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Abstract

Few-shot learning (FSL) aims to recognize new objects

with extremely limited training data for each category. Pre-

vious efforts are made by either leveraging meta-learning

paradigm or novel principles in data augmentation to al-

leviate this extremely data-scarce problem. In contrast,

this paper presents a simple statistical approach, dubbed

Instance Credibility Inference (ICI) to exploit the distri-

bution support of unlabeled instances for few-shot learn-

ing. Specifically, we first train a linear classifier with the

labeled few-shot examples and use it to infer the pseudo-

labels for the unlabeled data. To measure the credibility of

each pseudo-labeled instance, we then propose to solve an-

other linear regression hypothesis by increasing the sparsity

of the incidental parameters and rank the pseudo-labeled

instances with their sparsity degree. We select the most

trustworthy pseudo-labeled instances alongside the labeled

examples to re-train the linear classifier. This process is

iterated until all the unlabeled samples are included in the

expanded training set, i.e. the pseudo-label is converged for

unlabeled data pool. Extensive experiments under two few-

shot settings show that our simple approach can establish

new state-of-the-arts on four widely used few-shot learn-

ing benchmark datasets including miniImageNet, tieredIm-

ageNet, CIFAR-FS, and CUB. Our code is available at:

https://github.com/Yikai-Wang/ICI-FSL

1. Introduction

Learning from one or few examples is an important abil-

ity for humans. For example, children have no problem

forming the concept of “giraffe” by only taking a glance

from a picture in a book, or hearing its description as look-

ing like a deer with a long neck [58]. In contrast, the most

successful recognition systems [20, 42, 14, 16] still highly
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rely on an avalanche of labeled training data. This thus in-

creases the burden in rare data collection (e.g. accident data

in the autonomous driving scenario) and expensive data an-

notation (e.g. disease data for medical diagnose), and more

fundamentally limits their scalability to open-ended learn-

ing of the long tail categories in the real-world.

Motivated by these observations, there has been a re-

cent resurgence of research interest in few-shot learn-

ing [10, 43, 46, 53]. It aims to recognize new objects with

extremely limited training data for each category. Basi-

cally, a few-shot learning model has the chance to access

the source/base dataset with many labeled training instances

for model training and then is able to generalize to a disjoint

but relevant target/novel dataset with only scarce labeled

data. A simplest baseline to transfer learned knowledge to

the novel set is fine-tuning [57]. However, it would cause

severely overfitting as one or a few instances are insuffi-

cient to model the data distributions of the novel classes.

Data augmentation and regularization techniques can alle-

viate overfitting in such a limited-data regime, but they do

not solve it. Several recent efforts are made in leveraging

learning to learn, or meta-learning paradigm by simulating

the few-shot scenario in the training process [24]. How-

ever, Chen et al. [6] empirically argue that such a learning

paradigm often results in inferior performance compared to

a simple baseline with a linear classifier coupled with a deep

feature extractor.

Given such a limited-data regime (one or few labeled ex-

amples per category), one of the fundamental problems for

few-shot learning is that one can hardly estimate the data

distribution without introducing the inductive bias. To ad-

dress this problem, two types of strategy resort to model

the data distribution of novel category beyond traditional

inductive few-shot learning: (i) semi-supervised few-shot

learning (SSFSL) [28, 37, 45] supposes that we can utilize

unlabeled data (about ten times more than labeled data) to

help to learn the model; furthermore, (ii) transductive in-

ference [18] for few-shot learning (TFSL) [28, 34] assumes
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Figure 1. Schematic illustration of our proposed framework. In the inference process of N -way-m-shot FSL task with unlabeled data,

we embed each instance, inference each unlabeled data and use ICI to select the most trustworthy subset to expand the support set. This

process is repeated until all unlabeled data are included in the support set.

we can access to all the test data, rather than evaluate them

one by one in the inference process. In other words, the

few-shot learning model can utilize the data distributions of

testing examples.

Self-taught learning [35] is one of the most straightfor-

ward ways in leveraging the information of unlabeled data.

Typically, a trained classifier infers the labels of unlabeled

data, which are further taken to update the classifier. Never-

theless, the inferred pseudo-labels may not be always trust-

worthy; the wrongly labeled instances may jeopardize the

performance of the classifier. It is thus essential to investi-

gate the labeling confidence of each unlabeled instance.

To this end, we present a simple statistical approach,

dubbed Instance Credibility Inference (ICI) to exploit the

distribution support of unlabeled instances for few-shot

learning. Specifically, we first train a linear classifier (e.g.,

logistic regression) with the labeled few-shot examples and

use it to infer the pseudo-labels for the unlabeled data.

