
Instruction Manual
Introduction to Programming

in Python

Jasper Veltman

Fifth Edition

Published October 2017

Contents

0 Syllabus 5

1 Editing, Compiling and Executing 8
Goals . 8
Introduction to Python and PyCharm 9

Installing Anaconda . 9
Installation and starting PyCharm 9
Arranging files . 10
Compiling and executing programs 10
Submitting assignments . 10
Trial submission . 11

2 If statements and loops 13
Goals . 13
Instructions . 13
Theory . 14

Efficient programming . 14
Constants . 15
Identifiers . 16
Conventions . 18
Self test . 18
If-statements . 21

Assignments . 22
1 VAT . 22
2 Plumber . 22
3 Othello 1 . 22
4 Electronics . 23
5 Othello 2 . 23
6 Manny . 23
7 Alphabet . 24
8 Collatz . 24
9 SecondSmallest . 25

1

Introduction to Programming in Python

3 Methods and functions 26
Goals . 26
Instructions . 26
Theory . 27

Methods and functions . 27
Parsing input . 29

Assignments . 32
1 NuclearPowerPlant . 32
2 Palindrome 1 . 32
3 Palindrome 2 . 32
4 Pyramid . 32
5 Pizza . 33

Graded assignment . 34
6 Geography Grades 1 . 34

4 Parsing input 35
Goals . 35
Theory . 36

Layout . 36
Comments . 37

Assignments . 39
1 Geography Grades 2 . 39
2 Geography Grades 3 . 39

Graded assignment . 40
3 Administration . 40

5 Modules, classes and lists 41
Goals . 41
Theory . 42

Modules and classes . 42
Assignments . 46

1 Weave 1 . 46
2 Weave 2 . 46
3 BodyMassIndex . 46
4 BodyMassIndex2 . 47

Graded assignment . 48
5 Pirate . 48

6 Events and animations 49
Goals . 49
Theory . 50

Importing the IPy library . 50
Events . 51
Animations . 52
Stepwise refinement . 52

Assignments . 56
1 Events . 56
2 Animation . 56

Graded assignment . 57
3 Snake . 57

2

Introduction to Programming in Python

7 Bonus 59
Graded assignment . 59

1 Life . 59

3

Origin of the manual

This manual is largely based on the third international edition of the Instruc-
tion Manual Introduction to Programming. A more detailed history of this
manual can be found in the third international edition and the thirtieth edi-
tion of the Dutch Practicumhandleiding Inleiding Programmeren. This manual has
been adapted to reflect the change of the programming language used during
this practical. Previously, Java was the programming language used for all
study programmes during practicals. Starting from the academic year 2012-
2013, Java will be replaced by Python in the courses for Information, Multimedia
and Management and Lifestyle Informatics students. This adaptation has been
performed by Jan Stienstra in co-operation with a reviser; Bram Veenboer.

Jan Stienstra, July 2012

In the third edition of this manual, the MAC support for the ipy_lib is
added. As well as some minor changes and fixes.

Marcel de Vries, October 2013

4

0
Syllabus

Course format

This course features a series of lectures and parallel lab sessions. During the
lectures, theory on programming using the Python programming language, is
taught. During the lab sessions, programming is practiced by making assign-
ments using the Python programming language. Assignments should be pre-
pared in advance, at home. Students will be assigned to groups. Every group
will have a teaching assistant, who will assist with the assignments and grade
the deliverables.

Course documents and assignments

Book During this course the online book Learning with Python, 2nd Edition,
by Jeffrey Elkner, Allen B. Downey, and Chris Meyerswill be used. It can be
found here. Parts of this book will be treated during the lectures. During the
lab sessions, you are supposed to take your lecture notes with you.

Modules The course material is devided into five modules. These modules
contain additional theory and assignments and will be used as an instruction
manual during the lab sessions. Theory treated during the lectures will be
repeated as little as possible in the modules. The modules will however feature
notes on programming style.

Assignments Every module consists of theory and assignments. For module
3-4 only the last assignment of a module will be graded, in module five both
assignments will be graded. This does not mean that the other assignments
in module 3-4 are less important. All the assignments in a module will train
essential skills needed to succesfully complete the graded assignment. Every
assignment has to be approved by the teaching assistent to pass the course.
You should not start working on an assignment before completing all previous
assignments. This way, you will not make possible mistakes twice. Teaching
assistants will therefore not answer any questions on an assignment, if the pre-
vious assignments have not yet been completed.

5

http://openbookproject.net/thinkcs/python/english2e/index.html

Introduction to Programming in Python Chapter 0: Syllabus

Deadlines and assessment

Graded assignments have to be submitted to Practool. The teaching assistent
will only provide help with an assignment if all previous ungraded assign-
ments have been approved. When the quality of an ungraded assignment is not
sufficient, it has to be corrected according to the provided feedback. Graded
assignments cannot be resubmitted once a grade has been given. Feedback on
these assignments can therefore not be used to improve a program in order
to receive a higher grade. Nevertheless, it is advised to process the feedback
received on graded assignments as well.

Deadlines Deadlines will be posted on Canvas. Late submission will be ac-
cepted, but a point is deducted for every day the assignment is late. Pay close
attention: no work will be accepted after the practicum is finished. The
grades are weighted in the following way:

Chapter Graded Assignment Weight
1 HelloWorld2 slipday
2 All slipday
3 GeographyGrades 1x
4 F-Administration 1x
5 Pirate 2x
6 Snake 3x
7 Life 0,5 bonus

Slipdays The first two modules do not include graded assignments, however
if you hand in these assignments correctly your TA can grant you a slipday. You
can earn at most two slipdays. When a graded assignment is handed in late,
one point will be deducted for each day. After the last module your TA will
use your slipdays to reduce the ’late days’ penalty on the most heavy weighted
assignments. Both slipdays can be used for the same assignment.

Chapter grade days late
1 1 slipday
2 1 slipday
3 7 0
4 7 0
5 6 2
6 8 1
7 7 0

Table 1: Example of how to calculate with slipdays

Your final mark would’ve been:
7 ∗ 1 + 7 ∗ 1 + (6− 2 + 1) ∗ 2 + (8− 1+1) ∗ 3

7
+

0.5.

6

Introduction to Programming in Python Chapter 0: Syllabus

Want a higher grade? Once you’ve gotten a grade for a graded assignment
and you would like a higher grade, you can only do this by handing in a Sup-
plementary Exercise. These can be found on Canvas. You cannot hand in the
same assignment another time.
The last grade will count, even if this turn out to be a lower grade.

Final Grade You have passed the lab when the average grade of all the graded
assignments is (≥ 5, 5). Assignments that have not been submitted will be
graded with a 1, 0.
You passed the "Programming in Python" course if the lab is passed: ≥ 5, 5.

7

1
Editing, Compiling and Executing

Abstract
This chapter will introduce the IDE (Integrated Development Environ-
ment) PyCharm and explain how to organize Python files and execute
programs.

Goals

• Use PyCharm to open, edit, save and organize Python-files

• Execute Python code

8

Introduction to Programming in Python Chapter 1: Editing, Compiling and Executing

Introduction to Python and PyCharm

Installing Anaconda

VU Anaconda has already been installed on all the VU computers that will be
used during the lab sessions.

At home
In this course we are going to program in Python 2.7, and use a library for
graphical representations. This library makes use of the Python package
"matplotlib". Since matplotlib has a lot of other dependencies, it is easiest
to install a Python distribution that includes matplotlib. In this course we
use the Python 2.7 distribution called "Anaconda".

• 64 bit Windows: Download Anaconda from this link.
• 32 bit Windows: Download Anaconda from this link.
• MacOS: Download Anaconda from this link.

Once you have downloaded the Anaconda installer, click the downloaded
file and follow the instructions that appear on the screen.

Installation and starting PyCharm

VU PyCharm has already been installed and configured on all the VU com-
puters that will be used during the lab sessions.

At home
To download PyCharm, browse to https://www.jetbrains.com/pycharm/
download/ and download PyCharm Community Edition. Follow the in-
structions in the installer.
Once PyCharm has been installed, follow these steps to setup the editor:

1. Download the Practical plugin from https://phoenix.labs.vu.nl/
files/Practical.jar.

2. Start PyCharm.
3. If this is the first time PyCharm is started, it will take you through

some setup options.
4. Once you have gone through the setup steps, a welcome screen will

appear.
5. At the bottom right of the welcome screen is a button called Config-

ure. Click this button.
6. In the dropdown menu that appears, click Plugins.
7. At the bottom right of the plugins screen is a button called Install

plugin from disk.... Click this button.
8. Select the Practical plugin that was downloaded from Canvas on the

computer, then click OK.
9. Click OK again. If PyCharm asks you if you want to restart it, click

Yes.

Now PyCharm and Practical should be installed.

9

https://repo.continuum.io/archive/Anaconda2-4.3.1-Windows-x86_64.exe
https://repo.continuum.io/archive/Anaconda2-4.3.1-Windows-x86.exe
https://repo.continuum.io/archive/Anaconda2-4.3.1-MacOSX-x86_64.pkg
https://www.jetbrains.com/pycharm/download/
https://www.jetbrains.com/pycharm/download/
https://phoenix.labs.vu.nl/files/Practical.jar
https://phoenix.labs.vu.nl/files/Practical.jar

Introduction to Programming in Python Chapter 1: Editing, Compiling and Executing

Creating a project The project is a folder in which all created files are saved.
For this course, only one project needs to be created. When PyCharm is started
and no projects have been made yet, it will automatically ask you to create a
new project (the button is called Create New Project). Click this button and cre-
ate a Pure Python project. The Location field decides where on your computer
the files in this project will be saved. The Interpreter field decides which Python
interpreter will be used for this project. Select the Anaconda interpreter. Click
Create, and the project will be created.

