.03
IBILIT OVER)	Jun	.01	.02	.07	.01	.02	•04
OF VIS (HANN	May	.03	.04	.10	.01	.02	•04
5-12. FREQUENCY OF VISIBILITY BEING REDUCED TO A GIVEN RANGE ZONES 5a (HANNOVER) AND 7C (BAYREUTH)	Apr	.01	.02	.06	.01	.01	.05
FREQ NGE ZO	Mar	.06	.12	.24	.03	•06	.14
5-12. RA	Feb	.05	.11	.32	.05	.10	.23
TABLE	Jan	.05	.15	.34	.02	.08	.22
	Visibility	5/8 mi.	1*	2 ¹ ,	5/8 mi.	14	2法
	Zone	5а			7с		

82

Anti-

ERIM


1

1

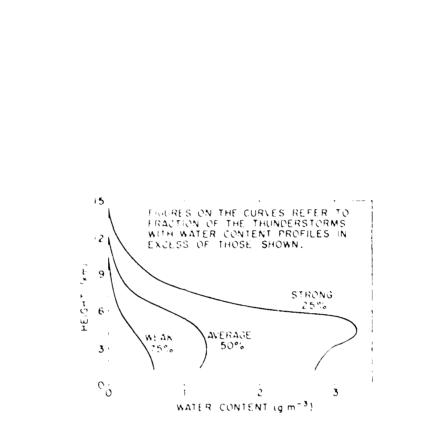
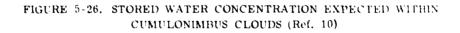

ΛΠΗ 0100 8.0 0400 11.3 0700 13.0 μ 1000 11.6 1300 6.3 1600 5.8 1900 5.3 2200 6.2	JAN FEB MAR APR MAY JUN JP_ AUG 11.3 14.0 12.1 3.0 3.4 1.1 3.8 3.8 12.7 16.2 15.8 7.4 6.5 5.2 8.1 7.9 13.2 20.2 18.2 8.3 5.6 3.5 3.9 7.9 20.5 27.3 15.5 2.6 0.7 0.4 0.4 1.4 15.8 17.2 5.2 1.1 0.9 0.6 0.0 0.6 18.4 11.0 3.9 0.2 0.4 0.0 0.0 0.1 12.9 12.8 6.0 0.9 0.5 0.4 0.2 0.4 12.9 15.3 7.4 1.1 0.7 0.7 0.4 0.4	9 8.9 14.3 17.8 14.2 1 13.0 21.0 24.4 17.7 1 3.7 14.7 27.0 24.9 1 0.2 4.1 13.0 16.7 2 0.2 2.3 14.4 18.6 5 0.6 4.1 11.9 12.4
0100 5.4 (0400 7.0 0700 10.5 1000 10.7 1300 6.8 1600 5.7 (1900 4.6 2200 4.5	12.2 10.2 2.5 0.3 0.1 0.4 0.4 0.4 13.2 11.5 4.4 1.1 0.9 1.5 0.8 1.4 16.2 16.0 8.5 2.9 2.6 2.3 1.9 3.4 21.6 19.3 9.7 1.7 0.9 0.5 0.3 0.1 16.9 12.8 4.5 0.3 0.1 0.1 0.0 0. 13.8 10.5 2.3 0.1 0.1 0.1 0.2 0. 10.8 10.2 2.3 0.2 0.1 0.2 0.1 0.1 11.2 8.9 1.8 0.2 0.2 0.2 0.1 0.	5 4.1 15.6 13.2 16.2 4 11.9 25.9 17.8 17.1 9 7.6 23.2 20.6 22.4 1 1.6 10.5 14.8 20.2 1 0.7 7.5 13.1 19.6 1 0.7 7.2 9.8 13.3
(a) 0100 44.1 0400 48.8 0700 50.7 1000 44.2 1300 33.9 1600 31.4 1900 34.8 2200 39.7	67.760.434.933.525.829.429.025.467.760.940.040.631.741.736.633.79.462.738.540.037.644.442.235.71.761.937.630.024.227.826.923.67.255.629.018.312.415.615.113.61.652.724.717.211.311.713.410.65.154.428.119.615.116.215.112.67.258.932.324.620.420.725.716.	7 48.9 45.2 65.6 73.1 3 52.5 45.7 69.8 70.4 1 49.4 43.5 66.5 67.7 5 26.1 30.1 59.8 64.5 8 22.9 25.3 58.3 66.5 4 29.4 33.9 58.9 69.7
010015.2 (a. 040019.2 V 100012.8 Hat 1300 9.4 1600 9.2 g 220010.3 220011.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 12.0 27.6 35.2 32.8 4 5.9 16.3 28.7 29.7 9 3.0 8.7 20.6 27.3 1 3.2 8.0 22.1 26.5 7 5.0 9.2 24.3 27.7
$\begin{array}{c} 0100 6.1 \\ 0400 - \\ \hline \\ 0700 9.8 \\ 1000 5.9 \\ 1300 1.9 \\ 1600 1.7 \\ 1900 2.7 \\ 2200 3.4 \end{array}$	6.3 10.6 5.3 2.7 4.5 3.3 1.3 1. 8.1 9.5 9.7 6.7 5.4 4.4 3.8 3.8 9.1 14.8 5.9 0.0 0.0 0.0 0.0 0.0 3.8 3.6 0.5 0.6 0.0 0.0 0.0 0.0 2.7 4.1 0.5 0.6 0.0 0.0 0.0 0.0 5.4 5.9 0.5 0.6 0.0 0.0 0.0 0.0 6.5 7.1 1.6 0.6 0.0 0.0 0.0 0.0	3 15.6 27.6 11.7 10.9 3 1.1 11.8 7.8 20.4 3 0.0 0.0 2.2 11.8 5 0.0 0.6 1.1 11.3 5 0.0 1.6 1.1 11.3 5 0.0 1.1 2.8 15.6

TABLE 5-13. FREQUENCY OF OCCURRENCE ($^{O}_{O}$), CEILING VISIBILITY LESS THAN OR EQUAL TO 300 FEET/1 MILE (Ref. 12)

CARLAND .