Our model aims to iteratively select the most trustworthy

pseudo-labeled instances according to their credibility mea-

sured by the proposed ICI to augment the training set. The

classifier thus can be progressively updated and further infer

the unlabeled data. We iterate this process until all the unla-

beled samples are included in the expanded training set, i.e.

the pseudo-label is converged for unlabeled data pool. The

schematic illustration is shown in Figure 1.

Basically, we re-purpose the standard self-taught learn-

ing algorithm by our ICI algorithm. How to select the

pseudo-labeled data to exclude the wrong-predicted sam-

ples, i.e., excluding the noise introduced by the self-taught

learning strategy? Our intuition is that the algorithm of sam-

ple selection can neither rely only on the label space (e.g.

based on the probability of each class given by the classi-

fier) nor the feature space (e.g. select samples most similar

to training data). Instead, we introduce a linear regression

hypothesis by regressing each instance (labeled and pseudo-

labeled) from feature to label space and increase the sparsity

of the incidental parameter [9] until it vanishes. Thus we

can rank pseudo-labeled instances with sparsity degree as

their credibility. We conduct extensive experiments on ma-

jor few-shot learning datasets to validate the effectiveness

of our proposed algorithm.

The contributions of this work are as follows: (i) We

present a simple statistical approach, dubbed Instance Cred-

ibility Inference (ICI) to exploit the distribution support of

unlabeled instances for few-shot learning. Specifically, our

model iteratively selects the pseudo-labeled instances ac-

cording to its credibility measured by the proposed ICI for

classifier training. (ii) We re-purpose the standard self-

taught learning algorithm [35] by our proposed ICI. To

measure the credibility of each pseudo-labeled instance, we

solve another linear regression hypothesis by increasing the

sparsity of the incidental parameter [9] and rank the sparsity

degree as the credibility for each pseudo-labeled instance.

(iii) Extensive experiments under two few-shot settings

show that our simple approach can establish new state-of-

the-arts on four widely used few-shot learning benchmark

datasets including miniImageNet, tieredImageNet, CIFAR-

FS, and CUB.

2. Related work

Semi-supervised learning. Semi-supervised learning

(SSL) aims to improve the learning performance with
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limited labeled data by exploiting large amount of unla-

beled data. Conventional approaches focus on finding the

low-density separator within both labeled and unlabeled

data [52, 4, 18], and avoid to learn the “wrong” knowledge

from the unlabeled data [26]. Recently, semi-supervised

learning with deep learning models use consistency regular-

ization [21], moving average technique [48] and adversar-

ial perturbation regularization [29] to train the model with

large amount of unlabeled data. The key difference between

semi-supervised learning and few-shot learning with unla-

beled data is that the unlabeled data is still limited in the

latter. To some extent, the low-density assumption widely

utilized in SSL is hard to achieve in the few-shot scenario,

making SSFSL a more difficult problem.

Self-taught learning [35], also known as self-

training [55], is a traditional semi-supervised strategy

of utilizing unlabeled data to improve the performance of

classifiers [1, 12]. Typically, an initially trained classifier

predicts class labels of unlabeled instances; the unlabeled

data with pseudo-labels are further selected to update the

classifier. [22]. Current algorithms based on self-taught

learning includes training neural networks using labeled

data and pseudo-labeled data jointly [22], using mix-up

between unlabeled data and labeled data to reduce the

influence of noise [2], using label propagation for pseudo-

labeling based on a nearest-neighbor graph and measuring

the credibility using entropy [17], and re-weighting the

pseudo-labeled data based on the cluster assumption on the

feature space [40]. Unfortunately, the predicted pseudo-

labels may not be trustworthy. Different and orthogonal

to previous re-weighting or mix-up works, we design a

statistical algorithm in estimating the credibility of each

instance assigned with its corresponding pseudo-label.

Only the most confident instances are employed to update

the classifier.

Few-shot learning. Recent efforts on FSL are made to-

wards the following aspects. (1) Metric learning meth-

ods, putting emphasis on finding better distance metrics,

include weighted nearest neighbor classifier (e.g. Matching

Network [53]), finding prototype for each class (e.g. Proto-

typical Network [43]), or learning specific metric for each

task (e.g. TADAM [33]); (2) Meta learning methods, such

as Meta-Critic [47], MAML [10], Meta-SGD [27], Rep-

tile [32], and LEO [39], optimize the models for the capac-

ity of rapidly adapted to new tasks. (3) Data augmentation

algorithms enlarge available data to alleviate the lack of data

in the image level [7] or the feature level [37]. Additional,

SNAIL [30] utilizes the sequence modeling to create a new

framework. The proposed statistical algorithm is orthogo-

nal but potentially useful to improve these algorithms – it

is always worth increasing the training set by utilizing the

unlabeled data with confidently predicted labels.