Arranging files

After the project has been created, a new screen will show. On the left of the
current window, the Package Explorer is shown. This is where you can see all
files belonging to a project. Files can be organized in folders. The rest of this
theory explains how to organize a module in PyCharm.

1. Create a new Directory (folder). To do this right-click in the Package
Explorer and select New→ Directory. The name of this directory will be
Module 1.

2. Create a new Directory inside of the directory created in the previous
step. To do this right-click the directory created in the previous step
(called Module 1 and select New→ Directory. The name of this directory
will be Hello World 1.

3. Every assignment will be in its own Python File. To do this, right-click
on the directory created in the previous step (called Hello World 1) and
select New→ Python File. The name of the Python File will be the same
as the name of the assignment.

Compiling and executing programs

When a new Python File is created, it is called a skeleton; an empty program,
that does nothing. As a start, create a new Python File called hello_world.py,
and copy the following code to this Python File:

print "Hello World"

Programs are compiled automatically in PyCharm. Right-click on the file to be
executed and select Run (the button with a green arrow next to it). The output
of the program will be printed in the Console, at the bottom of the screen. If
the program expects input, it can be typed into the Console as well.
Programs can only be executed if they are syntactically correct. If there are
any errors, these are underlined in red. Hover the mouse over the underlined
words to show an error message.

Submitting assignments

A graded assignment needs to be submitted to PracTool (phoenix.labs.vu.
nl/practool). The process of correctly submitting assignments is given below:

10

phoenix.labs.vu.nl/practool
phoenix.labs.vu.nl/practool

Introduction to Programming in Python Chapter 1: Editing, Compiling and Executing

1. Export all the files of the assignment to a .zip-file. Right-click on the Di-
rectory in the Package Explorer to be exported and select Export as ZIP.
Navigate to the folder where the ZIP file should be stored. Make sure the
fila name is the name of the assignment and is followed by your VUnet-id
seperated by a hyphen. For example: pirate-rhg600.zip.

Click Open and the .zip-file has been created in the directory that has
been selected.

2. Submit the .zip-file to PracTool. Login to PracTool (register an account
if you do not already posses one, PracTool is NOT linked to VUnet or
Canvas). Browse My Computer and select the .zip-file. Click on Submit.
Wait for PracTool to confirm the submission and click on Finish.

If your VUnet-id is rhg600, the files you submit should be named in the follow-
ing way:

Module Name
1 hello_world2-rhg600.zip
2 chapter2-rhg600.zip
3 geographygrades-rhg600.zip
4 administration-rhg600.zip
5 houseMarket-rhg600.zip
6 pirate-rhg600.zip
7 snake-rhg600.zip
8 life-rhg600.zip

Note: chapter2-rhg600.zip contains all the assignments from chapter2.

 Warning
Assignments can only be processed if they are submitted in the format
described above. Do not submit files in any other format!

Trial submission

Create a new Python File hello_world2 and copy hello_world to hello_world2.

Edit the program in such way that it will ask for your name:
name = str(raw_input("Enter your name: "))

print "Hello world!! written by: %s" % name

Add a comment to the top of your code which includes the name of the assign-
ment, the date of completion and your name. This ensures that your teaching
assistant knows which assignment belongs to whom. For example:

’’’ Assignment: hello_world2
Created on 25 aug. 2012
@author: Jan Stienstra ’’’

name = str(raw_input("Enter your name: "))

print "Hello world!! written by: %s" % name

11

Introduction to Programming in Python Chapter 1: Editing, Compiling and Executing

Test the program. Does it work as expected? If so, hand in the program by
submitting it on Practool.

This program is not graded like the other assignments that have to be submit-
ted. It is possible to earn a slipday if the program is submitted on time. The
syllabus provides more details on slipdays. The goal of this assignment is to
make sure that you can submit programs.

12

2
If statements and loops

Abstract
The first few programs in this chapters will read from standard input and
write output to standard output. These programs will be very simple. The
focus in the first part of this chapter will be on writing programs with
a clear layout using well chosen names. The second part of this chapter
will introduce if-statements and loops.

 Warning
This chapter contains nine assignments of variable size. Make sure to
utilize the time given to you during the lab sessions. The lab sessions
only provide sufficient time if you write your programs in advance. This
way, any problems you encounter whilst writing your programs can be
resolved during the lab sessions.

Goals

• The use of clear identifiers.

• Familiarize with if, else and elif statements and recognize situations in
which to apply these.

• Familiarize with for and while loops and recognize situations in which to
apply these.

Instructions

• Read the theory about Efficient programming and Constants. With this
information in mind, make the assignments VAT, Plumber and Othello
1.

• Read the theory about Identifiers and If-statements. With this informa-
tion in mind, make the assingments Electronics and Othello 2.

13

Introduction to Programming in Python Chapter 2: If statements and loops

• Study your lecture notes on Loops. With this information in mind, make
the assignments Manny, Alphabet, Collatz and SecondSmallest.

Theory

Efficient programming

Once upon a time, running a computer was so expensive that any running time
that could be saved was worthwile. Programs had to contain as little lines of
code as possible and programs were designed to run fast; clear code was not
a priority. Such a programming style is called machine-friendly nowadays.
Luckily, the situation has changed.
Programs that have been written in the past often need altering in one way
or another. If a program was written in a machine-friendly, but incomprehen-
sible programming style, it is almost impossible to edit it. After half a year,
one easily forgets how the program works exactly. Imagine the problems that
could occur, when the programmer that wrote the code no longer works for
the company, that wants to edit it.
The logical implication of this programming style is that programs are not
changed at all. Everyone has to work with the, then well-intentioned ‘features’,
that are no longer maintainable.
Running programs is becoming increasingly less expensive. Programmers, on
the other hand, are only getting more expensive. Efficient programming there-
fore does not mean:

“writing programs that work as fast as possible.”

but

“writing programs that require as little effort and time possible to be

• comprehensible

• reliable

• easily maintained.”

This will be one of the major themes during this course. Assignments are not
completed when the program does what the assignment asks them to do. Pro-
grams are only approved when they meet the standards described above.
Theory provided in this Instruction Manual is an addition to the lectures and
book. The book will teach you the syntax and basic functionality, this instruc-
tion manual will teach you how to do this, taking the standards described
above into account.

� Rule of Thumb
Try to refrain from writing lines of code longer than the screen width. If it
is impossible to write code on a single line, a \ can be used to continue on
a new line.

14

Introduction to Programming in Python Chapter 2: If statements and loops

Constants

Although Python does not support constants in the context of unchangeable
variables, like those in the Java and C programming languages, the principles
of using constants are upheld in Python. In other words, although Python does
not support constants, variables can be used as if they were constants. Imagine
a program that reads a number of addresses from a file and prints them on
labels, thirty characters wide, six lines high. All of the sudden, the wholesale
company changes the size of the labels to thirty-six characters wide and five
lines high.
Fortunately, the program looks like this:

’’’ Assignment: Labels
Created on 6 aug. 2012
@author: Jan Stienstra ’’’

This program reads adresses from input,
and prints them in a specific format.

LABEL_WIDTH = 30 # characters
LABEL_HEIGHT = 6 # lines

etc...

The only thing that needs to be done, is to change the two constants and re-
compile the program.

Errors that can occur when a program does not incorporate constants are:

• The code contains a 6 on 12 different places and is only replaced on 11
places by a 5

• Derived values like 5 (= LABEL_HEIGHT - 1) are not changed to 4 (=
LABEL_HEIGHT - 1)!

Constants do not only ease the maintenance of a program, but can increase the
comprehensibility of the code as well. When a constant, like LABEL_HEIGHT, is
used, it is imediately clear what this number represents instead of only know-
ing its numerical value. This property gives constants an added value. There-
fore, it is advisable to always use constants in your programs.

� Rule of Thumb
All numbers used in a program are constants, except 0 and 1.

Example The following example program will read a number of miles from
the standard input and prints the equivalent number of kilometers on the out-
put. Take special notice to the use of identifiers, constants and layout.

’’’ Assignment: MileInKilometers
Created on 6 aug. 2012
@author: Jan Stienstra ’’’

MILE_IN_KILOMETERS = 1.609344

15

Introduction to Programming in Python Chapter 2: If statements and loops

number_of_miles = int(raw_input("Enter the number of miles: "))

number_of_kilometers = number_of_miles * MILE_IN_KILOMETERS

print "%f miles equals %f kilometer" % \
(number_of_miles, number_of_kilometers)

� Make the assignments VAT, Plumber and Othello 1.

Identifiers

All constants, types, variables, methods and classes have to be assigned a
name. This name is called the identifier. This identifier has to be unique within
the class that it is defined in. This might seem easier than it is. In this practical
you will learn to choose the right identifier for the right object.

The importance of the right name The identifier that is assigned to an object
should reflect the information it contains. When a variable to maintain a record
of the number of patients in a hospital is needed, n would not suffice as a
identifier for this variable. The identifier n does not specify the information the
variable contains. When the identifier number is chosen, the problem seems to
be resolved. However, it is still unclear to which number the identifier refers.
Is it the number of doctors? Is it the number of beds? No, it is the number
of patients. That is why this variable should be called number_of_patients. It
might take some time to find an appropriate identifier in some cases, but it is
certainly worth the effort. This ensures that everyone will understand your
program, including the teaching assistant.