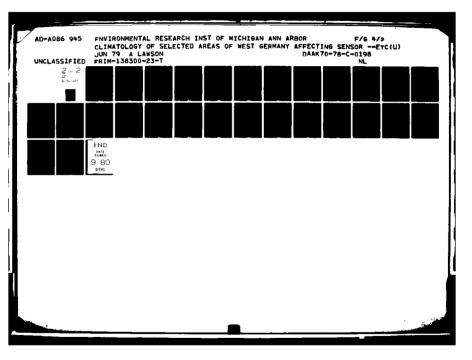


ERIM

ł

2

the second


TABLE 5-14. LIQUID WATER EXPECTED WITHIN CUMULIFORM CLOUDS. (Ref. 10)

ERIM

Clouds	\$	Water Content (gm ⁻³)			
Type	Temp (°C)	<u>Averaje</u>	Maximum		
Cumulus Humilis	10 to 24	1.0	3.0		
Cummulus Congestus	3 to 11	2.()*	6.6		
Cummulonimbus	10 to - 8	2.5	10.0		

86

All a contra

<u>ERIM</u>

TABLE 5-15. MAXIMUM ALTITUDE [km] FOR A GIVEN PROBABILITY OF A CLOUD-FREE LINE OF SIGHT (Ref. 11)

DEPRESSION ANGLE [°]			30			45			60	
CFLOS PROBABILITY		.33	.50	.50 .67	.33		.50 .67	.33	.50	.67
TIME	ZONE									
Winter	4 þ	5.6	2.2	2.2 0.1	5.6	1.6	0	5.7	1.4	0
Daylight	5b 	3.3	0.8	0	3.2	0.8	0	3.3	0.4	0
Summer	4Þ	>>10	7.0	2.0	>>10	9.6	2.1	>>10	>10	2.7
Daylight	5b	9.2	3.0	1.1 > 10	> 10	3.7	1.2	>>10	4.2	1.2
Year Long	415	>>10	3.0	0.8 >>10	>>10	3.6	0.6	>>10	3.6	0.6
24 Hour	5b	> 10	1.8	> 10 1.8 0.4 > 10	> 10	2.0	0	> 10	2.0	0

87

أجمد

6 COPING WITH CORRELATIONS

The frequency of incidence for the various weather elements which have been presented in the previous sections is an adequate measure for predicting the success of a "snap shot" type of sensor which is inhibited by only a single factor. Fortunately for the sensor (unfortunately for the analyst), there is some freedom in choosing its point of application in time and space For example, a brief delay of a mission may allow the rain to stop, the fog to clear, the front to pass, etc. The probable duration of these elements can thus be critical, also, there are correlations between those elements. The coincidence of precipitation and clouds is obvious. There is a strong negative correlation in incidence between haze/smoke and thunderstorms. Our ability to gather and display information of this type is somewhat limited.

A careful review of temperature or precipitation would disclose probabilities of a given condition lasting for a given period of time. As we will show later, these durations correlate so strongly with other parameters that the simple probabilities may not be of great use. One simple presentation that would be valuable has been used with precipitation data for England (Figure 6-1). This shows, for example, that we could expect an instantaneous rainfall rate as great as 30mm/hr to be sustained for 15 minutes or more only once each year. Regrettably comparable data have not been located for Germany and regrettably precipitation patterns differ too much between Germany and the U.K. to allow the use of the U.K. data. The curve does show the character of the relationship between duration, rate, and frequency. Such a presentation could be profitably developed for German climatic regions by season and by time of day.

Table 6-1 shows how often the ceiling and visibility will simultaneously be at or below 200 ft and $1\frac{1}{4}$ mi for a given number of hours for two climatic zones. In Table 6-2, we have presented the duration distribution in a somewhat more compact form. From Table 6-1, in

January in zone 8a, both ceiling and visibility will be equal to or less than 200 ft. and 1 1/4 mi. 29.4% of the time and 11.4% of the time it will be in a period when this condition lasts at least 12 hours. Table 6-2 shows that, also for January in 8a, 75% of these low CV periods will last at least 4 hours, 50% will last 9 hours and 25% will last at least 18 hours.

ERIM

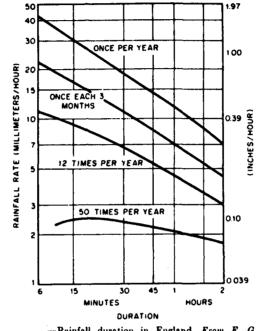
In Table 6-3 we show the likelihood of one fraction of total sky cover changing to another within a given period of time by season. Note that this data has been developed from satellite imagery for a $10^{\circ} \times 10^{\circ}$ area centered 10° E and 45° N. Thus southern Germany is included in the study region but so are portions of Italy, France, Switzerland, Austria, Czechoslovakia. The table shows that in Winter if the sky is clear (0/4), there is 0 probability of the sky remaining clear for 24 hours while if overcast (4/4), the probability of remaining overcast for at least 24 hours is 77%.

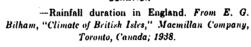
An air mass may often be usefully identified by the source region in which it acquired its present characteristics (A-arctic, P-polar, T-tropical, E-equatorial, etc.) and according to the continentality of that region (M-maritime, and T-tropical). Convention would call for representing a maritime polar air mass as mP. We have altered this convention to emphasize the continentality aspect and would represent that same air mass as Mp. The chart of Figure 6-2 shows the frequency of encountering specific air masses at Frankfurt A.M., zone 4b. Note the presence of air masses identified as M and C which have no clearly identifiable regional characteristics, as P and T whose absolute humidity suggests no marked continentality, and as 0 which is especially representative of the frontal regions which are such great weather generators.

Air mass frequencies would be useful because different air masses give rise to different weather characteristics. We attempt to show this in Figure 6-3. Note, for example, that even in Winter

ERIM

the polar continental, Pc, air masses from the USSR are not too frequent (2.6%), and last less than 1.5 days but when they come they drop the temperature dramatically, they bring very little moisture and far fewer overcast skies than we normally expect in German winters.


The use of such air mass statistics could lead to the generation of a reasonably good weather model. It would need some modification to provide frontal weather characteristics and for weather peculiar to cyclonic disturbances.


The contour lines that represent the height of the 500 mB atmospheric pressure are rather like the isobars found on a surface chart but are characterized by waves with ridges and troughs rather than closed highs and lows. These waves have different spatial wavelengths and speeds. There are slow moving long-wave ridges and troughs and short waves that migrate within the long waves. They may be of use because there are definite frequencies of occurrence associated with regions in these waves as shown in Table 6-4. Table 6-5 then shows the seasonal sky cover expectations to associate with each of the regions within the 500 mB structure. Note that the differences in frequencies are very marked. If, for example, you are in the forward portion of a migratory trough in winter, it will be overcast. If in the inner portion of a long wave ridge in Spring it will be clear. Table 6-6 is included to show the resulting impact on a satellite's ability to view a given spot on the ground.