Few-shot learning with unlabeled data. Recently ap-

proaches tackle few-shot learning problems by resorting to

additional unlabeled data. Specifically, in semi-supervised

few-shot learning settings, recent works [37, 28] enables

unlabeled data from the same categories to better handle the

true distribution of each class. Furthermore, transductive

settings have also been considered recently. For example,

LST [45] utilizes self-taught learning strategy in a meta-

learning manner. Different from these methods, this paper

presents a conceptually simple statistical approach derived

from self-taught learning; our approach, empirically and

significantly improves the performance of FSL on several

benchmark datasets, by only using very simple classifiers,

e.g., logistic regression, or Support Vector Machine (SVM).

3. Methodology

3.1. Problem formulation

We introduce the formulation of few-shot learning here.

Assume a base category set Cbase, and a novel category

set Cnovel with Cbase
⋂

Cnovel = ∅. Accordingly, the base

and novel datasets are Dbase = {(Ii, yi) , yi ∈ Cbase}, and

Dnovel = {(Ii, yi) , yi ∈ Cnovel}, respectively. In few-shot

learning, the recognition models on Dbase should be gen-

eralized to the novel category Cnovel with only one or few

training examples per class.

For evaluation, we adopt the standard N -way-m-shot

classification as [53] on Dnovel. Specifically, in each

episode, we randomly sample N classes L ∼ Cnovel; and

m and q labeled images per class are randomly sampled in

L to construct the support set S and the query set Q, respec-

tively. Thus we have |S| = N ×m and |Q| = N × q. The

classification accuracy is averaged on query sets Q of many

meta-testing episodes. In addition, we have unlabeled data

of novel categories Unovel = {Iu}.

3.2. Self­taught learning from unlabeled data

In general, labeled data for machine learning is often

very difficult and expensive to obtain, while the unlabeled

data can be utilized for improving the performance of super-

vised learning. Thus we recap the self-taught learning for-

malism – one of the most classical semi-supervised meth-

ods for few-shot learning [35]. Particularly, assume f (·) is

the feature extractor trained on the base dataset Dbase. One

can train a supervised classifier g (·) on the support set S,

and pseudo-labeling unlabeled data, ŷi = g (f (Iu)) with

corresponding confidence pi given by the classifier. The

most confident unlabeled instances will be further taken as

additional data of corresponding classes in the support set

S. Thus we obtain the updated supervised classifier ĝ (·).
To this end, few-shot classifier acquires additional training

instances, and thus its performance can be improved.

However, it is problematic if directly utilizing self-taught

learning in one-shot cases. Particularly, the supervised clas-
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sifier g (·) is only trained by few instances. The unlabeled

instances with high confidence may not be correctly cate-

gorized, and the classifier will be updated by some wrong

instances. Even worse, one can not assume the unlabeled

instances follows the same class labels or generative distri-

bution as the labeled data. Noisy instances or outliers may

also be utilized to update the classifiers. To this end, we

propose a systematical algorithm: Instance Credibility In-

ference (ICI) to reduce the noise.

3.3. Instance credibility inference (ICI)

To measure the credibility of predicted labels over un-

labeled data, we introduce a hypothesis of linear model

by regressing each instance from feature to label spaces.

Particularly, given n instances of N classes, S =
{(Ii, yi,xi) , yi ∈ Cnovel}, where yi is the ground truth

when Ii come from the support set, or the pseudo-label

when Ii come from the unlabeled set, we employ a simple

linear regression model to “predict” the class label,

yi = x
⊤
i β + γi + ǫi, (1)

where β ∈ R
d×N is the coefficient matrix for classifica-

tion; xi ∈ R
d×1 is the feature vector of instance i; yi is

N dimension one-hot vector denoting the class label of in-

stance i. Note that to facilitate the computations, we em-

ploy PCA [50] to reduce the dimension of extracted fea-

tures f (Ii) to d. ǫij ∼ N
(

0, σ2
)

is the Gaussian noise of

zero mean and σ variance. Inspired by incidental parame-

ters [9], we introduce γi,j to amend the chance of instance

i belonging to class yj . Larger ‖γi,j‖, the higher difficulty

in attributing instance i to class yj .