Example A long, long time ago, the maximum length of identifiers in some
programming languages was limited. All information about the contents of
the variable had to be contained in six or seven characters. This meant that
it was very difficult to find clear and understandable identifiers. As a result,
programs were often hard to read. A program that had to find travel times in
a timetable would contain identifiers like:

ott # outward travel time, in minutes
rtt # return travel time, in minutes

The introduction of programming languages like Pascal significantly improved
the readability of code by removing the restriction on identifier lengths. Like
Pascal, Python does not limit the length of identifiers. Therefore the identifiers
in the example can be rewritten:

outward_travel_time # in minutes
return_travel_time # in minutes

Abbreviated identifiers Uncommon abbreviations should not be used as iden-
tifiers, as the example above illustrates. Identifiers do not necessarily have to
be long to be understandable. In mathematics for example, characters are of-
ten used to denote variables in equations. Let’s have a look at the quadratic
equation:

16

Introduction to Programming in Python Chapter 2: If statements and loops

ax2 + bx+ c = 0

A quadratic equation has at most two solutions if the discriminant is larger
than zero:

− b±
√
b2 − 4ac

2a

A program to solve a quadratic equation would contain the following code:

discriminant = (b * b) - (4.0 * a * c)
if discriminant >= 0:

x1 = (-b + math.sqrt(discriminant)) / (2.0 * a)
x2 = (-b - math.sqrt(discriminant)) / (2.0 * a)

Note that this implementation uses the identifiers a, b and c in the same way as
the mathematical definition. Readability would not improve if these identifiers
would be replaced by quadratic_coefficient, linear_coefficient and constant_term. It
is clear that using a, b and c is the better choice. The identifier discriminant is
used as no specific mathematical character is defined for it. The module math
identifies the method to calculate a square root with sqrt(). The module math
identifies a number of other methods with equally well known abbreviations.
For example: cos(), log() and factorial().

Exceptions There are some conventions for identifiers. An example for cal-
culating the factorial of n > 0:

factorial = n
for i in range(1, n):

factorial *= i

The identifier for the variable n is not changed into argument. Numerical ar-
guments are by convention often identified as n. Variables that are used for
iterations are similarly not identified as counter, but as i. When more than one
iterator is used, it is common practice to use j and k as identifiers for the next
iterators.
Let us look at another example. When programming a game of chess, the
pieces on the board can be identified by ki (king), qu (queen), ro (rook), bi
(bishop), kn (knight) and pa (pawn). Everyone with a elemental knowledge
of chess will surely understand these abbreviations, one might think. How-
ever, if someone else reads this program kn might be interpreted as king and ki
as knight. This example shows the need of ‘psychological distance’ between two
identifiers. The psychological distance between identifiers cannot be measured
exactly. Psychological distance is roughly defined as large when the chance of
confusion between identifiers is small. On the contrary, the psychological dis-
tance is small when confusion between identifiers is almost inevitable. Two
identifiers with a very small psychological distance are the identifiers in the
first timetable example.

� Rule of Thumb
Identifiers which are used a lot in the same context, need to have a large
psychological distance.

17

Introduction to Programming in Python Chapter 2: If statements and loops

Conventions

One important restriction for choosing identifiers is that they cannot contain
whitespace. It is common practice to write identifiers consisting of multiple
words by capitalising each word, except the first. In this practical the following
guidelines are in place:

• Names of variables, methods and functions are written in lowercase, with
words seperated by underscores.

Example: number_of_students
Example: read_line() { ... }
Example: calculate_sum_of_profit(x)

• Identifiers identifying constants are written in upper case. If an identifier
for a constant consists of multiple words they are separated by under-
scores.

Example: MAXIMUM_NUMBER_OF_STUDENTS = ...

• Identifiers identifying a module are written in the same way as variables.

• Identifiers identifying a class are written in lowercase, with the first letter
of all the words capitalized.

Example: Library
Example: AgeRow

Self test

Expressions 1

The following questions are on expressions. These questions do not need to
be turned in. Do make sure you are able to answer all the questions posed
below, as this knowledge is vital in order to make the exam in good fashion.
For all questions write the generated output, or indicate an error. In addition
write down every expression in a question and denote the type of the resulting
value of the expression.

Question 1

result = 2 + 3

Question 2

result = 1.2 * 2 + 3

Question 3

result = "ab" + "cd"

Question 4

result = ord(’c’) - ord(’a’) + ord(’A’)
result = chr(result)

18

Introduction to Programming in Python Chapter 2: If statements and loops

Question 5

result = True or False

Question 6

result = 17 / 4

Question 7

result = 17 % 4

Question 8

if True :
print "not not true"

Question 9

if False :
print "really not true"

Question 10

if 2 < 3 :
print "2 is not larger or equal to 3"

Question 11

if (3 < 2 and 4 < 2 and (5 == 6 or 6 != 5)) or True :
print "too much work"

Question 12

number = ’7’
print "%c" % number

Question 13

if False and (3 > 2 or 7 < 14 or (5 != 6)) :
print "finished quickly"

Expressions 2

The following questions are on expressions. For all questions write the gener-
ated output, or indicate an error. In addition write down every expression in a
question and denote the type of the resulting value of the expression.

Question 1

def function() :
number = 2
return number / 3

result = function() * 3

Question 2

19

Introduction to Programming in Python Chapter 2: If statements and loops

def world_upside_down() :
numbers_upside_down = 2 > 3
booleans_upside_down = True == False

return numbers_upside_down and booleans_upside_down

if world_upside_down() :
print "The world is upside down!"

else :
print "The world is not upside down."

Question 3

def awkward_number() :
character = ’y’
return ’z’ - character

print "The result is awkward " + "result: \%s" %
awkward_number()"

Question 4

if ’a’ < ’b’ :
print "smaller"

Question 5

if ’a’ > ’B’ :
print "hmmm"

Question 6

number = ’7’
print "%d" % number - 1

20

Introduction to Programming in Python Chapter 2: If statements and loops

If-statements

� Study your lecture notes on if-statements. Section 3.1 in the book will
provide additional information on if-statements.

Example This example program will read an exam grade and prints whether
this student has passed.

1 ’’’ Assignment: MileInKilometer
2 Created on 6 aug. 2012
3 @author: Jan Stienstra ’’’
4
5
6 PASS_MINIMUM = 5.5
7
8 grade = float(raw_input("Enter a grade: ")
9

10 if grade >= PASS_MINIMUM :
11 print "The grade, %0.2f, is a pass." % grade
12 else :
13 print "The grade, %0.2f, is not a pass." % grade

This example can also be implemented using a ternary operator as described
in the section Layout.

� Make the assignments Electronics and Othello 2.

21

Introduction to Programming in Python Chapter 2: If statements and loops

Assignments

1. VAT

� Before starting
with this assign-
ment, read the
theory about Effi-
cient programming
en Constants.

Write a program that takes the price of an article including VAT and prints the
price of the article without VAT. The VAT is currently 21.00%.

Example Using an input of 121 the output will be:1

Enter the price of an article including VAT: 121
This article will cost 100.00 euro without 21.00% VAT.

2. Plumber

The employees at plumbery ‘The Maverick Monkey’ are notorious bad math-
maticians. Therefore the boss has decided to use a computer program to calcu-
late the cost of a repair. The cost of a repair can be calculated in the following
way: the hourly wages multiplied by the number of billable hours plus the call-
out cost. The number of billable hours is the number of hours worked rounded
to the nearest integer. Plumbing laws fix the call-out cost at e16,00.

Example A plumber earning e31.50 an hour, working for 4.5 hours should
get the following output.

Enter the hourly wages: 31.50
Enter the number of hours worked: 4.5
The total cost of this repair is: 173.50 euro

3. Othello 1

The goal of this assignment is to give some information about the outcome
once a game has finished. This information is obtained by two measurements:

• The percentage of black pieces of all the pieces on the board.

• The percentage of the board covered in black pieces.

The Othello board measures eight squares by eight squares, making the total
number of squares sixty-four.
Write a program that takes the number of white pieces followed by the number
of black pieces as input. Print the two percentages as output.

Example

Enter the number of white pieces on the board: 34
Enter the number of black pieces on the board: 23
The percentage of black pieces on the board is: 35.94%
The percentage of black pieces of all the pieces on the board is: 40.35%

In case you have gotten interested in the game of Othello, you can find more
information about it here. You will not need this information for this course.

1Examples will have input printed in italics.

22

http://www.yourturnmyturn.com/rules/reversi.php

Introduction to Programming in Python Chapter 2: If statements and loops

4. Electronics

� Before starting
this assignment,
read the theory
about Identifiers
and If-statements.

The electrics company ‘The Battered Battery’ is nearly bankrupt. To avoid total
disaster, the marketing branch has come up with a special sale to attract more
customers. Whenever a customer buys three products, he or she receives a 15%
discount on the most expensive product. Write a program that takes the prices
of three products as input and prints the discount and final price as output.
Remember that the goal of making the assignments in this chapter is to practice
the use of if statements. Therefore, do not use the built-in function max in this
assignment.

Example Determine the reduction and final price if the three products cost
e200, e50 and e25 respectively.

Enter the price of the first article: 200
Enter the price of the second article: 50
Enter the price of the third article: 25
Discount: 30.00
Total: 245.00

5. Othello 2

During a game of Othello the time a player spends thinking about his moves is
recorded. Write a program that takes the time that two players have thought,
one human, one computer, in millisecond as input. The program determines
which of the two players is human and prints the thinking time of the human
in the following format: hh:mm:ss. It may be assumed that a computer always
has less thinking time than a human.

Example

Enter the time the black player thought: 21363
Enter the time the white player thought: 36
The time the human player has spent thinking is: 00:00:21.

6. Manny

� The following
four assignments use
loops. Use the right
loop for the right as-
signment; use both
the for statement and
the while statement
twice.

Mobster Manny thinks he has found the perfect way to part money from their
rightfull owners, using a computer program. Mobster Manny secretly installs
the program on someone’s computer and remains hidden in a corner, waiting
for the program to finish. The program will ask the user how much he or she
wants to donate to charity, thirsty toads in the Sahara (Manny’s Wallet). If the
unsuspecting victim wants to donate less thane50, the program will ask again.
The program will continue to ask for an amount until the user has agreed to
donate e50 or more, after which Mobster Manny will show up to collect the
money.
Write this malicious program, but make sure it does not fall in the wrong
hands.