One other useful way to model our weather is to adopt a family of representative, actual weather sequences. In Table 6-7 through 6-9 we include for zone 7c one representative month of weather for each of three seasons; summer, fall, and winter. If a somewhat more detailed sequence were simultaneously available from the climatic zones of interest, we could construct a catalog of typical sequences with associated frequencies and select from these to perform the sensor analyses.

2.

<u>ERIM</u>

TABLE 6-1. PERCENTAGE FREQUENCY OF OCCURRENCE OF CEILING/VISIBILITY LESS THAN OR EQUAL TO	200 ft/1 1/4 mi. FOR A DURATION OF AT LEAST THE INDICATED NUMBER OF HOURS (Ref. 12)	
TABLE 6-1. PERCENTAGE FREQUENCY OF (200 ft/1 1/4 mi. FOR A DURATION OF	

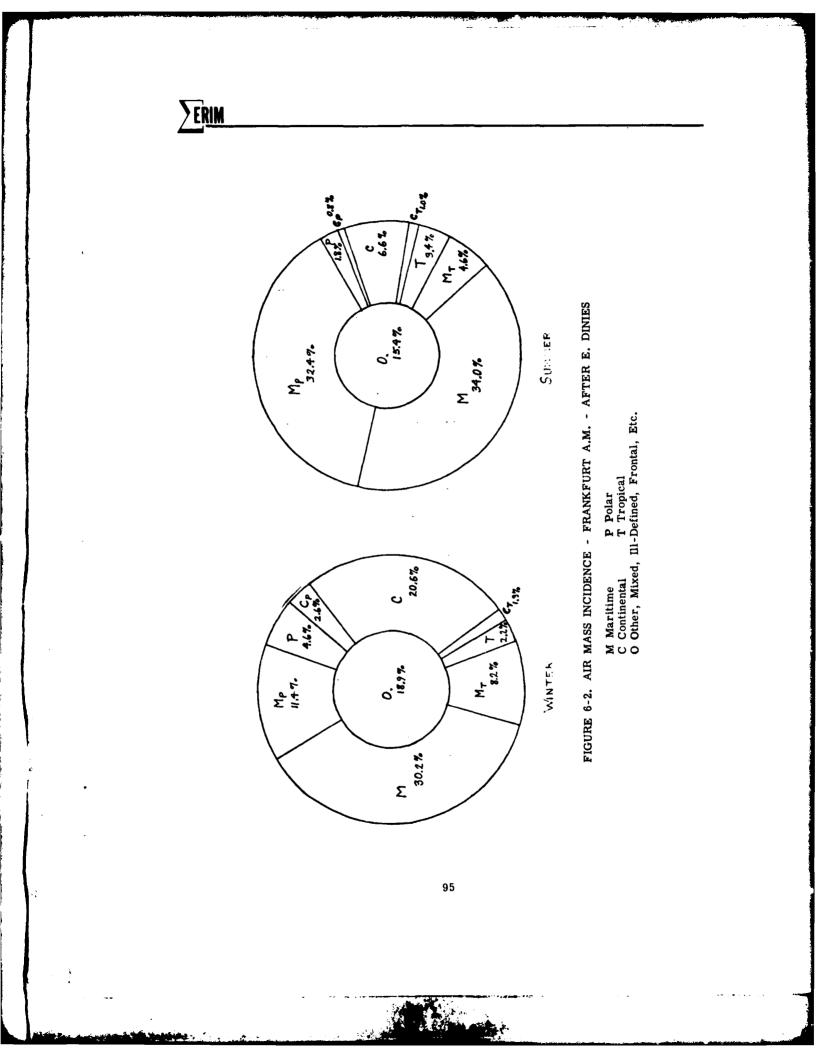
ALL		4.7.7.4.4.8.9.9.1.5.6.9.4.7.6.9.4.7.6.9.4.7.6.9.4.7.6.9.4.7.6.9.4.7.6.9.4.7.6.9.4.7.6.9.4.7.6.9.4.7.6.9.4.7.6.9	5055 66 4 4 6 0 5 5 5 7 4 4 6 0 5 5 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	60	000000000000000000000000000000000000000	80000000000
	57	000000000000000000000000000000000000000	200000000000000000000000000000000000000
	54	000000000000000000000000000000000000000	~000000000
	5	000000000000000000000000000000000000000	4000000000000 4000000000000
	48	000000000000000000000000000000000000000	+ 0000000000 8 0000000000
	45	000000000000000000000000000000000000000	-00000000000000
	42	000000000000000000000000000000000000000	4-000000004966
	39		×0000000004
	36	8-000000000000000000000000000000000000	6.0000000 6.000000 6.000000 6.000000 6.00000000
NOL	33	00000000000	4.00000000 4.00000000000000000000000000
DURATION	30	000000000000000000000000000000000000000	00000000000000000000000000000000000000
HOURS OF	26	00000000000000000000000000000000000000	4-000000-07 8-800000404
HCUE	24	0.000000000000000000000000000000000000	8.24000001107.3 8.240000011000000000000000000000000000000
	21		6.000000000000000000000000000000000000
	18		721-00000440 42000-2000440
	15	2-00000000 2-00000000	25.5-00.3 25.5-0
	12	4	111 4.4 4.4 4.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7
	σ	4 6 0 0 0 0 0 0 4 4 m 8 7 6 1 1 0 1 4 0 m 4 7 m	4 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7
	9	8-9-1000-2-2-8-8 6-7-2-2-2-2-2-8 6-7-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	2138.86 1.2 2.2 3.2 3.2 8.8 6 7 1.2 2 2 2
_	m	00 8.7 8.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9	25.25 6.3 14.9 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2
MONTH		JAN MARKER ADR ACC NOCT NOCT NOCT	JAH FFEB JUH JUL SEP OCT OCT DEC
Zone	(543.)	9d (Gratenwoht)	(.H.I.A ndsH) s8