Write Eq. 1 in a matrix form for all instances, we are thus

solving the problem of:

(

β̂, γ̂
)

= argmin
β,γ

‖Y −Xβ − γ‖2F + λR (γ) , (2)

where ‖·‖2F denotes the Frobenius norm. Y = [yi] ∈ R
n×N

and X =
[

x
⊤
i

]

∈ R
n×d indicate label and feature input

respectively. γ = [γi] ∈ R
n×N is the incidental matrix,

with the penalty R (γ) =
∑n

i=1
‖γi‖2. λ is the coefficient

of penalty. To solve Eq. 2, we re-write the function as

L (β, γ) = ‖Y −Xβ − γ‖2F + λR (γ) .

Let ∂L
∂β

= 0, we have

β̂ =
(

X⊤X
)†

X⊤ (Y − γ) , (3)

where (·)† denotes the Moore-Penrose pseudo-inverse.

Note that (1) we are interested in utilizing γ to measure

the credibility of each instance along its regularization path,

rather than estimating β̂, since the linear regression model

Algorithm 1 Inference process of our algorithm.

Input:support data{(Xi, yi)}
N×K
i=1

, query data Xt =

{Xj}
M

j=1
, unlabeled data Xu = {Xk}

U
k=1

Initialization: support set (Xs, ys) = {(Xi, yi)}
N×K
i=1

, fea-

ture matrix XN×K+U,d = [Xs;Xu], classifier

Repeat:

Train classifier using (Xs, ys);
Get pseudo-label yu for Xu by classifier;

Rank (X, y) = (X, [ys; yu]) by ICI;

Select a subset (Xsub, ysub) into (Xs, ys);
Until Converged.

Inference:

Train classifier using (Xs, ys);
Get pseudo-label yt for Xt by classifier;

Output: inference labels yt = {ŷj}
M

j=1

is not good enough for classification in general. (2) the β̂
also relies on the estimation of γ. To this end, we take Eq. 3

into L (·) and solve the problem as,

argmin
γ∈Rn×N

‖Y −H (Y − γ)− γ‖2F + λR (γ) , (4)

where H = X
(

X⊤X
)†

X⊤ is the hat matrix of X . We

further define X̃ = (I −H) and Ỹ = X̃Y . Then the above

equation can be simplified as

argmin
γ∈Rn×N

∥

∥

∥
Ỹ − X̃γ

∥

∥

∥

2

F
+ λR (γ) , (5)

which is a multi-response regression problem. We seek the

best subset by checking the regularization path, which can

be easily configured by a blockwise descent algorithm im-

plemented in Glmnet [41]. Specifically, we have a theoret-

ical value of λmax = max
i

∥

∥

∥
X̃⊤

·i Ỹ
∥

∥

∥

2

/n [41] to guarantee

the solution of Eq. 5 all 0. Then we can get a list of λs

from 0 to λmax. We solve a specific Eq. 5 with each λ, and

get the regularization path of γ along the way. Particularly,

we regard γ as a function of λ. When λ changes from 0
to ∞, the sparsity of γ is increased until all of its elements

are forced to be vanished. Further, our penalty R (γ) en-

courages γ vanishes row by row, i.e., instance by instance.

Moreover, the penalty will tend to vanish the subset of X̃
with the lowest deviations, indicating less discrepancy be-

tween the prediction and the ground truth. Hence we could

rank the pseudo-labeled data by their λ value when the cor-

responding γi vanishes. As shown in one toy example of

Figure 2, the γ value of the instance denoted by the red line

vanishes first, and thus it is the most trustworthy sample by

our algorithm.
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Figure 2. Regularization path of λ on ten samples. Red line is

corresponding to the most trustworthy sample suggested by our

ICI algorithm.

3.4. Self­taught learning with ICI

The proposed ICI can thus be easily integrated to im-

prove the self-taught learning algorithm. Particularly, the

initialized classifier can predict the pseudo-labels of unla-

beled instances; and we further employ the ICI algorithm to

select the most confident subset of unlabeled instances, to

update the classifier. The whole algorithm can be iteratively

updated, as summarized in Algorithm 1.