23

Introduction to Programming in Python Chapter 2: If statements and loops

Example An example of a correct execution of the program is shown below:

Enter the amount you want to donate:
0
Enter the amount you want to donate:
10
Enter the amount you want to donate:
52
Thank you very much for your contribution of 52.00 euro.

7. Alphabet

Write a program that prints the alphabet on a single line. Print every character
seperated by a space. Do not use the ascii_lowercase constant, or other con-
stants from the string module.

Hint: use the ord() and chr() functions. To make sure Python does not print a
newline after each print statement use a comma at the end of the print state-
ment.
You should get the following output:

a b c d e f g h i j k l m n o p q r s t u v w x y z

8. Collatz

One of the most renowned unsolved problem is known as the Collatz conjec-
ture. The problem is stated as follows:

Start out with a random number n.

• if n is even, the next number is n/2

• is n is odd, the next number is 3n+ 1.

This next number is treated exactly as the first. This process is repeated.
An example starting with 11: 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 4 2 1 4
2 1 . . .
Once the sequence has reached 1, the values repeat indefinitely. The con-
jecture is that every sequence ends with 4 2 1 4 2 1 . . .

This conjecture is probably correct. Using computers all numbers up to 10∗258
have been found to end with this sequence. This problem might seem very sim-
ple, but no one has proved the conjecture since Collatz stated it in 1937. There
have even been mathmaticians that have spent years of continued study on the
conjecture, without success. Fortunately, writing a program that generates the
Collatz sequence is a lot less challenging.
Write a program that takes any positive integer and prints the corresponding
Collatz sequence. End the sequence when it reaches one.

Hint Use the % (modulo) operator to test whether a number is even or odd.

24

Introduction to Programming in Python Chapter 2: If statements and loops

9. SecondSmallest

Take an unknown number of positive integers as input. Assume that the first
number is always smaller than the second, all numbers are unique and the
input consists of at least three integers. Print the second smallest integer.

Example

10 12 2 5 15
The second smallest number is:5

Do not use the method sort(), min() or max().

25

3
Methods and functions

Abstract
The programs written in the previous module use if-statements and
loops. Writing complicated programs with these statements will quickly
result in confusing code. Introducing methods and functions to the code
can solve this problem. This chapter will provide the neccesary knowl-
edge on how to use these constructs, but more important on how intro-
duce structure to code using these constructs.

Goals

• Familiarize with methods, functions and parameters.

• Use methods and functions to structure programs.

Instructions

• Read the theory about Methods and functions. With this knowlegde in
mind, make the assignments NuclearPowerPlant, Palindrome 1, Palin-
drome 2, Pyramid and Pizza.

• Now make the graded assignment Geography Grades 1.

26

Introduction to Programming in Python Chapter 3: Methods and functions

Theory

Methods and functions

The theory about how functions work, what they are used for and how to call
them has been explained in the lectures. But as a small reminder: functions and
methods are both "self-made commands", however functions are commands
in your program and methods are commands in an object. Since objects are
not covered in this course, you’ll only be making functions. Even though you
won’t be making methods you will be using methods. For example from the
String object you’ll be using the method "split()".
A function call is just another statement. The execution of this statement is
slightly more complicated than the execution of a normal Python statement;
instead of executing a single statement, a whole function, possibly calling other
functions, has to be executed. The great thing about using functions is that at
the moment that a function is called, it does not matter how the function is
executed. The only thing that matters is what the function does, and not how
the function does this.
An example. A program that translates Dutch text into flawless English will
most likely feature a piece of code like this:

for line in text:
dutch_sentence = read_sentence(line)
english_sentence = translate_sentence(dutch_sentence)
write_sentence(english_sentence)

etc

It is very unlikely that someone will doubt the correct execution of this piece
of code. Whilst writing a part of the program, it is assumed that the functions
read_sentence(), translate_sentence() and write_sentence() exist. The way that
these functions work, does not matter. Without knowing how these functions
work, it cán be concluded that this piece of code is correct.
The function readSentence() is not that difficult to write. A sketch of this func-
tion:

def read_sentence(line):
Returns a Dutch sentence.

sentence = ’’
for word in line:

sentence += read_word(word) + " "

return sentence

Functions are used to split the program into smaller parts, that have a clear
and defined use. This can all be done without knowing how other functions
do what they are supposed to do. When writing a part of the program, it is
important not to be distracted by a detailed implementation somewhere else in
the program. This also works the other way around. When writing a function,
it is not important what it is used for in the piece of program that calls it. The
only thing that matters, is that the function does exactly what it is supposed to
do according to the function’s name.
Small pieces of code can easily be understood and can be checked easily whether
they do what they are supposed to do in the right way.

27

Introduction to Programming in Python Chapter 3: Methods and functions

� Rule of Thumb
A function consists of no more than 15 lines.

An elaborate example is provided below. Study the structured way of pars-
ing the input. This technique will be extensively used in the GeographyGrades
assignments.

Example The world-renowned Swiss astrologer Professor Hatzelklatzer has
discovered a new, very rare disease. This disease will be known to the world
as the Hatzelklatzer-syndrom. The disease is charactarized by seizures lasting
for approximately one hour.
Professor Hatzelklatzer suspects that these seizures happen more often in odd
months. He has asked his assistant to write a program that will test this hy-
pothesis. Professor Hatzelklatzer has observed a group of test subjects. A file
contains all the reported seizures. Each line indicates the date on which one of
the test subjects suffered from a seizure. The input is structured in the follow-
ing way:

12 01 2005
28 01 2005
etc...

The following example program will parse this input.
1 import sys
2
3 ’’’ Assignment: Hatzelklatzer
4 Created on 29 sep. 1997
5 @author: Heinz Humpelstrumpf ’’’
6
7 STARTING_YEAR = 1950
8 FINAL_YEAR = 2050
9

10 def print_percentage_of_cases(percentage) :
11 print "The percentage of illnesses that match " + \
12 "the hypothesis is: %.2f" % percentage
13
14 # Reads a number from the input string. If the number is not
15 # in range the program will print an error message and
16 # terminates. Otherwise, the number is returned.
17 def read_in_range(input_string, start, end) :
18 result = int(input_string)
19 if result < start or result > end :
20 print "ERROR: %d is not in range (%d, %d)" % \
21 (result, start, end)
22 sys.exit(1)
23
24 return result
25
26
27 def odd_month(input_string) :
28 date = input_string.split()
29
30 # the day is read, but not saved
31 read_in_range(date[0], 1, 31)
32
33 # the month is read and saved in the variable "month"
34 month = read_in_range(date[1], 1, 12)

28

Introduction to Programming in Python Chapter 3: Methods and functions

35
36 # the year is read, but not saved
37 read_in_range(date[2], STARTING_YEAR, FINAL_YEAR)
38
39 return month % 2 != 0
40
41
42 ’’’Start Program’’’
43 total_number_of_seizures = 0
44 number_in_odd_months = 0
45
46 lines = open(’input.txt’).readlines()
47 for line in lines :
48 if odd_month(line) :
49 number_in_odd_months += 1
50
51 total_number_of_seizures += 1
52
53 percentage = (float(number_in_odd_months) /
54 total_number_of_seizures) * 100.0
55
56 print_percentage_of_cases(percentage)

� You should now have sufficient knowledge to make the assignments
NuclearPowerPlant, Palindrome 1, Palindrome 2, Pyramid and Pizza.

Parsing input

Using methods from the file and string modules, structured input can be read.
Until now, all input was quite simple; a number was read by reading an en-
tire line and converting it to an integer afterwards. Using the aforementioned
methods much more sophisticated input can be read.

Reading strings As seen before, using the method readline() an entire line
can be read. Using the method read() the entire input can be read. The input
in the rest of this practical will mostly consist of multiple lines of the same
input. Calling the method readlines() will read all lines on the standard input
and return them as a list. This list can subsequently be iterated through with a
for-statement.

Strings can be read from a file by using the open() function. This function
takes as argument the path of the file that will be opened. For example, a file
called example.txt can be opened by calling open(’example.txt’) if the file is in
the same directory as where the code is ran from. In PyCharm this can be done
by placing the input file in the same folder as the Python file.

Reading from a string When a string contains more than one word or num-
ber, it is often required to parse it further. This can be done using the split()
method from the string module.

Using split() without an argument will split the string on any whitespace
string. These include spaces, tabs and newlines. For example:

string = "a,b,c,d 2#4#6#8"
strings = string.split()

letters = strings[0]

29

Introduction to Programming in Python Chapter 3: Methods and functions

numbers = strings[1]

Reading using delimiters Strings can not only be split on whitespace, but on
any string. To do this, an argument has to be supplied to the split() method.
Splitting the string "2#4#6#8" with split() would just return a list containing a
single element, "2#4#6#8". To split this string into four separate strings, use
split(“#”). For example:

string = "2#4#6#8"
numbers = string.split("#")

read all the numbers, and print the sum of all the numbers.
result = 0
for number in numbers :

result += int(number)

print result

Hint: Split has an optional argument maxsplit which limits the amount of
splits to this number. This is useful if one only wants to remove the first line of
a file for example.

Example Input is often structured, this means that the input is made up of
different parts, often themselves divided in separate parts. Such input can be
read in a structured way by first reading the large parts and forwarding these
parts to a different function that will read the sub-parts.

The example uses the following structured input:

Melissa White-Admiral Nelsonway;12;2345 AP;Seaty
Richard of Hughes-Green Lawn;1;2342 SS;Seaty
Godwyn Large-Calferstreet;101;2341 NG;Seaty
Petronella Diesel-The Mall;1102;2342 MW;Seaty
etc...

The input is read from a file called input.txt by calling open(’input.txt’).readlines()
and is made up of an unknown number of students. Every line states the name
and address of a single student. The name is separated from the address by a
’-’. The address consists of a street, house number, postal code and city. The
components are separated by a ’;’.