92

	Honth			96 (G	rafenvöhr	:)	_	8a (Hahn A.F.B.)						
"Season"		7	5	5	ю		25] ,	15	5	0	2	5	
	Dec.	2		4		,		6		12		27		
"Vister"	Jan.	2	(2.0)	8	(5.7)	10] (9.7)	4	(4.0)	9	(8.7)	18	(18.7)	
	Feb.	2		5		10]	2		5		11		
	Har.	<2		8	(5.0)	13	(8.0)	2	(-1.5)	4	(2.7)	8	(6.0)	
"Spring"	Apr.	<2	(-1.5)	5		8		<2		2		5		
	Hay	<<2		2		3		<2		2		5		
	Jun.	<2		2	(2.0)	4		2	(-1.5)	3	(2.3)	6	(5.0)	
"Summer"	Jul.	<<2	(-1)	1		3	(4.0)	- 2		2		4		
	Aug.	-2		3	1	5	1	<2		2		5		
	Sep.	2		3		6		<2	(3.0)	2	(5.0)	4		
"Fall"	Oct.	3	(2.3)	6	(5.0)	9	(9.0)	2.5		5		9	(9.3)	
	Nov.	2	1	6	1	12	1	4		8		15	1	

TABLE 6-2. HOURLY BURATION PERCENTILES - C/V \leq 200 ft/l 1/4 mi

<u>ERIM</u>


ş

Change	(in	4ths)		Win			Spri			mer		Fa	11	
From		To	6 ^h	12 ^h	18 ^h	24 ^h	12 ^h	24 ^h	12 ^h	24 ^h	6 ^h	12 ^h	18 ^h	24 ^h
0	+	0	75	50	25	0	72	57	33	25	13	0	Ō	37
		1	0	0	25	25	14	14	45	50	49	0	25	13
1		2	0	0	0	0	0	0	22	25	0	25	37	25
		3	25	50	50	75	14	29	0	0	25	50	25	25
1		4	0	0	_ 0	0	0	0	0	0	13	25	13	0
1	+	0	0	0	0	0	17	25	25	25	22	0	27	21
ł		1	0	0	0	0	0	25	25	25	14	27	13	29
		2	50	50	0	0	0	25	42	25	22	20	27	29
1		3	50	50	100	100	66	25	8	25	42	33	13	21
}		4	0	0	0	0	17	0	0	0	0	20	20	0
2	+	0	-	0	-	11	0	18	13	19	17	14	6	0
]		1	-	11	-	0	30	28	13	0	11	14	16	5
		2	-	33	- '	33	30	18	31	44	39	32	26	38
		3	-	33		23	20	18	43	31	33	32	26	38
1		4	-	23	•	33	20	18	0	6	0	8	26	19
3	•	0	7	10	20	10	7	0	5	0	0	12	4	0
		1	7	5	0	5	7	0	10	20	13	16	9	15
		2	0	14	0	5	21	19	15	15	22	24	17	26
		3	72	38	40	29	29	37	50	55	30	16	48	22
		4	14	33	40	51	36	44	20	10	35	32	22	37
4	+	0	0	0	0	0	0	0	0	25	0	4	3	0
		1	0	0	0	0	0	0	25	25	9	11	10	3
1		2	0	2	,	9	17	18	25	0	12	11	7	0
1		3	9	14	13	14	28	35	50	25	12	18	23	35
l		4	91	84	80	77	55	47	0	25	67	56	57	62

TABLE 6-3. PROBABILITY (2) OF A SPECIFIC CHANGE IN FRACTIONAL OBSCURATION OVER A SPECIFIED TIME INTERVAL (10°E X 45°N) (Ref. 15)

94

A



FIGURE 6-3. AIR MASS STATISTICS - FRANKFURT A.M.

<u>ERIM</u>

0.000

TABLE 6-4. PROBABILITY OF OCCURRENCE OF A PARTICULAR FEATURE ON THE 500 mB CHART IN THE 10° X 10° SECTOR 10°E 45°N (Ref. 15)

	Feature	Winter	Shrino	Cimmor	1. 1. 1.
,			9		TTPJ
.	rorward portion of migratory trough, usually cloudy	14%	16%	14%	82
þ.	Rear portion of trough in cold sector, usually cloudy	12	22	15	, ,
່ວ	Forward portion of migratory ridge, usually clear	10	œ	15	3 -
e.	Center of ridge, often cloudy	12	œ	2] [
f.	Forward portion of long wave ridges, usually clear	26	i I	71	27
60	Inner portion of long wave ridges, usually clear	2	12	12	i '
h.	Forward portion of long wave troughs, usually cloudy	12	4	I	10
-i	i. Inner portion of long wave trough, usually cloudy	10	30	18	6

97

<u>ERIM</u>

	TABLE 6-5. SEASON IN DIFFERENT	SEASONAL PROBABILITY ERENT 500 mB FEATURES	PROBAE 0 mB FE	ATURES	PROBABILITY OF LEVELS OF OBSCURATION mB FEATURES 10°E 45°N (Ref. 15)	S OF OB N (Ref	SCURATI	NO	
Season	Obscuration	a	þ	c	e	f	8	ų	i
Winter	0	20	20	%0	20	17%	20	20	20
		0	0	0	0	17	0	0	0
	2	0	0	20	0	25	0	33	0
	ε	0	0	40	0	41	100	17	0
	4	100	100	40	100	0	0	50	100
Spring	0	0	0	25	0	0	100	0	0
	1	25	0	25	0	0	0	0	7
	2	13	6	50	50	0	0	0	20
	£	25	55	0	25	0	0	50	33
	4	37	36	0	25	0	0	50	40
Summer	0	0	0	13	0	57	33	0	0
	1	14	0	49	17	29	50	0	0
	2	29	50	13	33	14	17	0	33
	ñ	57	25	25	33	0	0	0	67
	4	0	25	0	17	0	0	0	0
Fall	0	0	0	16	20	13	0	0	0
	1	0	0	31	10	30	0	9	0
	2	14	50	21	20	13	0	31	0
	3	0	0	21	40	30	0	50	0
	4	86	50	11	10	13	0	13	100

98

Set and a

YERIM

.