4. Experiments

Datasets. Our experiments are conducted on several

widely few-shot learning benchmark datasets for general

object recognition and fine-grained classification, including

miniImageNet [36], tieredImageNet [37], CIFAR-FS [8]

and CUB [54]. miniImageNet consists of 100 classes with

600 labeled instances in each category. We follow the split

proposed by [36], using 64 classes as the base set to train

the feature extractor, 16 classes as the validation set and

report performance on the novel set which consists of 20
classes. tieredImageNet is a larger dataset compared with

miniImageNet, and its categories are selected with hierar-

chical structure to split base and novel datasets semanti-

cally. We follow the split introduced in [37] with base set

of 20 superclasses (351 classes), validation set of 6 super-

classes (97 classes) and novel set of 8 superclasses (160
classes). Each class contains 1281 images on average. CUB

is a fine-grained dataset of 200 bird categories with 11788

images in total. Following the previous setting in [15], we

use 100 classes as the base set, 50 for validation and 50 as

the novel set. To make a fair comparison, we crop all images

with the bounding box provided by [51]. CIFAR-FS is a

dataset with lower-resolution images derived from CIFAR-

100 [19] . It contains 100 classes with 600 instances in each

class. We follow the split given by [8], using 64 classes to

construct the base set, 16 for validation and 20 as the novel

set.

Experimental setup. Unless otherwise specified, we

use the following settings and implementation in the ex-

periments for our approach to make a fair comparison.

As in [30, 33, 23], we use ResNet-12 [13] with 4 resid-

ual blocks as the feature extractor in our experiments.

Each block consists of three 3 × 3 convolutional lay-

ers, each of which followed by a BatchNorm layer and a

LeakyReLu(0.1) activation. In the end of each block, a

2 × 2 max-pooling layer is utilized to reduce the output

size. The number of filters in each block is 64, 128, 256
and 512 respectively. Specifically, referring to [23], we

adopt the Dropout [44] in the first two block to vanish 10%
of the output, and adopt DropBlock [11] in the latter two

blocks to vanish 10% of output in channel level. Finally,

an average-pooling layer is employed to produce the input

feature embedding. We select 90% images from each train-

ing class (e.g., 64 categories for miniImageNet) to construct

our training set for training the feature extractor and use

the remaining 10% as the validation set to select the best

model. We use SGD with momentum as the optimizer to

train the feature extractor from scratch. Momentum factor

and L2 weight decay is set to 0.9 and 1e − 4, respectively.

All inputs are resized to 84× 84. We set the initial learning

rate of 0.1, decayed by 10 after every 30 epochs. The total

training epochs is 120 epochs. In all of our experiments,

we normalize the feature with L2 norm and reduce the fea-

ture dimension to d = 5 using PCA [50]. Our model and

all baselines are evaluated over 600 episodes with 15 test

samples from each class.

4.1. Semi­supervised few­shot learning

Settings. In the inference process, the unlabeled data from

the corresponding category pool is utilized to help FSL. In

our experiments, we report following settings of SSFSL: (1)

we use 15 unlabeled samples for each class, the same as

TFSL, to compare our algorithm in SSFSL and TFSL set-

tings; (2) we use 30 unlabeled samples in 1-shot task, and

50 unlabeled samples in 5-shot task, the same as current

SSFSL approaches [45]; (3) we use 80 unlabeled samples,

to show the effectiveness of ICI compared with FSL algo-

rithms with a larger network and higher-resolution inputs.

We denote these as (15/15), (30/50) and (80/80) in Table 1.

Note that CUB is a fine-grained dataset and does not have
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Setting Model
miniImageNet tieredImageNet CIFAR-FS CUB

1shot 5shot 1shot 5shot 1shot 5shot 1shot 5shot

In.

Baseline∗ [6] 51.75 74.27 - - - - 65.51 82.85
Baseline++∗ [6] 51.87 75.68 - - - - 67.02 83.58
MatchingNet∗ [53] 52.911 68.881 - - - - 72.361 83.641

ProtoNet∗ [43] 54.161 73.681 - - 72.203 83.503 71.881 87.421

MAML∗ [10] 49.611 65.721 - - - - 69.961 82.701

RelationNet∗ [46] 52.481 69.831 - - - - 67.591 82.751

adaResNet [31] 56.88 71.94 - - - - - -

TapNet [56] 61.65 76.36 63.08 80.26 - - - -

CTM† [25] 64.12 80.51 68.41 84.28 - - - -

MetaOptNet [23] 64.09 80.00 65.81 81.75 72.60 84.30 - -

Tran.
TPN [28] 59.46 75.65 58.684 74.264 65.894 79.384 - -

TEAM∗ [34] 60.07 75.90 - - 70.43 81.25 80.16 87.17

Semi.