One of the most important skills is to recognize such structures. Luckily this
is not that hard. Study the example and the explanation provided below. The
program will read the input defined above and print the addresses in format
suitable for letters.

import sys

’’’ Assignment: Addresses
Created on 6 aug. 2012
@author: Jan Stienstra ’’’

def print_address(input_address) :
address = input_address.split(";")

street = address[0]

30

Introduction to Programming in Python Chapter 3: Methods and functions

house_number = int(address[1])
postal_code = address[2]
city = address[3]

print "%s %d\n%s %s" %(street, house_number,
postal_code, city)

def print_student(student) :
student_details = student.split("-")

full_name = student_details[0]
address = student_details[1]

print_address(address)

’’’Start Program’’’
students = open(’input.txt’).readlines()

for student in students :
print_student(student)

The program is very comprehensible, even without comments. The program
has three functions, each reading a different aspect of the input:

• The start of the program splits the input into separate students:

Melissa White-Admiral Nelsonway;12;2345 AP;Seaty
Richard of Hughes-Green Lawn;1;2342 SS;Seaty
Godwyn Large-Calferstreet;101;2341 NG;Seaty
Petronella Diesel-The Mall;1102;2342 MW;Seaty
etc...

• print_student(student) then reads the name and address separately and
forwards the address to the printAddress function.

Melissa White - Admiral Nelsonway;12;2345 AP;Seaty

• print_address(input_address) then reads every component, and prints them
in a desired format:

Admiral Nelsonway ; 12 ; 2345AP ; Seaty

31

Introduction to Programming in Python Chapter 3: Methods and functions

Assignments

1. NuclearPowerPlant

� Before starting
this assignment,
read the theory
about Methods and
functions.

The nuclear powerplant at Threeyedfish will automatically run a program to
print a warning message when the reactor core becomes unstable. The warning
message reads:

NUCLEAR CORE UNSTABLE!!!
Quarantine is in effect.
Surrounding hamlets will be evacuated.
Anti-radiationsuits and iodine pills are mandatory.

Since the message contains crucial information, it should be printed three times.
To do this, write a function that prints this message. This function has to be
used three times.

2. Palindrome 1

Write a program that will print the the following string:

abcdefghijklmnopqrstuvwxyzyxwvutsrqponmlkjihgfedcba

It is not allowed to do this hardcoded.

Hint: This line consists of three parts:

• a to y

• z

• y to a

3. Palindrome 2

This assignment takes of where Palindrome 1 has finished. Make a copy of
Palindrome 1 and edit the code so that the program will:

• read a letter from standard input

• print the string from Palindrome 1 up to this letter

For example, if the letter was c, the output would be:

abcba

4. Pyramid

Write a program that prints a pyramid made of letters in the middle of the
screen. Use functions with parameters for this assignment. The example shows
the expected output, a pyramid of 15 levels. It can be assumed that the screen
width is 80 characters.

32

Introduction to Programming in Python Chapter 3: Methods and functions

Example

a
aba

abcba
abcdcba

abcdedcba
abcdefedbca

abcdefgfedcba
abcdefghgfedcba

abcdefghihgfedcba
abcdefghijihgfedcba

abcdefghijkjihgfedcba
abcdefghijklkjihgfedcba

abcdefghijklmlkjihgfedcba
abcdefghijklmnmlkjihgfedcba

abcdefghijklmnonmlkjihgfedcba

5. Pizza

Mario owns a pizzeria. Mario makes all of his pizzas from 10 different ingredi-
ents, using 3 ingredients on each pizza. Mario’s cousin Luigi owns a pizzeria as
well. Luigi makes all his pizzas from 9 ingredients, using 4 ingredients on each
pizza. Mario and Luigi have made a bet: Mario believes that customers can
order a larger selection of pizzas in his pizzeria than they can order in Luigi’s
pizzeria.
Write a program that calculates the number of pizzas Mario and Luigi can
make. Use functions for this assignment. Make your own implementation
of the factorial() function from the math module. The outcome should look like
this:

Mario can make 120 pizzas.
Luigi can make 126 pizzas.
Luigi has won the bet.

Hint When choosing k items from n possible items, the number of possibili-
ties can be obtained using the following formula:(

n

k

)
=

n!

k!(n− k)!

33

Introduction to Programming in Python Chapter 3: Methods and functions

Graded assignment

6. Geography Grades 1

In the input file, grades are listed for the geography tests of group 2b. There
have been three tests of which the grades will be included in the half-yearly
report that is given to the students before the Christmas break.

On each line of the input you can find the name of the student, followed by
one or more under scores (’_’). These are succeeded by the grades for the tests,
for example:

Anne Adema____________6.5 5.5 4.5
Bea de Bruin__________6.7 7.2 7.7
Chris Cohen___________6.8 7.8 7.3
Dirk Dirksen__________1.0 5.0 7.7

The lowest grade possible is a 1, the highest a 10. If somebody missed a
test, the grade in the list is a 1.

Your assignment is to make the report for the geography course of group
2b, which should look like this:

Report for group 2b
Anne Adema has an average grade of 5.5
Bea de Bruin has an average grade of 7.2
Chris Cohen has an average grade of 7.3
Dirk Dirksen has an average grade of 4.6
End of report

34

4
Parsing input

Abstract
A lot of programs depend on some sort of input. In previous chapters
only simple input was used. This module will introduce the notion of
structured reading of structured input to parse complex input and write
structured programs.

Goals

• Understand the notion of structured reading.

• Write well structured code that reflects the way the input is parsed.

35

Introduction to Programming in Python Chapter 4: Parsing input

Theory

Layout

A good layout is essential to make comprehensible programs. There are a lot
of different layouts that will result in clear programs. There is no single best
layout, but it is important to maintain the same layout throughout the whole
program. Examples of a good layout can be found in all the examples in the
book and in this instruction manual. A couple of rules of thumb:

� Rule of Thumb
In for, while, if or elif statements, all code in the body is indented by four
spaces, usually the width of one tab.

� Rule of Thumb
Functions are separated by at least one blank line. The initialization of
variables and assignments are also separated by a blank line. White lines
can be added anywhere, if this increases clarity.

Novice programmers often lack enough space in their programs. If the code
does reach the end of the page, by indenting twelve times, the code is probably
too complicated. It will have to be simplified by introducing new methods and
functions. The TAB key is useful for indenting pieces of code.
The layout of an if-statement is one of the most difficult statements to define.
The layout is greatly influenced by the code following the statement. These
examples show possible layouts:

if boolean expression:
statement

if boolean expression:
statement

else:
statement

if boolean expression: short statement

if boolean expression: short statement
else : short else-statement

if boolean expression:
a lot of statements
...

else: # opposite of the boolean expression
statements
...

if boolean expression 1:
statement 1

elif boolean expression 2:
statement 2

elif boolean expression 3:
statement 3

else: # explanation on the remaining cases
statement 4

36

Introduction to Programming in Python Chapter 4: Parsing input

The ternary operator

When a choice between two cases can be made based on a short expression,
the following statement can be used:

value, if expression is true if expression else value, if expression is false

This way, the following piece of code:

if a < b :
minimum = a

else :
minimum = b

can be shortened to:

minimum = a if a < b else b

Comments

"Comments make sure that a program is readable. Everyone knows this, a
truism. In the past, when no one could program, someone would sometimes
write a program without comments. This is considered by many to be old-
fashioned, offensive even. Comments are the programmer’s cure-all. When a
comment is added to all cleverly thought over pieces of code, nothing can go
wrong."

Wrong!

Comments are not meant to explain dodgy programs to a reader. A program
that can be understood without comments, is better than a program that cannot
be understood without comments. This ís ofcourse a truism. Comments may
never replace clear programming.
Comments should not be written wherever possible, but on those occasions
where they are neccesary. An example of unneccesary commenting:

the sum of all values is assigned to result.
result = 0
for input in inputs :

result += input

It can be assumed the reader can understand Python. A clear piece of code
does not need additional explanation.
There are some cases in which it is advisable to add comments in the middle
of a function (for example, the previous if-statements). But usually comments
are placed at the top of the function. These comments are usually placed to
explain a complex function, describing:

• what the function does

• (if neccessary) how it does this

• (if neccessary) how the function changes external values. If, for example,
a global variable is changed within the function, it might be useful to
write this in a comment.

37

Introduction to Programming in Python Chapter 4: Parsing input

A well written program contains a lot of functions without any comments.
Usually, the name of a function will indicate precisely what will happen and
the code will be readable. For example:

def print_row(row) :

does not require explanation telling the reader that a row is printed. However,
the function

Sorts the list using "rapidsort";
see Instruction Manual.

def sort(row) :

does require this kind of explanation. The execution of a sorting algorithm is
not trivial. This can be solved in two ways: explaining the algorithm within
the program, or reference another document describing the precise execution
of this piece of code. In the latter case, the code has to exactly match the de-
scription of course.

� Rule of Thumb
If the name of a function explains what it does and it is trivial how it does
this, no comments are neccessary.
If one or both of the prerequisites are not met, a comment is needed.
There are very little or no comments within a function.

38

Introduction to Programming in Python Chapter 4: Parsing input

Assignments

1. Geography Grades 2

� Before starting
this assignment,
read the theory
about Parsing input.

Make a copy of your program for the problem Geography Grades 1 and change
the code in such a way that your program no longer prints the average grade,
but the final grade.

The final grade is calculated by rounding the average grade to the nearest
multiple of a half. So, for example, a 7.2 becomes a 7.0 and 7.3 becomes a 7.5.
If this calculation results in a 5.5, the final grade becomes a 6.0

Your assignment is to make the report for the geography course of group
2b, that, with the same example input as for the problem Geography Grades 1,
should look like this:

Report for group 2b
Anne Adema has a final grade of 6.0
Bea de Bruin has a final grade of 7.0
Chris Cohen has a final grade of 7.5
Dirk Dirksen has a final grade of 4.5
End of report

2. Geography Grades 3

Make a copy of your program for the problem Geography Grades 2 and change
the code in such a way that your program can process multiple groups.