ALLEY IS THE FAIL THE REAL PROPERTY

TABLE 6-6. PROBABILITY OF CLEAR LINE OF SIGHT FROM SATELLITE TO A SPECIFIC SPOT ON THE GROUND, 10° X 10° AREA CENTERED ON 10°E 45°N (Ref. 15)

Season	Winter	Spring	Summer	Fall
Month analyzed	(Dec 62)	(Apr 62)	(Aug 61)	(Oct 62)
CLOS Probability	18%	36%	53%	34%

and in

110.5

Summer July '53		Day/Hr(LST)	Visibility (s. mi.)	Ceiling (100's of feet)	Sky Cover (Eighths)	Weather	Wind Speed(KTS)	Relative Humidity(%)	Absolute Humidity(g/m ³)
	1	01 07 13 19	3 6 13 13	130 130 130 130	5 8 5 8	11 11 - -	2 4 8 C	71 76 46 89	11 13 12 15
	2	01 07 13 19	6 6 2-1/2 13	31 130 17 130	6 7 6 8	H H H F	С 8 4 2	76 86 54 93	12 13 14 14
	3	01 07 13 19	3 2-1/2 13 13	U 130 130 130	3 8 5 7	H H - R	C 2 8 8	74 83 40 52	11 13 11 11
	4	01 07 13 19	3 2-1/2 6 13	บ บ บ 17	C C 3 8	н н н -	C 4 8	79 86 63 83	12 13 14 14
	5	01 07 13 19	6 6 13 13	U 4.6 17 130	2 7 6 7	н - -	8 8 8 12	93 93 68 76	12 11 11 11
	6	01 07 13 19	6 6 13 6	17 31 17 130	7 7 8 8	H H -	C 8 16 8	89 79 56 61	11 12 12 11
	7	01 07 13 19	6 13 6 13	130 130 9 31	7 8 8 8	H - L -	12 12 12 16	68 79 89 76	11 12 14 14
	8	01 07 13 19	3 6 2-1/2 13	130 17 9 U	7 8 .8 1	H - R -	8 12 16 12	79 86 86 71	12 12 13 11

TABLE 6-7(1). REPRESENTATIVE WEATHER SEQUENCES FOR ZONE 7cLEINEFELDE (51°23'N 10°19'E 354 m.) (Ref. 16)

100

ERIM

						004		(ner, 1	.0)	
Summer July '53	9	6 5 9 9 Day/Hr(LST)	ссс visibility(s. mi.)	0 0 0 0 = Celling(100's of feet)	чөөс Sky Cover (Eighths)	· · · ± Weather	ν κ α ν Wind Speed(KTS)	83	occock Absolute Humidity 3	(g/m²)
	10	01 07 13 19	3 13 13 13	130 130 17 17	8 5 7 7		4 2 8 4	79 79 61 76	9 9 9 9	
	11	01 07 13 19	3 2-1/2 13 13	U 9 130 9	1 7 7 7	- -	8 4 12 4	93 79 66 61	9 8 9 8	
	12	01 07 13 19	3 13 13 13	U U 17 17	1 2 7 8	11 - - -	8 8 8 4	79 74 61 54	9 8 9 9	
	13	01 07 13 19	3 13 13 13	U 9 130 4.6	3 8 8 7	RW	2 8 12 8	61 96 76 83	9 11 11 11	
	14	01 07 13 19	3 13 13 13	4.6 4.6 130 U	8 8 6 4	R - - -	12 12 16 8	93 86 66 76	16 9 9 10	
	15	01 07 13 19	3 13 35 13	17 9 130 9	7 7 7 8	- - R	8 16 27 12	93 86 66 93	9 9 9 10	
	16	01 07 13 19	3 13 13 35	17 4.6 130 130	5 6 8	- - -	8 12 12 4	100 93 58 61	10 9 9 9	
	17	01 07 13 19	3 13 13 35	130 130 130 130	8 8 8 5	- - -	8 12 12 4	66 71 56 76	9 10 12 12	
	18	01 07 13 19	3 13 6 2-1/2	2.3 130 4.6 2.3	8 3 8 8	TRW - R L	8 4 4 4	93 93 100 93	11 13 13 12	

TABLE 6-7(2). REPRESENTATIVE WEATHER SEQUENCES FOR ZONE 7cLEINEFELDE (51°23'N 10°19'E 354 m.) (Ref. 16)

VERIM

	LE	INEF	ELDE (5	1°23'N 10)°19'	'E 354	1 m.)	(Ref.	16)	
Summer July '53	19	C.O.D. Day/Hr(LST)	CC u Visibility(s. mi.)	7.1 c Ceiling (100's of feet)	9 L & Sky Cover (Eighths)	i i ≖ Weather	ちゃ Wind Speed(KTS)	68 % Relative Humidity(%)	$\infty \ \ \ \ \ \ \ \ \ \ \ $	
		·9	23	130	6	-	8	71	9	
	20	U1 07 13 19	3 13 13 13	U 130 130 130	1 8 8 8	- R -	8 [:] 12 12 8	79 79 76 83	8 9 9 11	
	21	01 07 13 19	3 13 13 13	130 U U U	7 1 1 1	H - - -	8 8 12 12	86 86 54 41	11 12 13 10	
	22	01 07 13 19	3 13 13 13	U 130 130 130	2 8 8 8	- - - R	16 16 16 12	54 71 54 86	9 11 13 13	
	23	01 07 13 19	3 13 13 13	31 31 9 130	5 7 8 8		8 8 12 4	79 86 93 71	11 12 14 11	
	24	01 07 13 19	3 6 13 13	130 U 17 U	7 3 6 4	11 11 -	8 8 12 2	83 89 58 46	9 10 9 9	
	25	01 07 13 19	3 13 13 13	U U U U	C C 1 C	H - - -	2 8 12 4	66 61 48 48	9 9 11 11	
	26	01 07 13 19	13 13 13 13	U 130 130 130	C 6 6 6		8 8 8 4	63 63 71 61	11 11 15 12	
	27	01 07 13 19	13 13 13 35	48 130 130 - 17	7	- - 1 R W	8 4 8 12	76 86 89 86	11 11 11 9	

TABLE 6-7(3). REPRESENTATIVE WEATHER SEQUENCES FOR ZONE 7c LEINEFELDE (51⁰23'N 10⁰19'E 354 m.) (Ref. 16)

102

TABLE 6-7(4). REPRESENTATIVE WEATHER SEQUENCES FOR ZONE 7cLEINEFELDE (51°23'N 10°19'E 354 m.) (Ref. 16)