MSkM with MTL 62.102 73.602 68.62 81.002 - - - -

TPN with MTL 62.702 74.202 72.102 83.302 - - - -

MSkM [37] 50.40 64.40 52.40 69.90 - - - -

TPN [28] 52.78 66.42 55.70 71.00 - - - -

LST [45] 70.10 78.70 77.70 85.20 - - - -

In. LR 56.06 75.70 69.02 85.37 62.25 80.82 76.16 90.32
In. SVM 54.46 74.76 67.51 84.67 60.94 79.93 75.84 89.26

Tran. LR + ICI 66.80 79.26 80.79 87.92 73.97 84.13 88.06 92.53
Tran. SVM + ICI 65.77 78.94 80.56 87.93 73.16 83.72 87.87 92.38

Semi. SVM + ICI (15/15) 64.81 78.11 79.72 87.39 72.52 83.23 86.83 91.58
Semi. SVM + ICI (30/50) 68.24 79.25 83.14 88.58 75.50 84.00 88.94 92.14
Semi. LR + ICI (15/15) 65.86 78.87 81.10 87.83 73.67 83.85 87.28 92.18
Semi. LR + ICI (30/50) 69.66 80.11 84.01 89.00 76.51 84.32 89.58 92.48
Semi. LR + ICI (80/80) 71.41 81.12 85.44 89.12 78.07 84.76 91.11 92.98

Table 1. Test accuracies over 600 episodes on several datasets. Results with (·)1 are reported in [6], with (·)2 are reported in [45], with

(·)3 are reported in [23]. (·)4 is our implementation with the official code of [28]. Methods denoted by (·)∗ denotes ResNet-18 with input

size 224 × 224, while (·)† denotes ResNet-18 with input size 84 × 84. Our method and other alternatives use ResNet-12 with input size

84× 84. In. and Tran. indicate inductive and transductive setting, respectively. Semi. denotes semi-supervised setting where (·/·) shows

the number of unlabeled data available in 1-shot and 5-shot experiments.

so sufficient samples in each class, so we simply choose 5 as

support set, 15 as query set and other samples as unlabeled

set (about 39 samples on average) in the 5-shot task in the

latter two settings. For all settings, we select 5 samples for

every class in each iteration. The process is finished when

at most five instances for each class are excluded from the

expanded support set. i.e., select (10/10), (25/45), (75/75)

unlabeled instances in total. Further, we utilize Logistic Re-

gression (denoted as LR) and linear Support Vector Machine

(denoted as SVM) to show the robustness of ICI against dif-

ferent linear classifiers.

Competitors. We compare our algorithm with current ap-

proaches in SSFSL. TPN [28] uses labeled support set and

unlabeled set to propagate label to one query sample each

time. LST [45] also uses self-taught learning strategy to

pseudo-label data and select confident ones, but they do this

by a neural network trained in the meta-learning manner

for many iterations. Other approaches include Masked Soft

k-Means [37] and a combination of MTL with TPN and

Masked Soft k-Means reported by LST.

Results. are shown in Table 1 where denoted as Semi.

in the first column. Analysis from the experimental re-

sults, we can find that: (1) Compare SSFSL with TFSL

with the same number of unlabeled data, we can see that

our SSFSL results are only reduced by a little or even beat

TFSL results, which indicates that the information we got

from the unlabeled data are robust and we can indeed han-

dle the true distribution with unlabeled data practically. (2)

The more unlabeled data we get, the better performance we

have. Thus we can learn more knowledge with more unla-
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beled data almost consistently using a linear classifier (e.g.

logistic regression). When lots of unlabeled data are acces-

sible, ICI achieves state-of-the-art in all experiments even

compared with competitors which use bigger network and

higher-resolution inputs. (3) Compared with other SSFSL

approaches, ICI also achieves varying degrees of improve-

ments in almost all tasks and datasets. These results further

indicate the robustness of our algorithm. Compared logistic

regression with SVM, the robustness of ICI still holds.

4.2. Transductive few­shot learning

Settings. In transductive few-shot learning setting, we

have chance to access the query data in the inference stage.

Thus the unlabeled set and the query dataset are the same.

In our experiments, we select 5 instances for each class in

each iteration and repeat our algorithm until all the expected

query samples are included, i.e., each class will be expanded

by at most 15 images. We also utilize both Logistic Regres-

sion and SVM as our classifier, respectively.

Competitors. We compare ICI with current TFSL ap-

proaches. TPN [28] constructs a graph and uses label prop-

agation to transfer label from support samples to query

samples and learn their framework in a meta-learning way.