These groups are on the input separated by ’=\n’. Every group starts with
a first line that contains the name of the group and the lines after contain the
information about the students in the same way as is specified for the problem
Geography Grades 1.

With the input

1b
Erik Eriksen__________4.3 4.9 6.7
Frans Franssen________5.8 6.9 8.0
=
2b
Anne Adema____________6.5 5.5 4.5
Bea de Bruin__________6.7 7.2 7.7
Chris Cohen___________6.8 7.8 7.3
Dirk Dirksen__________1.0 5.0 7.7

The output should be:

Report for group 1b
Erik Eriksen has a final grade of 6.0
Frans Franssen has a final grade of 7.0
End of report

Report for group 2b
Anne Adema has a final grade of 6.0
Bea de Bruin has a final grade of 7.0
Chris Cohen has a final grade of 7.5
Dirk Dirksen has a final grade of 4.5
End of report

39

Introduction to Programming in Python Chapter 4: Parsing input

Graded assignment

3. Administration

For the end of year administration of Programming for History of Arts students
you are to write a program that can do 2 things:

1. calculate a final grade

2. print a small graph of similarity scores and, if applicable, list the students
under investigation

The input is structured as follows:
Piet van Gogh___5 6 7 4 5 6
5=20=22=10=2=0=0=1=0=1;Vincent Appel,Johannes Mondriaan
Karel van Rijn___7 8 6 6
2=30=15=8=4=3=2=0=0=0;

The first line should be interpreted as follows:

<Name of the student><one or more underscores><one or more grades separated by spaces>

You have to calculate the final grade of the student. All grades have the
same weight. The final grade is rounded as follows:

• a grade that is >= 5.5 AND < 6 should be noted as a "6-"

• otherwise a grade will be rounded to the nearest half

The second line should be interpreted as follows:

<10 numbers separated by ’=’>;<zero or more names separated by ’,’>

The first 10 numbers are the similarity scores. These scores represent the
number of programs matching a certain percentage of the current program in
steps of 10%. This means the first numbers indicates the matches from 1%-10%
and the last number indicates the matches from 91%-100%.

Since this is not very readable, the professor would like a simple graph
according to these rules:

• if there are zero matches, display an underscore: _

• if there are less than 20 matches, display a minus sign: −

• if there are 20 or more matches, display a caret: ∧

The names of the students after the semicolon are the names of the students
with matches in the final 3 categories. The names of these students should be
printed under the graph. If there are no matches, the program should print
"No matches found".

The output for the aforementioned input should be:
Piet van Gogh has an average of 6-

-^^--__-_-
Vincent Appel
Johannes Mondriaan

Karel van Rijn has an average of 7.0
-^-----___
No matches found

40

5
Modules, classes and lists

Abstract
Classes are used to encapsulate a number of relating methods and vari-
ables. In the previous chapters methods and functions were used to
structure a program. Using classes, a program can be structured even
further. For instance, it is possible to represent real-world objects using
classes. This module shows how to use classes.

Goals

• Using lists to save a (un)known number of values.

• Using more classes and modules and recognising when to use extra classes
and/or modules.

• Recognizing the right class/module for the right method, variable or con-
stant.

41

Introduction to Programming in Python Chapter 5: Modules, classes and lists

Theory

Modules and classes

A python source file is called a module. Modules can contain a program, meth-
ods, a class, or all of these. A class defines an object from the real world.
Complex programs almost always require the use of two or more modules or
classes. To decide whether a new module should contain a class consider the
following:

1. Modules contain several logically connected methods do not become classes.
An example of such a module is the math module. This module contains
various methods used to perform mathematical operations. All result-
ing programs from the previous assignments also belong to this set of
modules as well.

2. Classes are modules that define an object from the real world. An exam-
ple of such a class is the class Person. This class could contain data like:
name, address, date of birth, etc. In addition, this class could contain a
function age(), which returns the age of this person by using the date of
birth and the current date. Another example of such a class is Circle, This
class contains a center and a radius. Methods that are logically connected
to these class are for example surface_area() and circumference().

In the first four modules, only modules of the first category were required.
Assignment from this module onwards will also use classes. An example will
show how to make and use such a class. It is good practice to use separate files
for different classes.

Example This example will feature a program used by airline ‘FlyLo’ to cal-
culate the profit of a flight to London. The airline uses four different fares:

1. Toddlers, aged 0 to 4 years old are charged 10% of the regular fare.

2. Children, aged 5 to 12 years old are charged half the regular fare.

3. Adults are charged the regular fare.

4. Elderly peoply, aged 65 years or more pay an extra 10% on top of the
regular fare, as they have more money anyway.

The regular fare for a single ticket to London is e99. A Boeing 747, the largest
plane in the airline’s fleet, will accomodate 400 passengers.
The airline wants to know what consequences a change in the maximum age of
a toddler may have. The airline wants to know what the new profit of a flight
will be, and if there is an increase or decrease in the profit.

The program uses a two-line input. The first line contains all the passenger’s
ages. The second line contains the new maximum toddler age. The program
will print the two profits and the difference between the two. It is useful to
save all the ages in a row. This way, the row can simply be ‘asked’ how many
passengers will fit each category. This data will allow the program to calculate

42

Introduction to Programming in Python Chapter 5: Modules, classes and lists

the total profit. A row, such as the one proposed above is a good example of
a class. The class holds data, the ages of all the passengers and the number of
passengers. Apart from the constructor, the class has a method to add an age
to the row and a method to calculate how many passengers fit into a certain
category.

This row can be implemented using a list. The method add() will add a new
age to the back of the row. The function number_in_range(from, to) calculates
the number of passengers that fit this range. The methods read_age_row() and
calculate_total_profit() are self-explanatory.

class AgeRow (object):

def __init__(self) :
self.age_row = []

def add(self, age) :
self.age_row.append(age)

def number_in_range(self, start, end) :
Calculates how many passengers are in the range
bounded by start and end

result = 0

for age in self.age_row :
if start <= age and age <= end :

result += 1

return result

43

Introduction to Programming in Python Chapter 5: Modules, classes and lists

import sys
from age_row import AgeRow

’’’ Assignment: Airplane
Created on 6 aug. 2012
@author: Jan Stienstra ’’’

MAX_TODDLER_AGE = 4 # year
MAX_CHILD_AGE = 12 # year
MAX_ADULT_AGE = 64 # year
MAX_AGE = 135 # year

ADULT_FARE = 99.0 # euro
TODDLER_FARE = ADULT_FARE * 0.1 # euro
CHILD_FARE = ADULT_FARE * 0.5 # euro
ELDERLY_FARE = ADULT_FARE * 1.1 # euro

def read_in_range(input_string, start, end) :
result = int(input_string)

if result < start or result > end :
print "ERROR: %d is not in range (%d, %d)" % (result, start, end)
sys.exit(1)

return result

def read_age(input_string) :
return read_in_range(input_string, 0, MAX_AGE)

def read_age_row(passengers) :
result = AgeRow()

for passenger in passengers :
age = int(passenger)
result.add(age)

return result

def calculate_profit(start, end, fare, ageRow) :
return ageRow.number_in_range(start, end) * fare

def calculate_total_profit(max_toddler_age, age_row) :
toddler_profit = calculate_profit(0, max_toddler_age, TODDLER_FARE, \

age_row)

children_profit = calculate_profit(max_toddler_age + 1, \
MAX_CHILD_AGE, CHILD_FARE, age_row)

adult_profit = calculate_profit(MAX_CHILD_AGE + 1, \
MAX_ADULT_AGE, ADULT_FARE, age_row)

elderly_profit = calculate_profit(MAX_ADULT_AGE + 1, \
MAX_AGE, ELDERLY_FARE, age_row)

return toddler_profit + children_profit + \
adult_profit + elderly_profit

def print_change_in_profit(old_profit, new_profit) :
print "When using the new age limits for " + \

"toddlers and children \n the profit" + \

44

Introduction to Programming in Python Chapter 5: Modules, classes and lists

"changes from EUR %8.2f to EUR %.2f." % \
(old_profit, new_profit)

print "The difference is EUR %8.2f." % \
(new_profit - old_profit)

’’’Start Program’’’

file = open(’input.txt’)
passengers = file.readline().split()
ages = file.readline()

age_row = read_age_row(passengers)
new_max_toddler_age = read_age(ages)

normalProfit = calculate_total_profit(MAX_TODDLER_AGE, age_row)
newProfit = calculate_total_profit(new_max_toddler_age, age_row)

print_change_in_profit(normal_profit, new_profit)

45

Introduction to Programming in Python Chapter 5: Modules, classes and lists

Assignments

1. Weave 1

The goal of this exercise is to weave two series of numbers into a single series.
The input consists of two lines of exactly ten numbers, which need to be woven
into one. To weave the two series into one, consecutively take one number from
the first series, followed by a number from the second series. Do not use a class
yet.

The example below illustrates the desired behaviour.

1 2 3 4 5 6 7 8 9 10
10 9 8 7 6 5 4 3 2 1
1 10 2 9 3 8 4 7 5 6 6 5 7 4 8 3 9 2 10 1

2. Weave 2

In this exercise, the weaving process is programmed into a NumberRow class.
For this exercise create a class NumberRow which at least includes a method
weave(number_row), which weaves one NumberRow with another. The prob-
lem to solve is extended to include a third series of numbers. The goal of this
exercise is to weave the first and second series into a single series and consec-
utively weave a third series through the resulting series.

The example below illustrates the desired behaviour.