Summer July '53

ERIM

	Day/Hr(LST)	🖯 Visibility(s. mi.)	Ceiling(100's of feet)	Sky Cover (Eighths)	Weather	Wind Speed(KTS)	Relative Humidity(%)	\mathbb{Z} Absolute Humidity(g/m ³)	
28	01	13	17	6 7	-	16	100	11	
	07	6	4.6	7	-	16	93	11	
	13	13	130	5	-	16 12	54	9	
	19	13	17	8	-	12	76	11	
29	01	3	4.6	8	R	4	100	12	
	07	2-1/2	1.2	7	-	4	100	12	
	13	13	130	7	-	4	54	9	
	19	13	130	5	-	4	61	9	
30	01	3	17	5	H	2	66	8	
	07	13	130	8	-	4	76	9	
	13	13	17	8	•	8	58	9	
	19	2-1/2	130	8	-	8	93	10	
31	01	3	U	С	11	8	93	9	
	υ7	2-1/2	U	2	H	8	93	9	
	13	13 2-1/2	17	8	-	12	61	8	
	19	2-1/2	130	8	ĸ	4	93	10	

Weather Symbols

Н	Haze
F	Fog
F -	Light Fog
L	Drizzle
R	Rain
RW	Rain Shower
TRW	Thunderstorm
S	Snow

103

TABLE 6-8(1). REPRESENTATIVE WEATHER SEQUENCES FOR ZONE 7c LEINEFELDE ($1.0^{\circ}23$ 'N 10⁰19'E 354 m.) (Ref. 16)

Autumn Oct. '60

ERIM

	Day/Hr(LST)	Visibility (s. mi.)	$\frac{1}{5}$ Ceiling (100's of feet)	Sky Cover (Eighths)	Weather	Wind Speed(KTS)	\tilde{z} Relative Humidity(%)	$\sim \sim Absolute Humidity(g/m^3)$	
1	01	}	1 30	8	R	14	93	7	
	07	3	17	8	R	н	93	1	
	13	4	17	В	F-	2	86	y	
	19	2-1/2	130	7	F-	С	91	4	
2	01	3	U	2	F-	2	93	R	
•	07	1/16	1.2	8	F	2	100	1	
	13	8	U	3	-	6	66	4	
	19	2-1/4	U	C	F-	С	93	9	
3	01	3	130	8	F-	6	96	ж	
	07	1-7/8	130	я	F-	4	100	8	
	13	1	130	5	-	6	71	9	
	19	5	130	8	F-	2	89	10	
4	01	4	130	6	F-	2	93	8	
	07	3	130	6	F-	2	100	н	
	в	7	130	6	-	8	63	10	
	19	5	48	8	F-	2	83	10	
5	01	11	130	5	-	6	83	10	
	07	13	U	1	-	6	79	9	
	13	19	υ	3	-	6	54	9	
	19	13	130	1	-	С	89	10	
6	01	8	U	С	F-	С	100	4	
	07	4	U	3	F-	2	100	8	
	13	4	130	5	H	6	66	10	
	19	4	130	5	F-	С	86	4	
1	01	2-1/4	130	1	F-	С	100	9	
	07	1-1/8	31	8	F-	4	190	16	
	13	1-1/2	9	8	F-	6	96	11	
	19	5/8	1.2	8	R	6	100	11	
я	01	1/2	1.2	8	R	4	100	11	
	07	3		я	R	4	100	10	
	Ð	с 10	17	8	F-	6	86	4	
	19	10	130	h	-	ĥ	86	9	

104

Autumn Oct. '60		Day/Hr(LST)	Visibility(s. mi.)	Ceiling(100's of feet)	Sky Cover (Eighths)	Weather	Wind Speed(KTS)	Relative Humidity($\%$)	∞ ∞ Absolute Humidity (g/m ³)	
	9	01	9	130	6	-	2	89	8	
		07	10	130	7	-	4	96	8	
		13	22	130	8	R	8	74	8	
		19	19	130	7	-	4	89	8	
	10	01	16	υ	3	-	6	89	7 7	
		07	14	31	8	-	8	89		
		13	13	31	8	-	6	76	8	
		19	11	31	8	-	8	89	8	
	11	01	в	17	8	ĸ	12	96	8	
		07	8	31	8	-	6	93	8	
		13	8	31	7	-	10	86	9	
		19	EL	31	7	-	16	83	7	
	12	01	11	130	6	-	4	79	6 5	
		07	16	17	6	-	14	76	:	
		13	12	17	8	ĸ	17	93	6	
		19	4	17	8	R	6	93	7	
	13	01	8	17	8	ĸ	12	93	7 7	
		07	4	17	8	-	14	93	7	
		13	10	17	ĸ	1.	8	93	7	
		19	8	31	б	-	4	93	7	
	14	01	6	130	'n	F-	4	86	6	
		07	4	U	2	F-	4	93	6	
		13	10	U	4	-	6	66	6	
		19	h	U	2	F	C	83	5	
	15	01	1-1/8	υ	С	F-	2	93	5	
		07	3/8	υ	2	F	С	93	4	
		13	4	130	8	ĸ	10	76	6	
		19	1	31	8	F-	4	79	6	
	16	01	2-1/4	17	8	R	2	86	6	
		07	4	17	8	R	8	100	6	
		13	2-1/2	17	8	R	10 8	100	7	
		19	2-1/2	17	8	R	8	100	7	
	17	01	3	17	8	R	19	93	7	
		07	3	9	8	F-	19	93	7	
		13	3	4.6	8	R	23	100	7	
		19	4	17	8	F-	14	93	6	
	18	01	5	17	8	R	12	100	6	
		07	3	17	8	R	12	93	6	
		13	2-1/2	17	8	R	10	93	7	
		19	8	1 30	5	-	С	93	Þ	
				1	ΩE					

TABLE 6-8(2). REPRESENTATIVE WEATHER SEQUENCES FOR ZONE 7cLEINEFELDE (51°23'N 10°19'E 354 m.) (Ref. 16)

ERIM

105

→ Absolute Humidity(g/m³) Autumn Oct. '60 Ceiling (100's of feet) Relative Humidity(%) Sky Cover (Eighths) Visibility (s. mi.) C .- Wind Speed(KTS) Day/Hr(LST) Weather F-1-5/8 R 1-3/8 ĩ С -F 1.2 F/с 1.2 F 1/16 1.2 F--1.2 F в 1/2 F-1-1/8 R 1-1/8 F-1-1/8 F-С F U F U -R --υ7 -R --С -R С U -F С 1/4 ~ -С 1.2 F 3/16 7/8 F 4.6 4.6 R R --.31 R ĸ -

TABLE 6-8(3). REPRESENTATIVE WEATHER SEQUENCES FOR ZONE 7c LEINEFELDE (51⁰23'N 10⁰19'E 354 m.) (Ref. 16)