TEAM [34] utilizes class prototypes with a data-dependent

metric to inference labels of query samples.

Results. are shown in Table 1 where denoted as Tran.

in the first column. Experiments cross four benchmark

datasets indicate that: (1) Compared with basic linear clas-

sifier, ICI enjoys consistently improvements, especially in

the 1-shot setting where the labeled data is extremely lim-

ited and such improvements are robust regardless of uti-

lizing which linear classifiers. Further, compared results

between miniImageNet and tieredImageNet, we can find

that the improvement margin is in the similar scale, indi-

cating that the improvement of ICI does not rely on the se-

mantic relationship between base set and novel set. Hence

the effectiveness and robustness of ICI is confirmed prac-

tically. (2) Compared with current TFSL approaches, ICI

also achieves the state-of-the-art results.

4.3. Ablation study

Effectiveness of ICI. To show the effectiveness of ICI, we

visualize the regularization path of γ in one episode of infer-

ence process in Figure 3 where red lines are instances that

are correct-predicted while black lines are wrong-predicted

ones. It is obvious that that most of the correct-predicted

instances lie in the lower-left part. Since ICI will select

samples whose norm will vanish in a lower λ. We could

get more correct-predicted instances than wrong-predicted

instances in a high ratio.

Figure 3. Regularization path of λ. Red lines are correct-predicted

instances while black lines are wrong-predicted ones. ICI will

choose instances in the lower-left subset.

Model
Tran. Semi.

1shot 5shot 1shot 5shot

LR 56.06 75.43 56.06 75.43
+ ra 59.01 76.38 59.46 76.58
+ nn 63.24 77.63 63.10 77.75
+ co 63.29 77.92 63.57 77.71

ICI 65.32 78.30 64.60 77.96

Table 2. Compare to baselines on miniImageNet under several

settings.

Compare to baselines. To further show the effectiveness

of ICI, we compare ICI with other sample selection strate-

gies under the self-taught learning pipeline. One simple

strategy is randomly sampling the unlabeled data into the

expanded support set in each iteration, denoted as ra. An-

other is selecting the data based on the confidence given by

the classifier, denoted by co. In this strategy, the more con-

fident the classifier is to one sample, the more trustworthy

that sample is. The last one is replacing our algorithm of

computing credibility by choosing the nearest-neighbor of

each class in the feature space, denoted as nn. In this part,

we have 15 unlabeled instances for each class and select 5
to re-train the classifier by different methods for Semi. and

Tran. task on miniImageNet. From Table 2, we observe

that ICI outperforms all the baselines in all settings.

Effectiveness of iterative manner. Our intuition is the

proposed ICI learns to generate a set of trustworthy unla-
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Figure 4. Variation of accuracy as the selected samples increases

over 600 episodes on miniImageNet. “ICI (n)”: select n samples

per class in each iteration.

belled data for classifier training. Select all the unlabelled

data in one go cannot take the distribution, or the credibility

of the unlabeled data into account, and thus produce more

noise labels to hurt the performance of the model. The clas-

sifier thus be trained with its prediction, resulting in no im-

provements in TFSL setting. We briefly validate this as ICI

(15) in Figure 4 whilst ICI obtained better accuracy with it-

erative selection manner. For example, select 6 images with

two iterations (ICI(3)) is superior to select 8 images in one

iteration (ICI(8)).

Acc (%) 0-10 10-20 20-30 30-40 40-50

b/t 0/0 0/0 1/3 16/23 105/125

Acc (%) 50-60 60-70 70-80 80-90 90-100

b/t 193/218 171/189 34/40 2/2 0/0

Table 3. We run 600 episodes, with each episode training an initial

classifier. We denote “Acc” as the accuracy intervals; and “b/T”

as the number of classifiers experienced improvement v.s. total

classifiers in this accuracy interval.

Robustness against initial classifier. What are the re-

quirements for the initial linear classifier? Is it necessary

to satisfy that the accuracy of the initial linear classifier is

higher than 50% or even higher? The answer is no. As long

as the initial linear classifier can be trained, theoretically

our method should work. It thus is a future open question

of how the initial classifier affects. We briefly validate it

in Table 3. We run 600 episodes, with each episode train-

ing an initial classifier with different classification accuracy.

Table 3 shows that most classifiers can get improved by ICI

regardless of the initial accuracy (even with accuracy of 30-

40%).