1 2 3 4 5 6 7 8 9 10
10 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 10 2 2 3 9 4 3 5 8 6 4 7 7 8 5 9 6 10 6 11 5 12 7 13 4 14 8 15 3 16 9 17 2 18 10 19 1 20

3. BodyMassIndex

Professor Hatzelklatzer has researched the extremely rare Hatzelklatzer-sydrome.
There appear to be less cases of the sydrome in odd months than in even
months. Further research should reveal if the syndrome affects people more
often if they are too heavy.
A way of determining whether someone is too heavy is the body-mass index
(BMI). This is a measure of a person’s weight taking into account their height.
The BMI is defined as weight/length2. The World Health Organization (WHO)
considers a BMI between 18,5 and 25 as ideal and considers people with such
a BMI healthy.
The program receives input consisting of two persons with their name, sex,
length and weight.

Dean Johnson M 1.78 83
Sophia Miller V 1.69 60

Process this input into structured data. To achieve this, use an useful class with
useful methods to enhance the structure of the program. Use this structured
data to print for each person: an appropriate style of address, surname, the
BMI and a statement whether this is considered healthy or not.

46

Introduction to Programming in Python Chapter 5: Modules, classes and lists

Example

Mr. Johnson’s BMI is 26.2 and is unhealthy.
Mrs. Miller’s BMI is 21.0 and is healthy.

4. BodyMassIndex2

Professor Hatzelklatzer has realized that although the program written in the
BodyMassIndex assignment provides some usefull information on the effects
of the BMI on the Hatzelklatzer syndrome, its output is quite difficult to pro-
cess. To make the output easier to understand, the program should be adapted
to analyze a group of test subjects.
The program should read the input, determine the average BMI and count the
number of cases of the Hatzelklatzer syndrome amongst people with a lower
than average BMI and amongst people with a higher than average BMI. To this
end, Professor Hatzelklatzer has provided you with the information of his di-
agnoses of all the test subjects.

The input of the program now looks like this:

Dean Johnson M 1.78 83 Yes
Sophia Miller V 1.69 60 No
...

Just as in the previous BMI excercise, the input consists of people with their
name, sex, length and weight. In addition, the word "Yes" has been added
if the person suffers from the Hatzelklatzer syndrome, whilst "No" is added
if the person did not suffer from the Hatzelklatzer syndrome. Instead of only
two people, the input now consists of an unknown number of people, who all
need to be analyzed. The input file can be found on Canvas.

The output should look like this:

The average BMI of the test subjects is x.
There are y cases of the syndrome amongst people with a BMI >= x.
There are z cases of the syndrome amongst people with a BMI < x.

47

Introduction to Programming in Python Chapter 5: Modules, classes and lists

Graded assignment

5. Pirate

During his completely miserable life, pirate Abraham Blaufelt has been in search
of the lost treasure of Atlantis. On a very fortunate day in the year of the Lord
1642 he enters an abandoned cathedral of a long gone sect in the ancient forests
of Poland. Inside he finds a mysterious ancient parchment. The parchment
reads:

Traveler, if riches are to be achieved,
the solution only has to be weaved.

5,4 4,5 8,7
Weave 6,3 3,2 9,6 4,3
Weave 7,6
Weave 9,8
Weave 5,5 7,8 6,5 6,4

Abraham Blaufelt immediately knew what he was dealing with. A puzzle of
which the result is a safe route to the treasure. This route was essential, the
sea was crawling with monsters in those days. Since this most fortunate day,
almost four hundred years ago, the European tectonic plate has shifted signifi-
cantly. As a result all coordinates have to be shifted by (1, 0).

Write a program that solves this puzzle. This has to be done in the following
way: Start with the coordinates on the first row, weave the coordinates of the
second row through the first row, then weave the coordinates of the third row
through the resulting row etc. Note, if two rows of unequal length have to
be woven, the two rows are woven as far as possible. After the elements of
the shortest row have been exhausted, the row is completed by adding the
remaining elements of the longest row.
Make a new Coordinate and CoordinateRow class for this assignment. The
latter class has a method to weave a CoordinateRow into itself.
The coordinates of the puzzle are in a file on Canvas. Every CoordinateRow is
seperated from another by an ’=’. Every coordinate in a row is seperated by a
space. The x and y values of a coordinate are seperated by a comma.
After all data has been read, the program will print the treasure route on the
standard output. The correct route can also be found on Canvas.

48

6
Events and animations

Abstract
This chapter introduces events and animations. These notions are essen-
tial for programming interactive programs. The graded assignment of
this module will involve programming the game Snake. A game such as
Snake is quite complex and therefore requires a careful approach. Using
stepwise refinement one begins with a rough sketch of a program, which
is developed with increasing detail. Before starting with programming
the graded assignment it is compulsary to make such a sketch of the
program, which has to be approved before being allowed to continue.

Goals

• Familiarize with events.

• Use events to program an animated program.

• Use events to program an interactive program.

• Use stepwise refinement to create complex programs.

49

Introduction to Programming in Python Chapter 6: Events and animations

Theory

Importing the IPy library

Some assignments in the remainder of this manual require the IPy library. The
IPy library is a collection of classes and methods that enables the use of a graph-
ical interface instead of the console as input and output. Such a collection of
classes, providing additional features, is called a library.
To use this library in PyCharm, download the IPy library from Canvas, then
move the downloaded file to the root folder of your workspace.
Import-statements can now enable the use of specific elements of the UI-library.
For example, if the program requires the SnakeUserInterface from the ipy_lib,
add the following line to the top of the program:

from ipy_lib import SnakeUserInterface

For MAC-users:
The library is now compatible with MAC. To make sure everything works ac-
cordingly, make sure to add the following bit of code to the end(!) of your
code:

#example
#import interface
from ipy_lib import SnakeUserInterface

#create GUI object
ui = SnakeUserInterface (10, 10, 0.75)
#keep window open after code finishes
ui.stay_open()

The ui.stay_open() line is especially important, since this keeps the window
from closing when it is done running the program

Selecting input using the IPy library Using the ipy_lib library, PyCharm can
use files as input instead of the standard input, the keyboard. To select a file as
input, add the following statement before any other statement relating to the
input:

file_input()

When a program is executed that includes the above mentioned statement, the
program will open a browser to select the input file. Browse to the location
of the file and press Enter. The entire contents of the file will be returned in a
string.

For more information on the possibilities of the IPy library, visit
https://phoenix.labs.vu.nl/doc/python/.

Using the IPy library on laptops Using the IPy library on a laptop with a small
screen resolution may cause a part of the user interface to disappear off screen.
To prevent this, supply an additional third argument to the constructor:

ui = SnakeUserInterface(width, height, scale)

for example:

50

https://phoenix.labs.vu.nl/doc/python/

Introduction to Programming in Python Chapter 6: Events and animations

WIDTH = 40
HEIGHT = 40
SCALE = 0.5

ui = SnakeUserInterface(WIDTH, HEIGHT, SCALE)

Events

This assignment will introduce a Graphical User Interface (GUI). To make a
program interact with the user, this course uses events. An event is for example
a mouse-click, a keystroke or even the fact that it is 2 o’clock.
Using the following functions from the GUI will allow the program to work
with events.

get_event()

Calling this function will make the program halt and wait for an event to arise.
After an event has risen, the function returns an Event-object containing infor-
mation on the event. The Event class looks like this:

class Event:
def __init__(self, name, data):

self.name = name
self.data = data

Pressing the letter ’a’ will generate an Event-object containing the name "letter"
and the data "a". Clicking field 4,3 will return an Event-object containing the
name "click" and the data "4 3".

An interactive program, a program that reacts to input generated by the user,
works as follows:

1. wait for an event to arise

2. process event

3. repeat.

In Python this can be implemented like this:
while True : # infinite loop

event = ui.get_event()
process_event(event)

The method process_event needs to determine what has happened, and what
should happen as a result. Such a method, that calls different methods accord-
ing to a specific condition is called a dispatch-method.

def process_event(event) :
if event.name == "click" :

process_click(event.data)
elif event1 :

process_event1(event.data)
elif (event2) :

process_event2(event.data)
else :

....

� Make the assignment Events.

51

Introduction to Programming in Python Chapter 6: Events and animations

Animations

The way events have been used so far, only allows the program to react to
input given by the user. It is not possible for the program to change anything
on the screen on it’s own account. An animated program has to be able to do
something without requiring input from the user.
Computer games like snake are called interactive animations. In these pro-
grams, the user can influence an animation. To regulate the speed of an anima-
tion, the SnakeUserInterface contains the following method:

set_animation_speed(frames_per_second)

When this method is called with, for example 24.0 frames per second, the
program will generate 24 events per second. These event all have the name
"alarm" and data "refresh". The program can now be made to react to these
events by refreshing the screen. This way, both events generated by the user as
well as an animation can be processed using events.

� Make the assignment Animation.

Stepwise refinement

An important part of writing structured programs is stepwise refinement. This
can be defined roughly in the following way:

• Write down exactly what the program should do, in English or in another
natural language.

• Next, step by step elaborate on the description of the program. Again,
write in a natural language, or, when it is trivial, directly in Python.

• This process is repeated until the whole program is written in Python.

When the algorithm is correctly executed, the result will be a flawless struc-
tured program.

Example Write a program that reads a date in the format: day month year,
seperated by spaces. The program prints whether the date is correct. This
program will be made using stepwise refinement. Important to note is that all
programs are a version of precisely the same assignment. The only difference
is the amount of English replaced by Python.

Program 1

’’’ Assignment: DateCheck
Created on 6 aug. 2012
@author: Jan Stienstra ’’’

’’’Start Program’’’
read the date
check the date
print output

52

Introduction to Programming in Python Chapter 6: Events and animations

Program 2

import sys

’’’ Assignment: DateCheck
Created on 6 aug. 2012
@author: Jan Stienstra ’’’

def is_correct(day, month, year) :
return true if date is correct,
return false otherwise

def read_in_range(input_string, start, end) :
read an integer and return this int if
it is between start and end. Print
an error message otherwise and
terminate.