ERIM

TABLE 6-8(4). REPRESENTATIVE WEATHER SEQUENCES FOR ZONE 7cLEINEFELDE (51°23'N 10°19'E 354 m.) (Ref. 16)

Autumn Oct. '60

ERIM

	Day/Hr(LST)	Visibility(s. mi.)	Ceiling(100's of feet)	Sky Cover (Eighths)	Weather	Wind Speed(KTS)	Relative Humidity($ { $	∽ ∽ Absolute Humidity(g/m ³)
28	01	6	υ	С	F-	4	93	7
	07	10	130	5	-	С	93	6
	13	11	ប	3	-	2	66	8
	19	6	130	6	F=77	2	93	8
29	01	6	130	8	-	4	89	7 7
	07	4	82	8	F- F- F-	6	83	
	13	3	130	8	F-	12	79	8
	19	2-1/2	130	5	F-	2	93	в
30	01	1/16	1.2	8	F	С	100	8
	07	14	130	8	-	2	89	8
	13	16	31	8	ĸ	4	86	8
	14	12	31	8	R	К	96	8
31	01	10	31	8	R	10	96	8
	07	11	31	8	ĸ	2 6	96	8
	13	15	31	8	ĸ		83	8
	19	11	130	8	-	6	43	8

Weather Symbols

Н	Haze
F	Fog
F –	Light Fog
L	Drizzle
R	Rain
R₩	Rain Shower
TRW	Thunderstorm
S	Snow

107

<u>ERIM</u>

TABLE 6-9(1). REPRESENTATIVE WEATHER SEQUENCES FOR ZONE 7cLEINEFELDE (51°23'N 10°19'E 354 m.) (Ref. 16)

Winter Dec. '59

	Day/Hr(LST)	Visibility(s. mi.)	Ceiling (100's of feet)	Sky Cover (Eighths)	Weather	Wind Speed(KTS)	Relative Humidity(%)	Absolute Humidity(g/m ³)
1	01 07 13 19	3/16 1/16 7/8 0	1.2 1.2 9 1.2	8 8 8 8	F F - F	6 8 6 2	93 100 100 100	5 5 6 5
2	01 07 13 19	0 0 1/16 1/4	1.2 1.2 1.2 1.2	8 8 8 8	F F F L	C 4 6 2	100 100 100 93	5 5 5 5
3	01 07 13 19	1-1/2 2-1/4 4 4	17 17 17 31	8 8 8 8	- F- F- F-	6 6 6	93 93 93 83	5 5 6 5
4	01 07 13 19	4 4 6 11	31 31 130 31	6 8 6 7	F- F- F-	4 6 C	89 93 83 86	5 5 5 5
5	01 07 13 19	8 5 6 3	U 130 31 31	3 7 8 8	- F- F-	4 2 2 C	86 93 89 89	5 5 5 5
6	01 07 13 19	1-5/8 1-3/4 3 5/8	31 17 17 1.2	8 8 7 8	F- F- F- F	C C 2 6	93 86 89 91	5 5 5 5
7	01 07 13 19	5/8 1 1/2 1-3/8	1.2 4.6 1.2 9	8 8 8 8	F F- F F-	6 16 17 16	93 100 100 93	4 4 3
8	01 07 13 19	1-7/8 1-3/4 1-1/8 1-3/8	17 17 17 17	8 8 8 ១	F- F- F- F-	16 14 12 12	93 93 93 93	3 3 3 3

108

	LEI	NEFEI	DF (21 2	5'N 10	19.	E 354	m, j	(Rei.	10)
Winter Dec. '59		Day/Hr(LST)	Visibility(s. mi.)	Ceiling(100's of feet)	Sky Cover(Eighths)	Weather	Wind Speed(KTS)	Relative Humidity(%)	Absolute Humidity (g/m^3)
	9	01 07 13 19	1-3/8 2 2 1-1/2	9 17 17 17	8 8 8 8	F- F- F-	10 4 4 6	96 93 93 93	3 3 3
	10	01 07 13 19	3/8 3/4 3/4 1-1/2	1.2 17 9 17	8 8 8 8	F L - S	6 6 8 21	93 100 96 100	3 4 4 4
	u	01 07 13 19	1-1/8 1-3/4 1/2 7/8	17 17 1.2 9	8 8 8 8	F- F- F L	16 23 17 10	93 100 93 93	4 4 3
	12	01 07 13 19	1-1/4 2 2-1/4 2	17 17 17 17	8 8 7 8	S S - S	6 2 10 4	93 93 93 93	3 3 4 4
	13	01 07 13 19	2-1/2 2-1/4 2-1/2 4	17 17 17 31	8 8 8 8	F- F- S F	6 6 2 2	96 93 93 93	4 4 3
	14	01 07 13 19] 2-1/2] 1	31 31 31 31	8 8 8 8	F- F- F- F-	C 2 4 6	86 94 86 79	3 3 3
	15	01 07 13 19	3 3 2	130 31 31 31	7 8 8 7	F- F- F- F-	4 6 4 8	86 93 86 86	3 3 3 3
	16	01 07 13 19	4 4 2 2-1/2	17 17 17 17 31	5 8 8 8	F- F- F- F-	6 2 6 U	86 89 93 86	3 4 4 4
	17	01. 07 13 19	3 3 5 4	U U 130 17	3 3 7 8	F- F- F- R	6 6 14 14	86 86 83 93	4 4 5 6
	18	01 07 13 19	3 6 25 16	17 17 31 31	8 7 8 8	R F- -	16 8 10 12	93 86 89 83	7 6 6 5
				1	٥٩				

TABLE 6-9(2). REPRESENTATIVE WEATHER SEQUENCES FOR ZONE 7cLEINEFELDE (51°23'N 10°19'E 354 m.) (Ref. 16)