Influence of reduced dimension. In this part, we study

the influence of reduced dimension d in our algorithm on

5-way 1-shot miniImageNet experiments. The results with

reduced dimension 2, 5, 10, 20, 50, and without dimension-

ality reduction i.e., d = 512, are shown in Table 4. Our

algorithm achieves better performance when the reduced

d Acc (%) Alg. Acc (%)

2 63.71± 1.025 Isomap [49] 66.53± 1.073
5 66.80± 1.096 PCA [50] 66.80± 1.096
10 66.25± 1.048 LTSA [59] 64.61± 1.058
20 64.98± 1.049 MDS [5] 59.99± 0.941
50 61.54± 0.980 LLE [38] 67.59± 1.120
512 57.41± 0.877 SE [3] 67.70± 1.117

Table 4. Influence of dimensionality reduction dimensions and al-

gorithms.

dimension is much smaller than the number of instances

(i.e., d ≪ n), which is consistent with the theoretical prop-

erty [9]. Moreover, we can observe that our model achieves

the best accuracy 66.80% when d = 5. Practically, we

adopt d = 5 in our model.

Influence of dimension reduction algorithms. Further-

more, we study the robustness of ICI to different dimension

reduction algorithms. We compare Isomap [49], principal

components analysis [50] (PCA), local tangent space align-

ment [59] (LTSA), multi-dimensional scaling [5] (MDS),

locally linear embedding [38] (LLE) and spectral embed-

ding [3] (SE) on 5-way 1-shot miniImageNet experiments.

From Table 4 we can observe that ICI is robust across most

of the dimensionality reduction algorithms (from LTAS

64.61% to SE 67.7%) except MDS (59.99%). We adopt

PCA for dimension reduction in our method.

5. Conclusion

In this paper, we have proposed a simple method, called

Instance Credibility Inference (ICI) to exploit the distribu-

tion support of unlabeled instances for few-shot learning.

The proposed ICI effectively select the most trustworthy

pseudo-labeled instances according to their credibility to

augment the training set. In order to measure the credibil-

ity of each pseudo-labeled instance, we propose to solve

a linear regression hypothesis by increasing the sparsity of

the incidental parameters [9] and rank the pseudo-labeled

instance with their sparsity degree. Extensive experiments

show that our simple approach can establish new state-of-

the-arts on four widely used few-shot learning benchmark

datasets including miniImageNet, tieredImageNet, CIFAR-

FS, and CUB.

Acknowledgement. This work was supported in part by

NSFC Projects (U1611461,61702108), Science and Tech-

nology Commission of Shanghai Municipality Projects

(19511120700, 19ZR1471800), Shanghai Municipal Sci-

ence and Technology Major Project (2018SHZDZX01),

and Shanghai Research and Innovation Functional Program

(17DZ2260900).

12843



References

[1] Massih-Reza Amini and Patrick Gallinari. Semi-supervised

logistic regression. In ECAI, 2002.

[2] Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor,

and Kevin McGuinness. Pseudo-labeling and confirma-

tion bias in deep semi-supervised learning. arXiv preprint

arXiv:1908.02983, 2019.

[3] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for

dimensionality reduction and data representation. Neural

computation, 2003.

[4] Kristin P Bennett and Ayhan Demiriz. Semi-supervised sup-

port vector machines. In NeurIPS, 1999.

[5] Ingwer Borg and Patrick Groenen. Modern multidimensional

scaling: Theory and applications. Journal of Educational

Measurement, 2003.

[6] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank

Wang, and Jia-Bin Huang. A closer look at few-shot classi-

fication. In ICLR, 2019.

[7] Zitian Chen, Yanwei Fu, Yu-Xiong Wang, Lin Ma, Wei Liu,

and Martial Hebert. Image deformation meta-networks for

one-shot learning. In CVPR, 2019.

[8] Arnout Devos, Sylvain Chatel, and Matthias Grossglauser.

Reproducing meta-learning with differentiable closed-form

solvers. In ICLR, 2019.

[9] Jianqing Fan, Runlong Tang, and Xiaofeng Shi. Partial con-

sistency with sparse incidental parameters. arXiv preprint

arXiv:1210.6950, 2012.

[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In ICML, 2017.

[11] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock:

A regularization method for convolutional networks. In

NeurIPS, 2018.

[12] Yves Grandvalet and Yoshua Bengio. Semi-supervised

learning by entropy minimization. In NeurIPS, 2005.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. CoRR, 2015.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[15] Nathan Hilliard, Lawrence Phillips, Scott Howland, Artëm
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