’’’Start Program’’’
date = open(’input.txt’).readline().split()

day = read_in_range(date[0], 1, DAYS_IN_MONTH);
month = read_in_range(date[1], 1, MONTHS_IN_YEAR);
year = read_in_range(date[2], 0, YEAR_LIMIT);

if is_correct(day, month, year) :
print "The date is correct."

else :
print "The date is not correct."

Program 3

import sys

’’’ Assignment: DateCheck
Created on 6 aug. 2012
@author: Jan Stienstra ’’’

DAYS_IN_MONTH = 31
MONTHS_IN_YEAR = 12
YEAR_LIMIT = 2500

NUMBER_OF_DAYS_IN_A_MONTH = [
list of thirteen values, for each month
the maximum number of days, and a random
value at index 0

]

def is_leap_year(year) :
return true if the year is a leap year
return false, otherwise

def is_correct(day, month, year) :
if day == 29 and month == 2 :

return is_leap_year(year);
else :

return day <= NUMBER_OF_DAYS_IN_A_MONTH[month]

def read_in_range(input_string, start, end) :

53

Introduction to Programming in Python Chapter 6: Events and animations

result = int(input_string)

if result < start or result > end :
print "ERROR: %d is not in range (%d, %d)" % (result, start, end)
sys.exit(1)

return result

’’’Start Program’’’
date = open(’input.txt’).readline().split()

day = read_in_range(date[0], 1, DAYS_IN_MONTH);
month = read_in_range(date[1], 1, MONTHS_IN_YEAR);
year = read_in_range(date[2], 0, YEAR_LIMIT);

if is_correct(day, month, year) :
print "The date is correct."

else :
print "The date is not correct."

Program 4
import sys

’’’ Assignment: DateCheck
Created on 6 aug. 2012
@author: Jan Stienstra ’’’

DAYS_IN_MONTH = 31
MONTHS_IN_YEAR = 12
YEAR_LIMIT = 2500

NUMBER_OF_DAYS_IN_A_MONTH = [0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

def is_leap_year(year) :
return year % 400 == 0 or \

(year % 4 == 0 and year % 100 != 0)

def is_correct(day, month, year) :
if day == 29 and month == 2 :

return is_leap_year(year);
else :

return day <= NUMBER_OF_DAYS_IN_A_MONTH[month]

def read_in_range(input_string, start, end) :
result = int(input_string)

if result < start or result > end :
print "ERROR: %d is not in range (%d, %d)" % (result, start, end)
sys.exit(1)

return result

’’’Start Program’’’
date = open(’input.txt’).readline().split()

day = read_in_range(date[0], 1, DAYS_IN_MONTH);
month = read_in_range(date[1], 1, MONTHS_IN_YEAR);
year = read_in_range(date[2], 0, YEAR_LIMIT);

54

Introduction to Programming in Python Chapter 6: Events and animations

if is_correct(day, month, year) :
print "The date is correct."

else :
print "The date is not correct."

55

Introduction to Programming in Python Chapter 6: Events and animations

Assignments

1. Events

� Before starting
this assignment,
read the theory
about Events.

Write a program using a SnakeUserInterface of 40× 30 which has the following
features:

• Clicking on a square results in a piece of wall to be placed on that square.

• Pressing the space bar erases all the walls.

• The program prints the name and data of all events that occur.

2. Animation

� Before starting
this assignment,
read the theory
about Animations

The goal of this assignment is to make an animated program in which a piece
of wall moves across the screen. The piece of wall starts out on (0,0) and moves
right a square at a time. Upon reaching the end of a row, the piece of wall will
move to the first square of the next row. When the piece off wall reaches the
end of the last row, it is transferred back to the initial (0,0) position.

On top of this make sure the program implements the following features:

• The animation should slow down 0.5 frames per second when ← (left
arrow) is pressed.

• The animation should speed up 0.5 frames per second when → (right
arrow) is pressed.

• The piece of wall should change into a green sphere (a part of a snake)
when g is pressed. Pressing g again will revert the change.

Use the SnakeUserInterface for this assignment.

Example

1 2 3 4 5

6 7 8 9 10

56

Introduction to Programming in Python Chapter 6: Events and animations

Graded assignment

3. Snake

� Before starting
this assignment,
read the theory
about Stepwise
refinement. In
addition, before
starting with pro-
gramming, a draft of
the program has to
be approved.

A logical step forward from interactive animated programs is games. The goal
of this assignment is to program the classic computer game, Snake.
The goal of Snake is to create a snake as long as possible. This is achieved by
guiding the snake to apples, lying about on the field. The snake cannot stop
moving, and dies whenever it hits something. Because the snake is growing
longer and longer as the game progresses, it is increasingly difficult to avoid
collisions with the snake itself.
At the start of the game, the snake consists of two pieces at the coordinates (0,0)
and (1,0). As said before, the snake is always moving. At the start of the game,
it moves to the right. When the user presses one of the arrow keys, the snake
changes direction.
At every moment in the game, there is always an apple somewhere in the field.
If the snake hits an apple, the snake becomes one piece longer in the next screen
refresh. A new apple is placed on a random location, excluding all places cov-
ered by the snake.
When the snake reaches the end of the screen, it will re-emerge at the other
end.

Example The example below shows a short game of snake, played on a 4x3
field. The game to be designed in this assignment will have a field measur-
ing 32x24. The arrow indicates in which direction the snake is traveling. The
numbers on the snake indicate its position in the row.

startingposition → ↓ ←

← ↑ ↑ ↑

This assignment uses the SnakeUserInterface.

Bonus Edit the program in such a way that it accept a level as input. A level
defines a number of walls, which the player has to avoid. Levels can be found
on Canvas. The structure of these files is as follows: first the coordinates at
which the snake is initialized are given followed by an =. Next, the initial di-
rection of the snake is given, again followed by an =. Finally, all the coordinates
at which to place walls are given.

57

Introduction to Programming in Python Chapter 6: Events and animations

Coordinates are formatted in the following way: one coordinate per line, in the
format: x<space>y. The initial direction is one of four strings: "L" (Left), "R"
(Right), "U" (Up) of "D" (Down).
An example of a piece of such a file:

1 0
0 0=R=3 3
4 3
5 3
6 3
7 3
8 3
etc...

58

7
Bonus

Abstract
This chapter contains the bonus assignment. Students who complete the
bonus assignment will be given half a point on top of their final grade.

 Warning
As this is a bonus assignment, there is no time reserved for this assignment
during the lab sessions. This assignment is solely meant for those students
who have finished all other assignments. Students are only allowed to
start on this assignments if all other assignments have been submitted.

Graded assignment

1. Life

The Game of Life was invented by J.H. Conway. Two publication in the “Sci-
entific American” by Martin Gardner saw the game introduced to the public.
Life is played on a board of n x n squares, representing a population of dead
and living cells. A living cell can either die or continue to live, based on a set
of rules. A dead cell can either become alive again, or remain dead. Every cell
has eigth neighbours, except the cells on the edge of the board:

1 2 3
4 * 5
6 7 8

The set of rules determining the fate of a cell:

1. X is currently dead: If X has exactly three living neighbours, X becomes
alive again. In all other cases, X remains dead.

2. X is currenly alive: If X has zero or one neighbour(s), X dies of loneliness.
If X has two or three living neighbours, X remains alive. In all other cases
X dies of a shortage of living space.

59

Introduction to Programming in Python Chapter 7: Bonus

An example using a 9 x 9 board:

1 2 3

4 5 6

7 8 9

10 11 12

13 14

60

Introduction to Programming in Python Chapter 7: Bonus

It is possible for a figure to die (an empty board) or become an oscillator, i.e.
generation n = generation n + p, for any n above a certain value. If the period
equals 1 (p=1), it is called a still figure.
Write a program that takes a starting configuration from a file and generates
generations as long as the figure has not died, become an oscillator with a cer-
tain p, or exceeds the maximum number of generations. When the program
terminates, print a message stating why the program has terminated and if the
figure has become an oscillator, its period. If the period of the oscillator is 1,
the message should read “Still figure” instead of “Oscillator”. The input files
on Canvas have the following structure:

• On the first line, the maximum number of generations, ranging from 1 to
100.

• On the second line, the largest period for which the figure should be
tested to oscillate, ranging from 2 to 15.

• After this, a starting configuration for a 9 x 9 board, made up from 9
line of 9 characters. A living cell is represented by an ‘x’, a dead cell is
represented by ‘ ’

This assignment uses the LifeUserInterface.

61

	Syllabus
	Editing, Compiling and Executing
	Goals
	Introduction to Python and PyCharm
	Installing Anaconda
	Installation and starting PyCharm
	Arranging files
	Compiling and executing programs
	Submitting assignments
	Trial submission

	If statements and loops
	Goals
	Instructions
	Theory
	Efficient programming
	Constants
	Identifiers
	Conventions
	Self test
	If-statements

	Assignments
	VAT
	Plumber
	Othello 1
	Electronics
	Othello 2
	Manny
	Alphabet
	Collatz
	SecondSmallest

	Methods and functions
	Goals
	Instructions
	Theory
	Methods and functions
	Parsing input

	Assignments
	NuclearPowerPlant
	Palindrome 1
	Palindrome 2
	Pyramid
	Pizza

	Graded assignment
	Geography Grades 1

	Parsing input
	Goals
	Theory
	Layout
	Comments

	Assignments
	Geography Grades 2
	Geography Grades 3

	Graded assignment
	Administration

	Modules, classes and lists
	Goals
	Theory
	Modules and classes

	Assignments
	Weave 1
	Weave 2
	BodyMassIndex
	BodyMassIndex2

	Graded assignment
	Pirate

	Events and animations
	Goals
	Theory
	Importing the IPy library
	Events
	Animations
	Stepwise refinement

	Assignments
	Events
	Animation

	Graded assignment
	Snake

	Bonus
	Graded assignment
	Life