<u>ERIM</u>

109

<u>ERIM</u>

Winter Dec. '59									3)	
				eet)	~			8	→ Absolute Humidity(g/m ³	
			÷.	보드 Ceiling (100's of feet)	æ æ Sky Cover (Eighths)		(6	Relative Humidity($\%$)	lity(
		£	o Visibility (s. mi.)	s'(Eigł		Wind Speed(KTS)	mid	imic	
		Day/Hr(LST)	y (s.	(100	er (eed(Ηu	Ĥ	
		'Hr(oilit	gu	Cov	her	Sp	tive	olute	
		ay/	'istl	eili	ky	Weather	/ind	telai	vbso	
	19	н с1	> 9	0 31	20 8	-	⊯ 16	93	4 6	
	• •	C1 07	6	31	8	R	14	93	6	
		13 19	5 5	31 U	8 1	R F-	6 8	89 79	5 4	
	20	01	3	17	- 8	R	8	93	5	
		07	6	17	8	F-	16	96	5	
		13 19	16 10	17 31	8 8	- 1.	14 14	86 93	n 7	
	21	01	4	130	8	R	6	86	, ,	
	21	07	6	31	8	R	4	93	6	
		13	16	31	8	RW	4	93	h	
		19	9	31	8	-	2	93	5	
	22	01 07	10	31	7 8	- F-	2 2	86 93	5 5	
		13	6 6	31 U	3	F-	2	83	5	
		19	6	U	í	F-	8	79	4	
	23	01	4	1 30	8	F-	8	79	4	
		07	4	130	7	-	7	89	5	
		13	11	17	7 2	-	7 2	86	n 6	
		19	13	U		-		74		
	24	01 07	3 6	31	8 8	F- F-	С 2	93 89	ь 5	
		13	13	130 31	7	-	4	83	ś	
		19	11	Ŭ	ì	-	С	83	5	
	25	01	11	U	1	-	4	86	4	
		07	10	48	6	-	4	89	5	
		13 19	16 9	31 130	8 8	– R	6 10	93 86	6 6	
	•									
	26	01 07	7 13	31 130	8 8	R -	!2 14	93 86	6 6	
		13	18	31	8	RW	19	86	6	
		19	19	130	7	-	23	71	5	
	27	01	10	17	8	R	25	89	7	
		07	19	U	2	-	21	76	5	
		13	38	130	6	-	23	71	5	
		19	13	1 30	8	-	4	76	7	

TABLE 6-9(3). REPRESENTATIVE WEATHER SEQUENCES FOR ZONE 7c LEINEFELDE (51⁰23'N 10⁰19'E 354 m.) (Ref. 16)

110

YERIM

TABLE 6-9(4). REPRESENTATIVE WEATHER SEQUENCES FOR ZONE 7c LEINEFELDE (51⁰23'N 10⁰19'E 354 m.) (Ref. 16)

Winter Dec. '59

	Day/Hr(LST)	Visibility(s. mi.)	Ceiling(100's of feet)	Sky Cover(Eighths)	Weather	Wind Speed(KTS)	Relatige Humidity(%)	Absolute Humidity(g/m ³)
28	01	4	31	8	F-	14	86	6 5 5 5
	07	3	31	8	R -≁÷	10	89	5
	13	22	130 31	6		8	83	5
	19	13	31	8	-	2	89	
29	10	11	31	8	-	4	96	5
	07	5	31	8	R	6	93	6
	13	14 5	31	8	~	12	93	6
	19	5	130	8	F-	6	89	5
30	01	4	130	8	R	.10	89	5
	07	6	31	8	ĸ	19	93	6
	13	22	31	8 7 7	~	19	79	6
	19	16	31	7	~	27	76	5
31	01	5	130	7	۲-	14	83	5
	07	6	31	8	F-	4	89	5
	13	9	48	8	-	6	79	6
	19	8	U	2	-	2	93	6

Weather Symbols

Н	Haze
F	Fog
'F –	Light Fog
\mathbf{L}	Drizzle
R	Rain
RW	Rain Shower
TRW	Thunderstorm
S	Snow

REFERENCES

- 1. Berry, Bollay, and Beers, "Handbook of Meteorology", McGraw-Hill, New York, 1945.
- 2. "World Book Encyclopedia"
- 3. "Compendium of Meteorology", Malone, T., ed., American Meteorological Society, Boston, Mass., 1951
- "Climate and Man", U.S. Department of Agriculture, Washington, D.C., 1941
- 5. Walter, H., Lieth, H., and Harnickell, E., "Klima-Diagramm", VEB Gustav Fischer Verlag, Jena DDR, 1957.
- 6. Exner, et al, "World Weather Records", Smithsonian Institution, Washington, D.C., 1944.
- 7. "World Weather Records", 1941-1950, U.S. Department of Commerce, Washington, D.C., 1959.
- D.S. Rockford, R. H. Miroy, A. J. Zanon, "Northeast Reconnaissance Evaluation (U)", HRB-Singer, Inc., Report no. 4447-F, July 1972, SECRET.
- 9. J. Rayner, "Atlas of Surface Temperature Frequencies for Eurasia", Pub. in Meteor., No. 39, Arctic Meteorological Research Group, McGill University, Montreal, Feb. 1961.
- "Handbook of Geophysics and Space Environments", S. Valley, ed., U.S. Air Force, Cambridge Research Laboratories, 1965.
- J. Young, "Meteorology (West Germany), USAF Flight Dynamics Lab, WPAFB, Ohio, June 1972 (for official use only).
- 12. "Meteorological Aspects of All-Weather Interdiction in the Latter 80's", Interim Report, Office of the Staff Meteorologist, USAF, AD&TC Eglin AFB, Florida, March 1978.
- I. Solomon, "Estimated Frequencies of Specified Cloud Amounts Within Specified Ranges of Altitude", TR-167, Air Weather Service (MATS), USAF April 1963.
- 14. FM 100-5, "Operations" U.S. Army Command and General Staff College F. T. Leavenworth, Kansas July 1976.

ERIM

- Blackmer and Alder, "Distribution and Characteristics of Various Broadscale and Special Cloud Systems", Stanford Research Institute AFCRL-65-211 Final Report, USAF, Cambridge Research Laboratory, 1965.
- 16. Kelley, C., and Huschke, R., "Weather and PGMs: The Utility of an Adverse Weather Weapon in a NATO Context (U)" R-1763-AF, RAND Corp. for the Deputy Chief of Staff/Research and Development, HQ/USAF, May 1977, SECRET.
- 17. Welch, A., "Pilot's Weather" John Murray Ltd., London 1973.
- Y. Morita, G. Suits, H. McKenney and I. Sattinger, "Identification and Screening of Remote Mine Detection Techniques,", ERIM Report No. 138300-22-T, June 1979.

DISTRIBUTION LIST

U.S. Army Mobility Equipment Research and Development Command, Mine Detection Division, Dr. J.R. Gonano (DRDME-ND), Fort Belvoir, Virginia 22060

10 copies

